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Abstract Doppler wind lidar (DWL) measurements by the

fringe-imaging technique in front of aircrafts at flight speed

require rapid processing of backscattered signals. We discuss

the measurement principle to derive the 3D wind vector from

three line-of-sight (LOS) measurements. Then we simulate

realistic fringe patterns of a Fabry-Pérot-interferometer (FPI)

on a 2D charge-coupled device (CCD) localized at the focal

plane behind it, taking atmospheric and instrument proper-

ties like scattering and noise into account. A laser at 355 nm
with pulse energies of 70mJ at 100Hz repetition rate and a

range bin of only 10m were assumed. This yields count rates

of 24 (13) million photons per pulse at 56 (76)m distance

and 8.5 km altitude, that are distributed on a CCD with up to

960× 780 pixels without intensification and therefore gener-

ate noisy pixel signals. We present two methods for the pre-

cise determination of the radii, i.e. wavelengths, of these sim-

ulated FPI rings and show that both are suitable for eliminat-

ing pixel noise from the output and coping with fringe broad-

ening by Rayleigh scattering. One of them proves to reach the

accuracy necessary for LOS velocity measurements. A stan-

dard deviation of 2.5m
s including center determination can be

achieved with only 20 images to average. The bias is 7m
s . For

exactly known ring centers, each can be even better than 2m
s .

The methods could also be useful for high-resolution laser

spectroscopy.

PACS 42.68.Wt · 42.25.Hz · 95.55.Aq

1 Introduction

In atmospheric remote sensing, Doppler wind lidar (DWL)

[1] is a commonly used tool for measuring the wavelength

or frequency shift of light backscattered from moving atmo-

spheric molecules and aerosols, and thus extracting infor-

mation about the wind speed and direction. Coherent [2–6]

or incoherent detection methods were realized. Incoherent

(direct-detection) DWL has three main categories: the edge

or double-edge (DE) technique [7–14], techniques based on

temperature stabilized iodine vapor cells as a frequency dis-

criminator [15–17] and the fringe-imaging (FI) technique [18–

22] . All three make use of instruments like Michelson [22] or

(multiple) Fabry-Pérot interferometers (FPI) [14,15,17,21],

with lasers emitting at 532 nm or even better at 355 nm to ob-

tain stronger signals from molecular backscattering. DE and

FI techniques have been compared and analysed in [23,24].

A FI-type FPI was the first one to be tested on aircraft [25,

26] for wind speed measurements. FPIs are applied in scan-

ning mode for plasma jet Rayleigh scattering measurements

to determine gas temperature and velocity profiles of plas-

mas [27], in planar Doppler velocimetry [28] or, similar to

our approach, in imaging mode to measure the flow proper-

ties by Rayleigh scattering in a small supersonic wind tun-

nel [29] via the locations of interference fringes [30] on a

two-dimensional (2D) charge-coupled device (CCD). Among

other Doppler lidar methods that use FPIs with 2D informa-

tion are the image plane detector (IPD) for the Dynamics Ex-

plorer spacecraft [31], which allows for circular-pixel ring-

detection, and the circle-to-line interferometer optical system

(CLIO) [32,33], which uses a reflective cone to convert circu-

lar fringes from a FPI into a linear series of spots on a CCD.

A holographic circle-to-point converter for use with FPIs was

invented, too [34]. We characterize a DWL that measures the

Doppler shifts via FI in front of aircrafts using the angular

displacement of Fabry-Pérot fringes [35,36].

The main focus of the article is on two novel radii evalua-

tion strategies including a center determination, that make use

of the complete 2D information given on a CCD screen in the

focus behind a FPI, thus significantly reducing the noise of

single one-dimensional (1D) cuts through the 2D rings. After

a calibration to relate the ring radii to wavelengths and thus

to Doppler shifts, we check these algorithms for their useful-

ness. We show that one of the methods is sufficient for DWL

measurements, especially because of the low number of im-

ages necessary to average, which is fundamental for use as a

velocity sensor on board of aircrafts.

Although our approach refers to that of Jenaro Rabadan et

al. [26] and measurements of less than 2m
s are reported there,

in this context no algorithms for analyzing these 2D fringes
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Fig. 1 Measurement principle onboard an aircraft (here DLR Fal-

con): see Sec. 2 for details.

in a comprehensible way have been reported yet in combi-

nation with results that show the connection of the evaluated

ring radii to the Doppler shift. Furthermore we use a range

bin of only 10m (instead of 30m in [26]) and no intensifi-

cation on the CCD, but still we reach a standard deviation of

less than 2m
s by averaging just 20 images at 8.5 km altitude

with the corresponding environmental conditions. A multi-

tude of methods for 2D ring radii calculation of FPI fringes

have been reported in literature, e.g. [37–40], some of them

also including a center evaluation (e.g. [38,40]). While these

methods are mainly suited for low noise rings in laboratory

experiments, our approach is also suited for situations with

very noisy rings and the necessity for subpixel accuracy.

The paper is organized as follows: after a description of

the measurement geometry and a general device setup, we

simulate realistic 2D fringe patterns including atmospheric

effects and noise. Finally we calculate the ring radii (i.e. the

wavelengths) of these images and assess the results.

2 Goals and measurement geometry

The goal is a fast and simple instrument for measurements on-

board aircrafts in real-time to react to flight-safety endanger-

ing phenomena like strong gusts and wake vortices at higher

flight altitude and in landing approach or at takeoffs in a dis-

tance up to 100m in front of them [26]. Figures 1 and 2 il-

lustrate the geometrical situation for the determination of a

3D wind vector. A laser emitter transmits one pulse of single-

mode, single-frequency radiation in each so-called line-of-

sight (LOS) direction under an azimuth angle 0◦ ≤ θ < 360◦

and an elevation angle 0◦ ≤ ϕ < 180◦. For powerful laser

radiation in the UV the third harmonics of Nd:YAG lasers

can be used [14,41]. The backscattered laser light from at-

mospheric targets, which is Doppler-shifted, is collected by

the telescope and directed to the FPI and CCD, see Fig. 3.

In Fig. 1 the measurement principle is shown: Three differ-

ent line-of-sight (LOS) directions, i.e. three radial LOS ve-

locities vLOS,i = vi = |vi| , i = 1, 2, 3, of the LOS vec-

tors vi = (vx,i, vy,i, vz,i)
T (see also Fig. 2) (orange), with

their measurement volumes (range bin ∆R, beam diameter

Bw) located around the center, the upper and the lower left

corners of a hexagon (blue measurement plane) here, yield

one 3D wind vector (u, v, w)T (red). The edges of the yel-

low triangle are the centers of the LOS-volumes, and inside

each triangle homogeneity of the wind field is assumed. Thus

seven LOS components may yield six 3D wind vectors, if

the wind vectors are cross-correlated with each other by the

center LOS-component, whose measurement may not fail in

this configuration. Each scan may take only very short time

and CCD data readout speed is a crucial factor. Solving an

inhomogeneous linear equation system of the general form

Ax = b with





cos θ1 cosϕ1 sin θ1 cosϕ1 sinϕ1

cos θ2 cosϕ2 sin θ2 cosϕ2 sinϕ2
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(1)

with coefficient matrix A ∈ R
3×3, unknown wind vector

x ∈ R
3×1 and the measured value vector b ∈ R

3×1, as well

as corresponding known angles θi and ϕi (i = 1, 2, 3) for

each LOS component, one full 3D wind vector [42] can be

determined.

Angles θ and ϕ must not be too small since the vertical

(vx) and horizontal (vy) components (see Fig. 2) of the LOS

vectors become too small and therefore too erroneous other-

wise. On the other hand, θ and ϕ chosen too large destroys

the possibility to calculate enough wind vectors in a plane

in front of the aircraft to resolve small-scale phenomena like

wake vortices. If the scatterers move towards the lidar, the

backscattered radiation is shifted to a higher frequency (lower

wavelength λ), and vice versa. Due to temporally changes of

the wind, the measurement plane should be as near as pos-

sible in front of the aircraft, to fly through nearly the same

wind as predicted by the FPI fringes, thus imposing a severe

time limit on determining the wavelengths. The number of

backscattered photons would also be too low for far-range

measurements, and multiple scattering effects [43–45] could

no more be neglected for CCD detectors consisting of many

picture elements (pixels) where intensity is distributed and

get a serious source of noise. In our simulations the mea-

surement volume is approximately 0.05m3 for the distances

r = 56 (76)m of Table 1 and a range bin of ∆R = 10m,

with assumed values of 0.025m for the radius of the out-

going laser beam and a divergence angle of 500µrad at full

angle, resulting in a beam width of Bw ≈ 0.08m in the LOS-

volume’s center.

The aircraft’s own movement relative to the moving par-

ticles will not be treated here, see e.g. [26,46] for further de-

tails on a compensation algorithm.

3 General device setup

With third harmonic generation of a Nd:YAG-laser, pulses at

354.88 nm [14,41] (354.7 nm for simulation purposes) at a

repetition rate of 100Hz are emitted to the atmosphere. The
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Fig. 2 Line-of-sight-velocity vector v (red) and its x-, y-, z-

components (green) at a range r for an azimuth angle θ and an ele-

vation angle ϕ, and resulting absolute value vLOS in a constant wind

field (u, v, w)T (blue). Two realizations of (θ, ϕ) with vLOS are vi-

sualized here.

beams are directed to the variable LOS-directions in depen-

dence on time. Some of the pulses are weakened and used

as direct reference signals for frequency stabilization and for

Doppler-shift calculations together with the backscattered light

from the atmosphere. A wavemeter is required as well for sta-

bilizing the seed laser wavelength to stay within the free spec-

tral range (FSR) of the FPI (i.e. the same interference order)

for unique wavelength assignment (accuracy of ±0.002 nm
or better required). The receiving telescope collects the backscat-

tered photons as well as background radiation of the solar

spectrum. After a field stop a fast switch or chopper between

reference laser signal and backscattered signal is implemented

into the optical paths, that is switched according to the time

between two consecutive pulses, and whether the signal is

used for referencing or for atmospheric backscattering, which

delays the signal approximately two times the measurement

distance. A schematical setup of the FI-receiver including

only the most essential parts is shown in Fig. 3. Behind a first

collecting lens a narrow-band filter blocks most of the broad

solar radiation, allowing only the necessary wavelengths to

propagate to an air-spaced Fabry-Pérot-étalon. Another lens

collects the waves behind the FPI and focuses them to the

CCD in the lens focus. This CCD is triggered by the pulse

emission time and is activated and paused according to the

desired measurement range. Between the backscatter signals,

sometimes one pulse is used as reference signal, which then

means a different gating time for the CCD. Finally the noisy

backscattered images or the strong reference images are read

out very quickly. Algorithms finally calculate the difference

in the ring radii of a reference and a backscattered image, and

thus the Doppler shift (extracting the true air speed is neces-

sary in reality) in one LOS-direction each time.
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Fig. 3 Schematical setup of the FI-receiver in this study.

Table 1 Single scattering lidar equation parameters for a transmit-

ted pulse energy of EL = 70mJ and pulse length τp = 10 ns at a

flight height of 8.5 km.

n photons received at CCD 1.3× 107 / 2.4× 107

λL center pulse wavelength 354.7 nm
r range 76m / 56m
β(λL, h) backscatter coefficient 3.104 × 10−6 m−1 sr−1

Ar area of the telescope 0.13m2

k instrument constant 0.15
α(λL, h) extinction coefficient 2.70× 10−5 m−1

∆R range of atmo. volume 10m

4 Fabry-Pérot ring generation including atmospheric

effects and noise

For simulation and visualization of the Fabry-Pérot-generated

fringes on the CCD (see Fig. 3), a number of important prop-

erties have to be taken into account, see Table 1. These will be

discussed in detail in the following subsections and included

in the FPI ring creation process for an aircraft flight height of

8.5 km. A different approach to generate these FPI rings by

ray tracing simulations [47] making use of wave properties

will be described in a forthcoming publication.

4.1 Atmospheric properties

Multiple studies with lidars on the elastic backscattering and

extinction properties for varying heights and regions have

been carried out [49–52]. A reference model for the atmo-

sphere [51,52] from airborne backscatter measurements at

specific wavelengths is applied to estimate the backscatter

and extinction coefficients at 355 nm.

Rayleigh (molecular) scattering is split into a non-shifted

center part, called the Cabannes line, and shifted sidebands

due to (pure) rotational Raman scattering [53–58]. In this

study we use the Gaussian approximation (low density of par-

ticles) of the Cabannes line for simplicity.

For our simulations the molecular backscatter coefficient

βmol is derived from the Rayleigh backscatter cross section

per air molecule, which was measured at a (back)scattering

angle of π at λ = 0.55µm [59] : dσ/dΩ|π = 5.45×10−32m2 sr−1 .

The formula [52]

βmol(h, λ) = 10−7

(

1064 nm

λ

)4.09

exp

(

− h

8000m

)

1

m sr
,

(2)
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Fig. 4 Creation of FPI rings in 1D: (a) interferometric pattern calculated by the Airy function; (b) sum of Mie and Rayleigh backscattering

spectra (assumed to be Gaussian-shaped); (c) convolution C1 (normalized to 1) of the Airy function from (a) with the composed function

from (b); (d) a special normalized function M≥0(λ) depending on a constant value g (here g = 7× 1019); (e) product C2 of (d) and the part

right of the arrow in (c), and C2 normalized to 1.

yields βmol(8500m, 355 nm) = 3.08× 10−6m−1 sr−1 (ex-

ponent 4.09 instead of 4 to account for dispersion of the re-

fractive index of air). The molecular extinction, determined

by αmol = βmol8π/3 , is

αmol(8500m, 355 nm) = 2.58× 10−5m−1 [60].

For Mie scattering the corresponding aerosol backscatter

coefficient is calculated by [61]

βaer(h, λ) = β0(h, 10.6µm)

(

10.6µm

λ (µm)

)α(β0(h,10.6µm))

,

(3)

with

α(β0(h, 10.6µm)) ≡ −0.104 ln(β0(h, 10.6µm))− 0.62 .
(4)

So with β0(8 − 9 km, 10.6µm) = 4.3 × 10−11m−1 sr−1

taken from the median value profile derived during a period

of aerosol-depleted atmosphere between 1988− 90 [52], we

have βaer(8500m, 355 nm) = 2.4× 10−8m−1 sr−1.

The aerosol extinction is a linear relationship αaer = k′βaer

for monodispersed spherical particles [50], with a constant

lidar ratio (extinction-to-backscatter ratio) of k′ = 50 sr as-

sumed here, hence yielding αaer(8500m, 355 nm) = 1.2 ×
10−6 m−1 here.

The total extinction therefore is α = αaer + αmol with

α(8500m, 355 nm) = 2.70×10−5m−1 and the total backscat-

tering β = βaer + βmol with

β(8500m, 355 nm) = 3.104 × 10−6m−1sr−1. The scatter-

ing ratio Rβ = β/βmol shows the very low aerosol contribu-

tion compared to the molecular one: Rβ(8500m, 355 nm) ≈
1.01.

4.2 Single scattering lidar equation

The number of received photons n per range gate is calcu-

lated by the single scattering lidar equation [60]

n(λL, r) = EL λL
∆R

h c

Ar

r2
k β exp

(

−2

∫ r

0

α ds

)

, (5)

where Planck’s constant is h = 6.626 × 10−34 J s and the

speed of light is c = 2.998×108ms−1. Parameters and their

values for a transmitted pulse energy of EL = 70mJ and a

pulse length τp = 10 ns (sufficiently short for a measurement

interval of ∆R = 10m) are listed in Table 1. The backscat-

tering and extinction coefficients are taken for a height of

8500m at a wavelength of 355 nm from Sec. 4.1. At a mea-

surement distance of r = 76m approximately 13 million

photons reach the CCD, with an instrument constant of k =
0.15 and a range bin of ∆R = 10m, while it is 24 million

photons at a shorter distance of r = 56m. The telescope ra-

dius is 0.2m, i.e. Ar = 0.13m2. Typical values from novel

DWL instruments were taken for these considerations [14].

The instrument constant k = 0.15 is the result of a prod-

uct of four assumed optimal values, that may be realizable

today. These are the photon emission factor and the factors

of receive, sunfilter and Fabry-Pérot transmission. The laser’s

photon emission factor to the atmosphere is 0.98. The backscat-

tered signal is collected by the telescope, reflected by mirrors

and passes the front optics (fiber coupling or free optical path

propagation) with a receive transmission of 0.65. Field stops

in the front optics limit the telescope’s FOV to 1mrad at full

angle in order to minimize the solar background. Pulse en-

ergy has to be increased or the measurement distance has to
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be reduced if this factor is lower than 0.65 in reality. At a

FWHM of 0.5 nm the sunfilter transmits a factor of 0.95. For

a low reflectivity of 0.70 of the FPI plates the losses inside

the étalon are relatively low, not considering absorption of the

plates. Depending on the width of the fringes, the corrected

transmission factor of the étalon onto the CCD, calculated

by integrating the intensity columns of patterns like the one

shown in Fig. 4(e) and dividing them by intensity columns

of maximum value 1, may slightly vary around 0.25. So 0.25
was chosen as a mean value.

4.3 Mie and Rayleigh scattering

Simulations were performed with Gaussian models of Mie

and Rayleigh scattering. Mie and Rayleigh scattering func-

tions in our case are needed for a convolution to create rings

of different widths depending on temperature and pressure

or heights according to US Standard atmosphere [62]. The

calculations will be valid for all kinds of FPI rings with sym-

metrically shaped peaks over a background.

The first step is carried out one-dimensional. The Rayleigh

scattering line shape is governed by broadening which results

in the following Gaussian line profile function [50,60] cen-

tered around λL:

IR(λ) =
1

√

2πσ 2
R

exp

(

−0.5
(λ− λL)

2

σ 2
R

)

, (6)

where σR denotes the standard deviation of the Rayleigh spec-

trum given by

σR(mair) =
2λL

c

√

kBTNA

mair
, (7)

where mair = 2.9 × 10−2kg/mol is the mean molecular air

mass, λL is the laser wavelength, kB = 1.38×10−23J/K the

Boltzmann constant, T (8500m) = 232.9K the temperature,

c the speed of light, and NA = 6.023× 1023mol−1 the Avo-

gadro constant.

The laser beam intensity is assumed to have a Gaussian

shaped spectral distribution [63]:

IL(λ) = πτ 2
p exp(−0.5(∆ω)2τ 2

p ) , (8)

with pulse length τp = 10 ns and frequency interval ∆ω =
2πc(λ − λL)/λ

2
L . The step resolution λ is used for model-

ing. The full width at half maximum of (8) is ∆λLFWHM
=

2|λI,max − λLFWHM
|, with the λ-value of peak intensity (the

center) λI,max and the distance λLFWHM
to it. The aerosol

(Mie) scattering spectrum IM(λ), governed by the laser pro-

file, looks like that of (6), replacing only IR by IM and σR by

σM, with

σM =
∆λLFWHM√

8 · ln 2
, (9)

where ∆λLFWHM
is the full width at half maximum (FWHM)

of the Gaussian laser spectrum mentioned afore. The Mie

peak is added to the broadband Rayleigh part, see Fig. 4 (b).

The shape of this pattern is important, hence the diagrams

with arbitrary units illustrate the principle.
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Fig. 5 Wavelength dependence of the 1D fringes for one full FSR

between 354.70 nm and 354.71 nm.

4.4 FPI transmission

The transmitted intensity of a FPI is described by the classical

Airy function (AF) without absorption at the plates [35,36,

48]

IA,T(δ) = I0
1

1 + F sin2(0.5 δ)
, (10)

with I0 the maximum intensity behind the FPI (on a CCD),

F = π
√
R/(1 − R) the reflectivity finesse (F = 8.76 for

a plate reflectivity of R = 0.70 here) and δ the geometrical

phase difference according to the formula

δ =
4π nF d cos θF

λ
, (11)

where nF = 1 is the refractive index in between two airspaced

plates at distance d = 6.5mm with varying incident angles

θF of −20.71mrad ≤ θF(λ) ≤ 20.71mrad, corresponding

to seven fringe orders (see Fig. 4(a)). These were determined

by values 354.40 nm ≤ λ ≤ 355.00 nm in the equation

θF(λ) = (λ − λL)/(λL2πnFd). To have a high throughput

from the FPI to the CCD, R should be low, which is specific

to such instruments [23,24]. The optimal values in McGill

and Spinhirne [24] with d = 9.5mm and R = 0.715 were

very similar in their order of magnitude to the chosen ones,

although their FI-method is different from the one shown

here. Our simulated fringe patterns had an optimal shape at

d = 6.5mm and R = 0.70, to get two full 2D rings on a CCD

later on. It will be advantageous for the signal processing al-

gorithms to have broad and not too steep FPI ring shapes, see

Secs. 5 and 6. The minimum FSR is 0.0097 nm according to

FSR = λ2/(2nFd). The result is shown in Fig. 4 (a).

4.5 Convolutions in 1D, extension from 1D to 2D

First a convolution C1 of the AF IA,T(δ) = IA,T(λ) with the

composed function of IR and IM , called IM + IR, creates an
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underground below the AF (Fig. 4 (c)) and may broaden the

final fringes via

C1(λ) = (IA,T ∗ (IM + IR))(λ)

=

∫

R

IA,T(x) (IM + IR)(λ− x) dx ,
(12)

where ∗ denotes the convolution operator. The segment width

has to be equal for IA,T(λ) and IM+ IR. Then the maximum

of C1 is determined and set to the value 1; the whole graph

is stretched or jolted, see Fig. 4 (c), resulting in the function

C1.

A decay of the intensity to the points more distant from

the ring center is observed in reality, see [26,33,39,40,48].

This is here accomplished by multiplication of C1, taking

only the points right of the ring center (arrow in Fig. 4 (c)),

with the branch to the right of the maximum of a special func-

tion

M(λ) =

√

g

2π
exp

(

−g λ2

2

)

, (13)

with a constant g = 7× 1019 (appropriate for the dimensions

of the position-axis), that was picked here due to its decay

property.M(λ) has no physical meaning and is used to model

different steepnesses of peak decays by varying g (Fig. 4 (d)).

Only λ-values greater zero are taken and the maximum of M
is normalized to 1, resulting in a function M≥0(λ). The prod-

uct is C2(λ) = C1(λ) · M≥0(λ), which is normalized to a

rotational-symmetric function C2(λ) around 0 (Fig. 4 (e)).

Fig. 5 shows the wavelength-dependence of fringe pat-

terns like the one shown in Fig. 4 (e) over one full FSR. For

the wavelength-determination algorithms it will be advanta-

geous to have the first peak away from the center as far as

possible, to have more pixels to average later on. A wave-

length of λ = 354.70000 nm (i.e. the center wavelength in

our simulations) is therefore best suited in this case, while

λ = 354.70625 nm with the first peak at the center would

be a bad choice. The useful part of the FSR for the measure-

ments should therefore be limited to ±0.002 nm around the

center wavelength.

From that (Figs. 4(e) and 5) a 2D, rotational-symmetric

pattern of non-equidistant rings can be created. Depending

on the width of the convolving function IM + IR a quadratic

image of equal number of points with equidistant segment

widths on the x- and y-axes arises, each tuple (x, y) ∈ R
2 be-

ing a pixel. The number of points on each axis after convolu-

tions in 1D usually was between 506 and 541. In 2D the num-

ber of points on each axis is doubled by symmetry around 0.

CCD imagers normally are non-quadratic, so on each axis a

number of points are dropped (see Figs. 6 (a), (b)), and in-

stead of 1010× 1010 pixels any lower dimension can be cho-

sen; in our case it is 961 × 781 pixels (see Figs. 6 (c), (d)),

since odd numbers yield a unique center pixel at (0, 0) and

for the algorithms a pixel number as high as possible should

be aimed at.

4.6 Noise modeling by random number generation

A PCO dicam pro intensified-CCD (ICCD) camera [64] and

its specifications may serve as a sample for a suitable imag-

ing device. Most of the parameters for the simulations are

chosen in the order of magnitude of this camera’s specifica-

tions. A model of this series was used for DWL measure-

ments in an aircraft [25]. However, a CCD’s noise proper-

ties were modeled here, which means an excess noise factor

(ENF) of ENFCCD ≈ 1 (i.e. gain factor of 1, no excess noise)

[65], while it is ENFICCD ≈ 2 for an ICCD with gain fac-

tors of 100 and higher [65]. Intensification is excluded for

simplicity and to simulate a worst-case scenario in this study.

Despite the fact that the ICCD shows a larger ENF, this de-

vice usually provides a greater signal-to-noise ratio (SNR)

than a CCD, as shown by Carranza et al. [66] for a spectral

range around 400 nm. The shortest shutter of the ICCD cam-

era is as low as 3 ns, thus realization of intervals of 67 ns
(range gate ∆R = 10m) is possible. One hundred pulses per

second means 100 CCD images (see Sec. 3) and in this way

about 10ms time to readout the data of one image, before this

step is repeated. The laser is linked to the CCD to trigger the

CCD shutter with the moment of pulse emission.

Three main sources of noise distort the optimal shape of

the rings shown in Figs. 6 (a) and (b). For the reference signal

speckle noise is relevant, at insignificantly low photon noise.

The backscattered signal comprises neglectable speckle noise,

while photon noise is dominating. The CCD’s readout noise

occurs for both signal types.

Dark current noise can be ignored owing to the short gate

time of 67 ns and the narrow-band filter in the receiver. Usual

dark currents are lower than 100 electrons per second for each

pixel, so it should be maximum 0.67 × 10−6 electrons per

pixel in 67 ns in our case. Solar noise can also be excluded

from modeling, see Sec. 4.7.

Artificial creation of noise implies using a modern, non-

standard, fast random number generator (RNG) like Ran of

Numerical Recipes [67] for uniform deviates with sufficiently

long period to create variable values without repetition. The

seed values to start the RNG must be chosen differently for

every picture.

CCDs are arrays of light-sensitive photodiodes that gen-

erate and store electrons from photons with a certain quantum

efficiency η (η ≈ 0.21 for dicam CCD at 355 nm) [68]. We

define the number of signal (photo) electrons (e−) generated

by a number n of backscattered (calculated by (5)) or direct

photons by

nsg = η n . (14)

These nsg signal electrons are distributed among all the pixels

of the CCD according to the pattern of Fig. 6 (a) and their

number on each pixel is rounded.

Photon (shot) noise arises from statistical fluctuations in

the number of photons at low count rates on the detector and

is described by a Poisson statistic [69,70]. If the number of
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Fig. 6 Creation of FPI rings

in 2D on a CCD (contin-

ued from Fig. 4): (a) 2D,

rotational-symmetric pattern

of non-equidistant rings at

λ = 354.7000 nm after non-

quadratic area reduction from a

square to a rectangular shaped

CCD image; (b) the same as (a)

for λ = 354.7075 nm; (c) pat-

tern at λ = 354.7000 nm after

restructuring of the positions

in (a) to pixel numbers, and

distribution of photoelectrons

onto the pixels of the CCD

image; (d) the same as (c) for

a broad ring structure due to

convolution.

signal electrons on a single pixel with index i is nsg,i, then

nsg =
1

m · n

m·n
∑

i=1

nsg,i (15)

denotes the average signal electrons on each pixel (the mean

and variance of a Poisson deviate), where m and n are the x-

and y-axes dimensions (e.g. m = 961 and n = 781 pixels in

Fig. 6), respectively. In order to simulate the number of e−,

the Ran-RNG [67] was used to genereate Poisson-distributed

random numbers by the so-called rejection-method [67]. The

probability distribution is

PPoi,nsg
(Xsg,i = nsg,i) =

nsg
nsg,i

(nsg,i)!
exp(−nsg) , (16)

which denotes the probability, that the random numbers (vari-

ables) Xsg,i will take the values (realizations) nsg,i [70].

Gamma-distributed random numbers serve for character-

ization of speckle noise, with parameters si for the number of

speckle grains averaged on the i-th pixel which can be mea-

sured for each pixel; we took an average value of s = 10.0
for all the si, since similar values were measured [70]. The

probability distribution is

PΓ (Xsg,i = nsg,i) =
1

Γ (si)

(

si
nsg

)si

nsi−1
sg,i exp

(

−si
nsg,i

nsg

)

,

(17)

with a mean of nsg, a variance of (nsg
2)/si, and a Gamma-

function Γ (·) that is commonly defined.

The CCD’s readout noise obeys a Gaussian-distribution,

thus normal deviates created by the ratio-of-uniforms method

[67] are taken, with a probability distribution

PN (µ,σ2) (Xsg,i = nsg,i) =
1√
2πσ2

exp

(

− (µ− nsg,i)
2

2σ2

)

,

(18)

with the mean µ = 0 and the variance σ2 (σ may vary de-

pending on the type of CCD; here σ = 5.0 was chosen, simi-

lar to a measured value for a CCD [70]).

For simulations of backscatter signals (as shown in Fig. 6),

the final number of charge carriers on a pixel i is

nC,i = RNPoi,i +RNN ,i , (19)

where RNPoi,i and RNN ,i are the random numbers includ-

ing photon and readout noise, respectively, that were created

using the probability distributions specified in (16) and (18).

For reference signals or for calibration we have

nC,i = RNΓ,i +RNN ,i , (20)

whereRNΓ,i are the random numbers including speckle noise

related to (17). Thus uncorrelated noise sources (especially

photon and speckle noise [71]) can be assumed, i.e. the ran-

dom numbers are independent and can be summed. Negative

numbers of nC,i, which may occur due to the normal devi-

ates, are set to zero (numbers of e− lower 0 are impossible).

Results of differently broad rings for backscatter signals at

r = 56m (24 million photons) due to modeling, including

noise, are shown in Figs. 6 (c) and (d).

4.7 Solar background

If the sky is clear, i.e. at lack of aerosols, the lidar will detect

solar radiance (direct and scattered by molecules) besides the
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Fig. 7 Received solar spectrum from 290− 800 nm.

backscattered laser photons. The contribution of this source

of noise, called solar background, is modeled using the ra-

diative transfer software package libRadtran [72]. At an alti-

tude of 10000m, where the distance sun-earth is smaller and

no clouds extinct the radiance, the number of solar photons

should be reduced by a narrow-band transmissive filter (FPI

étalon), that eliminates photons with wavelengths lower or

higher than the laser frequency or the wavelength-shifted re-

ceived light.

In the situation of Figs. 1 and 2 we assume that a lidar

emits at an disadvantageous elevation angle of ϕ = 110◦ in

an airplane flying at a constant level; so the laser points 20◦

downwards in reference to the airplane propagation axis. A

worst-case is considered with a maximum surface albedo of

1.0, a ozone column scaled to 300 Dobson units, a midsum-

mer day on the northern hemisphere with solar zenith angle of

0◦, solar azimuth angle of 0◦ (i.e. sun in the south), a sensor

viewing zenith angle of 20◦ downwards and a sensor azimuth

angle of 0◦ (sensor in the north, so it is directed to the south

where the sun is) at an altitude of 10 km for US Standard at-

mosphere. The sun intensity is even slightly higher for this

case than for a lidar pointing 20◦ upwards, since surface re-

flectance adds to direct sun radiance due to no clouds. The

atmosphere radiance (intensity) Latmo in W/(m2 nm sr) for

the specific wavelengths calculated by libRadtran are linearly

interpolated to intervals of 0.01 nm stepwidth. Fig. 7 shows

the received spectrum in mW/(m2 nm sr) at the telescope at

the specified conditions for a range of 290− 800 nm.

The sunfilter-reduced background on the CCD obeys the

formula

Pbackgr(λ) = Latmo(λ)Ar π (0.5Θ)2 Beff(λ) τf τt , (21)

with the telescope area Ar = 0.13m2, instrument field of

view (full angle) of 1mrad, telescope transmission factor (in-

strument constant without sun filter) τt = 0.16 and the prod-

uct Beff(λ) τf (maximum value of αf = 0.95 at 354.7 nm,

see below) of a filter and its transmission factor. For the short

time interval of measurement the energy is

∆E(λ) = Pbackgr(λ)∆t = nEph with a number of photons

n(λ) and the single photon’s energy Eph(λ) = hc λ−1 with

Planck’s constant h and distributed values of λ.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 352.9  353.5  354.1  354.7  355.3  355.9  356.5
 0

 100

 200

 300

 400

 500

 600

 700

tr
an

sm
is

si
on

nu
m

be
r 

of
 p

ho
to

ns

wavelength [nm]

filter transmission for FWHM=0.5 nm
transmitted number of photons for FWHM=0.5 nm

filter transmission for FWHM=0.2 nm
transmitted number of photons for FWHM=0.2 nm

Fig. 8 Two examples for solar filters with ∆λ = 0.5 nm (αf =
0.95) and ∆λ = 0.2 nm (αf = 0.60), respectively, and the result-

ing λ-distributed number of photons hitting the CCD at a resolution

of 0.01 nm.

For a FPI étalon a Lorentzian function can be used as an ap-

proximation to model the filter function for a single étalon

fringe [71,73], with the filter transmission

IT,f(λ) = αf

(

1 +
λ− λc

0.5∆λ

)−1

∈ (0, . . . , αf ] , (22)

where αf is the assumed peak transmission factor of the fil-

ter, λc = 354.7 nm the center wavelength and ∆λ the full

width at half maximum (FWHM) of the filter. The resulting

number of λ-distributed photons for two cases is shown in

Fig. 8. Due to a low exposure time ∆t = 6.7 × 10−8 s of

the instrument for a range bin of 10m, the number of so-

lar photons onto the CCD is neglectably small (n < 45000
for ∆λ = 0.5 nm with αf = 0.95 and n < 19000 for

∆λ = 0.2 nm with αf = 0.60). Solar photons are equally

distributed on the CCD, thus only affecting the background

line but not the shape of the fringe peaks [24]. Concerning

the instrument factor k = 0.15 the peak transmissions of 0.95
(or 0.6) have only to be taken into account for the backscat-

tered laser photons since the interesting λ-bandwidth around

λc = 354.7 nm is less than the FSR of 0.01 nm. Some solar

photons may also not intersect the CCD-area and will be lost

in the front optics, the FPI-étalon or behind the FPI because

of absorption or exceeding the allowed angle range. Measure-

ments [26] indicated only small sun radiance influence at a

height of about 12000m compared to the total received in-

tensity. With a number of definitely less than 0.1 photons on

a single pixel and equal distribution, solar noise can be ex-

cluded from further analysis.

5 Calculation of ring radii and wavelengths

This section is devoted to the evaluation of ring radii and

the absolute wavelengths, and their differences. The center

of noisy 2D FPI fringe images is determined, which is un-

known and may change from one image to the other due to

onboard vibrations and temperature fluctuations. For the ex-

act determination of the length of a line, its starting point has
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Fig. 9 Starting from a medium estimate (xmed, ymed) the min-

imum distant pixel center (xstart, ystart) is determined. Then

a square neighborhood of pixels with 10µm sidelength around

(xstart, ystart) is defined, and (x1,start, y1,start) is the calcu-

lated best suited one as a center. This procedure can be re-

peated in the subpixel area, so that a subdivision of the pixel

around (x1,start, y1,start) yields the absolutely best suited center

(x2,start, y2,start).

to be known exactly. This principle also applies for ring radii,

and a center evaluation is necessary, since for a LOS-velocity

bias of 1 m
s , the radii have to be determined with a resolution

better than 1
40 of a pixel side length of 10µm, which is also

indispensable for a good calibration of the instrument. Two

different methods are then applied to the images created in

Sec. 4 (see Fig. 6) to reduce the noise and transform them

to 1D. Finally we are able to calculate the exact radius posi-

tion by a simple fitting procedure. This approach is used for

a simulated calibration, yielding relations between radii and

wavelengths, and this way the bias and standard deviation of

evaluation can be tested.

5.1 Center evaluation of fringe pattern

A well known center, especially when the ring is not exactly

in the middle of the CCD image zone, is the basis for a good

precision, i.e. low bias and standard deviation. Let xi be the

m and yj be the n equidistant points on the x-axis and the

y-axis, respectively, which yield pixels (xi, yj) ∈ R
2 with a

pixel width of ∆x = ∆y = 10µm (m = 961 and n = 781
here), which was resized from the width of 6 × 10−13 [a.u.]
of an interval during the construction process in Sec. 4. First

the center of mass of all pixels is estimated (so that the fol-

lowing searches for the best center point can be curtailed to a

relatively small area later on), using the sum S of the number

of charge carriers nC(xi, yj) of a CCD image with

S =

m
∑

i=1

n
∑

j=1

nC(xi, yj) (23)

and weighting their positions on the x- and y-axis:

xw =

m
∑

i=1

xi

n
∑

j=1

nC(xi, yj) and yw =

n
∑

j=1

yj

m
∑

i=1

nC(xi, yj) ,

(24)

resulting in a medium estimate (xmed, ymed) with xmed =
xw/S and ymed = yw/S. Then search for the minimum dis-

tance of (xmed, ymed) to a pixel center (xi, yj), i.e. find the

best suited i and j for

(xstart, ystart) = ( min
i=1,...,m

|xi−xmed|, min
j=1,...,n

|yj−ymed|) .
(25)

Thereafter a number of pixels in a square structure are defined

around the estimated center (xstart, ystart). In Fig. 9 it is a

m1 × n1 = 3 × 3 matrix with m1, n1 ∈ N. For these pixels

with 10µm side length calculate the minimum distance from

the center points of each of the 9 pixels (tiny yellow points in

Fig. 9) to the edges of the whole CCD image by

xmindist = min
i1=1,...,m1

(|xi1,start − xmin|, |xi1,start − xmax|)

ymindist = min
j1=1,...,n1

(|yj1,start − ymin|, |yj1,start − ymax|) ,
(26)

where (xi1,start, yj1,start) are the pixel points in the neighbor-

hood of (xstart, ystart) (with (xstart, ystart) included), xmin,

ymin the minimum edges, xmax, ymax the maximum edges,

and m1, n1 ∈ N are the numbers of indices i1 and j1. Pix-

els outside this minimum distances have to be excluded from

further processing. The lower value of xmindist and ymindist

is the absolute minimum of a point (xi1,start, yj1,start) to one

of the edges of the CCD image and can be used as maximal

allowed radius rmax for the circles defined beneath.

From (xi1,start, yj1,start) as center (= 0) to rmax a num-

ber of subrings nsubr with a variable segment width ∆r are

created (∆r = ∆x = ∆y = 10µm is a good choice, since

every pixel is captured and the segments are relatively broad,

so many pixels are taken for averaging in the following):

nsubr = rmax/∆r, i.e. ri = i∆r for i = 0, . . . , nsubr is the

i-th radii subdivision. Now find the maximum

max
i=0,...,nsubr−1

(

1

Ni

nC(ri ≤ r < ri+1)

)

(27)

for

ri =
√

(xi − xi1,start)
2 + (yj − yj1,start)

2 , (28)

which sums up all pixel values nC fulfilling the condition

ri ≤ r < ri+1 and divides them by the number of such

pixels Ni for every i. The radius ri with ring segment of

maximum value is saved. This procedure is repeated for all

the (xi1,start, yj1,start) and finally the pixel (x1,start, y1,start)
with the highest average value for a ring segment of the inner-

most ring, which certainly has the peak average photoelectron

values (see Fig. 4 (e) in 1D and Fig. 6 in 2D), is taken as best

center.

Exactly the same process can be applied to the subpixel-

area of (x1,start, y1,start), by taking subintervals∆x′ = ∆y′ =
2µm of ∆x = ∆y = 10µm for example, thus yielding a

m2 × n2 = 5× 5 matrix of squares (m2, n2 ∈ N), and a best

ring center (x2,start, y2,start) from all subpixels (xi2,start,
yj2,start) inside of them (right part of Fig. 9). The ring seg-

ment width stays constant, ∆r′ = ∆r. This way the center



10 Markus C. Hirschberger and Gerhard Ehret

Fig. 10 Ring segments around center points: here the blue center

(with the red rings around it) delivers the ring segment with a higher

maximum value of mean photoelectrons (thick blue ring) than the

yellow center (with the yellow rings) and is therefore chosen as best

suited center.
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dxm
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am

circle

Fig. 11 Evaluation of radii via the Midpoint Line method: from

the determined subpixel-center (x2,start, y2,start) lines dr of vary-

ing angles αm (and therefore varying lengths dxm and dym) are

subdivided into intervals of equal length, and the cuts with the 2D

pixel values give the corresponding photoelectron numbers. An off-

set (xML, yML) has to be considered.

of mass of each figure can be evaluated with a low bias and

standard deviation, although the noise (see Figs. 6 (c),(d)) is

quite high and it creates errors in finding the average maxi-

mum ring. Center evaluation is only possible for fringe pat-

terns without peaks in the center (like in Fig. 6 (a)), but not

for images like in Fig. 6 (b). The process described is quite

time-consuming.

There may be cases, where the search with the (xi1,start,
yj1,start) yields a wrong value and then the search with the

(xi2,start, yj2,start) is worthless. Figure 10 summarizes the

center evaluation procedure. In this case the yellow center

point does not yield the maximum average in its radial ring

segments, but for the blue center the thick blue ring is the

segment with the highest mean value, and therefore the blue

point finally is chosen as center for the following calculations.

5.2 Evaluation of radii via Midpoint Line method

The center (x2,start, y2,start) serves as a starting point for

the computation methods. The first one is a variant of Bre-

senham’s midpoint line (ML) algorithm [74] extended to ra-

dial lines for every angle between 0◦ and 360◦ (i.e. [0, 2π)
in radians) of circular environment, that is 1D cuts through

the 2D rings. This implies a center offset consideration be-

tween the determined subpixel center (x2,start, y2,start) and

the center of the next whole pixel (xML, yML) left below

(x2,start, y2,start), see Fig. 11. This approach is done to know

the orientation and have the first half line, starting in (x2,start,
y2,start) with radial value 0 and angles 0◦ ≤ α ≤ 45◦ to the

right upwards related to the x-axis. The side lengths of each

pixel are normalized (their lengths are 1). This way also the

offset (∆xML, ∆yML) from (xML, yML) to (x2,start, y2,start)
is expressed in this normalized lengths. A difference of one

pixel on the x- or y-axis is an index increment or decrement

of 1 for indices i and j of the axes, respectively.

A circle, with an angular range of 360◦, is divided into

eight segments of 45◦ each (because the following equations

are only valid in this sector), i.e. αmin = 0◦, αmax = 45◦

are the minimum and maximum angles of each segment, and

αsteps is the number of subdivisions over 360◦. Therefore the

angular resolution is αres = 8 × (αmax − αmin)/(αsteps),
with αsteps = 1440 and αres = 0.25◦ chosen here.

The dx and dy values vary with an integer m for angles

αm, and are therefore called dxm and dym (see Fig. 11).

With dr2 = (dxm)2 + (dym)2 and dr = rmax as constant

maximum radius we get dxm = cos(αm) dr and dym =
√

dr2 − (dxm)2 for 0 ≤ m < αmax. A decision variable

dm = 2 dym − dxm is needed, as well as increments for

moving to the east (right), inE,m = 2 dym, and increments

used for moving to the north-east (upwards-right), inNE,m =
2 (dym − dxm).

(x2,start, y2,start) is the starting point and iML, jML are

the indices of the pixel center to its left downwards. As long

as
√

(dxm)2 + (dym)2 ≤ dr = rmax , (29)

the following steps are executed: if dm ≤ 0, then set

dm : = dm + inE,m ,

xm : = xm + (dxm/dr) ,

i = iML + ⌊0.5 + xm⌋.
(30)

with ⌊·⌋ the largest integer that is less than or equal to the

number. Else if dm > 0, then set

dm : = dm + inNE,m ,

xm : = xm + (dxm/dr) ,

i = iML + ⌊0.5 + xm⌋ ,
ym : = ym + (dxm/dr) ,

j = jML + ⌊0.5 + ym⌋.

(31)

Finally an integer k counts the number of repetitions of steps

(30) and (31), as long as (29) is valid, and k defines the multi-

ples of the normalized side lengths and this way the distance
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from the center. Note that this solely describes the procedure

for angles 0◦ ≤ αm < 45◦. The formulas in (30) and (31)

and before need only be slightly adapted for the other 7 sec-

tors covering 45◦ each. For example, dxm = − cos(αm) dr,

or dm = 2 dxm − dym, or ym := ym − (dxm/dr) and

j = jML − ⌊0.5 + ym⌋, and so on, are possible changes,

that have to be combined due to geometrical and symmetrical

considerations for all sectors.

What we finally get from each line is a function of photo-

electron values nC depending on radius values (pixels) from

the center (see the red function in Fig. 12). A difficulty is

the noise of such a single line, as shown in Fig. 12 for an

angle of α = 269◦. Although a Savitzky-Golay filter (SG)

[67,75,76] provides a good estimate and smooths noisy data

of such non-equidistant fringes of different widths, it is not

enough to just fit the single 1D lines (cuts) by this filter. In-

deed fitting 360 noisy cuts in steps of 1◦ with SG at the con-

ditions of Table 1 with the higher number of 2.4 × 107 pho-

tons (backscattered from 56m distance) delivers big random

calculation errors. Taking 37 smoothing filter points left and

right (nL = nR = 37) and a polynomial degree of 4, and

comparing each fit to the expected vLOS-value yields a mean

velocity calculation error (bias) of more than 50m
s (see Secs.

5.4, 5.5 and 6 for further details on fitting). Disadvantages of

SG are the loss of points on the edge of the domain (so only

37 points left and right could be used to get the second ring

and its peak still fitted) and that nL and nR will not be suited

for every ring width (e.g. nL = nR = 37 may be useful

for broader rings, but bad for narrow ones, and vice versa).

Fitting with a polynomial periodic function is even more un-

suitable than SG, since they will not keep the positions of the

peaks, especially if they are nonequidistant.

Different to that, the power of our algorithms lies in the

averaging procedure for a great number of such lines, taking

pixel numbers and their corresponding electron numbers. The

radially calculated photoelectron values nC must be summed

up for positions of equal distance to the center (x2,start, y2,start)
and divided by αsteps, yielding averaged real numbers for

the mean photoelectrons. The positions in units of pixels are

multiplied by the pixelsize of 10µm and the result is shown

in Fig. 13 (a) for the two innermost rings for three differ-

ent wavelengths (i.e. CCD images), showing averaged photo-

electron numbers nC,mean,i in dependence on the radii values

rmean,i for i = 0, . . . , nsubr − 1. An angular resolution of

0.25◦ of a circle is necessary (as the results in Table 2 will

show) for good results, that reduce the noise drastically and

visible, see Fig. 13 (a). At steps of 1◦ some pixels far away

from the center may not be hit by the lines and this way not

be incorporated in the calculations.

A drawback of this method is the choice of the same value

sequentially on a single line for different k, because the step

size is only ∆x = ∆y = 1 ≥ ∆r. At an angle of π/4 for ex-

ample, the extreme case of ∆r = cos(π/4) = 0.707 < 1 is

the reason for having a low value dxm, and therefore the same

electron value is chosen for two different radial and equidis-

tant positions, which distorts the results. The same is true for

angles of αm = (π/4)+k′(π/2) , k′ ∈ Z. The opposite case
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Fig. 12 Evaluation: single cut from center to the edge (calculated by

ML-method) at an angle of 269◦ and filtered with Savitzky-Golay.

for αm = k′(π/2) , k′ ∈ Z is optimal, since then the cuts

through the 2D rings lie on the x- or y-axes and according to

∆x = ∆y = 1 = ∆r no electron values are taken two times.

5.3 Evaluation of radii via Circular Averaging method

The second method, called circular averaging method (CA),

works like the center evaluation procedure from Sec. 5.1.

Ring segments of the formerly used width ∆r and the cal-

culated best ring center (x2,start, y2,start) are taken, and the

sum of their photoelectron numbers are averaged:

nC,mean,i =
1

Ni

nC(ri ≤ r < ri+1) at radii positions

rmean,i = 0.5 (ri+1 − ri) for i = 0, . . . , nsubr − 1

with ri = i∆r and 0 ≤ r ≤ rmax.

(32)

Figure 13 (b) shows nC,mean,i in dependence on rmean,i cal-

culated with the CA method for the same three wavelengths

as does Fig. 13 (a) for the ML method. No differences are ob-

servable on a scale of Fig. 13 due to their tinyness, although

they indeed exist.

5.4 Fitting procedure

Although the fringe patterns in Fig. 13 look quite smooth and

the radii positions of the peaks might serve as good radius

(wavelength) values, improvement is necessary and possible

by a fitting procedure, that was also applied to the SG fil-

tered lines mentioned afore. A threshold is set to cut out the

peaks of the rings (see Fig. 14 for the innermost rings aver-

aged with the ML method) and then separately fitting them

nonlinearly by use of the Levenberg-Marquart method [67]

to a polynomial p(r) = ar2 + br + c of degree two with

a, b, c ∈ R. The radius is determined from the maximum po-

sition as r = −b/(2a). To have enough points to fit (here it

is 30 to 50 points approximately), the rings should be not too

sharp (lower finesse of the FPI or strong molecular broaden-

ing).
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Fig. 13 Evaluation: fringes av-

eraged for three wavelengths

by (a) ML method; (b) CA

method.
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Fig. 14 Evaluation: fitting procedure with Levenberg-Marquardt

nonlinear least squares fitting for exact radii determination for rings

averaged with ML at three different wavelengths; a threshold ex-

cludes values below.

The signal pattern may also be fit to Gaussian- or Airy-

shaped patterns, which may reduce the deviation. But this

would require a number of physical properties of the optics

and the environment known or measured very precisely, es-

pecially since the fringes broaden or narrow with changing

flight level. Our approach will completely do without them

after calibration and under the assumption of stable wave-

length and optical alignment.

5.5 System calibration

For system calibration a good wavemeter for absolute wave-

length measurements should be sufficient (a precision of vLOS

of 1 m
s requires a wavelength accuracy of about 2.4 fm). Fre-
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Fig. 15 Calibration lines for the two inner rings ( (a) for the second

ring, (b) for the innermost ring; radii calculated via the ML and CA

methods) at tuned wavelengths: the equations include the calculated

relation between the wavelengths and the radii.

quency combs (FCs) have revolutionized the way and pre-

cision the wavelength of light can be measured [77,78] and

are a highly suitable source for wavelength determination of

a cw-laser. For calibration a low-power, frequency-tripled,

slightly tunable Nd:YAG cw-laser is proposed here. The nearly

monochromatic laser light will generate narrower and steeper

rings and peaks on the CCD, thus having less points to fit, but

with less noise, too. The CCD’s resolution is the limiting fac-

tor for radii determination and thus calibration. The tunable

laser emits a beam, that is split into two parts: one for the FPI

in the mode it will be operating later under fixed plate dis-

tance, with the CCD at the end of the light propagation, and

the other for the wavemeter or FC. The CCD diagrams radii
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are determined the way described before via the CA or ML

methods, and the wavemeter or FC measures the correspond-

ing wavelengths.

Alternatively for calibration of the radii to the correspond-

ing wavelengths, a laser pulse or cw laser radiation is emit-

ted towards a disc with a certain rotational velocity [15,25,

28]. This moving disc replaces the particles of the atmosphere

(or the tunable laser) and the backscattered photons receive a

wavelength shift according to the Doppler shift formula [48]

∆λ = −2λ1vLOSc
−1 (33)

at an angle of 180◦, where λ1 = 354.7 nm (also in Figs. 13

and 14) is the reference wavelength and ∆λ the wavelength

shift.

We simulate ten measurements for each velocity vLOS

from −100 m
s to +100 m

s in steps of 20 m
s equal to wave-

lengths from 354.7002366 nm to 354.6997634 nm. As just

mentioned, a LOS-component of vLOS = 1 m
s corresponds to

a wavelength shift of only ∆λ = 2.4 fm at λ1 = 354.7 nm.

A standard deviation of 1 m
s for the wavelength was assumed

here. The FSR at λ1 = 354.7 nm and d = 6.5mm is 0.01 nm,

i.e. sufficient to get no inseparable overlap. The beam is weak-

ened to 100 million photons that reach the CCD with a pixel

size of 10 × 10µm2 and 961 × 781 pixels, so saturation ef-

fects are minimized. Speckle noise is taken into account with

s = 8.5 [70] (only during calibration). Calibration values and

the resulting lines due to linear relationship as well as the for-

mulas for conversion from r to λ, calculated with the ML and

CA methods, are shown in Figs. 15 (a) and (b) for the sec-

ond and the innermost ring, respectively. It was assumed that

the ring centers only move within the same pixel during cal-

ibration. An error of more than one pixel for the radius from

noisy rings will lead to a huge error when calculating λ with

the conversion formulas.

6 Assessment of the calculation results

For determination of vLOS and thus wind estimation [19,79,

80], the wavelengths corresponding to the evaluated radii will

be calculated out of the equations mentioned in Fig. 15 (a)

and (b), and are compared to the set values of the simulated

noisy FPI CCD images. This way the usefulness of the algo-

rithms can be tested, see Table 2 for a value of λ = 354.7 nm,

that is vLOS = 0m
s . The λ and vLOS are written in the form

a±b, where a is the measurement or calculation bias and b its

standard deviation. The standard deviation for the ML algo-

rithm is much too high, so the CA method should be chosen.

This means the results are calculated more stable with CA,

see the lower standard deviations around the mean of 7m
s af-

ter 20 evaluated diagrams compared to ML calculations in Ta-

ble 2. The deviation to vLOS = 0m
s can be strongly reduced

by more photons at equal CCD resolution and pixel size and

by more measured diagrams. However, the results are rela-

tively stable (low standard deviations) for the CA method af-

ter only 20 CCD images, which is essential at flight speed.

Note that these results are valid for the case of moving cen-

ters, where the center evaluation has to be applied. If the cen-

ter is stationary and exactly known, vLOS can be determined

better than 2m
s for the innermost ring, averaging the radii cal-

culated of 20 CCD images at λ = 354.7 nm with CA for two

photon numbers n1 and n2, as shown in Table 3. The error for

the second ring is huge; this may be due to the lower number

of points for the Levenberg-Marquardt fit.

Doubling the pixel sidelength to 20µm and reducing the

CCD resolution to 481 × 391 pixels will greatly decrease

the calculation time, but the precision will suffer immensely.

The best value achievable after evaluation of 20 CCD images

with 24 million photons distributed on each, was more than

30 m
s away from the expected 0 m

s (not shown). The benefit of

about four times the number of photoelectrons for each pixel

than for 961×781CCD resolution is not enough to outweigh

the drawback of having less pixels to fit with Levenberg-

Marquardt.

7 Conclusion and outlook

The in-depth simulation of realistic noisy 2D FPI rings and

two universally applicable methods to determine the wave-

length of low intensity, backscattered radiation at an altitude

of 8.5 km from them were illustrated in detail. The CA method

proved to be the more reliable and precise one. A main ad-

vantage of FI compared to others like the edge technique is

its ability to not depend on the mixing ratio of aerosol and

molecular scattering, and that once calibration for a CCD of

certain resolution was done, it can be used for every altitude

level in the atmosphere. Aerosols and molecules need not be

separated from each other, allowing a stronger throughput of

received light to the CCD. FI techniques are less limited in

the range of measureable wind speeds than the edge tech-

niques. Furthermore FI has linear increments in wavelength

(frequency) in contrast to the edge methods, and does not

require knowledge of the atmospheric temperature for wind

retrieval. The wavelength can not only be determined rela-

tively, but in absolute values, and the shape and steepness of

the fringes may vary. Drawbacks of our approach are the re-

quired high precision and, as a consequence, a huge period of

time to calculate the results of the ring diagrams. However,

simplification is possible and computers will become faster.

Diffraction-limiting circular instruments like telescopes, di-

aphragms or lenses have to be tested for fulfilling the Rayleigh

criterion, and the system’s etendue (product of aperture and

divergence) may be a crucial factor.

Concerning the laser frequency it could be sufficient to

stabilize the source by using a wavemeter, since the FSR of-

fers a certain part of tolerance (at least ±0.002 nm around

the center wavelength reasonably, see Fig. 5). We assumed

optimal operation conditions of the system, i.e. mechanically

stable optical device positions and manufacturing without de-

fects as well as stable temperature conditions to exclude changes

of the refractive index inside the optical path. These difficul-

ties have been analysed in detail [23,24,70]. Note that the
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Table 2 Average results after 20 calculated 2D CCD noisy ring diagrams at vLOS = 0 m

s
(equivalent to λ = 354.7 nm) for n1 = 1.3 · 107

photons (refering to a measurement distance of 76m) and n2 = 2.4 · 107 photons (refering to a measurement distance of 56m) without

known center (center has to be calculated).

calc. method ML, ring 1 ML, ring 2 CA, ring 1 CA, ring 2

radius [m], n1 0.00207632 0.003264339 0.0020804445 0.0032751615
radius [m], n2 0.00207190 0.003271150 0.0020743290 0.0032732625
λ [nm] , n1 354.699961 ± 0.000042 354.700060 ± 0.000327 354.699944 ± 0.000006 354.699963 ± 0.000007
λ [nm] , n2 354.699988 ± 0.000053 354.699991 ± 0.000093 354.699982 ± 0.000006 354.699982 ± 0.000007

vLOS [
m

s
] , n1 −16.67 ± 17.87 25.13 ± 138.33 −23.58 ± 2.59 −15.47± 3.06

vLOS [
m

s
] , n2 −4.95± 23.39 −3.80± 39.11 −7.57 ± 2.48 −7.49± 2.89

specifications of a final measurement system need careful

consideration, that goes beyond the scope of this article. The

parameter values specified here are estimated on a best ef-

fort basis and can be different from real instrumental design.

The essential part of this work was to describe the methods

to determine the ring radii. Although the analysis is restricted

to one special case at 8.5 km height and to two measurement

distances, this approach will be applicable for every atmo-

spheric backscatter condition, and its only limitations are the

readout-speed from the CCD, the CCD resolution, the data

processing time and the measurement distance. The methods

could also be useful for high-resolution laser spectroscopy.

Nonetheless a multitude of further investigations concern-

ing the CCD’s domain resolution and pixel sizing, and the

FPI’s plate dimensions and air-gap spacings (air-gap étalon,

aperture in cm) are possible. Airy- or Gaussian-fits could be

applied instead of Levenberg-Marquardt. Tests with real op-

tical components, that also have distortions like plate defects

and detector nonlinearities [21], will show the feasibility of

the proposed approach.

Table 3 Average results after 20 calculated 2D CCD noisy ring

diagrams at vLOS = 0 m

s
(equivalent to λ = 354.7 nm) for

n1 = 1.3 · 107 and n2 = 2.4 · 107 photons with exactly known

center.

calc. method CA, ring 1 CA, ring 2

vLOS [
m

s
] , n1 1.06± 3.17 23.55 ± 4.71

vLOS [
m

s
] , n2 1.56± 1.74 19.16 ± 2.89
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