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Abstract. The fusion of 3D freehand ultrasound with CT and CTA has
benefits for a variety of clinical applications, however a lot of manual work
is usually required for correct registration. We developed new methods
that allow one to simulate medical ultrasound from CT in real-time, re-
producing the majority of ultrasonic imaging effects. The second novelty
is a robust similarity measure that assesses the correlation of a combi-
nation of multiple signals extracted from CT with ultrasound, without
knowing the influence of each signal. This serves as the foundation of a
fully automatic registration, which aligns a freehand ultrasound sweep
with the corresponding 3D modality using a rigid or an affine trans-
formation model, without any manual interaction. We also present the
used initialization, global and local parameter optimization schemes, and
validation on abdominal CTA and ultrasound imaging of 10 patients.

1 Introduction

Conventional 2D ultrasound systems can be equipped with position sensing to
perform 3D acquisitions of arbitrary size, and to obtain spatial information dur-
ing the exam. The fusion of such 3D freehand ultrasound imaging with tomo-
graphic modalities can, among many other applications, improve the diagnostic
value (e.g. for assessment of indeterminate lesions, therefore the term Diagnos-
tic Fusion), and integrate anatomic and planning information for interventional
navigation of needle procedures. This requires that the target anatomy is pre-
cisely registered in ultrasound and the pre-operative modality. Doing so in an
automated manner is very challenging, and an active area of research. in [1],
image-based registration of MRI to 3DUS is achieved by using both MRI inten-
sity and gradient information in a similarity criterion based on Correlation Ratio.
Automatic registration on a single kidney CT/US data using Correlation Ratio
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as well, here by enhancing the CT intensities with major boundaries, is done in
[2]. In [3], both MRI and US are remapped to an intermediate vessel probability
representation using training data sets, then cross-correlation is used as simi-
larity measure. In [4], a multi-component similarity measure involving weighted
Mutual information is used on CT intensities and edge maps for rigid alignment
with freehand ultrasound of the head and neck.

The mentioned methods all require manual initialization of the registration
transformation, some need manual frame selection as well. In our work, we
present a simulation of ultrasound from CT, which is realistic enough to allow
a stable registration, yet is computationally efficient at the same time. This has
the side effect that the simulation can be used by physicians or sonographers
in training to get a feeling for the accessibility and optimal orientations even
before the ultrasound exam, or the ultrasound-guided intervention. Besides, a
novel similarity measure is developed, which is invariant to missing simulation
details, hence having smooth properties and a global maximum at the correct
alignment.

2 Simulation of Ultrasound from CT

An ultrasound wave is partly reflected whenever a change in acoustic impedance
is encountered in the imaged tissue. The acoustic impedance Z = ρc depends
on the tissue density ρ and the speed of sound c. Ultrasound machines assume a
constant c = 1540m/s in human soft tissue, while a significantly different speed
of sound occurs e.g. in air and bone. The ratio of an ultrasound wave intensity
reflected at a tissue interface with different acoustic impedances Z1 and Z2 is
(Z2 − Z1)

2/(Z2 + Z1)
2, given a specular interface with angle of incidence equal

to the angle of reflection. The diffuse reflection, reflected straight back to the
ultrasound transducer depends on the angle:

∆r(Z1, Z2, θ) = (cos θ)
n
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The exponent n describes the heterogenity on the interface, causing the amount
of reflection to be more or less narrow around the perpendicular of the tissue
interface. We lack detailed physical knowledge from CT, hence we use n = 1, as
it produces good results and simplifies the equations. The transmitted intensity
t(Z1, Z2) does not depend on the angle of incidence,if refraction is neglected.

The X-Ray attenuation µ measured by a CT scanner is approximately pro-
portional to the tissue density, see e.g. [5] for a reference table. As tissue density
is in turn proportional to acoustic impedance, we can directly derive the an
incremental acoustic intensity reflection from it:
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Fig. 1. Simulation of ultrasonic effects from CT, from left to right: Reflection r, trans-
mission t, simulation r + p, original ultrasound. 3-dimensional Perlin noise has been
added to the occluded part of the simulation.

for n = 1 : ∆r(x, d) =
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µ(x) is the CT attenuation value at position x, ∇µ(x) its spatial derivative.
d is a unit vector denoting the direction of the ultrasound wave propagation,
the scalar multiplication with the normed CT gradient vector yields the angular
dependency equivalent to cos(θ). The ultrasound wave intensity is reduced ac-
cording to t(x) at each tissue interface, while ∆r(x, d) contributes to the wave
intensity detected by the probe. Integrating over this reflection and transmission
behavior yields for any depth along a scanline:
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where I0 is the original intensity of the ultrasound pulse, we define it as I0 = 1.
In addition, we apply a log-compression with one parameter a, which ampli-
fies smaller reflections (resembling the Dynamic Range knob on the ultrasound
machine), yielding the resulting value of the simulation:

r(x) = (log(1 + aI(x)))(log(1 + a)) (7)

For a linear array probe, the integral in equation 6 can be computed efficiently
by traversing the columns in the simulated ultrasound image from top to bottom
while updating the transmitted intensity based on the interpolated CT intensity
and gradient values. For curvilinear arrays, we compute the image row-wise from
top to bottom, while using an auxiliary channel storing the remaining transmit-
ted ultrasound wave intensity (starting with 1 in the first row). For every pixel,
this transmission value is retrieved by linear interpolation from two pixels in the
above row, according to the ultrasound ray angle derived from the curvilinear
geometry.
This provides a means to simulate large-scale ultrasonic reflection at tissue

boundaries, and the related shadowing effects at strong interfaces like bone.
However, individual tissue types have specific echogeneity and speckle patterns
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Fig. 2. Intensity mapping p for CT (red, dashed) and portal-venous CTA (blue) soft
tissue. Note that the liver-vasculature relation is inverted in the two modalities.

by themselves, based on the microscopic tissue inhomogenities. There is no sim-
ple relationship between tissue echogeneity and CT hounsfield units, therefore
we add an intensity mapping p(x) (further described in section 3.2) on a narrow
soft-tissue range to the simulated large-scale reflection r(x). Figure 1 depicts the
simulation result for a transversal liver image.

3 CT-Ultrasound Registration

3.1 Automatic Frame Selection

Since we simulate ultrasound imaging effects with respect to the probe geometry,
the original B-mode scan planes of the sweep have to be used rather than a
3D reconstruction. Neighboring frames of the freehand sweep contain similar
information, hence we use always the one out of n frames that has the highest
image entropy. This assures that frames which contain unique fine vascularity,
that can be located in CT as well, are picked for registration. If two neighboring
frames have the highest entropy out of their group of n, only one of them (again
with the highest entropy) is used. Furthermore, a threshold is used to discard
frames at the beginning and end of the sweep with little structures. In our
experiments, n=3 was used, resulting in 15-22 frames per sweep for registration.

3.2 Idealized Intensity Prior

It seems appropriate to use statistical similarity metrics like Mutual Information
(MI) and Correlation Ratio (CR) for assessing the correspondence of original
CT and ultrasound intensities. In their general formulation, however, they do
not work well for our registration problem, since there are too many possible
configurations where the Joint Entropy is minimal (for MI), or the intensities
from one image can be predicted well from the other one (for CR). At correct
alignment of CT and US, they typically produced only a small local optimum.
Known approaches for restricting the possible intensity distributions are distance
metrics to Joint Histograms learnt from correct registrations (e.g. Kullback-
Leibler-Distance), as well as bootstrapping parameters for a polynomial intensity
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mapping in the actual registration process itself [1]. In both cases, very important
information is disregarded, as e.g. small vascularity is essential for a correct
registration within the liver, but due its appearance on a relatively small fraction
of the image content, it would neither affect a Joint Histogram or a least-squares
estimate of a polynomial intensity mapping. Since CT attenuation measurements
are mostly reproducible, we define a mapping function p(µ) based on a number
of correspondences (liver tissue, liver vasculature, kidney, gall bladder) between
CT/CTA intensities and tissue echogeneity in ultrasound, see figure 2.

3.3 Similarity Measure

In a Correlation Ratio framework, the registration transformation parameters
are modified in order to maximize

CR = 1 −

∑

x∈Ω(U(x) − f(µ(T (x))))2

|Ω|Var(I)
(8)

with f denoting the mapping function which estimates the intensities of the
image U from the transformed image µ. If a linear mapping f(µ) = αµ + β is
assumed, equation 8 can be directly related to the common Normalized Cross-
Correlation (NCC) similarity metric.

For a pixel intensity in the ultrasound image, it is unknown how much the
contribution of large-scale reflections and general tissue echogeneity is. Hence
both the mapped CT intensity p(µ) and the simulated reflection r have to be
integrated in a correlation framework with the ultrasound intensity. Using the
notation pi = p(µ(T (xi))), ri = r(T (xi)), ui = U(xi) for the intensity triple at
a certain voxel, we define the intensity function as

f(xi) = αpi + βri + γ (9)

The unknown parameters α, β and γ then have to minimize
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Direct inversion of the symetric matrix MT M results in a closed-form solution
for the parameters. They are then inserted in equation 8 to yield a novel reg-
istration similarity metric, which we denote Linear Correlation of Linear Com-
bination (LC2). It assesses the correlation of ultrasound intensities ui and a
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Table 1. Registration results on 10 patient data sets in terms of the Fiducial Regis-
tration Error (FRE) as root mean square (RMS) values in mm

Patient no. points manual pt-based rigid affine remarks

1 8 13.8 9.0 17.0 11.4 strong compresson at top
2 7 16.8 10.0 14.4 8.5
3 11 10.6 8.9 12.0 11.2 10cm renal tumor
5 5 10.0 8.4 15.5 8.7 kidney
6 7 8.0 6.2 10.7 9.9
7 11 9.1 6.5 10.8 9.3 pt-based reg. visually bad
9 15 4.2 3.5 7.6 6.8 rigid and affine reg. excellent
11 8 11.1 5.6 8.2 8.2
13 5 11.6 10.7 13.4 12.3
14 13 6.6 5.4 7.8 8.0

linear combination with unknown weights of signals pi, ri extracted from CT.
The value of LC2 is constant with respect to brightness and contrast changes
of the ultrasound image (as NCC), but also independent to how much of the
two described physical effects contributes to the image intensities. The latter
is important, since e.g. hepatic vasculature or the gall bladder is represented
mostly by p (different intensities due to echogeneity in ultrasound, no borders),
while large-scale tissue interfaces correspond to r (strong edge in ultrasound,
comparable intensities on both sides).

We compute equations 11 and 8 for every ultrasound frame in the set, and
use the mean of the results as cost function.

3.4 Optimization Strategy

A rough initial estimate of the orientation is obtained from the tracking setup.
The large-scale translation is determined by performing a brute-force scan of the
translation space. On the configuration which yields the highest similarity mea-
sure value (for a number of similar high results, the one closest to a reasonable
preset translation is used), a local optimization of the translation is executed us-
ing a Simplex-based non-linear optimizer [6]. Successively, all six parameters of
the rigid transformation are refined. As an optional last step, an optimization is
executed on all rigid and three selected affine transformation parameters. These
are the two scaling parameters and the one shearing of the sagittal plane, since
respiratory motion mainly causes deformation in that plane [7].

4 Results

An abdominal diagnostic fusion study was performed on 10 patients with var-
ious pathology. Our freehand ultrasound system uses an Ascension MicroBird
magnetic tracking system with a Siemens Sequoia ultrasound machine and pro-
gressive RGBS video fed into a PC with frame grabber. The position sensor was
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Fig. 3. Left: kidney of patient 5, rigid reg. and liver of patient 6, affine reg. Right:
Registered liver of patient 9 with fiducial points (yellow=CT, green=initial US,
red=registered US), an oblique CT plane and contextual cutaway volume rendering
[9] of CT.

affixed to the transducer using hot-melt adhesive, a method based on [8] was
used to determine the calibration. We used the portal-venous phase CTA scans
on a dual-source Siemens Somatom Definition scanner, and transversal liver
ultrasound sweeps (except for one patient, where a kidney sweep was chosen)
for evaluation of the algorithm.

After manually aligning each of the data sets, a physician selected 5-15 point
correspondences on anatomical landmarks, including portal & hepativ vein, bil-
iary duct, aorta vena cava and heart atrium. Table 1 lists the RMS distances
after manual alignment, point-based rigid registration according to [10], and
rigid & semi-affine registration using our methods. The automatic registration
converges correctly for all patients with an execution time of ∼ 20 seconds.
At the initial estimate (before the translation search), the FRE was between
11 − 62mm. The errors after automatic alignment are in the same range of the
manual ones, but larger than the residual errors after point-based registration.
Since all of the registrations seem visually correct (some results are depicted in
figure 3), we assume to have a fairly large uncertainty in the definition of point
correspondences, especially in cranio-caudal direction. This confirms that man-
ual CT-ultrasound registration is error-prone, as it usually reduces the problem
to definition of points on 2D-planes, or manually aligning a single 2D plane (as
in use in existing products for interventional CT-US navigation) - not guarantee-
ing a correct matching in 3D. If affine registration is used, displacements mostly
on the top of the images are further reduced (often a large shift of the gall
bladder was decreased), accounting for the majority of errors caused by probe
pressure, breathing and different patient setup. We expect that the FRE values
(all < 2cm) represent an upper bound for a target registration error (TRE) on
liver lesions (which we did not define in the scope of this study due to difficult
locatability of relevant clinical targets in most of the data).
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Regarding the diagnostic value of the study, reading of the registered CT/US
data could exclude a number of suspicions on a total of five patients, includ-
ing partial portal vein thrombosis, acute inflammation of the gall bladder and
infiltration of renal cancer into liver tissue.

5 Discussion and Conclusion

We have presented a system for fully automatic alignment of a single freehand
ultrasound sweep with CT and CTA data. We expect this to greatly increase the
acceptance of multimodal fusion for a number of clinical applications, since it
provides a simple workflow and enables more precise registration. Further clinical
studies on diagnostic and interventional fusion using the described method are
underway. A local variant of the developed LC2 measure is possible by averaging
over smaller overlapping patches, which can further increase the robustness with
respect to ultrasound imaging artifacts not covered by the simulation, as well
as user adjustments on the ultrasound machine. Besides, LC2 can easily be
extended to handle a larger number of signals from both modalities. Real-time
compensation of respiratory motion and deformable mapping techniques will be
investigated as well, based on the proposed methods.
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