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ABSTRACT 

By 

Kyung Kang 
 

 

 

 

Dr. Peter Stubberud, Examination Committee Chair 
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   The ever increasing demand for faster and more powerful digital applications requires high speed, 

high resolution ADCs. Currently, sigma delta modulators (ADCs are extensively used in 

broadband telecommunication systems because they are an effective solution for high data-rate wireless 

communication systems that require low power consumption, high speed, high resolution, and large 

signal bandwidths.  

   Because mixed-signal integrated circuits such as Continuous Time sigma delta modulators (CT 

ΣΔMs) contain both analog and digital circuits, mixed signal circuits are not as simple to model and 

simulate as all discrete or all analog systems. In this dissertation, the delta transform is used to simulate 

CT ΣΔMs, and its speed and accuracy are compared to the other methods. The delta transform method 

is shown to be a very simple and effective method to get accurate results at reasonable speeds when 

compared with several existing simulation methods. 

   When a CT ΣΔM is overloaded, the ΣΔM’s output signal to quantization noise ratio (SQNR) 

decreases when the ΣΔM’s input is increased over a certain value. In this dissertation, the range of 

quantizer gains that cause overload are determined and the values ware used to determine the input 

signal power that prevents overload and the CT ΣΔM’s maximum SQNR. The CT ΣΔMs from 2nd to 

5th order are simulated to validate the predicted maximum input power that prevents overload and the 

maximum SQNR.  

   Determining the stability criteria for CT ΣΔMs is more difficult than it is for Discrete time sigma delta 



iv 

 

modulators (DT ΣΔMs) because CT ΣΔMs include delays which are modeled mathematically by 

exponential functions for CT systems. In this dissertation an analytical root locus method is used to 

determine the stability criteria for CT ΣΔMs. This root locus method determines the range of quantizer 

gains for which a CT ΣΔM is stable. These values can then be used to determine input signal and 

internal signal powers that prevent ΣΔMs from becoming unstable. Also, the maximum input power that 

keeps the CT ΣΔMs stable for CT ΣΔMs operating in overload can be determined. The CT ΣΔMs from 

2nd to 5th order are simulated to validate the predicted maximum input power that keeps the CT ΣΔMs 

stable. 
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CHAPTER 1 

INTRODUCTION 

   Most modern digital systems including communication systems, flight controllers and data 

acquisition systems are actually mixed signal systems that possess both analog and digital 

electronics. In mixed signal systems, analog to digital converters (ADCs) convert analog signals 

into digital signals, and digital to analog converters (DACs) convert digital signals into analog 

signals. Because the performance of digital systems can typically be improved by simple 

hardware and software changes, the performance of mixed signal systems is typically limited by 

the performance of the system’s ADCs and DACs and not the system’s digital circuitry. 

   The ever increasing demand for faster and more powerful digital applications requires high 

speed, high resolution ADCs. Many portable electronic devices not only require high resolution, 

high speed ADCs, but also have low power requirements. Portable wireless communication 

systems not only require low power, high speed, high resolution ADCs, but are also requiring 

increasingly wide bandwidth data conversion. Currently, sigma delta modulator (ADCs are 

extensively used in broadband telecommunication systems because they are an effective solution 

for high data-rate wireless communication systems that require low power consumption, high 

speed, high resolution, and moderate signal bandwidths. 

   ADCs can be classified into two categories, Nyquist-rate converters and oversampling 

converters [1]. Nyquist-rate converters operate near the Nyquist rate, or the signal’s minimum 

sampling frequency, which is twice the signal’s bandwidth. Sampling at or above the Nyquist rate 

prevents signal loss due to aliasing. Oversampling converters operate at rates much greater than 

the signal’s Nyquist rate. 

   Nyquist-rate converters can be implemented by employing a variety of architectures including 

flash ADCs, pipeline ADCs, and successive approximation register (SAR) ADCs. Flash ADCs 
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typically consist of a resistive voltage divider network and 2B parallel high speed comparators 

where B is the number of bits of the ADC’s resolution. Flash ADCs are appropriate for 

applications requiring high speed data conversion of signals with large bandwidths; however, 

flash ADCs dissipate more power and have relatively lower resolution than other ADC 

architectures. Pipeline ADCs feature multiple low resolution flash conversion stages cascaded in 

series to form a pipeline. Repeating the quantization through a series of the stages in the pipeline 

allows high resolution data conversion; however, pipeline ADCs have greater data latency than 

other ADC architectures because in a pipeline ADC, each sample must propagate through the 

entire pipeline. SAR ADCs convert signals using a single comparator to implement a binary 

search algorithm. SAR ADC architectures convert signals using less power and smaller foot 

prints than other architectures; however, SAR ADCs have lower sampling rates compared to 

other architectures.  

   Oversampling converters are so named because their sampling rate is much greater than the 

Nyquist rate of the signal. Whereas Nyquist-rate converters are suitable for applications requiring 

moderate resolution conversion of wide bandwidth signals, oversampling converters typically 

provide high resolution conversion of signals with moderate bandwidths. The most popular 

oversampling ADC is the Sigma Delta Modulator (ΣΔM). The ΣΔM’s loop filter attenuates the 

noise of a low resolution quantizer in the frequency band of interest while passing the input signal 

to the ΣΔM’s output. Because ΣΔMs use relatively few, simple, low power analog circuit 

components, ADCs can provide high resolution and lower power signal conversion of 

moderate bandwidth signals and are commonly used in mobile wireless communications 

applications.                                                                                                                

    ADCs can be classified as either discrete time (DT) ADCs or continuous time (CT) 

 ADCs.  ADCs with loop filters consisting of the discrete-time circuits such as 

switched-capacitor or switched-current circuits are classified as DT s. Similarly,  ADCs 
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with the loop filters consisting of continuous-time circuits such as transconductors and integrators 

are classified as CT s. Some of the advantages that CT ΣΔMs have over DT ΣΔMs are that 

CT ΣΔMs have inherent antialiasing filtering in the ΣΔM’s signal transfer function (STF) and 

they can operate at higher frequencies because they don’t have settling time requirements in their 

loop filters [2]. Because DT ΣΔMs are simply made up of delays and gains, they can be 

accurately modeled using simple difference equations whereas CT ΣΔMs can be more difficult to 

simulate due to the mixed signal nature of the feedback loop.  

   Because mixed-signal integrated circuits such as CT ΣΔMs contain both analog and digital 

circuits, mixed signal circuits are not as simple to model and simulate as all discrete or all analog 

systems. Several common approaches for simulating CT ΣΔMs include SPICE modeling, solving 

differential equations analytically and numerically, implementing difference equations based on 

the impulse invariance transformation and using Simulink. Each simulation method has a tradeoff 

between speed, simplicity and accuracy. In this dissertation, the delta transform is used to 

simulate CT ΣΔMs, and its speed and accuracy are compared to the other methods. 

   This delta transform method simulates CT ΣΔΜs by determining difference equations that 

model CT ΣΔΜs. The difference equations use the ΣΔΜ’s input signal and the quantizer’s 

feedback signal to determine the input at the quantizer’s next sample time. However, unlike the 

other difference equation methods, the delta transform can be used to determine all loop filter 

signal values at times other than the sampling time. The delta transform has the particular 

property that as the delta transform sample time approaches zero, the delta transform variable 

converges toward its continuous time counterpart, the Laplace transform variable [3].  

   Because a ΣΔM’s output is typically the ΣΔM’s quantizer output which has a minimum and 

maximum output, it is possible for the ΣΔM’s input to overload the ΣΔM’s quantizer. The ΣΔM’s 

quantizer is said to be overloaded when the quantization error exceeds the quantizer’s minimum 

and maximum values by more than half of one quantized level. When overloaded, a ΣΔM’s 

output signal to quantization noise ratio (SQNR) decreases when the ΣΔM’s input is increased 



4 
 

over a certain value; however, in these cases, the ΣΔM’s output SQNR can be restored to its 

previous values when the ΣΔM’s input is decreased to its previous amplitudes. In this dissertation, 

the range of quantizer gains that cause overload are determined, and these values are used to 

determine the input signal power that prevents overload.  

   Because a ΣΔM’s output is typically the ΣΔM’s quantizer output which has a minimum and 

maximum output, ΣΔMs cannot be unstable in the bounded input bounded output (BIBO) sense. 

Instead, a ΣΔM is considered to have become unstable when the amplitude of a ΣΔM’s input is 

increased so as to cause the ΣΔM’s output SQNR to decrease dramatically and to create the 

condition that the ΣΔM’s output SQNR cannot be restored to its previous values even when the 

ΣΔM’s input is decreased to its previous amplitudes. DT root locus methods have been 

successfully used to determine the stability of DT ΣΔMs; however, determining the stability 

criteria for CT ΣΔMs is more difficult than it is for DT ΣΔMs because CT ΣΔMs include delays 

which are modeled mathematically by exponential functions for CT systems. Because both the 

STF and noise transfer function (NTF) of CT ΣΔMs contain exponential functions, traditional 

root locus methods cannot be used for determining the root locus of CT ΣΔMs. Instead, in this 

dissertation, an analytical root locus method is used to determine the stability criteria for CT 

ΣΔMs. This root locus method determines the range of quantizer gains for which a CT ΣΔM is 

stable. These values can then be used to determine input signal and internal signal powers that 

prevent ΣΔMs from becoming unstable.  

   Using the analytical root locus stability analysis and the overload analysis, the SQNR of a CT 

ΣΔM can be predicted. The quantization noise power is determined from the range of quantizer 

gains that prevent ΣΔMs from becoming unstable or overloaded. The maximum input amplitude 

to prevent ΣΔMs from becoming unstable or overloaded can be predicted using the range of 

quantizer gains. 

   Chapter 2 in this dissertation reviews basic ADC and  metrics and operation principles. 

Also, the ΣΔM topologies that are used throughout this dissertation are developed using block 
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diagrams. In Chapter 3, a delta transform method for simulating CT ΣΔMs is developed. This 

simulation method is compared with several existing CT ΣΔMs simulation methods with respect 

to accuracy, speed and modeling simplicity. Chapter 4 states the necessary conditions that prevent 

quantizers in CT ΣΔMs from overloading. Using these conditions, the maximum input signal 

power that prevents a CT ΣΔM from overloading is determined. Also, a method is developed that 

predicts a ΣΔM’s SQNR using the range of quantizer gains that prevent the ΣΔM from 

overloading. In Chapter 5, an analytical root locus method is used to determine the stability 

criteria for CT ΣΔMs that include exponential functions in their characteristic equations. This root 

locus method determines the range of quantizer gains for which a CT ΣΔM is stable. These values 

can then be used to determine input signal and internal signal powers that prevent ΣΔM from 

becoming unstable. Finally, Chapter 6 summarizes the work presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

CHAPTER 2 

FUNDAMENTALS OF CT ΣΔM 

   Analog to digital conversion is a process that transforms analog signals which are continuous 

in time and amplitude into digital signals which are discrete in time and amplitude. Although 

this process can be implemented using a large variety of methods, the overall ADC process can 

be modeled mathematically by three simple systems. From this model, a mathematical definition 

of resolution can be defined so that the resolution of different ADC architectures can be 

compared.    

   Although different architectures exist for CT ΣΔMs, most single quantizer CT ΣΔMs can be 

described by a canonical feedback loop. This model allows CT ΣΔMs to be modeled 

mathematically so that their resolutions can be determined without the need for developing 

specific architectures. After developing a mathematical CT ΣΔM model that meets resolution 

specifications, the model can then be mapped to a specific CT ΣΔM architecture and 

implemented in hardware. 

2.1 Performance of Analog to Digital Converters 

   The general ADC process can be modeled by three subsystems, an anti-aliasing filter (AAF), a 

sampler, and a quantizer. Each of these subsystems has a simple mathematical model that can be 

used to define general ADC metrics. An ADC’s resolution is one such metric, and it is often 

defined in terms of effective number of bits (ENOB), SQNR, and dynamic range (DR).  

2.1.1 Mathematical models of sampling and quantization 

   Fig 2.1 (a) shows a typical ADC process modeled by the three subsystems, an anti-aliasing 

filter (AAF), a sampler, and a quantizer. In this model, the AAF filters the analog input signal, 

x(t). The sampler converts the filtered signal, xa(t), into the discrete signal, x(n), such that x(n) 
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=xa(n∙Ts) where Ts is the sampling period. The third process, the quantizer, quantizes the 

amplitude of x(n).  

 

                         (a)                                  (b)                                                    (c) 

Figure 2.1 Operation principles of an ADC: (a) Block diagram of a classical analog to digital 
converter, (b) Time domain example, (c) Frequency domain example[4] 

 

   Fig 2.1 (b) shows an example of this process in the time domain for a sinusoidal input signal, 

and Fig 2.1 (c) shows an example of this process in frequency domain for a wideband signal. As 

illustrated in Fig 2.1 (b) and (c), the AAF removes out of band frequency components which can 

fold into the signal band during the subsequent sampling process. Ideally, the AAF is an ideal 

(brick wall) lowpass filter (LPF) that has a cut-off frequency of fc which equals the maximum 

bandwidth, fb, of the signal of interest. As shown in Fig 2.1 (c), the filtered signal, xa(t), only 

contains frequency components between –fb and fb. The filtered signal, xa(t) must be sampled at a 
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minimum sampling rate, fs, of 2∙fb to prevent aliasing and consequently information loss. When 

the sampler samples xa(t) with a period of Ts where Ts = 1/fs , the sampler generates the discrete 

signal, x(n) where x(n) = xa(n∙Ts). As illustrated in Fig 2.1 (c), sampling xa(t) with a period of Ts = 

1/2fb , generates a periodic extension of Sxa(t)(f) in the frequency domain as shown in the plot of 

Sx(n)(f). The quantizer quantizes the amplitude of x(n) into the digital signal, y(n). In the time 

domain, the quantizer generates an amplitude error between y(n) and x(n). This quantization error 

between y(n) and x(n) depends on the quantization method (truncation or rounding) and the 

number of equally spaced quantization levels. A B-bit quantizer has 2B equally spaced 

quantization levels. In the frequency domain, quantization adds noise to Sx(n)(f). This noise limits 

the ADC’s resolution.  

   

        

                                                      (a)                                                  (b) 

 

                 

                                                      (c)                                                  (d) 

Figure 2.2 (a) B-bit quantizer block, (b) Equivalent linear model of quantizer  
      (c) Probability density function of e(n), (d) Power spectral density of e(n)[5] 

 

   An ideal quantizer shown in Fig 2.2 (a) is often modeled linearly as a linear gain, K, and an 

additive quantization noise, or error, e(n), as shown in Fig 2.2 (b); thus, a quantizer can be 

modeled as y(n) = K∙x(n)+e(n) where y(n) is the quantizer’s output, x(n) is the quantizer’s input, 

and e(n) is the quantizer error. The quantization error is generally modeled as a white random 
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process that has uniform distribution over the range of errors. Because the statistical mean for 

rounding is zero unlike the statistical mean for truncation and because the statistical variance for 

rounding is lower than it is for truncation, quantization is almost always performed by rounding 

instead of truncation.  

Rounding errors have a range of [-Δq/2, +Δq/2] where Δq is the quantization step size which is 

defined as the difference between adjacent digital output levels. Rounding errors can be modeled 

by a white random process that is uniformly distributed over the range of [-Δq/2, +Δq/2]. Because 

the quantization error, e(n), is modeled as a uniformly distributed random process over the 

interval, [-Δq/2, +Δq/2], the amplitude of the quantization noise’s probability density function, 

P(e), is 1/ Δq as shown in Fig 2.2 (c). Because the quantization noise has zero mean, the total 

quantization noise power, Pe, can be calculated as 
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   Because the total quantization noise is modeled as a white random process that is uniformly 

distributed over the frequency range of [-fs/2, fs/2], the quantization error’s power spectral density, 

Se( f ), can be determined from 
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which implies that 
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2.1.2 Oversampling 

   The resolution of a B-bit ADC can be increased by a process called oversampling. If an ADC’s 
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 sampling frequency, fs, exceeds twice the input signal’s bandwidth, fb, that is, fs > 2∙fb, a signal is 

 said to be oversampled and the ADC is said to be an oversampling ADC. An ADC’s 

oversampling ratio (OSR) is defined as 

2
 s

b

f
OSR

f
                                                          (2.4) 

To illustrate, an ADC operating with an OSR = 1 is a Nyquist rate ADC whereas an ADC 

operating with an OSR = 2 is an oversampling ADC.  

   

  
                      (a)                                               (b)                                                 (c) 
 

Figure 2.3 Power spectral density of the total quantization noise for (a) a Nyquist rate ADC,  
(b) an oversampling ADC with OSR=2, (c) power spectral density of the quantization noise 

power within signal bandwidth for an oversampling ADC with OSR=2 
 
 
   For both Nyquist rate converters and oversampling converters, the ADC’s quantization noise 

power, 
2
e

 ,

 

is 2 /12q . However, the output of an oversampling ADC can be filtered below –fb 

and above fb which implies that after filtering, the quantization noise power can be reduced to  
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Fig 2.3 graphically illustrates this effect. Fig 2.3 (a) shows that the power spectral density (PSD)  
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of the quantization noise of a Nyquist rate ADC and Fig 2.3 (b) shows the PSD of the 

quantization noise of an equivalent ADC that is operated with OSR = 2. As illustrated in Fig 2.3 

(c), the power of the quantization noise can be reduced by 1/OSR by filtering out signals outside 

the bandwidth of fb, or fs
′/(2∙OSR). Because the quantization noise power, 

2 ,
e of an oversampled 

ADC is inversely proportional to the ADC’s OSR, an oversampling ADC’s SQNR increases as its 

OSR increases. 

2.1.3 Overload 

   Fig 2.4 shows the transfer characteristic for a typical B-bit quantizer with an input, x, and an 

output, y. Assuming that the ADC’s maximum and minimum outputs are V and –V, respectively, 

the difference, Δq, between two adjacent output levels can be written as 

 
2

 .
2 1

q B

V
 


                                                         (2.6) 
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Figure 2.4 Transfer characteristic for a typical B-bit quantizer 

 

When the quantizer’s output is at ±V and the magnitude of the quantizer’s error, e, exceeds half 

of Δq, that is, when y =±V and 

  ,
2

q
e


                                                            (2.7) 
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the ADC is said to be overloaded [6]. Therefore, for the an ADC with the transfer characteristic 

in Fig 2.4, the ADC is not overload when  

   .
2 2

 
     q q
V x V                                              (2.8) 

Using (2.6) and (2.8), the maximum input amplitude, xmax, of a B-bit quantizer in the non-

overload region is 

max

2
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x V V                                             (2.9) 

and the minimum input amplitude, xmin, of a B-bit quantizer in the non-overload region is 

min

2
 .

2 2 1

  
       

B
q

B
x V V                                        (2.10) 

2.1.4 Dynamic Range (DR) 

   The DR of an ADC is defined as the ratio between the power of the largest input signal that can 

be applied without significantly degrading the performance of the ADC and the power of the 

smallest detectable input signal at any frequency. The smallest detectable input signal is 

determined by the PSD of the ADC’s noise floor. If the PSD of the noise floor is not uniform, the 

smallest detectable signal is determined where the noise floor’s PSD is largest. 

2.1.5 Signal to Quantization Noise Ratio (SQNR) 

   The SQNR of an ADC can be defined as the ratio of output signal power to quantization noise 

power; that is,  

y

e

P
SQNR

P
                                                            (2.11) 

where Py is the ADC’s output signal power and Pe is the ADC’s output quantization noise power.  
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Assuming that the ADC’s output and quantization noise have zero means, 

2 2[ ]y yP E y                                                           (2.12) 

and 

2 2[ ]e eP E e                                                           (2.13) 

and an ADC’s SQNR in dB can written as 
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2
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For a full scale sinewave input, the output signal power, 
2
y , can be calculated as 

2 2 1
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where xmax is the maximum amplitude of the sinusoidal input signal. Substituting (2.2) into (2.6) 

and the resulting equation into (2.14), the SQNR of a Nyquist rate ADC can be written as  

  
 ( ) 1.76 6.02 Nyquist ADCSQNR dB B                                        (2.16) 

   Eq. (2.16) shows that an ADC’s SQNR is proportional to the number of bits, B, of the ADC’s 

resolution. In practice, (2.16) is used to calculate the ADC’s ENOB of resolution; that is, 

( ) 1.76
.

6.02




SQNR dB
ENOB                                               (2.17) 

Therefore, an ADC with a 6dB better SQNR has one additional bit of ENOB. This resolution 

metric defined as ENOB gives an indication of how many bits would be required in an ideal ADC 

to get the same performance. 

   The SQNR of an oversampled ADC can be calculated by substituting (2.5) and (2.15) into 

(2.14), which results in 
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 ( ) 1.76 6.02 10 log( ).   oversampling ADCSQNR dB B OSR                           (2.18) 

Eq. (2.18) shows that doubling an ADC’s OSR increases its SQNR by 3dB. For example, an 

ADC with an OSR of 4 will have a 6dB better SQNR than the same ADC operated at the Nyquist 

rate. As a result, an ADC’s ENOB can be increased by 1 bit by sampling the signal 4 times faster 

than its Nyquist rate. 

2.2 The Operation Principles of Sigma Delta Modulators 

   ΣΔM ADCs achieve a high resolution signal conversion by using a feedback loop filter and a 

low resolution quantizer that samples at rates much higher than the Nyquist rate. The loop filter 

is designed not only to shape the quantization noise so that it is attenuated over the frequency 

band of interest, but also to act as an AAF for the input signal. This is known as the “noise 

shaping technique”. 

   In a general, a CT ΣΔM can be modeled by the canonical feedback loop shown in Fig 2.5 (a) 

where X(s) and Y(s) are the Laplace transforms of the input signal and the output signal, 

respectively, and F(s), G(s) and H(s) are the system functions of the pre-filter stage, the 

feedforward path and the feedback path, respectively. The continuous to discrete (C/D) block 

converts a continuous time signal into a discrete time signal. The C/D converter can be modeled 

by an impulse train modulator, followed by a block that converts the impulse train into a discrete 

time sequence [7]. Because the discrete time Fourier transform of the output of the C/D converter 

is identical to the Fourier transform of the input of the C/D converter if the input of C/D converter 

is bandlimited and oversampled, the system function of the C/D converter doesn’t need to be 

included in the model. The quantizer block represents a clocked quantizer, and the DAC block 

represents a digital to analog converter (DAC). The quantizer delay and the DAC delay are often 

represented by a single delay block as they are in Fig 2.5 (a), and the combination of these two 

delays is often referred to as the ΣΔM’s excess loop delay.  
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(a)  
 
 

 

(b)  

 

(c) 

Figure 2.5 (a) Block diagram of a CT ΣΔM, (b) A linear model for the CT ΣΔM’s STF,  
 (c) A linear model for the CT ΣΔM’s NTF 

 

      Fig 2.5 (b) shows a linear model for the CT ΣΔM’s STF where the quantizer has been 

modeled by the variable gain, K. Fig 2.5 (c) shows a linear model for the CT ΣΔM’s NTF where 

the quantization error is modeled by the gain, K, and an additive quantization noise, E(s). Because 

the block diagram models in Fig 2.5 (b) and (c) are linear, the ΣΔM’s output, Y(s) can be written 

as 

 

( ) ( ) ( ) ( ) ( )   Y s STF s X s NTF s E s
                                       

  (2.19) 

where 
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( ) ( ) / ( ) ,STF s Y s X s

 
and   ( ) ( ) / ( ) .NTF s Y s E s                        (2.20) 

Using Fig 2.5 (b), the ΣΔM’s STF can be written as 
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        (2.21) 

and using Fig 2.5(c), the ΣΔM’s NTF can be written as 

                         ( )
1

1 ( ) ( ) ( )sD
K e G s H s DAC s

NTF s     
                                 (2.22) 

where the exponential function, e-sD is the Laplace transform of the excess loop delay, D.   

   In general, stable feedback loops minimize feedback error. Therefore, when calculating the 

output signal power, ,yP of the ΣΔM, the value of K is selected as the ΣΔM’s effective gain, Keff, 

which is the value of K that minimizes the power, ,eP of the quantization noise [8]. Because 

( ) ,e n y K     the ΣΔM’s quantization noise power, ,eP can be written as 

2 2 2 2[ ( )] [ ( )] 2 [ ( ) ( )] [ ( )].eP E e n E y n K E y n n K E n                            (2.23) 

The necessary condition for K to minimize 
eP  is 

22 [ ( ) ( )] 2 [ ( )] 0e
eff

P
E y n n K E n

K
 

     


                          (2.24) 

which implies that the Keff  that minimizes 
eP  is 

2

[ ( ) ( )]
.

[ ( )]
eff

E y n n
K

E n




                                                       (2.25) 

Assuming ( )n  is a zero mean random process and assuming a single bit quantizer which 

implies ( ) sgn[ ( )],y n n (2.25) can be written as  
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[ ( ) ]
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E n
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




                                                       (2.26) 

  To illustrate the operation of a ΣΔM, consider a NTF that is designed as a highpass Chebyshev  

Type 2 filter and a STF that has the lowpass characteristic shown in Fig 2.6. For low frequiencies, 

the magnitude response of the NTF is almost zero, that is, ( ) 0NTF j   for 72 10 ,  
 
so the 

quantization noise will be attenuated in that part of output spectrum. Also, for low frequencies, 

the magnitude response of the STF is approximately one which implies that the input signal is 

passed to the output without attenuation. However, for high frequencies, the NTF passes the 

quantization errors with a gain of one and the STF attenuates the input signal to reduce aliasing.      

 

 
 

Figure 2.6 STF/NTF magnitude response designed with the Chebyshev2 filter 

 

   Fig 2.7 (a) shows an example of an input signal and the uniformly distributed quantization 

noise generated by the quantizer. Fig 2.7 (b) shows the output spectra of those signals after they 

have been filtering by the STF and the NTF, respectively. Because the spectrum of the 

quantization noise is shaped by the NTF, significant reduction of in-band quantization noise and 

improvement in SQNR occur. 
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(a) 

                           

(b) 

Figure 2.7 The spectra of the input signal and the quantization noise 
(a) before the noise shaping, (b) after the noise shaping 
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2.3 Classification of Sigma Delta Modulators 

Many architectures have been suggested to improve the resolution of s. Many of 

these architecures are classified as described in Table 2.1.  

Table 2.1 Classification of s 
 

Criteria Classification 

▪ The number of bits in a quantizer 
▪ Single-bit 
▪ Multi-bit 

▪ The number of quantizers employed 
▪ Single-loop 
▪ Cascaded  

▪ The order of the loop filter 
▪ 2nd order 
▪ High order  

▪ Signal transfer function (STF) characteristic 
▪ Lowpass 
▪ Bandpass  

▪ Loop filter circuitry 
▪ Discrete time 
▪ Continuous time  

 

2.3.1 Single-bit s versus Multi-bit s 

   s can be classified as single-bit s or multi-bit s depending on the number of bits 

in their quantizers. Single-bit s have the advantage that they are intrinsically linear 

quantizers because only two levels are used for quantization and mismatches of quantization step 

sizes do not exist. As a result, they can realize highly linear data conversion. On the other hand, 

s with multi-bit quantizers generate approximately 6dB less quantization noise for every 

additional bit. Therefore, the SQNR of s with multi-bit quantizers increases 6dB for every 

bit added to the quantizer. However, multi-bit s require more analog circuitry and are more 

difficult to design than single-bit s. Moreover, they exhibit some nonlinearities in their 

transfer characteristic due to mismatch of quantization step sizes. This can significantly influence 

a ’s performance. 
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2.3.2 Single-loop s versus Cascaded s 

   s employing only one quantizer are called single-loop s, whereas those employing 

several quantizers are often named Cascaded sor MASH sCascaded topologies use 

two or more low order s which are relatively stable and can achieve performances equivalent 

to higher order single loop architectures which can suffer from potential instability. However, the 

Cascaded topologies require tighter constraints on circuit specifications and mismatch than 

single- loop s [8]. 

2.3.3 2nd order s versus High orders 

   s can be categorized as 2nd order s or high order s. If the order of a ’s loop 

filter is greater than 2, the  is called a high order . As the order of the loop filter 

increases, the quantization noise can be suppressed more at low frequencies and a significant 

improvement in performance can be achieved. However, high order s are conditionally 

stable whereas 2nd order s can be designed to always be stable. 

2.3.4 Lowpass s versus Bandpass s 

   Depending on a ’s NTF and STF characteristics, a  can be classified as either a 

lowpass (LP)  or a bandpass (BP) . s that have NTFs with highpass shapes and 

that have STFs with lowpass shapes are considered LP s. s that have NTFs with 

bandstop shapes and that have STFs with bandpass shapes are called BP s. 

2.3.5 Discrete Time s versus Continuous Time s          

   Finally, s can be classified as either discrete time (DT) s or continuous time (CT) 

s. s with a loop filter consisting of discrete time circuits such as switched capacitor or                                      
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switched current circuits are called DT s. Similarly, s with a loop filter consisting of  

continuous time circuits such as transconductors and integrators are called CT s. 

2.3.6 s in this dissertation         

   Whereas DT ΣΔMs can be accurately simulated and analyzed using simple difference equations, 

CT ΣΔMs are more difficult to simulate and analyze due to the mixed signal nature of the 

feedback loop. Single loop, single-bit s have the advantage of being able to perform highly 

linear data conversion; however, they can become unstable for loop filter orders higher than two. 

In this dissertation, a stability criterion is developed for single loop CTs. This method is 

illustrated using single loop, single-bit s with loop filter orders ranging from 2 to 5. An 

overload criterion is also developed for single loop CTs. This method is also illustrated 

using single loop, single-bit s with loop filter orders ranging from 2 to 5. Also, CTs 

from 2nd order to 5th order are considered for comparison of simulation methods for CTs. 

2.4 Topology Selection of the CT ΣΔM for simulations 

After determining a desired NTF and STF, the NTF and STF coefficients need to be 

implemented in a hardware structure, such as a cascade of resonators feedback (CRFB), cascade 

of resonators feedforward (CRFF), cascade of integrator feedback (CIFB), and cascade of 

integrator feedforward (CIFF) implementations. Each of these feedback architectures feeds back 

the modulator output to each integrator. Because the amplifier nonlinearities generate harmonic 

distortion that depends on the input signal of the amplifier, single loop feedback architectures 

have signal distortion [9, 10, 11]. On the other hand, feedforward architectures sum all integrator 

outputs and the input signal at the input of the quantizer. These architectures have the benefit of 

lower signal distortion than feedback architectures. However, feedforward architectures require 

extra components for the summation before the quantizer, and thus these architectures have a 
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higher power consumption than feedback architectures [12]. In this dissertation, CTs are 

implemented using the CIFB architecture. These s are also typically designed using 

Chebyshev Type 2 NTFs. 

 

 
(a) 

 

 
(b) 

 
Figure 2.8 2nd order lowpass CT ΣΔM block diagram  

(a) RC implementation, (b) GmC implementation  
 
 

   Fig 2.8 shows the block diagrams of CIFB implementations of a 2nd order CT ΣΔM. Fig 2.8 (a) 

shows a CIFB block diagram where the integrators are implemented using RC integrators and Fig 

2.8 (b) shows a CIFB block diagram where the integrators are implemented using GmC integrators. 

In general, RC integrators have better linearity and larger signal swing than their GmC 

counterparts [13]. However, linearization circuitry can be added to GmC integrators to improve 

their linearity. The additional linearization circuitry adds phase to the feedback loop which 

negatively affects stability. RC integrators have drawbacks such as large die area, increased 

manufacturing price, low speed and high power consumption. GmC integrators can be smaller and 

use less power; however, many GmC integrator architectures use resistors to get a particular 
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transconductance, Gm, and the layout of these resistors can increase the GmC  integrator’s die size 

significantly. 

   From inspection of the block diagram shown in Fig 2.8 (a), the ΣΔM’s states, Q1(s) and Q2(s), 

the quantizer’s input, Ѱ(s), and the ΣΔM’s output, Y(s) can be calculated as 

1 0 0 0 2(
1

  ( ) { ( ) ( ) )}) (M sQ s b X s
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( ) ( ) ( )Y s K s E s  
                                                     

 (2.30)
  

where M(s) = DAC(s)·Delay(s). Substituting (2.27) into (2.28) and solving for Q2(s), the resulting 

equation can be substituted into (2.29). Substituting that result into (2.30), the STF and the NTF 

for the RC implementation in Fig 2.8 (a) can be determined to be 
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The gains, a0, a1, a2, b0, b1, b2, c0, c1 and g0 can be determined by equating the STF coefficients in 

(2.31) and the NTF coefficients in (2.32) with the desired STF and NTF coefficients, respectively. 

   Similarly, for the topology with the GmC implementation shown in Fig. 2.8 (b), the ΣΔM’s 

states, Q1(s) and Q2(s), the quantizer’s input, Ѱ(s), and the ΣΔM’s output, Y(s) can be calculated  



24 
 

as 
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 (2.36)
  

where M(s) = DAC(s)·Delay(s). Substituting (2.33) into (2.34) and solving for Q2(s), the resulting 

equation can be substituted into (2.35). Substituting that result into (2.36), the STF and the NTF 

for the GmC implementation shown in Fig 2.8 (b) can be determined to be 
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   Fig 2.9, Fig 2.10, and Fig 2.11 show the block diagrams of CIFB implementations of 3rd order, 

4th order, and 5th order CT ΣΔMs, respectively. Using techniques similar to the ones used to 

determine the STF and NTF of the 2nd order CIFB implementations, the STFs and NTFs for the 

CIFB implementations of the 3rd order through 5th order CT ΣΔMs can be determined as shown 

in Table 2.2 and Table 2.3. Table 2.2 shows the STF and NTF coefficients for the RC 

implementations and Table 2.3 shows the STF and NTF coefficients for the GmC implementations. 
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2.5 Conclusion 

   In this Chapter, the general ADC process was modeled mathematically, and from this model, 

SQNR, DR, and ENOB were defined. It was also shown that ΣΔM ADCs achieve a high 

resolution signal conversion by using an oversampling quantizer and a feedback loop filter. 

Various ΣΔM architectures can be used to implement CT ΣΔMs. For this dissertation, single 

loop, single-bit CT ΣΔMs with loop filter orders ranging from 2 to 5 are implemented using the 

CIFB architecture. 

 

 

 

(a) 

 
 

(b) 

 

Figure 2.9 3rd order CT ΣΔM block diagram  
(a) RC implementation, (b) GmC implementation 
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(a) 

 

 

(b) 

Figure 2.10 4th order CT ΣΔM block diagram  
(a) RC implementation, (b) GmC implementation 
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(a) 

 

 

(b) 

 

Figure 2.11 5th order CT ΣΔM block diagram  
(a) RC implementation, (b) GmC implementation 
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CHAPTER 3 

A COMPARISON OF CT ΣΔM SIMULATION METHODS 

   Because DT ΣΔMs are simply made up of delays and gains, they can be accurately modeled 

using simple difference equations. On the other hand, CT ΣΔMs can be more difficult to simulate 

due to the mixed signal nature of the feedback loop. Several common approaches for simulating 

CT ΣΔMs have been developed and the representative methods include SPICE modeling, solving 

differential equations analytically and numerically, implementing difference equations based on 

impulse invariance transform and using Simulink. Each simulation method has a tradeoff between 

simplicity, speed and accuracy. In this chapter, the delta transform is used to determine difference 

equations that model CT ΣΔMs. These difference equations use the ΣΔΜ’s input signal and the 

quantizer’s feedback signal to determine the input at the quantizer’s next sample time. However, 

unlike the other difference equation methods, the delta transform can be used to determine the 

loop filter signal values at times other than the sampling time. This method’s modeling simplicity, 

accuracy and speed are compared to existing simulation methods by simulating several CT ΣΔΜs.   

3.1 The Conventional Approaches to Simulating CT ΣΔΜs 

   CT s are most commonly simulated by using SPICE, solving differential equations, 

implementing difference equation based on the impulse invariance transform, and using 

Simulink/MATLAB.  

3.1.1 Macromodel in SPICE    

   Simulating CT ΣΔΜs using SPICE usually begins with macro level simulations using ideal 

components such as ideal voltage controlled voltage, or current, sources and ideal quantizers. 

These simulations are typically used to determine the ΣΔΜ’s ideal performance. After the macro 

model has been designed to meet performance specifications, specific transistor level systems, 
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such as operational amplifiers, transconductance amplifiers, and DACs can be substituted for the 

macro level components to observe nonideal effects such as finite amplifier gains and bandwidths, 

parasitic capacitances and quantizer metastability. Full circuit level simulation using SPICE can 

usually be expected to give realistic results because transistor level models include nonideal 

effects such as finite transistor gains, finite amplifier bandwidths, and parasitic capacitances. 

 

 

(a)  

        

                                               (b)                                                                 (c) 

Figure 3.1 Macromodel of a 2nd order CT ΔΣM[15] 

(a) Functional blocks of a 2nd order CT ΣΔM, (b) RC integrators implementation 
for a loop filter, (c) GmC integrators implementation for a loop filter 

 

   As shown in Fig 3.1 (a), a CT ΔΣM can be divided into functional blocks which can be further 

divided into individual circuits and sub-circuits. A loop filter can be implemented using RC 
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integrators or GmC integrators. Fig 3.1 (b) shows an RC integrator macro model circuit for the 

integrators in Fig 3.1 (a). Fig 3.1 (c) shows a GmC integrator macro model circuit for the 

integrators in Fig 3.1 (a). SPICE simulation can generate the most accurate simulation results 

because the nonideal effects can be reflected in the circuit. However, simulating CT ΣΔΜs using 

SPICE can be time consuming even for macro models, and they are especially time consuming 

for higher order ΣΔΜs [15].  

3.1.2 Solving differential equations 

 

Figure 3.2 Circuit model of a 2nd order CT ΣΔM[4] 

Alternatively, the simulation of the 2nd order CT ΔΣM shown in Fig 3.1 can be approached by 

using the equivalent circuit depicted in Fig 3.2. A set of differential equations can be determined 

by writing the circuit’s node equations.  To illustrate, consider the single-ended circuit model of a 

2nd order CT ΔΣM shown in Fig 3.2 [17]. By applying Kirchhoff’s current law (KCL) to the 

nodes, v1 and v2, 

     1 1 1 1 1 1 1

1

1
( )( ) ( ) ( ) ( )m i

i

g a y n sC v sC vt t t
R

x t q
 

     
 

                           (3.1) 

 1 22 22 2 22

2

1
( ) ( ) ( ) (   )( )m i

i

g q t ta y n sC v s tC v
R

q t
 

     
 

                       (3.2) 



33 
 

where   

1
1

1

( )
( )

q t
v t

A


  , 

2
2

2

( )
( )

q t
v t

A


  

In the time domain, (3.1) and (3.2) can be written as 

 

1
1 1

1 1 1

1 1 1

1

( )
(

(
))

)
(

1

m

i

i

q
g a y n

dq R A

dt
C

t

A

x t
t

C C

 


 
                                           (3.3) 

and 

 

2
2 2

2 2 2

1

2 2 2

2

( )
( ( ))

,
( )

 
1

 


 

m

i

i

q
g a y n

dq R A

dt
C C C

A

t
q t

t
                                        (3.4) 

respectively. This set of node equations can be written as linear state space equations and solved 

numerically to determine the system behavior as a function of time [16, 17, 18]. The node 

voltages, q1(t) and q2(t), which are the solution of the differential equations are composed of a 

zero input response (ZIR) which is a function of the initial condition, and a zero state response 

(ZSR) which is a function of the input, x(t). A ZIR and a ZSR can be obtained using the resolvent 

matrix of the system [16, 17, 18]. 

This approach to modeling and simulating CT ΔΣMs allows nonideal effects such as finite 

amplifier gain (such as A1 or A2) and finite amplifier bandwidth to simply be added to the model 

and simulation. While this method can simulate a ΣΔΜ much faster than using SPICE, it is not as 

fast or as simple as other methods. 

3.1.3 Implementing difference equation (CT/DT equivalence) 

Two other ΣΔΜ simulation approaches use difference equations to model the ΣΔΜ’s loop filter.  

These difference equations use the ΣΔΜ’s input signal and the quantizer’s feedback signal to  

determine the input at the quantizer’s next sample time . This method then iterates these  
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calculations for each clock sample. 

 

 

Figure 3.3 Equivalence between a CT ΣΔM and a DT ΣΔM 

One of these methods determines the difference equations using the impulse invariance 

transformation. Fig 3.3 indicates that the equivalence between a CT ΣΔΜ and a DT ΣΔΜ for both 

ΣΔΜs to have identical outputs. The quantizer inputs of both of the CT ΣΔΜ and the DT ΣΔΜ 

must be identical at sampling instants, n∙TS where n is the sample number and TS is sampling 

period. This requires that the impulse responses of the CT ΣΔΜ and the DT ΣΔΜ are identical at 

the sampling instants, leading to the condition  
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where dac(t) is the impulse response of the DAC and g(t) is the impulse response of the G(s) 

block. The transformation between the CT and DT impulse responses is called the impulse-

invariance transformation [19]. This approach is much faster than SPICE simulation or solving 

the differential equations; however, it can be less accurate than SPICE simulations. 

The other difference equation method uses a short SPICE transient simulation and numerically 

determines a difference equation that minimizes a 2 norm error between the SPICE data and the 

difference equation output. Although this method is faster than SPICE simulations and the 

differential equations method mentioned earlier, this method can be less accurate due to some 

guesswork to find the best difference equations. 

3.1.4 MATLAB/Simulink 

  
 

Figure 3.4 Simulink model for a 2nd order CT ΣΔΜ 

   MATLAB/Simulink is also commonly used to simulate CT ΣΔΜs. Fig 3.4 show a Simulink 

schematic of a 2nd order ΣΔΜ. Simulink schematics are quick and simple to create and 

Simulink’s simulation times are relatively fast; however, Simulink’s simulation accuracy is often 

dependent on the proper selection of Simulink models [20]. 
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3.2 Simulating CT ΣΔΜs Using the Delta Operator 

   In this section, the delta transform is used to determine difference equations that model CT 

ΣΔΜs. These difference equations use the ΣΔΜ’s input signal and the quantizer’s feedback signal 

to determine the input at the quantizer’s next sample time. However, unlike the other difference 

equation methods, the delta transform calculates the loop filter signal values at times between the 

sampling times.  

   Because discrete systems are suitable for computer realization and continuous systems are not 

and because continuous systems are often described in the Laplace transform’s s domain and 

discrete systems are often described in the - transform’s z domain, many transformations have 

been developed between the Laplace transform’s s domain and the - transform’s z domain [21]. 

One such transformation is the delta transform or delta operator [22]. The discrete delta operator 

approximates the Euler derivative, and as the delta operator’s sampling period is reduced, not 

only does the approximation improve, but the delta transform approaches the Laplace transform. 

As a result, the delta transform’s poles and zeros, or the discrete system’s poles and zeros, 

approach the Laplace transform’s poles and zeros, or the continuous system’s poles and zeros as 

the delta transform sample period approaches. Thus, unlike many other discrete models, a delta 

transform’s discrete model of a continuous system can better represent an underlying continuous 

physical model by simply increasing the delta transform’s sampling rate.  

3.2.1 Definition of Delta Transform 

   The delta transform, Δ, of a function f(t) is defined as 
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where  is a complex variable and T is the transform’s sampling period. To show that  

{f(t)}={f(t)}, where is the Laplace transform, as T approaches zero, consider  
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Letting  T= Δt, and replacing esT by its power series expansion, (3.8) can be written as 
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Without the limit, T → 0, (3.9) can be approximated as 
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where  ( )f n T  is - transform of ( )f n T and    is a complex variable where   s  as 

0. T   

   To develop a transformation between the Laplace transform’s s domain, the delta transform’s δ 

domain and the - transform’s z domain, consider Euler’s forward difference equation that 

approximates the differential operator; that is, consider 
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Because the delta transform approaches the Laplace transform and  → s as T → 0, (3.11) 

implies that 
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and therefore as T → 0,  
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Thus, the delta transform implies that 
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The transformation in (3.14) can be illustrated by the block diagrams in Fig 3.5. 

 

 

Figure 3.5 Delta operator block diagram 

   As illustrated in (3.14), the relationship between the delta transform and the -transform is z = 

1+𝛿∙TΔ. Because stability for the -transform requires that all the system’s poles lie within the 

region, |z| < 1, stability for the delta transform requires all the system’s poles lie within the region, 

|1+𝛿∙TΔ | < 1 which defines a circle of radius, 1/TΔ, centered at -1/TΔ. Therefore, as the sampling 

time, TΔ approaches zero, the stability region of the delta transform becomes equivalent to that of 

the Laplace transform whereas the stable region of the -transform is fixed to the interior of the 

unit circle. Fig 3.6 shows a comparison of stability regions for the -transform, delta-transform, 

and Laplace domain. These plots illustrate the mapping between the continuous and discrete 

planes. It can be seen that as TΔ approaches zero, the stability region for the delta transform will 

grow to approach that of the Laplace domain which is the whole left hand plane. 

   In summary, the delta-transform has the particular property that as the sample time, TΔ, 

approaches zero, the delta-transform converges toward its continuous counterpart, the Laplace 



39 
 

transform. As a result, the delta-transform has superior performance at high sample rates 

compared to the -transform because the continuous and discrete time models approach 

equivalence when the delta transform has a small sampling time. 

 

               

Figure 3.6 Stability regions for the continuous Laplace plane, and the discrete z-plane, delta-plane 

3.2.2 Application of Delta Transform for CT ΣΔΜs simulation 

 

 

Figure 3.7 The 2nd order CT ΣΔM block diagram 

   To apply the delta transform to the block diagram of a CT ΣΔM, consider the block diagram of 

the CIFB implementation of a 2nd order CT ΣΔM described in Chapter 2 and shown in Fig 3.7. 



40 
 

 The block diagram in Fig 3.7 describes a 2nd order CT ΣΔM where the ΣΔM’s STF and NTF are  

given by  
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To determine the coefficients in (3.15) and (3.16), a desired NTF is designed and set equal to the 

NTF in (3.16). Throughout this dissertation, K is set equal to one unless otherwise noted. After 

determining the NTF, the numerator of a desired STF is determined and set equal to the STF in 

(3.15). In this dissertation, NTFs are designed as a highpass Chebyshev Type 2 filter with a cutoff 

frequency near the ΣΔM’s bandwidth. STFs are designed as a lowpass filter using the poles of the 

NTFs and the numerator of a lowpass Chebyshev Type 2 filter. The following MATLAB code 

shows an example of such a ΣΔM that has a bandwidth of 20MHz and a sampling rate of 1GHz. 

[NTFnum,NTFden]=cheby2(2,37,2*pi*22e6,'high','s'); 

NTF=tf(NTFnum,NTFden); 

  
[STFnum,STFden]=cheby2(2,40,2*pi*750e6,'s'); 

STFnum=STFnum/STFnum(end)*NTFden(end); 

STF=tf(STFnum,NTFden); 

 

This code produces  
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The gains, a0, a1, a2, b0, b1, b2, c0, c1 and g0 in (3.15) and (3.16) can be determined by equating the  
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STF in (3.15) with the desired STF coefficients in (3.17) and by equating the NTF in (3.16) with 

the desired NTF coefficients in (3.18), respectively. 

   To simulate the resulting ΣΔM, the integrators in Fig 3.7 are replaced by the expression in (3.14) 

where the sampling rate, TΔ, is chosen to be less than the sampling rate, T, of the ΣΔM. Fig. 3.8 

shows a block diagram of the CT ΣΔM represented in Fig 3.7 where the integrators have been 

replaced by the delta transform equivalents. 

 

 

Figure 3.8 2nd order DT model ΣΔM using delta transform 

By inspection of the block diagram in Fig. 3.8, the difference equations describing the states can 

be determined as 

 ( ) ( )   dacy n DAC y n Delay                                           (3.19) 

     1 0 0 0 2( )    dacq dot n b x n a y n g q n                              (3.20) 

   1 1 11 ( 1)    q n T q dot n q n
                                          

 (3.21) 

     12 1 0 1( )    dacq dot n b x n a y n c q n                                  (3.22) 

   2 2 21 ( 1)    q n T q dot n q n
                                

           (3.23) 

   2 2 1 2() )(     dacb x n a y n c q nn                               (3.24) 

if  = / ,n T T
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 ( ) sgn ( )y n n                                                   (3.25) 

where DAC is a function that maps y(n-Delay) to a DAC output. This can be implemented in 

Matlab using the following code: 

 

% Analysis of 2nd Order sigma delta modulator(RC implementation) 
  
for n = start:finish, 
   
    % First state 

     qdot(n,1) = b0*x(n) - a0*ydac(n-1) + g0*q(n-1,2); 

     q(n,1) = Delta*qdot(n,1) + q(n-1,1);                   
  
    % Second state 

     qdot(n,2) = b1*x(n) - a1*ydac(n-1) + c0*q(n,1); 

     q(n,2) = Delta*qdot(n,2) + q(n-1,2); 
  
    % Input to quantizer 

     et(n) = b2*x(n) + c1*q(n,2) - a2*ydac(n-1); 
     
    % Quantizer 

     yq(n) = sign(et(n)); 

 

    % DAC  

     y(n)=y(n-1);              
      
     if rem(n,DeltaOSR) == 0,  % Update quantizers every Delta samples 

        y(n) = yq(n); 

     end 
     
     ydac(n) = y(n-D);    % excess loop delay between quantizer and DAC 
    
end 

 

 
    

   As TΔ decreases, this model converges towards its continuous counterpart and the simulation 

results converge towards a simulation based on the differential equations describing the ΣΔM. 

Also, because this discrete model uses difference equations, it can simulate more quickly than a 

continuous time domain model. The delta transform can be easily applied to higher order CT 

ΣΔMs. 

3.3 Simulation Comparison  

   To compare the delta transform simulation methods with the four other simulation methods 

mentioned earlier, six 2nd order, six 3rd order, six 4th order and six 5th order CT ΣΔΜs were  

simulated.   
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   Each of the CT ΣΔΜs was designed using an RC implementation and a Chebyshev Type 2 

highpass NTF which met the specifications listed in Table 3.1. The delta transform’s sampling 

rate, TΔ, was chosen as T/10 where T is the ΣΔM’s sampling period. For each ΣΔΜ order, the 

excess loop delays were chosen as 0, 0.5T, T, 1.5T, 2T and 2.5T.  

   Fig 3.9 (a) shows the five output power spectra generated by simulating the 2nd order CT ΣΔΜ 

with an excess loop delay of zero using each of the five different simulation methods. While the 

output signal power spectra are mostly coincident, some discrepancy between the simulation 

results exists; however, little difference between each simulation’s SQNR exists for this example. 

Fig 3.9 (b) shows the five output power spectra of the 2nd order CT ΣΔΜ with an excess loop 

delay of 0.5T. In this example, the output signal power spectra vary, and a discrepancy between 

the SQNRs exist. In particular, the output power spectrum from Simulink is noticeably different 

from the others. Fig 3.9 (c) shows the five output power spectra of the 2nd order CT ΣΔΜ with an 

excess loop delay of T. For this case, the output signal power spectra vary remarkably, and in 

particular, the output power spectrum using the CT/DT transformation varies from the others. Fig 

3.9 (d), (e) and (f) show the five output power spectra of the 2nd order CT ΣΔΜ with an excess 

loop delay of 1.5T, 2T and 2.5T, respectively. The output power spectrum from Simulink varies 

the most compared to the other spectra, and a discrepancy exists between the SQNR of five 

output power spectra. 

Table 3.1 Simulation Condition 

Specification  
Order of loop filter 2, 3, 4, 5 

Sampling frequency (1/T) 1 GHz 
Input frequency 3 MHz 

Bandwidth 20 MHz 
Excess loop delay 0, 0.5T, T, 1.5T, 2T, 2.5T 

 

   Fig 3.10 (a) summarizes the simulated SQNRs of the 2nd order CT ΣΔΜs with respect to the 

change in excess loop delay. The Simulink simulation results vary the most compared to the other  
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                                    (a)                                                                        (b)  

 

                                    (c)                                                                        (d) 
 

 

                                    (e)                                                                        (f) 
 

Figure 3.9 The output power spectra comparison for the simulation methodologies for 2nd order 
CT ΣΔΜs with an excess loop delay of (a) zero, (b) 0.5T, (c) T, (d) 1.5T, (e) 2T, (f) 2.5T 

 

simulation methods especially when the excess loop delay time is not a multiple integer of the 

sampling period (T) such as 0.5T, 1.5T and 2.5T. The simulation method based on solving 



45 
 

differential equations is the method that has results closest to those of the SPICE simulations 

which are assumed to be the most accurate. The CT/DT transform simulation results are similar to 

those of the SPICE simulations; however, for this example, the delta transform simulation results 

are closer to SPICE’s SQNR results than the CT/DT transform simulation results. 

 

 

                                         (a)                                                                        (b) 

     

                                        (c)                                                                        (d) 

Figure 3.10 Simulation comparison of the maximum SQNR for (a) 2nd order CT ΣΔΜs,  
(b) 3rd order CT ΣΔΜs, (c) 4th order CT ΣΔΜs, (d) 5th order CT ΣΔΜs 

 

   Fig 3.10 (b) shows the simulated SQNRs of the 3rd order CT ΣΔΜs with respect to the change 

in excess loop delay. The results of the 3rd order ΣΔΜ simulations are similar to those of the 2nd 

order ΣΔΜ simulations. The SQNR of the Simulink simulation varies from the other SQNRs and 

are the least accurate. The SQNRs determined by solving the differential equations are the closest 

SQNRs to those of the SPICE simulations. The SQNRs simulated using the delta transform are 
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consistent with the SQNRs generated by solving the differential equations and the SQNRs 

generated using the CT/DT transformation. 

   Fig 3.10 (c) and (d) show the simulated SQNRs of the 4th order CT ΣΔΜs and the 5th order CT 

ΣΔΜs with respect to the changes in excess loop delay, respectively. Compared to the simulated 

SQNRs of the 2nd order CT ΣΔΜs or the 3rd order CT ΣΔΜs, little difference is apparent 

between the SQNRs generated by the four different simulation methods except for the Simulink 

simulations.  

 

Table 3.2 The SQNR comparison of simulation methods for the 4th order CT ΣΔΜs 
 

(a) Simulated SQNR 

 
 

(b) The SQNR difference from the SQNR of SPICE 

 
 

(c) The percentage of SQNR difference 
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   Table 3.3 The SQNR comparison of simulation methods for the 5th order CT ΣΔΜs 
 

(a) Simulated SQNR 

 
 

(b) The SQNR difference from the SQNR of SPICE 

 
 

(c) The percentage of SQNR difference 

 
 

Table 3.2 and Table 3.3 show and compare the SQNR simulation results for the 4th order CT 

ΣΔΜs and 5th order CT ΣΔΜs, respectively. Table 3.2 (a) and Table 3.3 (a) list the SQNRs for 

each of simulation methods. Table 3.2 (b) and Table 3.3 (b) list the differences between the 

SQNRs of the four different simulation methods from the SQNRs of the SPICE simulations 

which are assumed to be the most accurate. Table 3.2 (c) and Table 3.3 (c) list the percentage 

differences of the SQNRs of the four different simulation methods from the SQNRs of SPICE 

simulations. The SQNRs generated by solving the differential equations are the most similar to 

those generated by SPICE simulation; however, for some excess loop delay times, the SQNRs 

obtained by using the delta transform are closer to the SQNRs obtained from SPICE simulation 
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rather than the SQNRs obtained solving the differential equations. The SQNRs generated using 

the CT/DT transformation and Simulink show some notable difference when compared with the 

SPICE simulations. 

   The earlier simulated CT ΣΔΜs can also be designed using GmC implementations. To compare 

the simulation results of the RC implementation to the GmC implementation, a GmC 

implementation of the 2nd order CT ΣΔΜ with the specifications listed in Table 3.1 was 

simulated using the five methods.  

 

 

Figure 3.11 The output power spectra for the GmC implementation 
for the 2nd order CT ΣΔΜs with an excess loop delay of zero 

 
 

Fig 3.11 shows the five output power spectra generated by simulating the 2nd order CT ΣΔΜ 

with an excess loop delay of zero using the GmC implementation and each of the five different 

simulation methods. As shown in Fig 3.11 and Fig 3.9 (a), the five output power spectra of the 

GmC implementation are the same as the output power spectra of the RC implementation.  

   Table 3.4 shows the SQNRs of the 2nd order RC implementation simulations shown in Fig 3.9 

(a) and 2nd order GmC implementation simulations shown in Fig 3.11. As shown in Table 3.4, the 

simulated SQNRs obtained using the GmC implementation are the same as the simulated SQNRs 

obtained using RC implementation. The simulated SQNRs are the same for both implementations 

because the mathematical models for RC implementation and GmC implementation are the same. 
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Table 3.4 The SQNRs comparison between RC implementation and 
         GmC implementation for each of simulation methods 

 

 

    

    

                                         (a)                                                                        (b) 

    

                                         (c)                                                                        (d)  

 

Figure 3.12 Simulation comparison of the elapsed time to complete the simulation for (a) 2nd 
order CT ΣΔΜs, (b) 3rd order CT ΣΔΜs, (c) 4th order CT ΣΔΜs, (d) 5th order CT ΣΔΜs 
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   Fig 3.12 (a) compares the elapsed time for each of the 2nd order CT ΣΔΜ simulations 

generated with RC implementations. The CT/DT transform simulations were consistently the 

fastest simulations taking only a few seconds to complete. Simulink was the next fastest method. 

The simulation times for the delta transform method and the differential equation method were 

both about ten times as long as the simulation times using CT/DT transform method. The 

simulation times for the delta transform method were more consistent than for the differential 

equation method since the simulation time for the differential equation method increased when 

the excess loop delay time was 0.5T, 1.5T, or 2.5T. SPICE simulation was by far the slowest  

method of simulation.  

   Fig 3.12 (b), (c) and (d) compare the elapsed time for each of the 3rd order CT ΣΔΜ 

simulations, the 4th order CT ΣΔΜ simulations, and the 5th order CT ΣΔΜ simulations, 

respectively. Similar to the 2nd order CT ΣΔΜ simulations, the fastest simulation method is 

CT/DT transformation and the slowest simulation method is SPICE simulation. Whereas the 

elapsed times for SPICE simulation and solving differential equations increase as the order of 

loop filters increase, the elapsed times for the CT/DT transformation, Simulink and the delta 

transform method are nearly constant regardless of the order of the loop filter.   

Table 3.5 The elapsed time comparison between RC implementation and 
         GmC implementation for each of simulation methods 

 

 

   Table 3.5 compares the elapsed times between the RC implementation simulations and the GmC 

implementation simulations. For the 2nd order CT ΣΔΜ with an excess loop delay of zero, little 

or no difference exists between the simulation times as shown in Table 3.5. 
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Table 3.6 Performance comparison of simulation methods  

 

   Table 3.6 compares the performance of the different simulation methods. It is assumed that 

SPICE simulations produce the most accurate results, and SPICE simulations are also a 

moderately simple method because macro models of circuit can be added easily. It also has the 

advantage that circuit schematics can be substituted for the macro models as the CT ΣΔΜ circuits 

are developed. The method’s major disadvantage is that the simulations are very time consuming 

especially for higher order CT ΣΔΜs. Also, the method lacks a mathematical model which can be 

used for various analyses. Solving the CT ΣΔΜ’s differential equations results in a mathematical 

model for analysis, and the method is much faster than using SPICE. The method also produces 

accurate results. However, the method is not as fast or simple as the other methods. While the 

CT/DT transformation method is the fastest method and is moderately simple because the CT 

ΣΔΜ can be implemented using the difference equations, the CT/DT transform method is less 

accurate than both SPICE simulations and solving the differential equations. Also the method 

only calculates nodes at the sample times. Simulink is simplest of the methods for simulating CT 

ΣΔΜs, and it is relatively fast. However, Simulink’s accuracy is dependent on the proper 

selection of Simulink models; therefore, it can be less accurate as illustrated by the results 

presented in this chapter. The delta transform method takes more time to complete than the two 

faster methods because it calculates loop filter signal values at times other than the ΣΔΜ’s 

sampling times. However, the method resulted in simulations almost as accurate as SPICE. Also, 

it is a simple method because CT ΣΔΜs can be simulated using difference equations. In other 
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words, the delta transform method is very simple and effective to get accurate results at 

reasonable speeds. 
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CHAPTER 4 

OVERLOAD ANALYSIS OF CT ΣΔMS  

   A quantizer is said to be overloaded when the input of the quantizer generates a quantizer error 

of more than half a quantization step size above or below the quantizer’s maximum or minimum 

output, respectively. When the quantizer in a ΣΔM is overloaded, the ΣΔM’s output signal no 

longer increases linearly with the input signal, and the ΣΔM is said to be overloaded. Overload is 

often described as a ΣΔM instability because it affects the ΣΔM’s resolution. 

   In this chapter, the necessary conditions that prevent quantizers in ΣΔMs from overloading are 

presented. Using these conditions, the maximum input signal power that prevents a CT ΣΔM 

from overloading can be determined, and the CT ΣΔM’s maximum SQNR can be determined. 

4.1 Definition of Overload for a Single-bit Quantizer 

   The transfer characteristic of a single-bit quantizer is  

         for 0 
2

( ) sgn  ( )
2

       for 0
2


 




      

q

q

q

y                                        (4.1) 

where  is quantizer’s input, y is quantizer’s output and q is the quantizer’s step size. Fig 4.1 (a) 

shows (4.1) graphically where 2. q  Such a quantizer is considered to be overloaded when 

  q  which implies that the quantizer’s error, e, exceeds / 2q which is half of the 

quantizer’s quantization step size, ;q  that is, a ΣΔM’s quantizer is considered to be overloaded 

when 

     
2


 q

e                                                             (4.2) 
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and is not considered to be overloaded when  

    .
2


 q

e                                                             (4.3) 

The input signal range for which a quantizer is not overloaded is called the no-overload input 

range, or simply, input range [25].  

   In this dissertation, Δq is normalized to 2 which implies that 

 1         for 0 
sgn  ( ) .

-1         for 0







   
y                                             (4.4) 

Therefore, when the quantizer is not overloaded, the quantizer error has the range 

1    +1 ,  e                                                         (4.5) 

and the quantizer’s no-overload input range is 

2    +2 .                                                           (4.6) 

-1

y

Δq
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2-2

No overload region
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No overload 
region



 

                                    (a)                                                               (b) 
K

0.5

2-2

No overload 
region



 

     (c) 
 

Figure 4.1 (a) The transfer characteristic for a single-bit quantizer (b) quantization error, e of  
a single-bit quantizer, (c) quantizer gain, K of a single-bit quantizer 
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Fig 4.1(a) shows the overload input range of a single-bit quantizer where 2. q
 Because y = 

+ e, e = y – . Also, because the output, y, of a single-bit quantizer is ±1, the quantization error, e, 

of a single-bit quantizer can be written as  

  1        for     0  or  1
    . 

1        for     0  or  1 

 
 

  
     

y
e

y
                                 (4.7) 

Fig 4.1 (b) depicts the quantization error, e, for a single-bit quantizer as a function of the 

quantizer’s input,.  

   A quantizer’s gain, K, can be defined as the ratio of the quantizer’s output amplitude to the 

quantization’s input amplitude which implies that K = y/. For a single-bit quantizer,  

1
         for      0  or  1 

  . 
1

       for      0  or  1







   
   


y

K

y

                                      (4.8) 

Fig 4.1 (c) shows the plot of (4.8). Because the quantizer’s maximum input,
 maxO , that prevents 

overloading is  

maxO  = 2                                                          (4.9) 

as shown in (4.6), the minimum quantizer gain, KminO, that prevents overloading is  

minO  = 0.5. K                                                      (4.10) 

4.2 Overload Analysis 

    To determine the maximum input signal power, 
maxO ,P  that prevents a ΣΔM from overloading, 

consider the STF and NTF models shown in Fig 4.2 (a) and (b) and assume that the quantizer’s 

input, , is a zero mean random process. Because  is a zero mean random process, the 
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quantizer’s input signal power, ,P can be written as 2
P   where  is the standard deviation 

of . To prevent overload, 
maxO < 2 where 

maxO is the maximum quantizer’s input amplitude 

that prevents overload. This condition is assumed to be true when 
maxO     or equivalently 

when  

maxO

22

2 maxO

minO

1



 

  
        K

                                                   (4.11) 

where 
 

is the standard deviation coefficient of  as shown in Fig 4.3. Based on the empirical 

simulation results,   is chosen as 3.6. For a quantizer with the characteristic function, 

 ( ) sgn ( ) ,y n n  the minimum quantizer gain, KminO, that prevents quantizer overload is 0.5 

which implies that (4.11) can be written as   

maxO maxO

2

2

2
minO

1 4
 0.309.P

K
   

 
     

                                         (4.12) 

 

 

(a) 

          

(b) 

Figure 4.2 (a) Block diagram of a CT ΣΔM’s STF, (b) Block diagram of a CT ΣΔM’s NTF 
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Figure 4.3 Bell curve of the standard normal distribution [22] 

 

   From the block diagrams in Fig 4.2, the quantizer’s input power, 2 ,  can be written as  
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where 2= [ ( ) ] / .effK E n    When
maxO

2 2 ,  eff desK K    where 
desK  is the value of K used to 

design the ΣΔM. Therefore, the quantizer’s maximum input power, 
maxO

2 , that prevents a ΣΔM 

from overloading can be written as  

maxO maxO

maxO
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(4.14) 

where 
maxO

2 x
is the maximum input power that prevents overload and 

maxO

2 e
is the quantization 

noise power when 
maxO

2 2
x x  and 

maxO

2 2 .   Assuming that the ΣΔM’s input, output and 

quantization noise signals have means of zero, the ΣΔΜ’s output signal power, ,yP can be 

calculated as 
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Therefore, at the maximum values of 2
x  and 2

e  that prevent overload, 

maxO maxO
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Subtracting (4.14) from (4.16) and solving the resulting equation for 2 ,e the quantization noise 

power, 2 ,e  can be determined as 
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Therefore, the maximum quantization noise power, 
maxO

2 , e
that prevents a ΣΔM from overloading 

can be determined as 
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Using (4.16), the maximum input power, 
maxO

,xP that prevents a ΣΔM from overloading can be  

determined as 
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where 2 y
 
is 1 for a single-bit quantizer and 

maxO

2 e is given in (4.18).  
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4.3 Example 

   To illustrate this method for determining the maximum input signal power that prevents 

overload, consider the 2nd order CT ΣΔΜ that has a sampling frequency of 1GHz, a Chebyshev 

Type 2 NTF with attenuation of 35dB and an excess loop delay of D = 0. Unlike higher order 

ΣΔMs, 2nd order ΣΔMs are typically stable for arbitrary inputs. This can be illustrated by 

examining the root locus of a 2nd order ΣΔM. Fig 4.4 shows the root locus of a 2nd order ΣΔM 

with a sampling frequency of 1GHz and Chebyshev Type 2 NTF for D = 0, D = 0.5T, and D =T. 

As shown in Fig 4.4, the minimum quantizer gain required for stability is zero which implies that 

the ΣΔM never goes unstable, but instead the ΣΔM will overload when the input signal power 

becomes large enough. This is typical behavior for 2nd order ΣΔMs.      

 

 

                        (a)                                               (b)                                               (c) 

Figure 4.4 The root locus of a 2nd order CT ΣΔΜ with a sampling frequency, fs, where fs =1/T,  
of 1GHz and Chebyshev Type 2 NTF for (a) D = 0, (b) D = 0.5T, (c) D = T 

 

   Using (4.12), quantizer’s maximum input power, 
maxO

2 , is  

maxO

2

2

4
= 0.309.

3.6
                                                   (4.20) 

Using (4.18) and (4.20), the maximum quantization noise power, 
maxO

2 , e
that prevents a ΣΔM 

from overloading can be determined as 

maxO

2 0.275
3.220 0.703

1 0.309 
e


 


                                             (4.21) 
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where the term 
/2

2

/2

1
| ( ) |

des

fs

K K
fs

s

NTF f df
f

  and the term  

2
/2

/2

1
( )

1
des

fs

fs
s K K

G H DAC Delay
f df

f K G H DAC Delay


  
      were calculated using the following Matlab code 

and Kdes was set to one in this example. 

% The coefficients of transfer function F(s),G(s),and H(s) 
 

% F(s)=F2*s^2+F1*s+F0; 

% G(s)=1/(s^2+G0) 

% H(s)=H2*s^2+H1*s+H0 
 

% fs: Sampling frequency 

% T=1/fs: Sampling period 

% D: Excess loop delay 
 

NTFsq=@(f)abs((((j.*2*pi.*f).^2+G0).*(j.*2*pi.*f.*T)./(((j.*2*pi.*f).^2+G0).*(j

.*2*pi.*f.*T)+K.*(H1.*(j.*2*pi.*f)+H0).*(1-exp(j.*2*pi.*f.*T)).* 

exp(j.*2*pi.*f.*D))).^2; 
 

NTF=integral(NTFsq,-fs/2,fs/2)/fs; 

 
GHDACsq=@(f)abs(((H1.*(j.*2*pi.*f)+H0).*(1-exp(-(j.*2*pi.*f).*T)).*exp(-

(j.*2*pi.*f).*D))./(((j.*2*pi.*f).^2+G0).*(j.*2*pi.*f).*T+K.*(H1.*(j.*2*pi.*f)+

H0).*(1-exp(-(j.*2*pi.*f).*T)).*exp(-(j.*2*pi.*f).*D))).^2; 
  
GHDAC=integral(GHDACsq,-fs/2,fs/2)/fs; 

 

Using (4.19) and (4.21), the maximum input power, 
maxO

,xP that prevents the ΣΔM from 

overloading is  

maxO maxO

2 0.275 3.220 = 0.111  4.x xP                                         (4.22) 

where the term 
/2

2

/2

1
| ( ) |

des

fs

fs K K
s

STF f df
f  
  was calculated using the following Matlab code. 

% F(s)=F2*s^2+F1*s+F0; 

% G(s)=1/(s^2+G0) 

% H(s)=H2*s^2+H1*s+H0; 

 

STFsq=@(f)abs((K.*(F2.*(j.*2*pi.*f).^2+F1.*(j.*2*pi.*f)+F0).*(j.*2*pi.*f).*T)/(

((j.*2*pi.*f).^2+G0).*(j.*2*pi.*f.*T)+K.*(H1.*(j.*2*pi.*f)+H0).*(1-exp(-

j.*2*pi.*f.*T)).*exp(-j.*2*pi.*f.*D))).^2; 
 

STF=integral(STFsq,-fs/2,fs/2)/fs; 

 

Assuming a sinusoidal input signal,  
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maxO maxO

2 2
maxO / 2 x xP x                                                     (4.23) 

where xmaxO is the ΣΔΜ’s maximum input amplitude that prevents the quantizer from overloading. 

Using (4.22) and (4.23), xmaxO is estimated to be 0.478 (-6.4dB).                                                         

   Fig 4.5 shows the simulated SQNR and minimum quantizer gain for the 2nd order CT ΣΔΜ. 

When the input amplitude is greater than -6dB, the ΣΔΜ’s SQNR no longer increases linearly 

with the input signal power because the minimum quantizer gain drops below 0.5 which implies 

that the ΣΔΜ is overloaded.  

 

  

Figure 4.5 Simulated SQNR and the minimum quantizer gain (Kmin)  
using a sinusoidal input for the 2nd order CT in example 

 

4.4 Other Simulation Results    

   To illustrate this methodology’s accuracy for predicting overload, six 2nd order, six 3rd order,      

four 4th order, and one 5th order CT s were simulated to determine their overload points and 

these overload points are compared to their predicted overload points. Table 4.1 shows the 

specification for each CT .  

   Fig 4.6 (a), (b), (c), and (d) show the simulated SQNRs and the quantizer gains as a function of  
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the amplitude of a sinusoidal input signal for a 2nd order, a 3rd order, a 4th order, and a 5th 

order CT ΣΔΜ with D = 0, respectively. Fig 4.6 shows that SQNR increases linearly almost 

before the ΣΔΜ is overloaded, and the SQNR degrades or increases nonlinearly when the 

quantizer is overloaded. Fig 4.7 (a), (b), and (c) show the simulated SQNRs and quantizer gains  

as a function of sinusoidal input signal amplitude for a 2nd order, a 3rd order, and a 4th order CT  

ΣΔΜ with D = T, respectively.  

   Table 4.1 Specification for each CT 

 (a) Common specification 

 
 

(b) NTF attenuation for each CT  

 

   Table 4.2 compares the theoretical minimum quantizer gain of 0.5 that prevents overload with 

the simulated minimum quantizer gains obtained when the simulated input signal is a sinusoidal 

signal that has an amplitude of xmaxO which is the maximum predicted amplitude that prevents 

overload. Table 4.3 compares the predicted maximum input signal amplitude with the simulated 

maximum input signal amplitude that prevents overloading for the ΣΔΜs.  

   Because ΣΔΜ’s SQNR depends on the input frequency, the maximum input signal amplitudes 

vary for different frequencies of the input signal [32, 33]. This is especially true for low input 

frequencies close to DC where a ΣΔΜ’s SQNR can degrade at smaller input amplitudes. It may 

therefore be possible that the discrepancies between the predicted xmaxO and the simulated xmaxO 

might be a result of the chosen input frequency. 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure 4.6 Simulated SQNR and the minimum quantizer gain (Kmin) using a sinusoidal input 
(a) for a 2nd order CT (b) for a 3rd order CT 

(c) for a 4th order CT (d) for a 5th order CT with D = 0 
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(a) 

 
(b) 

 

 
(c) 

 

Figure 4.7 Simulated SQNR and the minimum quantizer gain (Kmin) using a sinusoidal input 
(a) for a 2nd order CT (b) for a 3rd order CT 

 (c) for a 4th order CT with D = T 
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Table 4.2 Comparison of the theoretical minimum quantizer gains  
and the simulated minimum quantizer gains at predicted xmaxO 

 

 

 

Table 4.3 Comparison of the predicted maximum sinusoidal input amplitude  
        with the simulated maximum sinusoidal input amplitude  

that prevents overloading for the s in Table 4.1 
 

 

4.5 Predicting the SQNR of a    

   The most significant metric of a ΣΔM is its SQNR, which gives an estimate of modulator’s 

performance [28, 29, 30]. However, the estimation of a ΣΔM’s SQNR is normally based on a 

ΣΔM’s output bitstream which is obtained by simulations which are usually time consuming tasks. 

Some approximations of the expected SQNR have been suggested, but they are limited to ideal 

low order ΣΔMs [29, 30, 31]. In this section, a method for estimating the SQNR of an arbitrary 

ΣΔM is derived. This method provides estimated SQNRs without requiring simulations. 

Examples are provided that compare the method’s estimated SQNRs with simulated SQNRs. 
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4.5.1 Derivation of SQNR Approximation when operating in no-overload input range 

   Consider a CT ΣΔM modeled by the block diagrams in Fig 4.2 where the block diagram in Fig 

4.2 (a) models the ΣΔM’s STF and the block diagram in Fig 4.2 (b) models the ΣΔM’s NTF. 

Assuming a zero mean input, the SQNR of a CT ΣΔM modeled by Fig 4.2 can be calculated as 

2

10 10 2
 [dB] 10 log 10 logy y

n n

P
SQNR

P



  

                                                  
 (4.24) 

where 
 yP and 2

y are the output signal power and 
 nP and 2 n

 are the quantization noise power 

over the output signal’s bandwidth. Because the power spectral density, ( ),eS f of the unshaped 

quantization noise is 2 / ,e sf the quantization noise, 2 ,n  in the signal’s bandwidth, ,Bf is   

2
2 2 2( ) | ( ) | | ( ) |  

B B

eff
B B

eff

f f
e

n e K K
f fK K

s

S f NTF f df NTF f df
f

  
                    

 (4.25) 

where 2
e is given by (4.18). Substituting (4.26) into (4.25), the SQNR of a CT ΣΔM can be 

written as 

2
2

2

10 102 2
2 2

| ( ) |

 [dB] 10 log  =10 log .

| ( ) | | ( ) |

s

s

B B

eff eff
B B

f
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f
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K K K K
f f

s s

STF f df
f

SQNR

NTF f df NTF f df
f f




 


  

   
   
     
   
   
   



 
                               

(4.26) 

Assuming that that ( ) 1STF f  at the input signal’s frequency and that the input signal is 

sinusoidal which implies that 2 2
max / 2,x x 

 
then 2 2 2

max / 2,y x x   and the SQNR of a CT ΣΔM 

with a sinusoidal input can be written as  

2
max

10
2 2

2 [dB] 10 log
1

| ( ) |
B

eff
B

f

e K K
f

s

x

SQNR

NTF f df
f

 

 
 
  
 
 
 


                                   

 (4.27) 
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where 
e  is given by (4.17).  

   To determine Keff, it is assumed that [ ( ) ]E n  is proportional to its standard deviation; that is, it 

is assumed that 

[ ( ) ]E n    
                                                         

 (4.28) 

where  is a constant. Eq. (4.28) implies that 

2

[ ( ) ]
.eff

E n
K

 

 
 

 
                                                   

 (4.29) 

When 
maxO

2 2 ,  eff desK K    which implies that  

maxO
.eff desK K      
                                                   

 (4.30) 

Substituting (4.12) into (4.30), 

minO

desK

K





                                                                 
 (4.31) 

   Keff can then be estimated for the power of other input signals using an iteration method. This 

method begins by using (4.13) to estimate 2
  for an input power of 2;x that is, 

22 2
/2 /222

2 ( )/2 /2
( )

1 ( )
( ) ( ) ( )

1eff

eff

fs fs
x e

K K nfs fs
s s K K n

n G H DAC Delay
n STF f df f df

f K f K G H DAC Delay


 
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

  
  

     
  

 

(4.32) 

where (0)eff desK K and
maxO

2 2(0) .e e  Using (4.29), 

( 1) .
( )

effK n
n




 
                                                   

 (4.33) 

Using (4.17), 
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(4.34) 

Eq. (4.32), (4.33), and (4.34) are repeated until Keff and 2
e converge. These values can be 

substituted into (4.27) to calculate the ΣΔM’s SQNR when the input power is the 2
x in (4.32). 

4.5.2 Prediction of the SQNR of ΣΔM in Overload 

 

 

(a) 

 

(b) 

Figure 4.8 (a) A linear model for the CT ΣΔM’s STF in overload, 
 (b) A linear model for the CT ΣΔM’s NTF in overload 

 

   When the CT ΣΔM in Fig 4.2 is operating in overload, the linear models in Fig 4.2 are no 

longer valid, and modified block diagram models need to be used to reflect the effects of overload. 

When the ΣΔM is overloaded, the output signal’s amplitude is limited and the quantization error 
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range increases. Fig 4.8 (a) shows a linear model for a CT ΣΔM’s STF in overload. This linear 

model has Kmin/KminO at the output to reflect the ΣΔM’s output bitstream’s inability to realize 

larger amplitudes. Fig 4.8 (b) shows a linear model for a CT ΣΔM’s NTF in overload. This linear 

model has a quantizer gain of Kmin/KminO to reflect that overload increases quantization noise 

range from 1e  to e   KminO/Kmin. Kmin can be estimated using (4.11) which implies that 

min

1
 K

 



                                                  

        (4.35) 

where   can be calculated using the iterative method in (4.32), (4.33), and (4.34). 

   Using Fig 4.8 (a), the ΣΔM’s STF in overload can be written as 

                         min
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        (4.36) 

and using Fig 4.8 (b), the ΣΔM’s NTF in overload can be written as 
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                          (4.37) 

   Modifying (4.27) and (4.17), the SQNR of a CT ΣΔM that is operating in overload and has a 

sinusoidal input signal is 
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(4.38) 

where 
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(4.39) 

 

4.5.3  Simulation results  

   To determine the validity of the SQNR predicted by (4.27) and (4.17) when the ΣΔM is not 

overloaded and by (4.38) and (4.39) when the ΣΔM is overloaded, six 2nd order CT ΣΔMs, six 

3rd order CT ΣΔMs, and four 4th order CT ΣΔMs were simulated. Table 4.1 shows the 

specification for each CT ΣΔM using a sinusoidal input with a frequency of 0.1MHz and 

19.5MHz. 

   Fig 4.9 (a), (b), (c), (d), (e) and (f) compare the simulated SQNRs with the predicted SQNRs for 

a 2nd order CT ΣΔM with D = 0, D = 0.5T, D = T, D = 1.5T, D = 2T, and D = 2.5T, respectively. 

Simulation results show that while the ΣΔM is not overloaded, the SQNR increases linearly as 

input amplitude increases. The simulations also show that ΣΔMs’ SQNRs degrade or increase 

nonlinearly when the ΣΔMs are overloaded. 

   To validate the SQNR prediction in overload for higher order ΣΔMs, six 3rd order CT ΣΔMs 

and four 4th order CT ΣΔM were simulated and compared with the predicted SQNRs. Fig 4.10 

(a), (b), (c), (d), (e) and (f) compare the simulated SQNRs with the predicted SQNRs for a 3rd 

order CT ΣΔM with D = 0, D = 0.5T, D = T, D = 1.5T, D = 2T, and D = 2.5T, respectively.  

Similar to the 2nd order ΣΔMs in Fig 4.9, simulation results show the SQNR increases linearly 

when the ΣΔM is not overloaded and the SQNRs stop increasing linearly and degrade when the 

ΣΔM is overloaded. Fig 4.11 (a), (b), (c), and (d) compare the simulated SQNRs with the 

predicted SQNRs for a 4th order CT ΣΔM with D = 0, D = 0.5T, D = T, and D = 1.5T, 

respectively. The simulation results show the SQNRs degrade when the ΣΔM is overloaded. Also, 
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the SQNRs for an input frequency of 0.1MHz is closer to the estimated SQNRs than the SQNRs 

for an input frequency of 19.5MHz. Because ΣΔM’s SQNRs depend on the input frequency, the 

ΣΔM’s SQNRs can degrade at smaller input amplitudes for the low input frequencies close to DC. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 4.9 Simulated SQNR and estimated SQNR for the 2nd order CT ΣΔM with  
 (a) D = 0, (b) D = 0.5T, (c) D = T 
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(d) 

 

 
(e) 

 

 
(f) 
 

Figure 4.9 (Continued) Simulated SQNR and estimated SQNR for the 2nd order CT ΣΔM with  
 (d) D = 1.5T, (e) D = 2T, (f) D = 2.5T 
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(a) 

 

 
(b) 

 
(c) 

 
Figure 4.10 Simulated SQNR and estimated SQNR for the 3rd order CT ΣΔM with  

(a) D = 0, (b) D = 0.5T, (c) D = T 
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(d) 

 

 
(e) 

 

 
(f) 
 

Figure 4.10 (Continued) Simulated SQNR and estimated SQNR for the 3rd order CT ΣΔM with  
(d) D = 1.5T, (e) D = 2T, (f) D = 2.5T 
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(a) 

 

 
(b) 

 
(c) 

 

 
(d) 

 

Figure 4.11 Simulated SQNR and estimated SQNR for the 4th order CT ΣΔM with  
(a) D = 0, (b) D = 0.5T, (c) D = T, (d) D = 1.5T 
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CHAPTER 5 

STABILITY ANALYSIS OF CT ΣΔMS  

   Because a ΣΔM’s output is typically the output of the ΣΔM’s quantizer, ΣΔMs cannot be 

unstable in the bounded input bounded output (BIBO) sense. Instead, a ΣΔM is considered to 

have become unstable when the amplitude of a ΣΔM’s input is increased over a value which 

causes the ΣΔM’s output SQNR to decrease dramatically and the ΣΔM’s output SQNR cannot 

be restored to its previous values even when the ΣΔM’s input is decreased to its previous 

amplitudes. In this chapter, a root locus method is used to analyze and predict the maximum 

input signal parameters that keep a CT ΣΔM stable. 

   Root locus methods have been successfully used to determine the stability of DT ΣΔMs; 

however, because the denominator terms of both the STF and NTF of a CT ΣΔM contain 

exponential functions, traditional root locus methods cannot be used for determining the stability 

of CT ΣΔMs. Instead, several other methods have been developed for predicting the stability of 

CT ΣΔMs. One such method models the nonlinear quantizer using two linear gains, one for the 

signal gain and one for quantization noise gain [35]. This approach has not received much 

attention because of its complexity and because it cannot predict stability for several classes of 

ΣΔMs. Other approaches predict CT ΣΔM stability by assuming that the ΣΔM has a DC input and 

then by performing a simple stability analysis. These methods are effective for predicting stability 

for lower order ΣΔMs but not for higher order ΣΔMs [35, 36, 37, 38, 39, 40, 41]. Another method 

attempts to determine ΣΔM’s stability by using a one-norm of the ΣΔM’s NTF to determine 

stability in a BIBO sense. It has been shown that the one-norm condition is available only for 

second order lowpass modulators [43]. Therefore, a mixture of one-norm, two-norm and infinity-

norm constraints have been proposed to predict the stability of higher order modulators [44]. 

Lee’s rule is another method used to determine the stability of ΣΔMs [45]. Lee’s rule states that a 
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ΣΔM will be stable if the gain of the ΣΔM’s NTF is less than two for all frequencies. It has been 

shown that Lee’s rule is neither a necessary nor a sufficient condition to ensure stability in ΣΔMs 

[46]. In this chapter, an analytical root locus method is used to determine the stability criteria for 

CT ΣΔMs that include exponential functions in their characteristic equations. This root locus 

method determines the range of quantizer gains for which a CT ΣΔM is stable. These values can 

then be used to determine input signal power and other internal signal powers that prevent the 

ΣΔM from becoming unstable. 

5.1 Analytical Root Locus  

5.1.1 Root locus equation and Gain equation 

   The poles of a system are the roots of the system’s characteristic equation, and these roots 

provide valuable insight concerning the stability and the response of a system. Root locus 

analysis is a method for examining how the poles of a system change as function of a certain 

system parameter. This method is commonly used to determine the stable region of feedback 

systems as a function of open loop gain by plotting the poles of the system’s closed loop transfer 

function as a function of the system’s open loop gain.  

   As shown in (2.20), CT ΣΔMs typically have characteristic equations of the form 

1 ( ) ( ) ( ) 0        sD
K e G s H s DAC s                                            (5.1) 

where D is the ΣΔM’s excess loop delay and DAC(s) is the system function of a DAC which 

usually contains at least one exponential function. The root locus analysis of a CT ΣΔM that has a 

characteristic equation like the one in (5.1) can be performed using standard graphical analysis 

methods [47] or using an analytical method [48, 49] only when D = 0 and DAC(s) = 1. Although 

the DAC is not explicitly modeled, a typical zero order hold (ZOH) DAC would have the system 

function 
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1
( )

 




s T
e

DAC s
s T

                                                                  (5.2) 

where T is the ΣΔM’s sampling period. Most other DACs are also typically modeled using 

exponential functions. When D ≠ 0 or DAC(s) contains at least one exponential function, root 

locus analysis of the characteristic equation in (5.1) cannot be performed using the standard 

graphical or analytical methods. Instead, the root locus analysis can be performed using an 

extended graphical analysis method [50, 51, 52] or using the analytical method in [53].  

   To illustrate the analytical method in [53], the term e-sD∙G(s)∙H(s)∙DAC(s) in (5.1) is written as 

( )
( ) ( ) ( )  

( )
    sD N s

e G s H s DAC s
D s

                                        (5.3) 

which implies that (5.1) can be written as 

( ) ( ) 0 .  D s K N s                                                         (5.4) 

Solving (5.4) for K, 

   
   

Re ( ) Im ( )( )
 .

( ) Re ( ) Im ( )

D s j D sD s
K

N s N s j N s


   


                                      (5.5) 

In standard form, (5.5) can be written as 

       
     

       
     

2 2

2 2

Re ( ) Re ( ) Im ( ) Im ( )

Re ( ) Im ( )

Re ( ) Im ( ) Im ( ) Re ( )
         

Re ( ) Im ( )

D s N s D s N s
K

N s N s

D s N s D s N s
j

N s N s

   




  




                          (5.6) 

Because the quantizer’s variable gain, K, is real, (5.6) implies that 

       
     2 2

Re ( ) Re ( ) Im ( ) Im ( )

Re ( ) Im ( )

D s N s D s N s
K

N s N s

   


                                   

   (5.7) 

and that 

       Re ( ) Im ( ) Im ( ) Re ( ) 0 .D s N s D s N s   
                             

   (5.8) 
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Plotting (5.8) in the s-plane renders the root locus of (5.1) for -∞ < K < ∞.  

5.1.2 Illustrative example of analytical root locus   

   To illustrate this analytical root locus method, consider a 3rd order CT ΣΔM implemented using 

an RC CIFB implementation as shown in Fig 2.9 (a). From Table 2, the STF and NTF of this CT 

ΣΔM are  

 

 

1 0 0
3 2

3 2 2 1 2 0 3 1

2
0 1

3 2
3 2 2 1 1 2 0 3 1 0 0 1 2

1

2

0

1

2

(

(

( ) (
1 

)

(

)

 

)

(
)

)

K b s b c s b c c g b c

s s g c

K M s a s a c

s b c c c

S
s a c c g a c a c c c

s s g c

TF s
s

  




   





 




              (5.9) 

and 

 3 2
3 2 2 1 1 2 0 3 1 0 0 1 2

2
0 1

  .
( ) (

1  
(

1
( )

)

)

K M s a s a c s a c c g a c a c c c

s s

NTF
s

g

s

c


  




  
          (5.10) 

Comparing the STF in (2.21) with (5.9) and NTF in (2.22) with (5.10), it can be seen that 

3
3 2 2 1 1 2 0 0 1 20 3 1( ) )(F s b s b c s b c c g s b c c cb c                                  (5.11) 

2
0 1

1

)
( )

(
G s

s s g c



                                                                              (5.12) 

3 2
0 0 1 23 2 2 1 1 2 0 3 1( ) ( )  .H s a s a c s a c c g s a c ca c c   

                      
 (5.13) 

Using (5.1), (5.2), (5.12) and (5.13), N(s) and D(s) can be determined to be 

 3 2
3 2 2 1 1 2 0 3 1 0 0 1 2( ) ( 1) )(  sT sD

N s a s a c s a c c g a c s a ec c c e
      

          
 (5.14) 

and 

2
0 1

2( ) ( )  .s g cD s s T   
                                                 

 (5.15) 
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Substituting   + j for s where  = Re{s} and  = Im{s},

  4 2 2 2 4 2 2 2
0 1 0 1Re ( ) 3 3     D s T g c g c                             (5.16) 

 
  3 3 3 3

0 1 0 1Im ( ) 3 3      D s T g c g c                           (5.17) 

   
 

 

3 2 2 2
3 3 2 2 2 2 1 1 2 0 3 1 0 0 1 2

( )

2 3
3 3 2 2 1 1 2 0 3 1

Re ( ) 3 (

                       cos( ) cos(( ) )

                3 2 (

                       sin(

  



      

  

    

 

D T D

D

N s a a a c a c a c c g a c a c c c

e D e T D

a a a c a c c g a c

e D ( )) sin(( ) )  T D
e T D

     (5.18) 

and 

   
 

 

3 2 2 2
3 3 2 2 2 2 1 1 2 0 3 1 0 0 1 2

( )

2 3
3 3 2 2 1 1 2 0 3 1

Im ( ) 3 (

                       sin( ) sin(( ) )

                3 2 (

                       cos(

  



      

   

    



D T D

D

N s a a a c a c a c c g a c a c c c

e D e T D

a a a c a c c g a c

e D ( )) cos(( ) ) .  T D
e T D

    (5.19) 

Substituting (5.16), (5.17), (5.18) and (5.19) into (5.8), the root locus of the 3rd order CT ΣΔM 

using an RC implementation can be plotted for -∞ < K < ∞.  

   Similarly, comparing the STF and the NTF for each order CT ΣΔM shown in Table 2.2 and 

Table 2.3 with (2.20) and (2.21), respectively, the F(s), G(s) and H(s) for each order CT ΣΔM can 

be determined. Table 5.1 and Table 5.2 show the results. Table 5.1 shows F(s), G(s) and H(s) for 

an RC implementation, and Table 5.2 shows F(s), G(s) and H(s) for a GmC implementation. Using 

Table 5.1 and Table 5.2, D(s) and N(s) for each order CT ΣΔM can be easily determined to get 

the analytical root locus and the quantizer gain value. Table 5.3 and Table 5.4 show Re{D(s)}, 

Im{D(s)}, Re{N(s)} and Im{N(s)} for RC implementations and GmC implementations, 

respectively. 

   Fig 5.1 (a), (b), (c), (d), (e) and (f)  show the root locus or the plot of (5.8), for six lowpass 3rd 

order CT ΣΔΜs that have sampling frequencies of 1GHz, Chebyshev Type 2 NTFs with 30dB 
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attenuation in the stopband, and excess loop delays of D = 0, D = 0.5T, D = T, D =1.5T, D =2T, 

and D =2.5T,  respectively. The plots in Fig 5.1 include both the positive gain (K > 0) root  

locus and the negative gain (K < 0) root locus. 

 

                                           (a)                                                                (b) 
 

 
                                           (c)                                                                (d) 
 

 
                                           (e)                                                                (f) 
 
Figure 5.1 The root locus of six lowpass 3rd order CT ΣΔΜs that have Chebyshev Type 2 NTFs 
with 30dB attenuation in stopband, a sampling frequency of 1GHz, for and excess loop delays of 

(a) D = 0, (b) D = 0.5T, (c) D = T, (d) D =1.5T, (e) D =2T, (f) D = 2.5T 
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   According to the plots in Fig 5.1, the CT ΣΔΜs with D = 0, D = 0.5T, D = T, and D =1.5T are 

stable for 0.240 < K < 8.557, 0.296 < K < 2.893, 0.376 < K < 1.648, and 0.525 < K < 0.986, 

respectively. Although the root locus plots show that the CT ΣΔΜs with D = 0, D = 0.5T, D = T, 

and D =1.5T are unstable for K  > 8.557, K  > 2.893, K  > 1.648, and K  > 0.986, respectively, 

none of the modulators show a degradation in SQNR when K enters those ranges because when 

the modulator enters unstable regions for large values of quantizer gain, K, the feedback signal 

increases which reduces the quantizer gain, K, and moves the poles back into a stable region. 

However, when K < 0.240, K < 0.296, K < 0.376, and K < 0.525 for the CT ΣΔΜs with D = 0, D 

= 0.5T, D = T, and D =1.5T, respectively, the modulator shows a degradation in SQNR because 

when the modulator enters those unstable regions the feedback signal increases which further 

reduces the quantizer gain, K, and consequently moves the poles further from the stable region. 

Therefore, a CT ΣΔΜ will remain stable if its quantizer gain, K, remains above its minimum 

stable value, KminS, as determined from the ΣΔΜ’s root locus plot.  

   Fig 5.1 (e) and (f) show the root locus plots for the 3rd order CT ΣΔΜs with D = 2T, and D = 

2.5T, respectively. These plots show that for both of the cases no quantizer gain, K, exists that can 

stabilize the ΣΔΜs. For these cases, a NTF with less attenuation should be chosen. The root loci 

in Fig 4.1 also show that the range of the quantizer gains that prevent a ΣΔΜ from becoming 

unstable is reduced as the excess loop delay time, D, increases. 

   Besides root locus plots, Bode plots can also be used to compute the range of quantizer gains 

over which a CT ΣΔM is stable. For example, Fig 5.2 shows the Bode plot for the 3rd order CT 

ΣΔΜs that has a sampling frequency of 1GHz, uses a Chebyshev Type 2 NTF with 30dB 

attenuation in the stopband and has an excess loop delay time, D, of zero. The root locus for this 

ΣΔM is shown in Fig 5.1 (a). From Fig 5.2, it can be seen that the lowest stable quantizer gain is -

12.39dB (0.240) and the highest stable quantizer gain is 18.65 dB (8.55). Both of these values are 

consistent with the values obtained from the root locus plot in Fig 5.1 (a). 
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Table 5.1 F(s), G(s) and H(s) for RC implementations 

2nd order CT ΣΔM 

F(s) 2
2 1 1 0 0 1 0 2 0b s b c s b c c g b c    

G(s) 2
0 0

1

s g c
 

H(s) 2
2 1 1 0 0 1 0 2 0( )a s a c s a c c g a c    

3rd order CT ΣΔM 

F(s) 3 2
3 2 2 1 1 2 0 3 1 0 0 1 2( )b s b c s b c c g b c s b c c c     

G(s) 2
0 1

1

( )s s g c
 

H(s) 3 2
3 2 2 1 1 2 0 3 1 0 0 1 2( )a s a c s a c c g a c s a c c c     

4th order CT ΣΔM 

F(s) 
1 4 2 0 3 0 3

0 0 1 2 3 0 2 0 2

4 3 2

4 3 3 2 2 3 0 4 0 1 1 2 3

3 0 1 4 0 2

( ) ( )

 ( )

b s b c s b c c g b c s b c c cg b c g b c c s

b c c c c g b c c c g g b c c

 

  

   
 

G(s) 2 2
0 1 1 2

1

( )( )s g c s g c 
 

H(s) 

2

4 1 4 2 1 1 2

4 3

4 3 3 0 3 0 3

0 0 1 2 3 0 2 0 2 3 0 1 4

3 2 2 3 0

0 2

0
( )

 

)

)

(

(

a g a c s a c c c g a c c s

a c c c c g

a s a c s a c c g

a c c c g c

c

g a c

   

  

 
 

5th order CT ΣΔM 

F(s) 
2

1 5 3 2 2 3 4 0 4 1 4

1 1 2 3 4 0 3 1 3 4 0 1 5 1 3 0 0 1 2 3

5 4 3
5 4 4 3 3 4 0 5 1

4

)

( )

( ) (g b c g b c c s

b c c c c g b c c c g g b c c

b s b c s b c c g b c s b c c

s b c c

c

c c c

 
  




  
 

G(s) 
2 2

0 1 1 3

1

( () )s s g c s g c 
 

H(s) 
3 2

5 1 5 3 2 2 3 4 0 4 1 4

1 1 2 3 4 0 3 1 3 4 0 1 5 1 3 0 0 1 2

5 4
5 4 4 3 3 0 1

4

4

3

( ( )

 ( )

)a g a c s a c c c g a c c s

a c c c c g a c c c g g a c

a s a c s a

c s a c c c

c c g

c c

c 


   
  
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Table 5.2 F(s), G(s) and H(s) for GmC implementations 

2nd order CT ΣΔM 

F(s) 2
2 1 1 0 0 1 0 2 0 1b s b c s b c g cc b c    

G(s) 2
0 0 1

1

s g c c
 

H(s) 2
2 1 1 0 0 1 0 2 0 1( )a s a c s a c c g a c c    

3rd order CT ΣΔM 

F(s) 3 2
3 2 2 1 1 2 0 3 1 2 0 0 1 2( )b s b c s b c c g b c c s b c c c     

G(s) 2
0 1 2

1

( )s s g c c
 

H(s) 3 2
3 2 2 1 1 2 0 3 1 2 0 0 1 2( )a s a c s a c c g a c c s a c c c     

4th order CT ΣΔM 

F(s) 
1 1 4 2 3

0 3 0 1 3 0 0 1 2 3 0 2 0

4 3 2
4 3 3 2 2 3

1 2 3

0 4 0

1 1 2 0 1 4 0 1 2 33

(

( )

)

) (

c g b c c

g b c c c s b c c c c g

b s b c s b c c g b c s

b c c b c c c c g g b c c c cc








  

 

G(s) 2 2

0 0 1 1 2 3

1

( () )s g c c s g c c 
 

H(s) 

2

4 1 4 2 3

1 1 2 3 0 3 0 1 3 0 0 1 2 3 0 2 0 1 2 3 0

4 3

4 3 3 2 2 3 0

1 4 0 2

1

1 3

0
( )

( ) ( )

a g a c c s

a c c c g a c c c s a c c c c g a c c c c

a s a c s a c c g

g g c c c c

c

a

c 

  








 

5th order CT ΣΔM 

F(s) 
2

2 1 5 3 4 2 2 3 4 0 4 1 2 4

1 1 2 3 4 0 3 1 2 3 4 0 1

5 4 3
5 4 4 3 3 4 0 5 1

5 1 2 3 4 0 0 1 2 3 4

)

 (

(

)

(

 

)b s b c s b c c g b c c g b c c c s

b c c c c g b c c c c g g

c g b c s b c c c

b c c c c s b c c c c c

 
 


 

  
 

G(s) 
1 1 3 4

2 2
0 2 )( )

1

(s s g c s g cc c
 

H(s) 
3 2

5 2 1 5 3 4 2 2 3 4 0 4 1 2 4

1 1 2 3 4 0 3 1 2 3 4 0 1 5 1 2 3 4 0 0 1

5 4
5 4 4 3 3 4 0 1

2 3 4

)

)

( ( )

(

a c g a c c s a c c c g a c c c s

a c c c c g a c c c c g g a c

a s a c s a

c c c s a c

c c g c

c c c c

    



  
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Table 5.3 Re{D(s)}, Im{D(s)}, Re{N(s)} and Im{N(s)}for RC implementations 

2nd order CT ΣΔM 

Re{D(s)} 3 2
0 0 3 ) g cT  

Im{D(s)} 
3 2

0 0( )   g cT  

Re{N(s)} 
   
   

2 2 ( )
2 2 1 1 0 0 1 0 2 0

( )
2 1 1

( ) cos( ) cos(( ) )

2 sin( ) sin(( ) )

  

  

      

     

D T D

D T D

a a a c a c c g a c e D e T D

a a c e D e T D  

Im{N(s)} 
   
   

2 2 ( )
2 2 1 1 0 0 1 0 2 0

( )
2 1 1

( ) sin( ) sin(( ) )

2 cos( ) cos(( ) )

  

  

       

    

D T D

D T D

a a a c a c c g a c e D e T D

a a c e D e T D  

3rd order CT ΣΔM 

Re{D(s)} 4 2 2 2 4 2 2 2
0 1 0 13 3    T g c g c  

Im{D(s)} 
3 3 3 3

0 1 0 13 3     T g c g c  

Re{N(s)} 

 
 

 
 

3 2 2 2
3 3 2 2 2 2 1 1 2 0 3 1 0 0 1 2

( )

2 3
3 3 2 2 1 1 2 0 3 1

( )

3 (

   cos( ) cos(( ) )

3 2 (

   sin( ) sin(( ) )

  

  

     

  

    

   

D T D

D T D

a a a c a c a c c g a c a c c c

e D e T D

a a a c a c c g a c

e D e T D

 

Im{N(s)} 

 
 

 
 

3 2 2 2
3 3 2 2 2 2 1 1 2 0 3 1 0 0 1 2

( )

2 3
3 3 2 2 1 1 2 0 3 1

( )

3 (

   sin( ) sin(( ) )

3 2 (

   cos( ) cos(( ) )

  

  

     

   

    

  

D T D

D T D

a a a c a c a c c g a c a c c c

e D e T D

a a a c a c c g a c

e D e T D

 

4th order CT ΣΔM 

Re{D(s)}  5 3 2 4 3 2
0 1 1 2 0 1 1 210 5 ( ) ( 3 )        T g c g c g g c c  

Im{D(s)}  4 2 3 5 2 3
0 1 1 2 0 1 1 25 10 ( ) (3 )        T g c g c g g c c  

Re{N(s)} 
 

4 2 2 4 3 2 2 2
4 3 3 2 2 3 0 4 0 1 4 2

1 1 2 3 0 3 0 3 0 0 1 2 3 0 2 0 2 3 0 1 4 0 2

( )

3 3 2 3
4 3 3 2 2 3 0 4

( 6 ) ( 3 ) ( )( )

  ( ) ( )

   cos( ) cos(( ) )

(4 4 ) (3 ) 2(

  

        
 

     

  

   


D T D

a a c a c c g a c g a c

a c c c g a c c a c c c c g a c c c g g a c c

e D e T D

a a c a c c g a

 

0 1 4 2

1 1 2 3 0 3 0 3

( )

)

( )

   sin( ) sin(( ) )  

 
 
  

   D T D

c g a c

a c c c g a c c

e D e T D
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Table 5.3 (Continued) Re{D(s)}, Im{D(s)}, Re{N(s)} and Im{N(s)}for RC implementations  

Im{N(s)} 
 

4 2 2 4 3 2 2 2
4 3 3 2 2 3 0 4 0 1 4 2

1 1 2 3 0 3 0 3 0 0 1 2 3 0 2 0 2 3 0 1 4 0 2

( )

3 3 2 3
4 3 3 2 2 3 0

( 6 ) ( 3 ) ( )( )

  ( ) ( )

   sin( ) sin(( ) )

(4 4 ) (3 ) 2(

  

        
 

     

   

   


D T D

a a c a c c g a c g a c

a c c c g a c c a c c c c g a c c c g g a c c

e D e T D

a a c a c c g a

 

4 0 1 4 2

1 1 2 3 0 3 0 3

( )

)

( )

   cos( ) cos(( ) )  
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Table 5.4 Re{D(s)}, Im{D(s)}, Re{N(s)} and Im{N(s)}for GmC implementations 
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Table 5.4 (Continued) Re{D(s)}, Im{D(s)}, Re{N(s)} and Im{N(s)}for GmC implementations  
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Figure 5.2 Bode plot for the 3rd order CT ΣΔΜ shown in Fig 5.1 (a)  

5.2 Stability Analysis for CT ΣΔΜs that are not overloaded 

   Because the output of a ΣΔΜ’s quantizer has fixed quantization levels, its gain is a function of 

its input signal which is a function of the ΣΔΜ’s input signal. Therefore, the stability of a CT 

ΣΔΜ depends upon the quantizer’s input signal because a large enough input signal can generate 

a large signal at the quantizer’s input which reduces the quantizer’s gain and in turn can 

destabilize the modulator loop. In this section, a method for determining a ΣΔΜ’s maximum 

input signal power which keeps the ΣΔΜ stable is developed.  

    To determine the maximum input signal power, maxS,P  that keeps a ΣΔM stable, consider the 

STF and NTF models shown in Fig 5.3 (a) and (b) and assume that the quantizer’s input, , is a 

zero mean random process. Because  is a zero mean random process, the quantizer’s input 

signal power, ,P can be written as 2
P   where  is the standard deviation of . To keep a 

ΣΔM stable, maxS < 1/KminS where maxS is the quantizer’s maximum input amplitude that keeps  

the ΣΔM stable. This condition is assumed to be true when 
maxS     or equivalently when  
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22

2 maxS

minS

1

K



 

  
        

                                                   (5.20) 

where 
 

is the standard deviation coefficient of  as shown in Fig 5.4. Based on the empirical 

simulation results,   is chosen as 3.6. Because the minimum quantizer gain that keeps a ΣΔM 

stable is KminS, the quantizer’s maximum input power, 
maxS

,P that keeps a ΣΔM stable can be 

written as   

maxS maxS

2

2

minS

1
.P

K
  

 
    

                                            (5.21) 

 

 

(a) 

          

(b) 

Figure 5.3 (a) Block diagram of a CT ΣΔM’s STF, (b) Block diagram of a CT ΣΔM’s NTF 
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Figure 5.4 Bell curve of the standard normal distribution [22] 

 

   From the block diagrams shown in Fig 5.3, the quantizer’s input power, 2 ,  can be written as  
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where 2= [ ( ) ] / .effK E n    When
maxS

2 2 ,  eff desK K    where 
desK  is the value of K used to 

design the ΣΔM. Therefore, the quantizer’s maximum input power, 
maxS

2 , that keeps a ΣΔM 

stable can be written as 

maxS maxS
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(5.23)  

where 
maxS

2
x is the maximum input power that keeps the ΣΔM stable and 

maxS

2
e is the quantization 

noise power when 
maxS

2 2
x x  and 

maxS

2 2 .   Assuming that the ΣΔM’s input, output and 

quantization noise signals have means of zero, the ΣΔΜ’s output signal power, ,yP can be 

calculated as 
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 (5.24) 
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Therefore, at the maximum values of 2
x  and 2

e  that keep the ΣΔM stable, 

maxS maxS
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 (5.25) 

Subtracting (5.22) from (5.24) and solving the resulting equation for 2 ,e the quantization noise 

 power, 2 ,e  can be determined as 
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Therefore, the maximum quantization noise power, 
maxS

2 ,e  that keeps a ΣΔM stable can be 

determined as 

maxS
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Using (5.25), the maximum input power, 

maxS
,xP  that keeps a ΣΔM stable can be determined as 
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where 2 y
 
is 1 for a single-bit quantizer and 

maxS

2
e is given in (5.27).  

5.3 Stability Analysis Example of ΣΔΜs that are not overloaded 

To illustrate this method, consider two 4th order ΣΔΜs where one of the ΣΔΜs has a sampling 

frequency of 1GHz, a Chebyshev Type 2 NTF with 21dB of attenuation, an excess loop delay of 

2T and the root loci shown in Fig 5.5 (a) and the other ΣΔΜ has a sampling frequency of 1GHz, a 

Chebyshev Type 2 NTF with 18dB of attenuation, an excess loop delay of 2.5T and the root loci  
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shown in Fig 5.5 (b).  

 

 
                                          (a)                                                                    (b) 
 

Figure 5.5 The root locus of 4th order CT ΣΔΜs that uses Chebyshev Type 2 NTFs  
with a sampling frequency of 1GHz for (a) D = 2T, (b) D = 2.5T 

 

From inspection of the plots, the 4th order CT ΣΔΜs with D = 2T and D = 2.5T are stable when 

the minimum quantizer gains, KminS, are 0.508 and 0.530, respectively. Because these KminSs are 

greater than KminO (0.5), the CT ΣΔM will not be overloaded before becoming unstable. Assuming 

a single bit quantizer with an output of ±1, the maximum quantizer inputs, ψmaxS, that prevent the 

CT ΣΔΜs from becoming unstable can be calculated as  
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minS

1 1
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                                                    (5.29) 

and 
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1.886.

0.530K
                                                   (5.30) 

Therefore, the CT ΣΔΜs with D = 2T and D = 2.5T are unstable when ψmaxS > 1.968 and ψmaxS > 

1.886, respectively.  Using (5.21), quantizers’ maximum input powers, 
maxS

2 , are  
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and 
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                   (5.32) 

Using (5.27), (5.31) and (5.32), the quantization noise powers, 
maxS

2 ,e that keeps the ΣΔMs stable 

can be determined as 

maxS

2 0.271      for  = 2
3.331 0.7

1 0.2

4

99 

4
e D T 

 


                                  (5.33) 

and 

maxS

2 0.276      for  = 2.5
3.416 0.78

1 0.275 

9
e D T 

 


                               (5.34) 

where the term 
/2

2

/2

1
| ( ) |

des

fs

K K
fs

s

NTF f df
f

  and  

the term 

2
/2

/2

1
( )

1
des

fs

fs
s K K

G H DAC Delay
f df

f K G H DAC Delay


  
     were calculated using the following 

Matlab code and Kdes was set to one in this example.

 

% The coefficients of transfer function F(s),G(s)and H(s) 

 

% F(s)= F4*s^4+F3*s^3+F2*s^2+F1*s+F0; 

% G(s)= 1/(s^4+G2*s^2+G0); 

% H(s)= H3*s^3+H2*s^2+H1*s+H0; 
 

%fs: Sampling frequency 

%T=1/fs: Sampling period 

%D:Excess loop delay 

 
NTFsq=@(f)abs(((j.*2*pi.*f).^4+G2.*(j.*2*pi.*f).^2+G0).*((j.*2*pi.*f).*T)./ 

((j.*2*pi.*f).*T.*((j.*2*pi.*f).^4+G2.*(j.*2*pi.*f).^2+G0)+K.*(H3.*(j.*2*pi.*f)

.^3+H2.*(j.*2*pi.*f).^2+H1.*(j.*2*pi.*f)+H0).*(1-exp(-(j.*2*pi.*f).*T)).*exp(-

(j.*2*pi.*f).*D))).^2; 
 

NTF=integral(NTFsq,-fs/2,fs/2)/fs; 

 
GHDACsq=@(f)abs(((H3.*(j.*2*pi.*f).^3+H2.*(j.*2*pi.*f).^2+H1.*(j.*2*pi.*f)+H0).

*(1-exp(-(j.*2*pi.*f).*T)).*exp(-(j.*2*pi.*f).*D))./ 

((j.*2*pi.*f).*T.*((j.*2*pi.*f).^4+G2.*(j.*2*pi.*f).^2+G0)+(K.*(H3.*(j.*2*pi.*f

).^3+H2.*(j.*2*pi.*f).^2+H1.*(j.*2*pi.*f)+H0).*(1-exp(-(j.*2*pi.*f).*T)) 

.*exp(-(j.*2*pi.*f).*D)))).^2; 
 

  
GHDAC=integral(GHDACsq,-fs/2,fs/2)/fs; 
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Using (5.28), (5.33), and (5.34), the maximum input powers, 
maxS

,xP that keep the ΣΔMs stable are  

maxS maxS

2 0.271 3.331 = 0.097   for = 21    x xP D T                                (5.35) 

and 

maxS maxS

2 0.276 3.416 = 0.057   for1    = 2.5x xP D T                            (5.36) 

where the term 
/2

2

/2

1
| ( ) |

des

fs

fs K K
s

STF f df
f  
  was calculated using the following Matlab code. 

 

% F(s) =F4*s^4+F3*s^3+F2*s^2+F1*s+F0; 

% G(s)= 1/(s^4+G2*s^2+G0); 

% H(s)= H3*s^3+H2*s^2+H1*s+H0; 

 
STFsq=@(f)abs(((F4.*(j.*2*pi.*f).^4+F3.*(j.*2*pi.*f).^3+F2.*(j.*2*pi.*f).^2+F1.

*(j.*2*pi.*f)+F0.*(j.*2*pi.*f).*T) 

./(((j.*2*pi.*f).^4+G2.^(j.*2*pi.*f).^2+G0).*(j.*2*pi.*f).*T+(H3.*(j.*2*pi.*f).

^3+H2.*(j.*2*pi.*f).^2+H1.*(j.*2*pi.*f)+H0).*(1-exp(-(j.*2*pi.*f).*T)).*exp(-

(j.*2*pi.*f).*D))).^2; 
 

STF=integral(STFsq,-fs/2,fs/2)/fs; 

 

   Assuming a sinusoidal input signal, the maxmum input signal power, 
maxS

,xP  can be written as 

maxS maxS

2 2
maxS / 2x xP x                                                      (5.37) 

where xmaxS is the ΣΔΜ’s maximum input amplitude that keeps a ΣΔM stable. Using (5.35), 

(5.36), and (5.37), xmaxS is estimated to be 0.441 (-7.1dB) for the 4th order CT ΣΔΜs with D = 2T 

and 0.339 (-9.4dB) for the 4th order CT ΣΔΜs with D = 2.5T. 

   Fig 5.6 (a) shows the simulated SQNR and minimum quantizer gain for the 4th order CT ΣΔΜ 

with D = 2T in this example. The simulation results show that when K=KminS0.510, the 

sinusoidal input signal has an amplitude of -7.4dB. The simulation results also show that the 

actual maximum sinusoidal input amplitude for the stability is -7.0dB which is close to the 

predicted maximum amplitude of -6.9dB. 

   Fig 5.6 (b) shows the simulated SQNR and minimum quantizer gain for the 4th order CT ΣΔΜ 

with D = 2.5T in this example. The simulation results show that when K=KminS0.534, the 
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sinusoidal input signal has an amplitude of -9.8dB. The simulation results also show that the 

actual maximum sinusoidal input amplitude for the stability is -8.0dB which is close to the 

predicted maximum amplitude of -9.1dB. 

 

 
(a) 

 

 
(b) 

Figure 5.6 Simulated SQNR and the minimum quantizer gain (Kmin) using a sinusoidal input 
for the 4th order CT with (a) D = 2T, (b) D =2.5T 
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5.4 Other Stability Simulation Results of CT ΣΔMs that are not overloaded 

   To illustrate this methodology’s accuracy for predicting xmaxS, five 5th order CT s were 

also simulated.  Table 5.5 shows the specification for the five 5th order as well as the two 4th 

order s discussed in Secion 5.3. For each of the CT s, the predicted xmaxS is compared to 

the simulated xmaxS. 

   Table 5.6 compares the theoretical minimum quantizer gain, KminS, obtained from the analytical 

root locus with the simulated minimum quantizer gain obtained when the simulated input signal is 

a sinusoidal that has an amplitude of xmaxS, the maximum predicted amplitude that keeps the 

stable. Table 5.7 compares the predicted maximum input amplitude with the simulated 

maximum input amplitude that keeps the stable. This table shows that all but one of the 

predictions are within 1dB of the simulation results. 

 

Table 5.5 Specification for each CT  

 (a) Common specification 

 
 

(b) NTF attenuation for each CT  
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Table 5.6 Comparison of the theoretical minimum quantizer gains  
and the simulated minimum quantizer gains at the predicted xmaxS 

 

 
 
 
 

Table 5.7 Comparison of the predicted maximum sinusoidal input amplitude  
with the simulated maximum sinusoidal input amplitude that keeps the stable  
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5.5 Stability Analysis for overloaded CT ΣΔΜs 

   When KminS < KminO, the CT ΣΔM will be in overload before becoming unstable. When the CT 

ΣΔM in Fig 5.3 is operating in overload, the linear models in Fig 5.3 are no longer valid and they 

need to be modified to reflect the effects of overload. When the ΣΔM is overloaded, the output 

signal’s amplitude is limited and the quantization error range increases.  

 

 

(a) 

 

(b) 

Figure 5.7 (a) A linear model for the CT ΣΔM’s STF in overload,  
(b) A linear model for the CT ΣΔM’s NTF in overload 

 

   To model the ΣΔM’s output bitstream’s inability to realize larger amplitudes, the gain, 

KminS/KminO, is added to the output of the STF block diagram in Fig 5.3 (a). Fig 5.7 (a) shows the 

resulting linear STF model for a CT ΣΔM that is overloaded. To model the increased quantization 

noise range from 1e  to e   KminO/KminS that occurs when the ΣΔM is overloaded, the 

quantization gain, KminS/KminO is added to the NTF’s loop filter. Fig 5.7 (b) shows the resulting 

linear NTF model for a CT ΣΔM that is overloaded. 
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   Therefore, to determine the input signal power that keep an overloaded ΣΔM stable, (5.23), 

(5.25), and (5.27) need to be modified to reflect overload model in Fig 5.7. From the block 

diagram of the CT ΣΔM in overload shown in Fig 5.7, the quantizer’s input power, 
maxS

2 , that 

keeps an overloaded ΣΔM stable can be written as  

max S

max S

maxS

22
/2

2 minS
2 /2

minO

2

2
/2

/2
minS

minO

1
( )

( )
1

des

des

fsx

fs
s K K

fse

fs
s

K K

K
STF f df

f K K

G H DAC Delay
f df

Kf
K G H DAC Delay

K















  

  


     




 

           (5.38)     

where 
maxS

2 x
is the maximum input power that keeps the overloaded ΣΔM stable and 

maxS

2 e
is the 

maximum quantization noise power that keeps the overloaded ΣΔM stable. Assuming that the 

ΣΔΜ’s input, output and quantization noise signals have means of zero, the ΣΔM’s output signal 

power, 2 , y  
can be calculated as 

maxS

maxS

22
/2

minS

/2
minO

2

2
/2

/2
minS

minO

2 ( )

1
( )  .

1

des

des

fsx

fs
s K K
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s

y

e

fs

K K

K
STF f df

f K

f df
Kf

K G H DAC Delay
K
















   



 



               

 
 (5.39)                          

 

Subtracting (5.38) from (5.39) and solving the resulting equation for 
maxS

2 , e
the maximum 

quantization noise power,
maxS

2 , e
that keeps an overloaded ΣΔM stable can be determined as 

maxS

maxS

2 2

2

2 2

/2 /2

/2 /2
minS minS

minO minO

 
.

1 1
( ) ( )

1 1

des des

y

e

fs fs

fs fs
s

K K K K

G H DAC Delay
f df f df

K Kf
K G H DAC Delay K G H DAC Delay

K K

 


 

 


 
 

   
             
  



 

  

          (5.40) 
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Using (5.39), the maximum input power, 
maxS

,xP that keeps an overloaded ΣΔM stable can be 

determined as 

maxS

maxS maxS

2

2
/2

2

/2
minS

minO2

2
/2

minS

/2
minO

1
( )

1

 
1

( )

  

des

des

fs
e

y
fs

s

K K

x x

fs

fs
s K K

f df
Kf

K G H DAC Delay
K

P
K

STF f df
f K













    




 






        (5.41) 

where 2 y
 
is 1 for a single-bit quantizer and 

maxS

2 e is given in (5.40).  

5.6 Stability Analysis Example of an overloaded ΣΔΜ 

   To illustrate this method, consider the root loci in Fig 5.8 (a), (b) and (c) which show the root 

loci for 3rd order ΣΔΜs with sampling frequencies of 1GHz, Chebyshev Type 2 NTFs with 47dB, 

37dB, and 30dB attenuation in the stopband, respectively, and excess loop delay times, D, of 0, 

0.5T, and T, respectively. From inspection of the plots, the CT ΣΔΜs with D = 0, D = 0.5T, and D 

= T are stable when the minimum quantizer gains, KminS, are 0.326, 0.359, and 0.376, respectively. 

Assuming a single bit quantizer with an output of ±1, the maximum quantizer input, ψmaxS, that 

prevents the CT ΣΔΜs from becoming unstable is  

maxS

minS

1
.

K
                                                                   (5.42) 

Therefore, the CT ΣΔΜs with D = 0, D = 0.5T, and D = T are unstable when ψmaxS > 3.07, ψmaxS > 

2.78, and ψmaxS > 2.66, respectively.  

   Consider the 3rd order CT ΣΔΜ that has an excess loop delay of D = T of the root locus shown 

in Fig 5.8 (c). Because KminS< KminO, this ΣΔΜ will be overloaded when it becomes unstable. To 

predict the maximum input signal power that keeps the ΣΔΜ stable, (5.21) can be used to 

determine  
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maxS

2 2

2

minS

1 1
= 0.546 

3.6 0.376K
 

          
                                  (5.43) 

where KminS = 0.376 and  = 3.6. 

 

 
                                          (a)                                                                 (b) 
 

 
  (c) 

 

Figure 5.8 The root locus of 3rd order CT ΣΔΜs that uses Chebyshev Type 2 NTFs  
with a sampling frequency of 1GHz for (a) D = 0, (b) D = 0.5T, (c) D = T 

 

Using (5.40) and (5.43), the quantization noise power, 
maxS

2 ,e that keeps this ΣΔM stable when 

overloaded can be determined as 

maxS

2 0.546
0.290

3.329 1.7

1  

63
e


 


                                             (5.44) 
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where the term 

2
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/2
minS

minO

1 1
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  and the term  
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minS

minO

1
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1

des

fs

fs
s

K K

G H DAC Delay
f df

Kf
K G H DAC Delay

K





  

     
  were calculated using the following Matlab 

code and Kdes was set to one in this example. 

% The coefficients of transfer function F(s),G(s)and H(s) 

 

% F(s)= F3*s^3+F2*s^2+F1*s+F0 

% G(s)= 1/(s^3+G1*s) 

% H(s)= H3*s^3+H2*s^2+H1*s+H0 
 

%fs: Sampling frequency 

%T=1/fs Sampling period 

%D:Excess loop delay 
 

%kminS:The maximum quantizer gain that keeps a ΣΔM stable       
%kminO:The maximum quantizer gain that prevents a ΣΔM from overloading 
 

NTFsq=@(f)abs((((j.*2*pi.*f).^3+G1.*j.*2*pi.*f).*(j.*2*pi.*f.*T))...    

       ./(((j.*2*pi.*f).^3+a.*j.*2*pi.*f).*(j.*2*pi.*f.*T)+K.*(kminS/kminO).* 

      (H2.*(j*2*pi.*f).^2+H1.*(j.*2*pi.*f)+H0).*(1-exp(-j.*2*pi.*f.*T)).*exp(- 

       j.*2*pi.*f.*D))).^2; 
 

NTF=integral(NTFsq,-fs/2,fs/2)/fs; 

 
GHDACsq=@(f)(abs((H2.*(j.*2*pi.*f).^2+H1.*(j.*2*pi.*f)+H0).*(1-exp(-

j.*2*pi.*f*T)).*exp(-j.*2*pi.*f*D)./(((j.*2*pi.*f).^3+G1.*j.*2*pi.*f). 

*(j.*2*pi.*f.*T)+K.*(kminS/kminO).*(H2.*(j.*2*pi.*f).^2+H1.*(j.*2*pi.*f)+H0).*(

1-exp(-j.*2*pi.*f*T)).*exp(-j.*2*pi.*f.*D)))).^2; 
 

  
GHDAC=integral(GHDACsq,-fs/2,fs/2)/fs; 
 

 

 

Using (5.41) and (5.44), the maximum input power, 
maxS

,xP that keeps this ΣΔM stable when 

overloaded is 

maxS maxS

2

2

0.290 3.329
 = 0.061 .

0.376

0.5

1  
x xP  

 
 
 
 


                                  (5.45) 

where the term 

2
/2

minS

/2
minO

1
( )

des

fs

fs
s K K

K
STF f df

f K


  was calculated using the following Matlab code. 
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% F(s) = F3*s^3+F2*s^2+F1*s+F0 

% G(s):1/(s^3+G1*s) 

% H(s)= H3*s^3+H2*s^2+H1*s+H0 

 
STFsq=@(f)abs.*((kminS/kminO).*((F3.*(j.*2*pi.*f).^3+F2.*(j.*2*pi.*f).^2+F1.*(j

.*2*pi.*f)+F0)).*(j.*2*pi.*f).*T)... 

./(((j.*2*pi.*f).^3+a.*j.*2*pi.*f).*(j.*2*pi.*f.*T)+(H2.*(j.*2*pi.*f).^2+H1.*(j

.*2*pi.*f)+H0).*(1-exp(-j.*2*pi.*f.*T)).*exp(-j.*2*pi.*f.*D))).^2; 

     
STF=integral(STFsq,-fs/2,fs/2)/fs; 

 

Assuming a sinusoidal input signal,  

maxS maxS

2 2
maxS / 2x xP x                                                      (5.46) 

where xmaxS is the ΣΔΜ’s maximum input amplitude that keep the ΣΔΜ stable in overload. Using 

(5.45) and (5.46), xmaxS is estimated to be 0.349 (-9.1dB).  

   Fig 5.9 shows the simulated SQNR and minimum quantizer gain for the 3rd order CT ΣΔΜ 

with D = T in this example. The simulation results show that the sinusoidal input amplitude is  

-8.5dB when Kmin is 0.387. The results also show that the ΣΔΜ becomes unstable when the 

maximum sinusoidal input is greater than -7.0dB and Kmin is 0.306.  

 

Figure 5.9 Simulated SQNR and the minimum quantizer gain (Kmin) using a sinusoidal input 
for the 3rd order CT  with D = T in example 
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   The maximum sinusoidal input amplitudes, xmaxS were also predicted for the other 3rd order CT 

ΣΔΜs that have the root loci shown in Fig 5.8 (a) and (b). Their xmaxS values were predicted to be 

0.457 (-6.8dB) and 0.484 (-6.3dB) for the CT ΣΔΜs that have the root loci shown in Fig. 5.8 (a) 

and (b), respectively. These ΣΔΜs were also simulated using a sinusoidal input with a frequency 

of 0.1MHz.  

 

 
(a) 

 
(b) 

 

Figure 5.10 Simulated SQNR and the quantizer’s minimum gain (Kmin) 
for the 3rd order CT for (a) D = 0 (b) D = 0.5T 
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   Fig 5.10 (a) shows the SQNRs and the quantizer’s minimum gain, Kmin, as a function of input 

signal’s amplitude for the ΣΔΜ with D = 0. As shown in the Fig 5.10 (a), the ΣΔΜ’s SQNR 

increases linearly until the input signal’s amplitude is approximately -12 dB, and Kmin = 0.508. As 

the input signal’s amplitude is increased above -12 dB, the SQNR increases nonlinearly as a 

function of input signal’s amplitude because the ΣΔΜ is overloaded. As the input signal’s 

amplitude is increased above -6 dB, the ΣΔΜ’s SQNR degrades dramatically and the ΣΔΜ’s 

SQNR cannot be restored to its previous values even when the ΣΔM’s input is decreased to its 

previous amplitudes. As mentioned earlier, the maximum sinusoidal input amplitude was 

predicted to be -6.8dB when KminS is 0.326. The simulation results show that the sinusoidal input 

amplitude is -7.2dB when Kmin is 0.331 and that the ΣΔΜ becomes unstable when the sinusoidal 

input amplitude is greater than -6dB and Kmin is 0.265. 

   Fig 5.10 (b) shows the SQNR and the minimum gain, Kmin, as a function of input signal 

amplitude for the ΣΔΜ that has the root locus shown in Fig 5.8 (b) and an excess loop delay of 

0.5T. The simulation results show that when the input signal’s amplitude is increased above -7 dB, 

or Kmin is less than 0.359, the ΣΔΜ becomes unstable. For this ΣΔΜ, the maximum sinusoidal 

input amplitude was predicted to be -6.3dB when KminS is 0.359. The simulation results show that 

when the sinusoidal input amplitude is -6.9dB and Kmin is 0.362, the ΣΔΜ becomes unstable. 

5.7 Other Simulation Results of overloaded ΣΔΜs  

   To illustrate this methodology’s accuracy for predicting the stability in overload, six 3rd order, 

four 4th order, and one 5th order CT were simulated and these stability points are compared to 

their predicted stability points. Table 5.8 (a) compares the predicted minimum stable quantizer 

gain, KminS, with the simulated minimum quantizer gain, Kmin, when the sinusoidal input has the 

maximum predicted stable input amplitude for the 3rd through 5th order CT ΣΔMs. The examples 

were selected because the ΣΔMs satisfied the condition, KminS < KminO which implies that the ΣΔM 

will be overloaded before becoming unstable. Each ΣΔM had a sinusoidal input with an input 
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frequency of 0.1MHz and a sampling frequency of 1GHz. For each order ΣΔM, the excess loop 

delay was chosen as 0, 0.5T, T, 1.5T, 2T and 2.5T. The results show that little difference exists the 

predicted KminS and the simulated Kmin for each of the ΣΔΜs. Table 5.8 (b) compares the predicted 

maximum input amplitude, xmaxS, with the simulated input amplitude, xmax, at predicted minimum 

stable quantizer gain, KminS, for the 3rd through 5th order CT ΣΔMs. The results show that little 

difference exists between the predicted xmaxS and the simulated xmax at predicted KminS, for each of 

the ΣΔΜs. Table 5.8 (c) compares the predicted maximum input amplitude, xmaxS, and the 

simulated maximum input amplitude, xmax.  

  

Table 5.8 Comparison of the prediction and the simulation 

(a) Predicted minimum stable quantizer gain and simulated quantizer gain  
for sinusoidal input with predicted maximum amplitude  

 

 

(b) Predicted maximum input amplitude and simulated input amplitude at predicted KminS  

 

 
 

(c) Predicted maximum input amplitude and simulated maximum input amplitude  
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5.8 Conclusion 

   Table 5.9 (a), (b), and (c) summarize the stability analysis for both overloaded CT ΣΔMs and 

CT ΣΔMs that are not overloaded which were used in Section 5.4 and 5.7. The overloaded ΣΔMs 

which satisfies the condition, KminS < KminO, are colored in orange and the ΣΔMs that are not 

overloaded which satisfies the condition, KminS > KminO, are colored in blue. Table 5.9 (d) shows 

that all but one of the predictions are within 1.2dB of the simulation results. Because ΣΔΜ’s 

SQNR depends on the input frequency, the maximum input signal amplitudes vary for different 

frequencies of the input signal [32, 33]. This is especially true for low input frequencies close to 

DC where a ΣΔΜ’s SQNR can degrade at smaller input amplitudes. It may therefore be possible 

that the discrepancies between the predicted xmaxS and the simulated xmaxS might be a result of the 

chosen input frequency. 
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Table 5.9 Summary of the stability analysis  
for both overloaded CT ΣΔMs and CT ΣΔMs that are not overloaded 

 

 
 

(a) Predicted minimum stable quantizer gain and simulated quantizer gain  
for sinusoidal input with predicted maximum amplitude  

 

 

(b) Predicted maximum input amplitude and simulated input amplitude at predicted KminS  

 

(c) Predicted maximum input amplitude and simulated maximum input amplitude  
 

 

(d) The difference between predicted maximum input amplitude and 
simulated maximum input amplitude 
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CHAPTER 6 

CONCLUSIONS 

   This dissertation introduced a ΣΔM simulation method that uses the delta transform to 

determine difference equations that model CT ΣΔMs. This method is compared with 

conventional simulation methods in terms of simplicity, speed, and accuracy in Chapter 3. This 

new method proved to be a simple method that provided results as accurate as SPICE simulations 

and could be performed within reasonable times. 

   This dissertation also introduced an overload and stability analyses for single-loop, single-bit 

CT s. In Chapter 4’s overload analysis, the minimum quantizer gain, KminO, that prevents a 

ΣΔM from overloading is determined and a method that uses the minimum quantizer gain, KminO, 

to determine the maximum input power that prevents overloading was developed. 

simulations performed using the delta transform were used to compare the predicted 

maximum input power and the simulated maximum input power that prevents overloading. The 

results of the simulated and predicted overload condition were very similar. In Chapter 4, a set 

of linear models were also developed for CT ΣΔM operating in overload. Using these models, 

the SQNR for a ΣΔM in overload could be estimated. CT ΣΔM simulations were performed 

using the delta transform and their results were compared with estimations generated with the 

linear models. For each of the CT ΣΔMs, the simulated SQNRs at low input frequency coincided 

with the estimated SQNRs. 

   In Chapter 5, an analytical root locus method developed in [48, 49] was used to determine the 

stability criteria for CT ΣΔMs that include exponential functions in their characteristic equations. 

From the analytical root locus, the minimum quantizer gain, KminS, that keeps a CT ΣΔM stable 

could be determined. In Chapter 5’s stability analysis, the minimum quantizer gain, KminS, that 

keeps a ΣΔM stable is determined and a method that uses the minimum quantizer gain, KminS, to 
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determine the maximum input power that keeps the ΣΔM stable was developed. The maximum 

input power that guarantees stability for both a ΣΔM in overload and ΣΔM that is not overloaded 

could be estimated. simulations performed using the delta transform were used to compare 

the predicted maximum input power and the simulated maximum input power that keeps the 

ΣΔM stable. The results of the simulated and predicted stability condition were very similar.  

   In conclusion, a circuit designer can take measures to prevent the CT ΣΔMs from becoming 

unstable and overloading using KminS and KminO, and further predict the SQNR.  
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