
HAL Id: hal-02495564
https://hal.archives-ouvertes.fr/hal-02495564

Submitted on 2 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation and optimization of robotic tasks for UV
treatment of diseases in horticulture

Merouane Mazar, M’hammed Sahnoun, Belgacem Bettayeb, Nathalie
Klement, Anne Louis

To cite this version:
Merouane Mazar, M’hammed Sahnoun, Belgacem Bettayeb, Nathalie Klement, Anne Louis. Simu-
lation and optimization of robotic tasks for UV treatment of diseases in horticulture. Operational
Research, Springer, In press, �10.1007/s12351-019-00541-w�. �hal-02495564�

https://hal.archives-ouvertes.fr/hal-02495564
https://hal.archives-ouvertes.fr

Vol.:(0123456789)

ORIGINAL PAPER

Simulation and optimization of robotic tasks for UV
treatment of diseases in horticulture

Merouane Mazar1 · M’hammed Sahnoun1 · Belgacem Bettayeb2 ·
Nathalie Klement3 · Anne Louis1

Received: 5 February 2019 / Revised: 30 November 2019 / Accepted: 9 December 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Robotization is increasingly used in the agriculture since the last few decades. It is
progressively replacing the human workforce that is deserting the agricultural sec-
tor, partly because of the harshness of its activities and health risks they may pre-
sent. Moreover, robotization aims to improve efficiency and competitiveness of the
agricultural sector. However, it leads to several research and development challenges
regarding robots supervision, control and optimization. This paper presents a simu-
lation and optimization approach for the optimization of robotized treatment tasks
using type-c ultraviolet radiation in horticulture. The optimization of tasks schedul-
ing problem is formalized and a heuristic and a genetic algorithms are proposed to
solve it. These algorithms are evaluated compared to an exact method using a multi-
agent-based simulation approach. The simulator takes into account the evolution of
the disease during time and simulates the execution of treatment tasks by the robot.

Keywords  Scheduling · Simulation · Optimization · Multi agent system · UV-c
treatment

	
	

	
	

	
	

	
	

	
	

	

	

	

http://orcid.org/0000-0002-4276-8654
http://crossmark.crossref.org/dialog/?doi=10.1007/s12351-019-00541-w&domain=pdf
tenailleau
Zone de texte

tenailleau
Zone de texte

	

1  Introduction

Since the dawn of time, humans are trying to improve the yield of agricultural
activities and to make them less painful, starting by using animals, then machines,
and, nowadays, robots. Several research works deal with the design and the devel-
opment of robots in the agricultural field. Farming robots can be found in many
agricultural activities, from plant cultivation to harvest (Sistler 1987). The most
used robots in agriculture are sprayers and combine harvesters. Several laborato-
ries are developing methods to improve and facilitate the cultivation of plants. It
is important to notice that the agriculture sector is not limited to the cultivation
of fruits and vegetables, but it also includes other related activities such as food
industry, spices, tissues and basic elements of drugs (Oberti et al. 2016).

Downy and powdery mildew are two types of fungi of the same family that
usually contaminate plants. There are small differences between them about the
manner they infect the leaves of plants. Downy mildew is characterized by oily
stains that manifests itself under the leaves. Plants susceptible to downy mildew
are vine, tomato, potato, lettuce and squash (Zhang et al. 2018; Li et al. 2017).
Powdery mildew is characterized by a white powder like a flour that covers the
foliage. It affects several plants, but the most sensitive are the oak, the maple, the
quince, the apple tree and the hawthorn (Peries 1962; Janisiewicz et al. 2016).
The treatment of both types of mildew is the same. Nowadays, farmers are using
pesticides to eliminate the majority of diseases including mildew. These pesti-
cides are sprayed by several methods such as manual, by permanent installation
or using agricultural autonomous robots.

One of the most important activities of the agriculture sector is the treatment
of plants against the disease affecting cultures. Usually, pesticides are used to
ensure this treatment, which may have negative side effects on human health and
the environment. New methods based on the use of UV-c treatment are developed
to treat some diseases such as downy mildew and powdery mildew. Robotic solu-
tions for the implementation of such methods are very interesting, even essential,
because of the dangerous effect of UV radiations on the human operators.

In fact, the last decade has known the emergence of robotics in the agricul-
tural field. Many research laboratories and technology providers are working on
the development of autonomous vehicles and robots. For instance, the agricul-
tural engineering department at the Louisiana Agricultural Experiment Station
developed a robotic seedling transplant model (Hwang and Sistler 1985). The
prototype could only transplant at an average rate of six plants per minute, which
represents a fifth of the rate for a human operator. The authors have also made a
global view of past, present and future agricultural machinery. They identified
laboratories interested in agricultural robotics.

Spraying robots and threshing machines are the most famous agricultural
robots. Compared to the combine harvester, Sistler (1987) cites several axes
that are studied in this context, including the irrigation regulated by robots to
minimize water waste during watering. Bonadies et al. (2016), a state of the art
is given on unmanned land vehicles (UAVs) used in the field of agriculture to
increase efficiency, especially by reducing labor requirements. Other researchers

tenailleau
Zone de texte

1 3

Simulation and optimization of robotic tasks for UV treatment…

have developed their robots to improve the harvest of several types of plants such
as Van Henten et al. (2002), Sakai et al. (2008) and De-An et al. (2011).

A strawberry harvester was developed and presented in Feng et al. (2012). A
manipulator arm with six degrees of freedom with pneumatic gripping fingers and
a suction cup was mounted on a four-wheel drive vehicle for harvesting in a green-
house. The work of Southall et al. (2002) relates to an artificial vision system for
an autonomous vehicle designed to treat horticultural crops. The vehicle navigates
along rows of crops (individual cauliflower plants) that are planted in a reason-
ably regular network. The paper of Zhang et al. (2002) gives an overview of the
global development of precision farming technologies. This includes the variability
of natural resources, variability management, management zone, the impact on the
profitability and environment of agricultural holdings, technical innovations in sen-
sors, controls and remote sensing, information management, global applications and
adoption trends of precision agriculture technologies.

When spraying, any field location should be treated only once, as excessive dis-
tribution of sprayed products will destroy the crop (Janani et al. 2016). On this type
of robot, researchers are trying to find the ideal strategies to avoid the destruction of
crops with chemical products. Janani et al. (2016), the co-authors propose a coopera-
tive strategy to allow a team of robots to spray on a large field. The goal is to achieve
task allocation and coordination using only local information from robots. The pro-
posed strategy is scalable, but requires all robots to participate at the same time. Some
reviews like Talbot (2014), Sarri et al. (2017) and Gonzalez-de Soto et al. (2016) were
interested in the location of robot with GPS to make an autonomous spray in agricul-
tural field, and to facilitate the movement of robots between the rows of plants without
damages. The authors team of Oberti et al. (2016) developed an agricultural robot to
detect moisture on plants and apply pesticides to reduce disease on these plants. Using
a robotic arm on a wheeled mobile platform and a multi spectral camera, the system
can detect the presence of fungi. The vehicle moves and when mildew is detected at
a particular position, the robotic arm is used to spray a pesticide on the infected area
from three directions to ensure a uniform coverage. The experimental results of this
robot revealed an ability to reduce the use of pesticides from 65 to 85%.

The scheduling of robots’ tasks in complex agriculture environments is subject to
several constraints such as the battery limitation, the evolution of the disease and the
duration of treatment. In this article, we address the problem of tasks scheduling on
an autonomous mobile robot for the treatment of plants disease in horticulture. We
propose a multi-agent based approach to simulate and optimize the treatment mis-
sions of the robot while taking into account a limited-capacity rechargeable robot’s
battery, and a dynamic behaviour of the disease. This work is part of a European
project called UV-ROBOT which is intended to use robots that carry type-c ultravio-
let (UV-c) lamps to treat plants infected by mildew, in order to replace the chemical
treatment. To the best of the authors’ knowledge, there is no work in the literature
treating the same problem or deploying a similar approach (based on simulation-opti-
mization) to resolve it. The contributions of this paper can be summarized as follows:

•	 Development of a simulator able to represent the process of mildew treatment by
UV-c using a robot, which represents a novelty by itself

tenailleau
Zone de texte

tenailleau
Zone de texte

	

•	 Optimization of the robotized treatment by using three methods:

•	 A greedy-based heuristic algorithm;
•	 An exact method based on Binary Integer Linear Program (BILP) model;
•	 A Genetic algorithm based metaheuristic method.

•	 Consideration of the dynamic situation, where the level of disease increases with
time, using a simulation-optimization approach.

In the rest of this article, we present the steps of our work through the following
sections. In the Sect. 2, we review some relevant works related to the treatment of
plants diseases, the emergence of robotics in the agriculture sector and the principle
methods to simulate and optimize the performances of resulting robotized systems.
The Sect. 3 describes the optimization problem of robotized treatment tasks in hor-
ticulture and how we formulate it. Then, in Sect. 4, two approximate algorithms are
proposed to solve this problem. In Sect. 5, our simulation approach is explained and
the development of the simulator is detailed. Then, the hybrid simulation-optimiza-
tion approach is presented in Sect. 6. In Sect. 7, some experimental results are pre-
sented and discussed. Concluding remarks and future works are given in the Sect. 8.

2 � Related works

In this paper, we aim to optimize the scheduling of treatment tasks performed by a
robot in a greenhouse to reduce the time of treatment, knowing that the robot is run-
ning on battery with a limited power capacity. This problem covers several aspects
like planning and scheduling of robot’s tasks under battery constraint, simulation
approach and optimization methods. This section presents some relevant research
related to our problem.

In fact, the literature contains more research on robot planning and scheduling in
several other areas than the agricultural field. For example, in Brumitt and Stentz
(1996), the authors developed a simulator able to plan missions for a fleet of robots.
A mission is a set of tasks to be performed by the robot during a predefined period
of time, usually between two charging cycles of its battery. When the robots leave
their starting point, the simulator can modify their scheduling at any time, which
makes them dynamic and more flexible. The obtained results show that each robot is
looking for its fastest way to achieve its mission while avoiding obstacles. This prob-
lem is NP-hard, even if the authors did not take into account the constraint related
to energy capacity of the robots’ batteries. Sørensen et al. (2004) worked on agricul-
tural robots tasks planning. The goal was to plan the treatments to be done by robots
on a field and to compare them to traditional machine management. The solution
proposed is based on graph theory. Based on an aerial image, the field is modeled
as an undirected related graph, where each graph edge represents a path. After the
construction of the graph, they use a heuristic algorithm based on the Rural Postman
Problem (RPP) which allows them to find the shortest path. Dasgupta (2012) sum-
marized his work on multi-robot systems, and emphasized that multi-agent systems
(MASs) offer a wide range of solutions that can be adapted to multi-robot systems.

1 3

Simulation and optimization of robotic tasks for UV treatment…

The principle of MAS is to divide a system into multiple agents, such that each
agent has its own behaviour in the system.

The objective of the two works presented in Dang et al. (2012, 2014) is to make
a task planning for a robot on a finite time horizon, while minimizing the total travel
time. The robot transports parts to bins that feed production machines in a ware-
house. Dang et al. (2012), the authors developed a GA-based heuristic algorithm.
They used a chromosome that contains in each column two variables: the first vari-
able is relative to the machine feed, and the second one is relative to the type of tray
to transport. Their algorithm begins to converge towards an optimized solution when
the number of generations is greater than 20. Dang et al. (2014), the authors added
the mathematical model of the problem and defined time windows for robot feeding
tasks based on a (s, Q) inventory policy. It is a classical policy of inventory manage-
ment, also called ‘the reorder point, order quantity’ system, where s is the reorder
point and Q is the reorder quantity or lot size.

Another interesting work (Giordani et al. 2013) used MAS for multiple robots
tasks planning, where the authors modeled the tasks as agents and defined two lev-
els in their system: ‘Planning level’ and ‘Scheduling level’. In planning level, the
algorithm assigns a number of robots for each task agent and in each specific period.
Then in scheduling level, they use a distributed version of the Hungarian method in
order to make a negotiation between the robots. Then, the algorithm makes the cal-
culations and the communication between the robots to assign one robot per task in
a given time period.

Several problems could present some similarities with the one considered in this
paper, such as the Electrical Vehicle Routing’s Problem (EVRP) (Schneider et al.
2014) with a single vehicle, or the Capacitated Vehicle Routing Problem (CVRP)
(Laporte and Nobert 1983). The latter seems to be an evident approximation to our
problem, but there are several specific characteristics, such as the treatment power
consumption, the dynamic level of disease and the battery charging time, which make
this approximation complicated to elaborate. The Bin-Packing problem is also often
chosen to approximate a big range of problems with different adaptations (Chris-
tensen et al. 2017). Other approaches can be used to schedule the robotic tasks such
as the coverage path planning (Wei and Isler 2018; Sharma et al. 2019), where a robot
must cover/visit several point. However, it is not easy to consider a dynamic variation
regarding the importance of each point. Other works on dynamic Bin-Packing prob-
lem were studied, where the dynamicity is related to the arrival and departure times
of the items. Coffman et al. (1983), the authors have made a natural generalization
of the classic Bin-Packing problem. They have used the ‘First Fit’ (FF) algorithm to
manage the arrival and departure times of items dynamically. The works presented in
Leinberger et al. (1999), Chan et al. (2009) and Li et al. (2015) aim to minimize the
total cost of bins used over time. They used a hybrid algorithm that is based on the
FF algorithm. Processing is done on the distribution of requests arising from gaming
systems in the cloud. Leinberger et al. (1999) integrated simulation to improve the
performance of the FF algorithm for the online Bin-Packing problem. Berndt et al.
(2015), the authors studied four cases of packaging problem: Online Bin-Packing,
Relaxed Online Bin-Packing, Dynamic Bin-Packing and Fully Dynamic Bin-Pack-
ing. In the Fully Dynamic Bin-Packing problem, items arrival and departure happen

tenailleau
Zone de texte

tenailleau
Zone de texte

	

in an on-line manner and repackaging of already packaged items is allowed. The goal
is to minimize both the number of used bins and the amount of repackaging.

All the aforementioned optimization problems are NP-hard, for which the exact
methods are not efficient with big instances. That is why heuristics and meta-heuris-
tics, such as Genetic Algorithm (Karakatič and Podgorelec 2015) or Particle Swarm
Optimization (PSO) (Ai and Kachitvichyanukul 2009), are often used to solve this
kind of problems, providing a good compromise between the computation time and
the quality of the solution.

Several researchers proved the effectiveness of MAS-based simulation. This
method gives the possibility to follow the events of the simulation and to make it
close to reality. As in Dahane et al. (2017) and Sahnoun et al. (2015), the authors
used MAS to predict the health of wind-turbines and to optimize the maintenance
of an offshore wind farm. They tested several scenarios in order to obtain the best
maintenance strategy.

Other researchers reported that, in many cases, simulation reaches its limits
because it does not allow to play certain scenarios where the behaviour of the sys-
tem changes (Powell et al. 2001; Ören et al. 2014). In order to improve the behav-
iour of the system or to predict the occurrence of influencing random events, several
researchers recommended to add some optimization algorithms into the simulation
process (Lim et al. 2009; Powell 2005). In Wu et al. (2003) and Powell (2008), the
authors adopted the optimization simulation method and used rough dynamic pro-
gramming to solve various optimization problems. They applied their method on the
problem of the military air planes transport in the United States.

3 � Problem formulation

In this work, we consider an autonomous mobile robot that performs the treatment of
infected plants in a greenhouse by executing several successive missions. In each mis-
sion, it visits a subset of rows containing some infected plants with different levels (see
Fig. 1). After each mission the robot must return to the charging station to load its bat-
tery before the next mission. Our robot has an average autonomy of 30 min, and its
battery loading takes at most 4 h. The capacity limit of the battery is a big challenge
for mobile robots. Mei et al. (2005), the authors presented a model of their robots with
several graphs showing the energy consumption of different components. For our robot,
there are two factors that influence the energy consumption during the execution of a
task, which are the speed of the robot’s displacement and the UV-c lamps state (on/off).

The appearance and the development of plants’ diseases follow different, and
probably dependent, stochastic processes. However, for the seek of simplicity, we
model this phenomenon by using a simple Markov process, where the transition from
a given disease level to the following level is modelled as a Bernoulli trial. In fact, we
suppose that each level transition has only two possible outcomes: ‘success’ (increase
of the disease level) or ‘failure’ (no change). Once a plant is treated, its level of dis-
ease is reset to zero. To manage the evolution of diseases in the greenhouse when
the robot performs its missions, we turned our ‘dynamic problem’ into a 24-h time
period ‘static problem’, i.e. the transitions of disease levels are updated each 24 h.

1 3

Simulation and optimization of robotic tasks for UV treatment…

The ‘static problem’ consists of scheduling the treatment tasks while minimizing the
number of missions needed by the robot to treat all the infected plants in the greenhouse
in order to reduce the total time of treatment. The objective is to minimize the impact of
disease on the total yield of the greenhouse by eradicating the disease as soon as possi-
ble. At the beginning of the planning period, the level of disease of each plant is known.
The level of the disease can be assessed either by a visual inspection or by measuring
the intensity of mildiou presence in the air close by each plant, using a specific sensor.
To treat an infected plant in a given crop, the robot should visit the two surrounding
rows to treat the plant from both sides (see Fig. 2). Let wii be the total amount of energy
needed by the robot to treat all infected plants at both sides of the row i ∈ {1, 2,… ,N} ,
with N the number of rows in the greenhouse. We assume that the pre-emption of the
treatment of infected plants in a given row is not allowed, i.e. each row is visited once
and only once. When the robot travels from row i to row j, the amount of power con-
sumed is denoted by wij . Let W (c.f. Eq. 1) be the power consumption matrix where the
principal diagonal elements correspond to the amount of power needed to treat each
row in the greenhouse, including the displacement of the robot within the row. The
upper and lower diagonal elements of W correspond to the amount of power needed to
displace the robot from one row to another. The charging station is considered as a fic-
tive row, indexed by 0, which has no power consumption ( w00 = 0 ). Note that the
charging station corresponds to the starting and ending position of each treatment mis-
sion executed by the robot. Let k be the index of missions and Xk its corresponding
decision variables matrix, where each element xk

ij
 is a binary decision variable permit-

ting to assign task (i, j) to mission k. Equation (2) represents an example of missions for
a 4-rows greenhouse. During the kth mission, the robot is scheduled to visit rows 1, 3
and 4 successively and then returns back to the charging station.

Fig. 1   Representation of greenhouse model with different levels of disease

tenailleau
Zone de texte

tenailleau
Zone de texte

	

The goal being to treat all infected plants while minimizing the number of missions,
this problem is similar to the well known Bin-Packing problem (Mazar et al. 2018).
We have the following analogy: items in the Bin-Packing problem correspond to
treatment tasks (one task per row visited) and bins correspond to the missions.

(1)W =

⎛
⎜⎜⎜⎝

w00 w01 ⋯ w0N

w10 w11 ⋯ w1N

⋮ ⋮ ⋱ ⋮

wN0 wN1 ⋯ wNN

⎞⎟⎟⎟⎠

(2)Xk =

⎛
⎜⎜⎜⎜⎝

� � 0 0 0

0 � 0 � 0

0 0 0 0 0

0 0 0 � �

� 0 0 0 �

⎞⎟⎟⎟⎟⎠

0

0
0

0

0

0

0
0

0

0

0
0

3

3
3

20

3

12

12
12

12

20

20
20

30

30
30

12

30

6

6
6

6

12

12
12

ro
w

 1

ro
w

 2

ro
w

 3

ro
w

 4

cr
op

 1

cr
op

 2

cr
op

 3

W11 W22 W33 W44 WNN

W00

W12 W23 W34 W(N-1)N

W01 W02 W03

W04
W14

W24W13

ro
w

 N

cr
op

 (N
-1

)

W0N

12

12
12

12

3

3
3

3

20

20

20
20

Charging sta�on

Fig. 2   Diagram of the greenhouse with the tasks assigned to the robot

1 3

Simulation and optimization of robotic tasks for UV treatment…

Nevertheless, in our case, power consumption during robot displacement should
be taken into account, in order to ensure that the robot has the sufficient power to
move between rows and to return to the charging station at the end of each mission.
For this end, our problem is formulated as a Binary Integer Linear Program (BILP),
which is detailed below. Equation (3) represents the objective function, which seeks
to minimize the number of missions. In fact, the aim of this study is to optimize the
use of the robot. This can be reached by making the same treatment with fewer mis-
sions. Reducing the number of missions is equivalent to reducing the total treatment
time and a better use of the robot, which allow improving the crop yield.

Subject to:

where

(3)minimize Z(Y) =

K∑
k=1

yk

(4)
N∑
i=0

N∑
j=0

wijx
k
ij
≤ Cyk ∀k ∈ {1, ...,K}

(5)

N∑
i=0
i≠j

xk
ij
= xk

jj
∀j ∈ {0, ..,N} ∀k ∈ {1, ..,K}

(6)

N∑
j=0

j≠i

xk
ij
= xk

ii
∀i ∈ {0, ..,N} ∀k ∈ {1, ..,K}

(7)yk ≥ yk+1 ∀k ∈ {1, ..,K − 1}

(8)
N∑
i=1

xk
ii
≥ yk ∀k ∈ {1, ..,K}

(9)xk
ii
≤ xk

00
∀i ∈ {1, ..,N} ∀k ∈ {1, ..,K}

(10)
N∑
i=1

i−1∑
j=0

xk
ij
= yk ∀k ∈ {1, ..,K}

(11)
K∑
k=1

xk
ii
= 1 ∀i ∈ {1, ...,N}

tenailleau
Zone de texte

tenailleau
Zone de texte

	 M. Mazar et al.

•	 C: Power capacity (in units of power) of the robot’s battery at the beginning
of the mission

•	 wij : Power consumption (in units of power) of the task ij
•	 xk

ij
 : a binary decision variable permitting to assign tasks to missions

	 
•	 yk : a binary decision variable permitting to schedule the missions

•	 K is the maximum number of possible missions. Its upper bound is the num-
ber of row of the greenhouse ( K ≤ N  ). For the execution of the linear pro-
gram, this value is defined empirically to reduce the number of decision vari-
ables.

Constraint (4) ensures that the total energy to be consumed to perform the tasks
of each mission k must not exceed the battery’s power capacity of the robot.
Constraints (5) and (6) define the origin and the destination of a robot when it
is visiting a row. It means that the robot has to come from a previously visited
row (including the charging station) and it has to visit another row after visit-
ing the current one. Constraint (7) means that mission number k + 1 can not be
scheduled if mission number k is not already scheduled. In constraint (8), if the
mission is scheduled, there will be at least one row to visit. Constraint (9) means
that no row i can be scheduled if mission number k is not scheduled ( xk

00
= 0 ).

Constraint (10) means that at the end of each mission, the robot goes back to the
charging station. Constraint (11) ensures that each row is treated once during
one of the scheduled missions.

4 � Optimization

This section presents two approximate optimization algorithms developed to solve
the ‘static problem’ formulated in the previous section. These algorithms will be
integrated within the simulation process in order to solve the ‘dynamic problem’,
where the stochastic behaviour related to the appearance and the evolution of the
disease is taken into account. These algorithms will be evaluated and compared in
both static and dynamic environment.

xk
ii
=

{
1 if the robot treats row i during mission k

0 otherwise.

xk
ij
=

{
1 if the robot travels directly from row i to row j ∀ i ≠ j

0 otherwise.

yk =

{
1 if the mission k is scheduled

0 otherwise.

tenailleau
Zone de texte

1 3

Simulation and optimization of robotic tasks for UV treatment…

4.1 � Heuristic algorithm (HA)

The proposed heuristic (Algorithm 1) is a greedy-based algorithm which assigns
treatment tasks to robot missions, iteratively. At the beginning of each iteration, the
algorithm initializes the vector of tasks’ power consumptions Vc, which corresponds
to the diagonal of the matrix W (line 2), the battery charge Es (line 3) and the list of
tasks TASKS=[] is initialized as empty (line 4). To be sure that the robot can come-
back to the charging station, we remove a security power ( Maxkwk0 ) corresponding
to the power necessary to travel the maximum distance between the charging station

Mission 1

18Kw9Kw15Kw 17Kw10Kw 8Kw7Kw

Mission 2

0

0
0

0

0

0

0
0

0

0

0
0

3

3
3

20

3

12

12
12

12

20

20
20

30

30
30

12

30

6

6
6

6

12

12
12

3

3
3

3

3

6

6
6

6

3

3
3

12

12
12

30

12

20

20
20

20

30

30
30

6

6
6

20

6

12

12
12

12

20

20
20

ro
w

 1

ro
w

 2

ro
w

 3

ro
w

 4

ro
w

 5

ro
w

 6

ro
w

 7

cr
op

 1
-2

cr
op

 2
-3

cr
op

 3
-4

cr
op

 4
-5

cr
op

 5
-6

cr
op

 6
-7

1

18Kw

17Kw

10Kw

15Kw
9Kw
8Kw
7Kw

Power capacity = 45Kw

Fig. 3   Mechanism of the heuristic to define the mission of robot

tenailleau
Zone de texte

tenailleau
Zone de texte

	 M. Mazar et al.

and the farthest row (line 6). The assignment rule to select the tasks of a mission is as
follows: the first biggest-power-consumption task that can be appended (lines 8 and
9), i.e. the first task having the biggest power consumption, that is less than or equal
to the remaining power capacity minus the power needed to move to its row from the
row of the last appended task. If there is enough power, the treatment of selected row
is added to the mission (line 11) and the corresponding energy is removed from E
(line 12), and this process is continued until testing all the remaining rows.

In order to generate the necessary missions to treat all the greenhouse, this algo-
rithm is repeated several times where the matrix W is updated by not taking into
account the tasks already assigned to the previous missions. Figure 3 illustrates an
example of the construction of two missions using the heuristic. We can observe that
‘Mission 1’ contains the biggest tasks (17 kW and 18 kW). The task of 15 kW can
not be assigned to this mission because it leads to exceed battery’s power capacity of
the robot (45 kW), but the task of 10 kW can be treated in this mission. The rest of
tasks are assigned to ‘Mission 2’ using the same algorithm.

tenailleau
Zone de texte

1 3

Simulation and optimization of robotic tasks for UV treatment…

4.2 � Genetic algorithm (GA)

Genetic algorithms represent one of the most used evolutionary solving meth-
ods that often perform well approximating solutions to complex problems (Aytug
et al. 2003). It is a meta-heuristic optimization algorithm that has the advantage
of being quite simple to implement (Tsai et al. 2013). In addition, it is commonly
used to resolve the Bin-Packing problem (Falkenauer 1996; Kröger 1995), which
is an important motivation to chose GA for the resolution of our problem. How-
ever, in order to improve its performances, its parametrization can sometimes
become a delicate task. Even if there are several rules to follow in order to define
the GA parameters, each problem has its own characteristics and needs an empiri-
cal adaptation of the GA parameters. The chromosome coding and the GA opera-
tors are detailed below. The fitness function corresponds to the total number of
missions needed to assign all treatment tasks.

The chromosome of the GA is coded as a binary matrix where lines represent
missions and columns represent the greenhouse’s rows. For example, if the robot has
to treat row j during the mission i, the gene (i, j) gets a value of one, zero otherwise.

At the beginning, an initial population of 50 individuals is created randomly. To
create the population of a new generation, ordinary genetic operators are succes-
sively applied, namely: ‘Crossover’, ‘Mutation’ and ‘Selection’. Each created chro-
mosome, either in the initial population creation or by genetic operators, is tested by
verifying the constraints developed above so that all the chromosomes are feasible.

Each run of the GA is executed as follows: two chromosomes are selected ran-
domly from the current population and crossed. Each generated child is tested and
is regenerated until it becomes feasible. The obtained children are then mutated and
validated again. For our algorithm, the average rate of infeasible generated chil-
dren was around 7%, which indicates that the diversity of generated chromosome
is ensured (Abdelaziz et al. 1999). If this rate increases, it will increase the com-
putation time, but if it is null, that mean that there is a risk of non diversity of the
population (Aickelin and Dowsland 2004). All the parameters of the GA are defined
empirically after several trails.

4.2.1 � Crossover

Figure 4 illustrates the structure of the chromosomes and the principle of the crosso-
ver operation. It is a single-point crossover, which is randomly generated between
2 and N − 1 . 90% of the population is randomly selected for the crossover opera-
tion. We opted for random selection to reduce the calculation time. Although there
are several ways in the literature to select parents, such as the ‘roulette wheel’, We
use a simpler selection method because we did not meet any phenomena of loss of
diversity.

4.2.2 � Mutation

Obtained children may be mutated with a given probability according to the fol-
lowing four possibilities: (1) only the first child is mutated, with probability 0.3, (2)

tenailleau
Zone de texte

tenailleau
Zone de texte

	 M. Mazar et al.

only the second child is mutated, with probability 0.3, (3) both children are mutated,
with probability 0.3, and (4) neither children are mutated, with probability 0.1. The
mutation operation is illustrated in Fig. 5. Two rows of the chromosome (missions)
are randomly selected and their elements are respectively interchanged one by one,
following a Bernoulli process with probability P = 0.5.

Each chromosome from the new population is evaluated and discarded if it is
infeasible, if it does not respect at least one constraint.

4.2.3 � Selection

10% of the best chromosomes of the old generation are selected to be directly a part
of the new generation. 90% of this new generation are selected from the best indi-
viduals obtained by crossover and mutation.

4.2.4 � Stopping test

This process is stopped after a fixed number of generations. The size of the popu-
lation and the maximum generation can be defined manually using a slider on the
graphical interface of the sim-optimizer. For the results presented here, we set this
number to 20 after several trials. The best individual, having the minimum number
of missions to treat all infected rows, is returned.

4.3 � Exact method

The developed BILP (detailed in Sect. 3) has been solved using a commercial solver
‘ FICOⓇ Xpress’ to give optimal solution of the problem. In order to reduce the
number of decision variables, the maximum number of mission is defined, for each
instance, by the number of mission given by the heuristic algorithm.

[1 0 0 0 1 0 0 1 1 0 1 0 1 1 0 0 0]
[0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 1]
[0 1 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0]
[0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 1]
[0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0]

[1 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0]
[0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 1]
[0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0]

[1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 0 0]
[0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 1]
[0 1 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]

Crossover

Fig. 4   Illustration of the crossover operator

tenailleau
Zone de texte

1 3

Simulation and optimization of robotic tasks for UV treatment…

5 � Simulation

The dynamic and stochastic behaviour of the apparition and evolution of the dis-
ease in the greenhouse changes the problem during time. This behaviour can not be
included in the optimization model proposed above. Changing the parameters of the
model means the resolution of another problem completely different. The technique
of simulation and optimization can be used to consider this dynamicity of the sys-
tem. This section describes the development of the simulator. Since the considered
system used by the UV-Robot is complex, we chose to use the MASs for its mod-
eling and simulation. MAS allows the representation of each agent interdependently
and facilitates, by the way, the modeling and simulation of complex systems. When
modeling the system by MAS, its is important to divide the systems into agents to
allow their modeling and the definition of their interactions.

Figure 6 presents the simulation model using MASs, were there are 7 agents and
10 interactions between them. The agents are defined as follow:

•	 Grower its role consists to setup the robot and repair or manually transport it to
the recharge station when there is a problem. We consider that the grower plays
the role of supervisor, who should be always present.

•	 Robot only one robot agent is considered, which is able to execute autonomously
a set of missions defined and scheduled by the monitoring agent. It controls its
speed and the state of UV-lamps regarding the state of plants (the level of dis-
ease). The robot have a limited electric power capacity that decreases according
to its speed and the state of UV-Lamps. Figure 7 represents the behaviour of the
robot during the execution of treatment missions in the greenhouse. In fact, each
mission is composed of the treatment of Kmax rows. Each row is composed of
Jmax different sections of plants (each section can be of 1–4 m). The treatment
of each row starts by going to the entry of the row. Then, the robot treats all the

[1 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0]
[0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 1]
[0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0]

[1 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0]
[0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0]
[0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1]

Mutation

P=_12

Fig. 5   Mutation method

tenailleau
Zone de texte

tenailleau
Zone de texte

	

sections successively, while adapting its speed ( Va ) and the state of the lamps
accordingly to the level of disease of each section. When the robot arrives to
the end of the row ( j = Jmax ), it switches off the UV-lamps and goes back to the
entry of the row with the maximum speed Vmax . The energy consumption of each
action is defined by the following values: �Vmax , corresponding to robot dis-
placement with maximum speed; �Va , corresponding to robot displacement with
the adapted speed Va ; and �lamps , the energy consumption of the UV-lamps.

•	 UV-lamps this agent is placed on the robot and controlled by it.
•	 Plants the plants agents are able to grow and degrade their situation when they

are affected by disease. The disease level in each agent Plant is a stochastic pro-
cess that is influenced by other plants, the environment and the state of the plant
itself. After treatment, the level of disease of the plant is set to zero. Six levels
of disease are considered: the plant is safe if the level is zero and completely
infected if the level is 30. The apparition and evolution of the disease in the
greenhouse is supposed to follow a Markovian process. The transition probabili-
ties are defined by the user at the beginning of the simulation process.

	  A plant is considered as fully treated only when the robot treats it from both
sides (left, right), and its disease level is reset to zero. There is also in the agent
Plant a function called Plants state, which checks the state of the plant before
producing the fruit. The relation between the level of disease and the production
is inversely proportional.

•	 Greenhouse this agent represents the environment in which the other agents are
evolving. General indicators are related to this agent such as the global level of
disease.

•	 Charge station this agent manages the charging operation of the robot’s battery.
When the robot visits the charging station, its battery becomes fully charged after
a time duration that depends on the initial power level of the battery at the begin-
ning of the charging operation. In our case, if the robot’s battery is completely
empty, the charging duration is about 4 h.

Plants

Robots

Greenhouse Charge
station

Treating

Growing in

Charging

Placed in

Moving in

Lamp UV-cMonitoring Grower

Defines missions

Installed on

ControlSending data

Planning missions

Manual
control

Fig. 6   Multi agent system model

1 3

Simulation and optimization of robotic tasks for UV treatment…

Fig. 7   Robot behaviour Start mission; get task_list

k=1

Destination = task_list(k)
Speed = Vmax

Move (Forward) to the row entry
"destination"

Consume ΦVmax Energy

j=1

Get disease level

Adapt speed (Speed = Va)

Switch on-off UV-lamp (left, right)
Consume Φlmp Energy

Move (Forward) & consume ΦVa Energy

If j < Jmax

Off UV-lamp (left, right)

Move (Reverse) to the row entry "destination"
Consume ΦVmax energy

If k ≤ Kmax

Move (forward) to charging station
Consume ΦVmax energy

j++

No

k++

NO

Yes

Yes

tenailleau
Zone de texte

tenailleau
Zone de texte

	 M. Mazar et al.

•	 Monitoring this agent monitors the system and defines the missions for the robot.
The monitoring function includes the observation of the level of mildew, the
environment and state of the robot (position, charge, health level, etc.). Based
on this information, the agent Monitoring makes decision by optimizing the mis-
sion for the robot using one of the algorithms detailed in Sect. 4. The optimiza-
tion part is ensured by the function ‘Optimize the mission planning’ as shown
in Fig. 8. The selection of the optimization method is done manually before the
beginning of the simulation process. The moment of running the optimization
algorithm during the simulation is explained in Sect. 6.

The interactions between agents are defined as follows:
The agent Grower starts the process of treatment by launching the agent Moni-

toring. Then, the agent Monitoring collects data from the agents Robot and Grower
and runs an optimization algorithm to schedule the missions for the agent Robot.
After this step, the Robot starts the treatments by moving in the Greenhouse and
visiting the Plants growing in the Greenhouse. The Robot sends its position and its
battery’s remaining power level to the monitoring system. Even if there is no direct
link between the agent Monitoring and the agent Greenhouse, the Robot is playing
the role of communication channel between these two agents. We assume that the
agent Greenhouse is able to know the levels of disease of all plants and send them
automatically to the agent Monitoring. The treatment of each plant section is done
by turning on or off the UV-lamps that are installed on the Robot. After each mission
the agent Robot goes to the ChargeStation which is placed in the Greenhouse.

The above MAS model has been used to develop our simulator with Netlogo soft-
ware (Wilensky and Evanston 1999). The simulator allows the representation of the

PlantsRobots

 Greenhouse

Charge
station

Growing in

Charging

Placed in

Moving in

Lamp UV-c

Monitoring

Grower

Defines missions Installed on Control

Sending data

Optimize the
mission

scheduling

Rela�onshipAgent Process or ac�onsDecision

Disease Level

Update the
consump�on

matrix

Yes

Tasks list

Robot is loaded ?

YesRobot is ready ?

Robot state

Execute mission

Choose speed

Move

Turn-on UV-
lamp

Level > 0?

No

Yes
scheduling missions

Plant

Infected
plant

Plants state

Stochas�c process

Is treated ?

Level ++

Level 0

No

Yes

Environmental
condi�ons favorable to

the disease

Treating

Propaga�on

Get mushroom

Produce

Op�miza�on process

Manual
control

Fig. 8   Agent-based simulation optimization process

tenailleau
Zone de texte

1 3

Simulation and optimization of robotic tasks for UV treatment…

behaviour of our system, including the visualization of the infection level evolution
on each plant section in the greenhouse.

Generally, the simulation process allows the execution of a limited number of
scenarios and compare their results. The user can make decision based on these
observations. This manner of decision-making allows to obtain feasible solution, but
there is not a real exploration of the state space of system. The agent Monitoring, is
able to make complex decisions because it includes some optimization algorithm.
The execution of this algorithm during the simulation can improve the behaviour of
the system and the value of its key performance indicators. Section 6 explains how
to integrate the optimization process into the simulation.

6 � Simulation‑optimization

Simulation and optimization are the most important methods used for decision mak-
ing. Simulation gives a vision of the process in time (exploration of future state), but
its vision in the space state is limited (limited exploration of all the possible choices
for a treatment). On another hand, the simulation can explore the space state but its
vision in time is limited. In fact, it is not obvious to consider the variation of system
parameters. Mixing these two techniques by using simulation-optimization approach
can resolve this problem. The idea is to optimize simulation problems over time, by
making decisions that takes into account the future situation of the system, Powell
(2008) or by exploring the state space through the stochastic behaviour of the system
(Wu et al. 2003). In order to integrate this decision in the simulation, we have to
answer several questions such as: (1) how to introduce the optimization algorithms
and for which parameter? (2) when should the optimization algorithm be launched
during the simulation process? and (3) what is the horizon of optimization?

The agent Monitoring is responsible for defining the mission for the agent Robot.
The decision to schedule a mission can be defined by one of the optimization meth-
ods presented above, or simply by using the numerical order of the rows. In fact,
the agent Monitoring collects data and receives orders from several agents in the
greenhouse. It receives the order to start optimizing the mission from the grower
and it receives the information concerning the level of disease and the state of the
robot from the agent Robot, as shown Fig. 8. The list of treatments to execute dur-
ing a mission is transmitted to robot after the optimization process. The selection of
the optimization method is defined manually by the Grower (user) and the moment
the optimization process is launched depends on the selected algorithm and the data
collected from the robot. For example, the heuristic is launched after the end of each
mission, but the GA is launched after the treatment of all the greenhouse.

Since, each mission is a set of rows to visit, and the optimization process defines
these rows in the aim to reduce the number of missions. The optimization process
can be executed just before each mission (heuristic case) or when the robot finish all
the scheduled missions without eliminating all the disease in the greenhouse (GA,
exact method with dynamic disease evolution process). The parameters that influ-
ence the launching of an optimization process can be summarized as follows:

tenailleau
Zone de texte

tenailleau
Zone de texte

	 M. Mazar et al.

•	 The power level of the robot’s battery
•	 The position of the robot
•	 The level of disease
•	 The type of selected optimization algorithm.

Figure 8 shows the decision process in the simulation model for each agent. The
optimization algorithm is a part of the agent Monitoring, which receives the plants’
disease levels from the robot in order to update the values of the diagonal elements
( wi,i, i = 0 to N ) of energy consumption matrix W (c.f. Eq. 1). Figure 8 also con-
tains more details about the other agents (Robot, Plants and Greenhouse), their inner
decision processes and their interactions. As soon as the agent Robot receives its
mission, it begins executing it by moving between the rows selected within the mis-
sion. The list of selected rows is generated by the optimization process and transmit-
ted by the agent Monitoring. The robot treats infected plants using UV-c lamps by
adapting its speed according to the disease level. The lamps are switched off during
the displacement between rows or in front of healthy plant.

The optimization algorithms are managed through the interface of the simulator,
where the user chooses the appropriate algorithm before launching the simulation.
Then, the monitoring makes the decisions using only the selected algorithm. We
notice that, whatever the selected algorithm, the greenhouse will be treated until all
plants’ diseases are totally eradicated.

Three different algorithms were proposed to optimize this process in static and
dynamic situations. The next section will present the tests performed to test the effi-
ciency of proposed algorithms regarding the CPU time and the objective function
quality.

7 � Experimentation

The aim of this section is to present and compare the results obtained by each pro-
posed optimization algorithm. The first phase of tests is dedicated to evaluate the
average gap (GAP) between the solutions provided by the GA and HA compared to
the optimal solutions provided by the exact method (EM). The second phase of tests
is dedicated to the test of the performance of these methods in the case of a dynamic
system, where the parameters of the model are changing over time (variation of the
level of disease). The solution based on the sim-optimization method is then pro-
posed to deal with the dynamic behaviour of the disease.

7.1 � Phase 1: static environment

In order to test the developed model, algorithm and simulator, a set of simulation
optimization experiments were performed.

To evaluate the results obtained by HA, we compared them with those of EM
obtained by a commercial solver, namely the ‘FICOⓇ Xpress Workbench’ solver.
The obtained results (Fig. 9) show that the heuristic solution is very close to the

tenailleau
Zone de texte

1 3

Simulation and optimization of robotic tasks for UV treatment…

optimal solution. Figure 9 draws the robot’s energy consumption for the treatment of
a greenhouse composed of 50 plant rows, where the disease’s probability of appari-
tion P is equal to 0.5. In both curves (exact method and heuristic), the robot uses a
battery of 960 Wh of energy capacity, allowing it to execute each mission during
around 30 min before its battery is being charged during around 4 h. The treatment
of all infected rows is carried out in 7 missions with EM and 8 missions using HA.
Figure 9 shows also that there is a tiny difference between both methods in the first
five missions. However, in the two last missions, HA does not allow the robot to
use all of the available energy on its battery. This can be explained by the fact that,
in the two last missions, HA cannot find any mission that can be executed using
the remaining energy. In the same time, the optimal solution uses all the available
energy during each mission. The total treatment with EM consumes about 2% less
energy than the heuristic method and finishes the treatment 3 h and 40 min earlier.
Based on this observations, we can conclude that the heuristic can be a good alterna-
tive regarding its execution time and solution quality.

After the validation of the results obtained by HA, GA was tested for several
greenhouse sizes with different disease’s probabilities of apparition. We compared
the three methods for each greenhouse. Table 1 summarizes 540 simulation runs for
9 different greenhouses configurations, where 20 simulations are performed for each
one. We choose imperially to perform 20 experiments to get a realistic stable aver-
age. For GA and HA, the average and the standard deviation of their gap compared
to EM are presented in the second and the third columns, respectively. The column
‘# Non Convergence’ represents the number of simulations, out of 20, where EM
did not converge in a reasonable time. We consider that there is no convergence if
the CPU time exceeds 8 h without any result. In fact, due to the NP-hardness of the
problem, the exact method can not always converge with rematively large instances
( R = 75 and P = 1 ; R = 100 and P = 0.75 ; R = 100 and P = 1 ). For both approxi-
mate algorithms, the gaps are near to zero, which means that the obtained results
are not very far from the optimal solutions. The comparison of the gaps of HA and

0 1 2 3 4 5 6 7 8 10111213141516171819212223 0 1 2 3 4 5 6 8 9 10

Energy of Robot ; Row=50 ; Proba=0,5

Day H EM

egrahc
yretablatot

ehtfo
egatnesreP

100 %

50 %

Fig. 9   Robot energy consumption with heuristic and exact method

tenailleau
Zone de texte

tenailleau
Zone de texte

	 M. Mazar et al.

GA demonstrates that the latter gives better solutions in three cases (presented with
boldface in the column GA GAP). The comparison of the standard deviation (SD)
demonstrates the stability of the obtained results for each method.

Table 2 presents the average and the standard deviation of CPU time for each
used algorithm. Results show that the CPU time is increasing with the instance
size, as well as the standard deviation. For example, in the case of large instance
( R = 100 and P = 1 ), the average CPU time is 10,426 s (2 h, 55 min and 24 s) for
EM method, 11.075 s for GA and 0.084 s for HA. For smallest instances, these times
are 7.75 s for EM, 1.448 s for GA and 0.016 s for HA. For all the tested instances,
it is clear that HA is faster than GA, which is faster than EM. The values of the
standard deviation demonstrate that methods are stable and the recorded CPU times
are varying in a small range. We notice that this time can be influenced by other
programs executed in the same time by the computer, like anti-virus or other hidden
services of the operating system.

In order to understand the evolution of the disease during the treatment, we pre-
sent the disease level using each algorithm in Fig. 10 for the case of a large instance
( R = 100 and P = 0.5 ). The total treatment of the greenhouse takes more than
2 days for all algorithms. EM allows to finish first (blue curve) within 14 missions,
whereas GA allows to finish the treatment within 15 missions (doted red curve) and
HA within 16 missions. Each vertical green line indicates the beginning of a calen-
der day. The 4-h periods of time where the level of disease is constant correspond
to charging cycles. The periods of time where the level of disease decreases corre-
spond to treatment cycles. The pace of decreasing is low in the first missions (mis-
sions 1–4) because the robot treats a lot of rows from only one side, whereas a row is
considered as treated only when the treatment is performed from its both sides.

To sum up about this part of experiments, we can conclude that the proposed HA
and GA present interesting performances in terms of processing time and solution
quality. Moreover, GA has the advantage of improving solution quality compared to
HA, but it consumes insignificantly more CPU time.

Table 1   GAP average and
standard deviation for the
three algorithms for different
values of R and P (bold → GA
performs better than HA)

(R, P) Heuristic Genetic algorithm Exact method
GAP/SD GAP/SD # Non convergence

(50, 0.5) 0.056/0.062 0.044/0.061 0
(50, 0.75) 0.022/0.038 0.022/0.039 0
(50, 1) 0.016/0.22 0.016/0.21 1
(75, 0.5) 0.054/0.045 0.054/0.042 0
(75, 0.75) 0.049/0.021 0.049/0.025 0
(75, 1) 0.021/0.022 0.021/0.021 14
(100, 0.5) 0.041/0.033 0.037/0.034 2
(100, 0.75) 0.051/0.016 0.038/0.015 13
(100, 1) 0.023/0.015 0.023/0.014 16

tenailleau
Zone de texte

1 3

Simulation and optimization of robotic tasks for UV treatment…

7.2 � Phase 2: dynamic environment

In practice, as explained in Sect. 3, the evolution of the disease happens all the time
but it is modeled as 24-h static problem in the developed simulation model. In order
to test the performances of the proposed algorithms (HA, GA and EM), we con-
sider the same instance that was tested for the static environment case ( R = 100 and
P = 0.5 ). This instance is selected for this test of the dynamic case, because it is the
largest instance that EM can solve in reasonable time. The results are reported in
Fig. 11, which shows the evolution of the total level of disease in the greenhouse, for
the three algorithms, until it is totally treated. As it can be seen, the level of disease
is updated (increases) at the end of each day (green line).

HA is executed at the beginning of each mission, whereas GA and EM are exe-
cuted at the end of all scheduled missions for one equivalent Bin-Packing prob-
lem. Because HA generates tasks scheduling of only one mission, the simulator
waits until the end of the current mission to update the level of disease and launch

Table 2   CPU time average and standard deviation for the three algorithms for different values of R and P 

(R, P) Heuristic Genetic algorithm Exact method
CPU time/SD (s) CPU time/SD (s) CPU time/SD (s)

(50, 0.5) 0.016/0.015 1.448/0.09 7.75/2.13
(50, 0.75) 0.010/0.014 3.73/0.19 18/7.1
(50, 1) 0.016/0.009 6.153/0.89 73/49
(75, 0.5) 0.046/0.097 3.172/0.75 30/64.7
(75, 0.75) 0.029/0.004 6.563/0.39 217/94
(75, 1) 0.038/0.013 9.994/1.9 1677/884
(100, 0.5) 0.049/0.006 5.253/0.74 82/119
(100, 0.75) 0.058/0.016 11.751/2.27 431.286/21334
(100, 1) 0.084/0.034 11.075/2.9 10426/81203

0
10 000
20 000
30 000
40 000
50 000
60 000
70 000
80 000
90 000

100 000

161921 0 2 5 7 101215172022 1 3 6 8 111316182123 2 4 7 9 1214

esuohneerg eht ni
wedli

m fo level latoT

Time (hours)

Row=100 ; Proba=0.5

Day GA Heuris�c Exact method

2 3

14
13

12
11

109
87

654

15

2 2

16
1514

13
12

11
109

8
7

65
43

1413
12

11
109

8
76

5431

1 1

Fig. 10   Level of mildew in static environment

tenailleau
Zone de texte

tenailleau
Zone de texte

	 M. Mazar et al.

to define the following mission in a negligible computation time. Concerning GA
and EM, as both methods generate a set of missions, they are launched at the end
of all planned missions. In this case, the unique way to compare HA with the two
other methods is to execute it until treating all the greenhouse. The execution
moments of GA and EM are mentioned in Fig. 11 by GAi and EMi respectively,
where i ∈ {1, 2, 3} corresponds to the number of algorithm execution. The total
treatment time of the greenhouse using EM and GA is about 4 days (3 days in the
static case), whereas it is about 6 days for HA. GA increases the total treatment
time by 4 h (only one additional mission) compared to EM (c.f. Fig. 11), which
is a very interesting approach regarding its small computation time (5 s for GA
and 82 s for EM). This time increases sharply with bigger instances (Table 2). In
addition, the solution given by GA can be obtained in an on line time. This time
is limited by the necessary time for a full charging of the robot, which is in a con-
stant evolution. To conclude, the efficiency of HA decreases in the dynamic envi-
ronment case, while GA still presents a very interesting results, which are close to
the optimal solution provided by EM.

8 � Conclusion

In this paper, a simulation-optimization approach has been used to solve the
problem of robotized tasks scheduling for mildew treatment by UV-c rays in
horticulture. The problem has been formulated as a classical Bin-Packing prob-
lem and a simulator has been developed using the paradigms of multi-agent sys-
tems to track system events and behaviour in static and dynamic environments.
Three optimization algorithms (HA, GA and EM) have been introduced into the
simulation process to improve the decision making process of the system. The
merging of optimization and simulation involves making reliable decisions about

0

10000

20000

30000

40000

50000

60000

70000

80000

90000esuohneerg eht ni
wedli

m fo lvelel latoT

Time (hour)

Row=100; Proba=0.5

Day GA Heuris�c Exact method

EM1

EM2

EM3

GA1

GA2
GA3

Fig. 11   Level of mildew in dynamic environment

tenailleau
Zone de texte

1 3

Simulation and optimization of robotic tasks for UV treatment…

the timing of the optimization algorithms in the simulator. During the simula-
tion process, HA is launched at the beginning of each mission, whereas GA and
EM are launched only once in the static case and at the end of a set of planned
missions in the dynamic environment case. A set of experimentations have been
conduced to compare the performances of the proposed optimization algorithms.
The obtained results show that HA is efficient in the static environment case, but
its performance is degraded in the dynamic environment case. GA presents very
interesting performances in both cases (dynamic and static), especially with large
instances. Regarding the execution time of GA and the good quality of its results,
we recommend the use of GA, which can deal with big instance in short time.

The simulation-optimization method manages the dynamic behaviour of com-
plex systems and GA is very interesting method in these cases.

Our next work will focus on the development of methods for the totally-
dynamic environment case. In this case, the constraint of static state periods of
24 h will be removed, which means that the infection by the diseases is continu-
ously increasing during the whole simulation period. The next step in this project
is the deployment of the proposed method in a real case with the robot developed
by our partners in the project. Another perspective of this works is to study the
case of multi-robots, multi-charging-stations and multi-greenhouses.

Acknowledgements  This research was made possible thanks to €1.35 million financial support from the
European Regional Development Fund provided by the Interreg North-West Europe Programme in con-
text of UV-ROBOT.

References

Abdelaziz FB, Krichen S, Chaouachi J (1999) A hybrid heuristic for multiobjective knapsack problems.
Meta-heuristics. Springer, Boston, pp 205–212

Ai TJ, Kachitvichyanukul V (2009) A particle swarm optimization for the vehicle routing problem with
simultaneous pickup and delivery. Comput Oper Res 36(5):1693–1702

Aickelin U, Dowsland KA (2004) An indirect genetic algorithm for a nurse-scheduling problem. Comput
Oper Res 31(5):761–778

Aytug H, Khouja M, Vergara F (2003) Use of genetic algorithms to solve production and operations man-
agement problems: a review. Int J Prod Res 41(17):3955–4009

Berndt S, Jansen K, Klein KM (2015) Fully dynamic bin packing revisited. Math Program. https​://doi.
org/10.1007/s1010​7-018-1325-x

Bonadies S, Lefcourt A, Gadsden SA (2016) A survey of unmanned ground vehicles with applications to
agricultural and environmental sensing. In: Autonomous air and ground sensing systems for agri-
cultural optimization and phenotyping, vol 9866. International Society for Optics and Photonics, p
98660Q

Brumitt BL, Stentz A (1996) Dynamic mission planning for multiple mobile robots. In: Proceedings
IEEE international conference on robotics and automation, 1996, vol 3. IEEE, pp 2396–2401

Chan JWT, Wong PW, Yung FC (2009) On dynamic bin packing: an improved lower bound and resource
augmentation analysis. Algorithmica 53(2):172–206

Christensen HI, Khan A, Pokutta S, Tetali P (2017) Approximation and online algorithms for multidi-
mensional bin packing: a survey. Comput Sci Rev 24:63–79

Coffman EG Jr, Garey MR, Johnson DS (1983) Dynamic bin packing. SIAM J Comput 12(2):227–258

https://doi.org/10.1007/s10107-018-1325-x
https://doi.org/10.1007/s10107-018-1325-x
tenailleau
Zone de texte

tenailleau
Zone de texte

	 M. Mazar et al.

Dahane M, Sahnoun M, Bettayeb B, Baudry D, Boudhar H (2017) Impact of spare parts remanufacturing
on the operation and maintenance performance of offshore wind turbines: a multi-agent approach. J
Intell Manuf 28(7):1531–1549

Dang QV, Nielsen IE, Bocewicz G (2012) A genetic algorithm-based heuristic for part-feeding mobile
robot scheduling problem. In: Trends in practical applications of agents and multiagent systems.
Springer, Berlin, pp 85–92

Dang QV, Nielsen I, Steger-Jensen K, Madsen O (2014) Scheduling a single mobile robot for part-feed-
ing tasks of production lines. J Intell Manuf 25(6):1271–1287

Dasgupta P (2012) Multi-agent coordination techniques for multi-robot task allocation and multi-robot
area coverage. In: 2012 international conference on collaboration technologies and systems (cts).
IEEE, pp 75–75

De-An Z, Jidong L, Wei J, Ying Z, Yu C (2011) Design and control of an apple harvesting robot. Biosyst
Eng 110(2):112–122

Falkenauer E (1996) A hybrid grouping genetic algorithm for bin packing. J Heuristics 2(1):5–30
Feng Q, Wang X, Zheng W, Qiu Q, Jiang K (2012) New strawberry harvesting robot for elevated-trough

culture. Int J Agric Biol Eng 5(2):1–8
Giordani S, Lujak M, Martinelli F (2013) A distributed multi-agent production planning and scheduling

framework for mobile robots. Comput Ind Eng 64(1):19–30
Gonzalez-de Soto M, Emmi L, Perez-Ruiz M, Aguera J, Gonzalez-de Santos P (2016) Autonomous sys-

tems for precise spraying-evaluation of a robotised patch sprayer. Biosyst Eng 146:165–182
Hwang H, Sistler F (1985) The implementation of a robotic manipulator on a pepper transplanting

machine. In: Proceedings of the international conference on CAD/CAM, robotics automation, pp
553–556

Janani A, Alboul L, Penders J (2016) Multi robot cooperative area coverage, case study: spraying. In:
Conference towards autonomous robotic systems. Springer, pp 165–176

Janisiewicz WJ, Takeda F, Nichols B, Glenn DM, Jurick WM II, Camp MJ (2016) Use of low-dose UV-C
irradiation to control powdery mildew caused by Podosphaera aphanis on strawberry plants. Can J
Plant Pathol 38(4):430–439

Karakatič S, Podgorelec V (2015) A survey of genetic algorithms for solving multi depot vehicle routing
problem. Appl Soft Comput 27:519–532

Kröger B (1995) Guillotineable bin packing: a genetic approach. Eur J Oper Res 84(3):645–661
Laporte G, Nobert Y (1983) A branch and bound algorithm for the capacitated vehicle routing problem.

Oper Res Spektrum 5(2):77–85
Leinberger W, Karypis G, Kumar V (1999) Multi-capacity bin packing algorithms with applications to

job scheduling under multiple constraints. In: Proceedings of the 1999 international conference on
parallel processing. IEEE, pp 404–412

Li Y, Tang X, Cai W (2015) Dynamic bin packing for on-demand cloud resource allocation. IEEE Trans
Parallel Distrib Syst 27(1):157–170

Li J, Wang P, Geng C (2017) The disease assessment of cucumber downy mildew based on image pro-
cessing. In: 2017 international conference on computer network, electronic and automation (ICC-
NEA). IEEE, pp 480–485

Lim MK, Zhang Z, Goh W (2009) An iterative agent bidding mechanism for responsive manufacturing.
Eng Appl Artif Intell 22(7):1068–1079

Mazar M, Sahnoun M, Bettayeb B, Klement N (2018) Optimization of robotized tasks for the UV-C treat-
ment of diseases in horticulture

Mei Y, Lu YH, Hu YC, Lee CG (2005) A case study of mobile robot’s energy consumption and con-
servation techniques. In: Proceedings 12th international conference on advanced robotics, 2005.
ICAR’05. IEEE, pp 492–497 (2005)

Oberti R, Marchi M, Tirelli P, Calcante A, Iriti M, Tona E, Hočevar M, Baur J, Pfaff J, Schütz C et al
(2016) Selective spraying of grapevines for disease control using a modular agricultural robot. Bio-
syst Eng 146:203–215

Ören T, Yilmaz L, Ghasem-Aghaee N (2014) A systematic view of agent-supported simulation past, pre-
sent, and promising future. In: 2014 international conference on simulation and modeling method-
ologies, technologies and applications (SIMULTECH). IEEE, pp 497–506

Peries O (1962) Studies on strawberry mildew, caused by Sphaerotheca macularis (wallr. ex fries) jacze-
wski. Ann Appl Biol 50(2):211–224

tenailleau
Zone de texte

1 3

Simulation and optimization of robotic tasks for UV treatment…

Powell WB (2005) The optimizing-simulator: merging simulation and optimization using approximate
dynamic programming. In: Proceedings of the 37th conference on winter simulation. Winter Simu-
lation Conference, pp 96–109 (2005)

Powell WB (2008) Approximate dynamic programming: lessons from the field. In: Simulation confer-
ence, 2008. WSC 2008, Winter. IEEE, pp 205–214

Powell WB, Shapiro JA, Simao HP (2001) A representational paradigm for dynamic resource transforma-
tion problems. Ann Oper Res 104(1):231–279

Sahnoun M, Baudry D, Mustafee N, Louis A, Smart PA, Godsiff P, Mazari B (2015) Modelling and sim-
ulation of operation and maintenance strategy for offshore wind farms based on multi-agent system.
J Intell Manuf 30(8):2981–2997

Sakai S, Iida M, Osuka K, Umeda M (2008) Design and control of a heavy material handling manipulator
for agricultural robots. Auton Robots 25(3):189–204

Sarri D, Martelloni L, Vieri M (2017) Development of a prototype of telemetry system for monitoring the
spraying operation in vineyards. Comput Electron Agric 142:248–259

Schneider M, Stenger A, Goeke D (2014) The electric vehicle-routing problem with time windows and
recharging stations. Transp Sci 48(4):500–520

Sharma G, Dutta A, Kim JH (2019) Optimal online coverage path planning with energy constraints. In:
Proceedings of the 18th international conference on autonomous agents and multiagent aystems.
International Foundation for Autonomous Agents and Multiagent Systems, pp 1189–1197

Sistler F (1987) Robotics and intelligent machines in agriculture. IEEE J Robot Autom 3(1):3–6
Sørensen C, Bak T, Jørgensen R (2004) Mission planner for agricultural robotics. AgEng 2004:894–895
Southall B, Hague T, Marchant JA, Buxton BF (2002) An autonomous crop treatment robot: part I. A

kalman filter model for localization and crop/weed classification. Int J Robot Res 21(1):61–74
Talbot D (2014) A nimble-wheeled farm robot goes to work in Minnesota, MIT Technology Review, 9

September 2014. [Online]. Available: https​://www.techn​ology​revie​w.com/s/53052​6/a-nimbl​e-wheel​
edfar​m-robot​-goes-to-work-in-minne​sota/. Accessed 18 Dec 2019

Tsai CF, Eberle W, Chu CY (2013) Genetic algorithms in feature and instance selection. Knowl-Based
Syst 39:240–247

Van Henten EJ, Hemming J, Van Tuijl B, Kornet J, Meuleman J, Bontsema J, Van Os E (2002) An auton-
omous robot for harvesting cucumbers in greenhouses. Auton Robots 13(3):241–258

Wei M, Isler V (2018) Coverage path planning under the energy constraint. In: 2018 IEEE international
conference on robotics and automation (ICRA). IEEE, pp 368–373

Wilensky U, Evanston I (1999) Netlogo: center for connected learning and computer-based modeling.
Northwestern University, Evanston, pp 49–52

Wu T, Powell WB, Whisman A (2003) The optimizing simulator: an intelligent analysis tool for the mili-
tary airlift problem. Unpublished report. Department of Operations Research and Financial Engi-
neering, Princeton University, Princeton

Zhang N, Wang M, Wang N (2002) Precision agriculture-a worldwide overview. Comput Electron Agric
36(2–3):113–132

Zhang S, Ding F, Peng H, Huang Y, Lu J (2018) Molecular cloning of a cc-nbs-lrr gene from vitis quin-
quangularis and its expression pattern in response to downy mildew pathogen infection. Mol Genet
Genom 293(1):61–68

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://www.technologyreview.com/s/530526/a-nimble-wheeledfarm-robot-goes-to-work-in-minnesota/
https://www.technologyreview.com/s/530526/a-nimble-wheeledfarm-robot-goes-to-work-in-minnesota/
tenailleau
Zone de texte

tenailleau
Zone de texte

tenailleau
Zone de texte

	Simulation and optimization of robotic tasks for UV treatment of diseases in horticulture
	Abstract
	1 Introduction
	2 Related works
	3 Problem formulation
	4 Optimization
	4.1 Heuristic algorithm (HA)
	4.2 Genetic algorithm (GA)
	4.2.1 Crossover
	4.2.2 Mutation
	4.2.3 Selection
	4.2.4 Stopping test

	4.3 Exact method

	5 Simulation
	6 Simulation-optimization
	7 Experimentation
	7.1 Phase 1: static environment
	7.2 Phase 2: dynamic environment

	8 Conclusion
	Acknowledgements
	References

