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SIMULATION AND MODELLING OF PASSIVITY BASED
CONTROL OF PMSM UNDER CONTROLLED VOLTAGE
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The aim of the present paper is the study of the behaviour of passivity based control and difficulties due to synthesis
for various operating conditions of a synchronous motor with a permanent magnets. The study takes into account the
guarantee of satisfactory static and dynamic performance. It also allows the system to be insensitive to disturbances and
uncertainties on the parameters. A number of estimation techniques have been developed to achieve speed and position
sensorless permanent magnet synchronous motor (PMSM) drives. Most of them suffer from variation of motor parameters
such as the stator resistance, stator inductance and torque constant. Also it is known that conventional linear estimators are
not adaptive variations of the operating point in a nonlinear system.
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modelling, simulation

1 INTRODUCTION

The use of electrical machines is expanding rapidly ow-
ing to their good performance. The control of machines
is the primary concern of control theory research. In fact,
an electrical machine is characterised by a non linear be-
haviour. Adding to that the major difficult tasks to be
executed which require a higher precision under rapid tra-
jectories. In order to meet performance criteria always in
increase, algorithms of control more and more complex
are developed. The progress is not sufficient thus a the-
ory for non linear system is necessary. However, the non
linear theory for general systems is complicated and sel-
dom worthy in technological applications. But, from the
accomplished works in these last three decades, aiming
to improve performance advanced research had allowed
emergence of new non linear control techniques for elec-
trical machine application. In this context a method has
been proposed in [1] allowing a new control PBC (Pas-
sivity Based Control). [2] et al. made similar develop-
ment on robust passivity based control. Using a shap-
ing of the total energy of the closed-loop system plus an
injection of depreciation using the properties of energy
dissipation system. The development of this method had
allowed many improvements.

It uses essentially Lagrangian structure of mechanical
systems in order to make a decreasing Lyapunov function.

It is necessary to know the position of the rotor. The
stator currents of the PMSM are controlled to generate
constant torque using the rotor position signal.

It is possible to distinguish two fundamental steps
while using passive control for a given system. The system
modelling is put under the EL formalism and its (possi-
ble) passivity is used to create relations describing the

stabilizing control. From these relations and by using a
variety of techniques (control with variable structure a
control based on average representation); the dynamic of
the corrector is computed (if it exists) and the control
value.

2 GENERAL FORMULATION

OF THE PASSIVITY CONTROL

In classical control theory, linear models are consid-
ered. If the equations describing a system are nonlinear,
the system is linearized, which means that the nonlinear
equations are approximated with a linear system. This
linear system is then used to determine the control laws.
The control laws derived from such an approach are suf-
ficient in many practical applications, but in some cases
the linear approach is not sufficient. Therefore, a theory
for nonlinear control systems is needed. Unfortunately,
nonlinear theory for general systems is complicated and
rarely useful in engineering applications.

To make nonlinear theory more useful, it is neces-
sary to consider theory for classes of systems with certain
properties. The class of passive Euler-Lagrange (EL) sys-
tems consists of systems that can be described by the EL
equations and do not contain an internal energy source.
Examples of passive EL systems are passive electrical cir-
cuits, mechanical systems, and robots. With these special
properties in mind, a more useful nonlinear control the-
ory can be presented and nonlinear controllers can be
constructed from this theory.

Achieve the stabilized control, the EL properties are
used which exist in all the machine circuits. The first
property states that any control circuit can be repre-
sented under EL formalism [3].
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2.1 Definition of passivity

It is difficult to develop a general nonlinear control
theory, because each type of nonlinear system has its own
characteristics. Therefore, theories for specialised types
of systems are potentially more useful in the analysis of
nonlinear systems [4, 5]. In this article we study a class of
systems called Euler- Lagrange systems (EL systems). An
EL system is a system whose dynamics are described by
the EL equations. These equations are described in this
article. We also define and investigate a special class of
EL systems called passive EL systems. Most of the theory
in this study is connected to that class of systems.

This article presents the fundamental mathematical
theory for analysis of passive EL systems. The presenta-
tion is based upon reference [3].

The basic idea of the passivity consists in shaping the
total energy of the system then in adding a damping
term. EL equation allows obtaining easily the formula-
tion after having formulated the total energy of the sys-
tem; it is modified to desired (minimum) value. The sys-
tem converge of computers allow to implement these new
strategies in industry. In classical control theory, the lin-
ear models are considered. The non-linear equations are
linearized.

3 EULER–LAGRANGE MODELS FOR PMSM

The purpose of this paper is to survey recent develop-
ments on passivity-based control of nonlinear dynamical
systems. In the first part of the paper we treat general
systems and develop a unified framework for passivity-
based nonlinear control design. Exploiting the particular
inherent structure of physical systems, we can reasonably
expect to design a stabilizing controller with better per-
formance.

In the second part, we turn our attention to the prac-
tically important class of nonlinear systems described by
Euler-Lagrange (EL) equations.

3.1 Relation between the flux and current vec-

tors

We consider the reference system of αβ axes of the
PMSM By applying Gauss’ and Ampere’s law the flux is
given by

Ψαβ = De(pqm)q̇e +Ψf (pqm) (1)

where Ψαβ =
(
Ψα , Ψβ

)⊤
is the flux vector, q̇e =

(
iα, iβ)

⊤ currents vector, p is the number of poles,
qm = θm is the mechanical position of the rotor, Ψf flux

vector of magnets and De

(
pqm

)
= De

(
pqm

)⊤(
pqm

)
> 0 is

the inductance matrix.

The flux vector of the magnets is

Ψf(pqm) = ϕf

(
cos(pqm)
sin(pqm)

)

(2)

with: De

(
p qm

)
=

(
Ld cos

2(pqm)+Lq sin
2(pqm) (Ld − Lq) cos(pqm) sin(pm)

(Ld − Lq) cos(pqm) sin(pm) Ld cos
2(pqm)+Lq sin

2(pqm)

)

.

(3)

Knowing that the machine under study is smooth pole
given by

De(pqm) =

(
Ld 0
0 Lq

)

. (4)

• Kinetic energy.
If we consider the electric charge qe ∈ ℜ2 and the
rotoric position qm ∈ ℜ as generalized coordinates of
the system we can calculate the electrical energy and
mechanical as follows:

a) Kinetic electrical energy is

Te(qm , q̇e) =

2∑

k=1

∫ σ

0

Ψαβdσ =
1

2
q̇⊤e De(pqm)q̇e +Ψ⊤

f (pqm)q̇e (5)

b) Mechanical kinetic energy is

Tm(q̇m) =
1

2
Jq̇2m (6)

where J is the moment of inertia, q̇m = ωm is the
speed. If we assume: (i) there is no captive effect, and
(ii) the shaft of the motor is rigid (with no torsion
effect) then the potential energy can be considered
null,

V (qm, q̇m) = 0 . (7)

We can define a new function between the kinetic and
potential energy

L(q, q̇) = T (q, q̇)− V (q) . (8)

The utilization of this function L called Lagrangian func-
tion in (9) gives EL equations for a conservative system
[6, 11].

If we consider the system
∑

EL in equilibrium with
behavior in term of (q, q̇ ), we obtain by using Alember’s
principle for the forces that appear in the system the
following equality [3, 6, 7].

d

dt

[∂T (q, q̇)

∂q̇i

]

− ∂T (q, q̇)

∂qi
+
∂V (q)

∂qi
= Qe

i , i = 1, . . . , n (9)

where the first terms derive from kinetic energy, the third
term corresponds to the conservative forces from poten-
tial energy and the second term of the equality represents
the generalized forces. Lagrangian function [8, 12, 13] is
given by

L(qm, q̇m, q̇e) =

1

2
q̇⊤e De(pqm)q̇e +Ψ⊤

f (pqm)q̇e +
1

2
Jq̇2m (10)

We assume that the electrical and mechanical dis-
sipation effects are due simultaneously to winds resis-
tance considered constant and to friction coefficient. The
Rayleigh function of the PMSM is given by (11).
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Fig. 1. Exchanges of energy components corresponding to EL

• Quadratic dissipation function

In most cases we assume that the Rayleigh dissipation
function is a quadratic function of the form

F (q̇m, q̇e) = Fe(q̇e) + Fm(q̇m) =
1

2
q̇⊤e Req̇e +

1

2
Bq̇2m (11)

with resistance matrix Re = diag{Ra , Ra} and friction
coefficient B .

• Generalized external forces

There are three different types of external forces that
we consider in this report: control input forces, dissipation
forces, and forces from the interaction between the system
and its environment (disturbance forces).

The control forces are assumed to enter the system
linearly and can thus be described as Mu , where M is a
constant control matrix and u is the control vector, that
is, a vector containing all the control signals.

Qe
i =

(
Qe

Qm

)

where i = 1, 2 . (12)

a) Electrical forces: the voltages applied to the stator
windings are considered the only the external electrical
forces to the system as

Qe = Uαβ = [Uα Uβ ]
⊤

(13)

b) Mechanical forces: the torque is the only external force
of mechanical system. It is in general a non linear function
of the speed given by Qm = −τL . (14)

3.2 EL Model of the PMSM

By using EL equation below to the function (10) in
order to obtain EL model of PMSM.

d

dt

[∂L(q, q̇)

∂q̇i

]

− ∂L(q, q̇)

∂qi
+
∂F (q)

∂qi
= Qi , i = 1, . . . , n .

(15)
Using equations (11) and (14) the following system is
obtained.

De(pqm)q̈e +W1(pqm)pq̇mq̇e +W2(pqm)pq̇m +Req̇e

= I2Uαβ , (16)

Jq̈m +Bq̇m = τ(q̇e, pqm)− τL . (17)

R e m a r k 1 . The model of the PMSM obtained by
EL equation can also be obtained from Concordia model
as

Uαβ = RαβIαβ + Lαβ
dIαβ
dt

+ ω εαβ . (18)

The electromagnetic torque developed by the motor is

τ(q̇e, pqm) =
1

2
q̇⊤e W1(pqm)q̇e +W⊤

2 (pqm)q̇e (19)

with W1 the derivative of inductance matrix given by

W1(pqm) =
∂De(pqm)

∂(pqm)
= (Ld − Lq)×

×
(

−2 cos(pqm) sin(pqm) cos2(pqm)− sin2(pqm)

cos2(pqm)− sin2(pqm) −2 cos(pqm) sin(pqm)

)

.

(20)

The derivative of the flux vector by the PM is

W2(pqm) =
∂Ψf (pqm)

∂(pqm)
= ϕf

(
− sin(pqm)
cos(pqm)

)

. (21)

R e m a r k 2 . The PMSM has smooth pole that

means Ld = Lq , then matrix De is diagonal and has

constant elements and W1 = 0. Considering remark 2

the model of the PMSM becomes

Ldq̈α − ϕf sin(pqm)pq̇m +Rαq̇α = Uα ,

Lq q̈β + ϕf cos(pqm)pq̇m +Raq̇β = Uβ , (22)

Jq̈m +Bq̇m + ϕf sin(pqm)q̇α − ϕf cos(pqm)q̇β = −τL .

Note that the model (16) to (19) can be put in the form

D(q)q̈ +W (q, q̇) +Rq̇ =MUαβ + ξ (23)

D(q) = diag′ {De, J} , R = diag {Re, B} ,

M =
[
I2, 01×2

]⊤
, ξ =

[
0, 0,−τL

]⊤
, q̇ =

dq

dt
.

3.3 Feedback based on passivity

We assume an ideal case the states (current, speed,

position) are measurable and without noise.

Consider the model of PMSM (16), (17); we define a

vector v and the output vector given by

v = [Uα Uβ − τL]
⊤

(24)

Y = [q̇e q̇m]
⊤
. (25)

and we can formulate:

Lemma 1. The above choice of vectors of input and out-

put v and Y the PMSM defined by the relation M given

by M : v 7→ Y is passive.

P r o o f . Let Hm be the Hamiltonian of the motor it

is the total energy Etot [9, 12, 13]. It is given by

Hm(qm, q̇e, qm) = Etot = T (q̇e, q̇m) + V (qm, qe) . (26)

We obtain

Hm(qm, q̇e, q̇m) =
1

2
q̇⊤e De(pqm)q̇e + ψ⊤

f (pqm)q̇e + Jq̇2m .
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The derivative of Hm with respect to time along the
trajectory (16)–(19) can be expressed by

Ḣm(qm, q̇e, qm) = −q̇⊤Rq̇+ Y ⊤v+
d

dt
(ψ⊤

f (pqm)q̇e) (27)

with positive symmetric matrix R = diag{Re, B} .
By integration of Ḣm on [0 Tm] we obtain

Hm(Tm)−Hm(0)
︸ ︷︷ ︸

stored energy

= −
∫ Tm

0

q̇TRq̇dσ

︸ ︷︷ ︸

dissipated energy

+

∫ Tm

0

Y T vdσ +
[
ψT
f (pqm)q̇e

]Tm

0

︸ ︷︷ ︸

supplied energy

. (28)

Knowing that the stored energy Hm(Tm) ≥ 0 and
Hm(0), the round off (28) permits to derive the inequality
of dissipation

∫ Tm

0

Y ⊤vdσ ≥

λmin{R}
∫ Tm

0

‖q̇‖2dσ −
(
Hm(0) +

[
ψ⊤

f (pqm)q̇e
]Tm

0

)
. (29)

By taking

αm = λmin{R} ,

βm = −
(
Hm(0) +

[
ψ⊤

f (pqm)q̇e
]Tm

0

) (30)

We can deduce [10, 12] that the relation M linking the
vector of output Y with the input vector v is passive as
for the PMSM.

R e m a r k 3 . Based on the proof of lemma 1 and on
the model (16), (17), it is clear that the vector given by

W (qe, qm, pqm) =

(
W1(pqm)q̇e +W2(pqm)pq̇m

− 1
2q

⊤
e W1(pqm) +W⊤

2 (pqm))q̇e

)

(31)
contains forces with no work (non-dissipative forces).

4 DESIGN OF THE CONTROL

Under the preceding conditions the control proposed
assures internal stability, torque control, speed and posi-
tion control in closed loop

lim
t→∞

(τ − τL = 0 , lim
t→∞

q̇m = q̇•m or lim
t→∞

qm = q•m (32)

where τ• , q̇•m , q•m are respectively the electromagnetic
torque, the desired speed and the desired position. The
first step of the synthesis determines the desired dynamics
which will be compatible with the constraints of PMSM.
Considering equation (16) we can propose the following.

De(pqm)q̈•e +
1

2
(W1(pqm)pq̇m)q̇•e+

1

2
(W1(pqm)pq̇m +Re)q̇

•

e +W2(pqm)pq̇m = U•

αβ . (33)

q̇•e is the desired currents vectors. The equation of the

error is calculated by subtracting (33) from the two first

relations of relation (23), thus we obtain

De(pqm)ėe +
1

2
(W1(pqm)pq̇m)ee+

1

2
(W1(pqm)pq̇m +Re)ee = Uαβ − U•

αβ (34)

where ee = q̇e − q̇•e (35)

is the currents error vector. To show the convergence of

pursuit of the current error we consider the quadratic

function

Ve(ee) =
1

2
e⊤e De(pqm)ee . (36)

The derivative to time of Ve along the trajectory (24) is

given by

V̇e(ee) = −e⊤e
(
Re +

1

2
W1(pqm)pq̇m

)
ee + e⊤e

(
Uαβ −U•

αβ

)
.

(37)

By choosing

Uαβ = U•

αβ (38)

the expression of V̇e becomes

V̇e(ee) = −e⊤e
(
Re +

1

2
W1(pqm)pq̇m

)
ee . (39)

We remark the positivity of the dissipative term

(
Re +

1

2
W1(pqm)pq̇m

)
(40)

4.1 Damping matrix

To accelerate the convergence to equilibrium the

derivative of V̇e(ee) must be more negative. To this we in-

ject an additive term Ke of supplementary expression in

the initial control expression (34). The role of this term is

to increase certain values of
(
Re+

1
2W1(pqm)pq̇m

)
. Then

the control is

Uαβ = U•

αβ −Keee (41)

where Ke is a 2× 2 matrix and equation (34) becomes

De(pqm)ėe +
1

2

(
W1(pqm)pq̇m

)
ee+

(1

2
W1(pqm)pq̇m +Re +Ke

)

ee = 02×1 (42)

By choosing the same quadratic function Ve , its deriva-

tive along (42) is given by

V̇e(ee) = −e⊤e
(
Re +

1

2
W1(pqm)pq̇m +Ke

)
ee . (43)

The function V̇e is defined and negative if

Ke = K⊤

e > −Re −
1

2
W1(pqm)pq̇m . (44)
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This condition is verified by choosing

Ke(pqm, q̇m) = −1

2
W1(pqm)pq̇m + keI2 (45)

and ke > Ra . . . — the operating point ee = 0 is stable.

4.2 Proof of exponential convergence of error by

CBP

We consider the quadratic function Ve given by (36),
which by passivity of De(pqm) and Rayleigh coefficient
satisfies the following inequality

0 ≤ λmin{De}‖e(t)‖2 ≤ Ve ≤ λmax{De}‖e(t)‖2 (46)

where λmin{De} , λmax{De} are minimum values of

{De} . And the derivative V̇e given by (43) which, by pas-

sivity of dissipation term 1
2W1(pqm)pq̇m+Re+Ke

(
pqm, q̇m

)

and Rayleigh coefficient satisfies the following inequality

V̇e ≤ −λmin

{1

2
W1(pqm)pq̇m +Re +Ke(pqm, q̇m)

}

‖e(t)‖2

(47)
From (46) and (47) we can deduce the following inequality

V̇e ≤ −αepVe (48)

αep =
−λmin

{
1
2W1(pqm)pq̇m +Re +Ke(pqm, q̇m)

}

λmax{De(pqm)} .

(49)
By integrating (48) we obtain

Ve(t) ≤ Ve(0)e
−αept . (50)

From relations (46) and (50) we obtain

ee(t) ≤
√
mep‖ee(0)‖e−(αept/2). (51)

We deduce that the error ee(t) converges exponentially.

R e m a r k 5 . The ratio of convergence can be ame-

liorated by acting on damping Ke .

4.3 Calculation of desired currents q̇•e

The PMSM works with maximum torque if the desired

current i•d in the reference dq is null. Knowing that the

torque in reference dq and at id null is given by

τ• =
3

2
pϕf i

•

q . (52)

The currents in reference dq are

i•d = 0 , i•q =
2

3

τ•

pQf
. (53)

Using the transformation matrix, the desired currents in

reference αβ are

q̇•e =
2

3

τ•

pQf

[
− sin(pqm)
cos(pqm)

)

(54)

with: v = De(pqm)q̈•e +
1

2
W1(pqm)pq̇mq̇

•

e+

(1

2
W1(pqm)pq̇m +Ke(pqm, q̇e) +Re

)

q̇•e . (55)

Fig. 2. PBC simulation results
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Fig. 3. Simulation results with variation of parameters

Fig. 4. Simulation results with variation of parameters

and considering Remark 6,

De(pqm)q̈e +
1

2
W1(pqm)pq̇mq̇e+

(1

2
W1(pqm)pq̇m +Re +Ke(pqm, q̇e)

)

q̇e = v . (56)

Equation (56) can be represented as follows

∑

BF
v 7→ q̇e . (57)

The last relation permits to formulate the following
lemma.

Lemma 3. The relation input-output ES
∑

BF of input

vector v and output vector q̇e is passive.

P r o o f . Passivity of the PMSM in closed loop: Con-
sidering the quadratic function

HBF (pqm, q̇e) =
1

2
q̇⊤e De(pqm)q̇e (58)

we calculate the derivative of HBF along (56), and using
(24) we obtain

HBF (pqm, q̇e) = q̇⊤e v − q̇⊤e (Re + keI2)q̇e . (59)

Using the same steps as for the proof of Lemma 1 we
obtain the following inequality of dissipation

∫ Tbf

0

q̇⊤e vds ≥ λmin{Re + keI2}
∫ tbf

0

‖q̇e‖2ds−HBF (0) .

(60)
By taking

αBF = λmin{Re + keI2} , βBF = −HBF (0) (61)

one can conclude that the system is passive.

5 SIMULATION TESTS

To illustrate the set up performance of the PBC an idle
run has been simulated with a set up value of 100 rd/s
with nominal load (TL = 4 Nm) from t = 0.2 s until
t = 0.6 s. We note that the load has no influence on
speed response which follows its reference without over-
run, Fig. 2(a). In Fig. 2(d) we tested the control when
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changing the sense of rotation of the engine with the same
load torque as previously. The set up value is 100 rd/s;
made to −100 rd/s after 0.8 s from start. The results of
the simulation show that the performances required by
this control technique are satisfactory, Fig. 2(a) to (f).
We note that the decoupling is not sensitive to instanta-
neous variations of current iq and that the rejection of
the perturbation is rapid, Fig. 2(b). The current id os-
cillates around zero, Fig. 2(b), and the electromagnetic
torque is the image of current iq , Fig. 2(c). To evaluate
the performance of speed set up of the machine PMSM,
we have tested the robustness of this set up with respect
to the electrical and mechanical parameter variation of
the machine, Fig. 3(a) to (d). The simulations were made
for a period of 0.8 s with increasing stator resistance to
100% and increase of inductances Ld and Lq to 100%,
Fig 3(a). On the other hand in Fig. 3(b) there is a decrease
in stator resistance and inductance of 50%. Figure 3(d)
represents the variation of the moment of inertia J (2J0
and 0.5J0 ). The results obtained show that the variations
influence only but lightly the response time. Thus for the
PBC the decoupling is maintained constant even with the
variation of parameters, Fig. 3(a),(b).

• Variation of electrical parameters:

a : R = 100%R0 ; Ld = Lq = 100%L0 , ϕ = ϕ0 ,

b : R = 50%R0 ; Ld = Lq = 50%L0 , ϕ = 0.6ϕ0 ,

c : ϕ = 0.6ϕ0 , ϕ = 1.2ϕ0 .

• Variation of mechanical parameters:

d : J = 100%J0 , J = 50%J0

(R0 , L0 , ϕ0 , J0 represent the nominal values of the
motor). vskip-4mm

6 CONCLUSION

The work presented in this article is a modest contri-
bution to the study of performance of non linear control
based on passivity applied to PMSM associated to a three
phased three level inverter.

According to the results we observe that the PBC
has good performance for the start and the rejection of
perturbation of the machine.

The objectives of this control are a control of speed
and tracking with maximum torque and the obtained
good performance. It shows a better robustness with the
variation of parameters.
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