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This study analyzes the characteristics of land use/land cover change in Jordan’s 
Irbid governorate, 1984–2018, and predicts future land use/land cover for 2030 
and 2050 using a cellular automata-Markov model. The results inform planners 
and decision makers of past and current spatial dynamics of land use/land cover 
change and predicted urban expansion, for a better understanding and successful 
planning. Satellite images of Landsat 5-thematic mapper and Landsat 8 operational 
land imager for the years 1984, 1994, 2004, 2015 and 2018 were used to explore 
the characteristics of land use/land cover for this study. The results indicate that 
the built-up area expanded by 386.9% during the study period and predict further 
expansion by 19.5% and 64.6% from 2015 to 2030 and 2050 respectively. The 
areas around the central and eastern parts of the governorate are predicted to 
have significant expansion of the built-up area by these dates, which should be 
taken into consideration in future plans. Land use/land cover change and urban 
expansion in Irbid are primarily caused by the high rate of population growth rate as 
a direct result of receiving large numbers of immigrants from Syria and Palestine in 
addition to the natural increase of population and other socio-economic changes.
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INTRODUCTION

Research into land use and land cover (LULC) 

change is basic to an understanding of global change. 
Understanding LULC change dynamics and the factors 
responsible for such change are vital for modelling 
future changes to support sustainable and robust 
policy decisions and strategies (Munthali et al., 

2019). The whole world is experiencing rapid urban 
population growth (Ridd and Hipple, 2006; Yuan et 

al., 2015; Khawaldah, 2016), and urbanization is one 
of the most evident global changes. Recently, the 
process of LULC change on local and regional scales 

has also become of interest to researchers, who 
believe that analyzing spatial patterns reveals the link 
between human activity and land use change (Meyer 
and Turner 1992; Han et al., 2015). Population 
growth and urbanization lead to inward urban growth 
(intensification) and outward urban growth (sprawl) 
as well as a variety of socio-economic and urban-
related environmental issues (Sexton et al., 2013). 
Changes in LULC have significant impacts on both 
human systems and natural ecosystems (Munthali 

and Murayama, 2011; Khawaldah, 2016), of concern 
to planners, hydrologists, government agencies, 
ecologists, and so on. Nowadays, LULC change can be 
effectively monitored and detected using geographic 
information systems (GIS) and remote sensing (RS) 
technologies. Since the 1980s, remote sensing image 
data has been widely used in LULC data acquisition, 
spatial and temporal process expression, and model 
analysis and simulation (Yuan et al., 2015). LULC 
models are powerful and trustworthy tools that help 
in analyzing LULC dynamic change and evaluating land 
use policy. Model analysis and LULC spatial patterns 
simulations reveal the driving forces that affect LULC, 
which can be used to predict future LULC change 
(Han et al., 2015; Gillanders et al., 2008). Many 
methods are used to model LULC dynamic change and 
simulation, including Cellular Automata (CA) (He et 

al., 2005), the Clue-s model (Verburg and Overmars, 
2007), the Markov model (Guan et al., 2008) and the 

CA-Markov model (Khawaldah, 2016; Wang et al., 

2014). According to previous studies, LULC models 
can be classified into three categories: empirical-
statistical models such as regression models, which 
ignore social factors (Bin and Tao, 2010); spatially 
explicit models such as Cellular Automata and 

Markov models, used to determine patterns of LULC 
change and to predict future changes, although 

it is still difficult to simulate the effect of human 
activities on LULC change (de Noronha Vaz et al., 

2013; Khawaldah, 2016); and agent-based models 
that simulate LULC change by considering individual 
agents, although only in simplified  landscapes (Parker 
et al., 2003; Han et al., 2015). Verburg et al. (2008) 

noted that “no single model is capable of considering 
all of the processes of LULC change at different 
scales”, despite the attempts to link biophysical and 
socio-economic data in LULC simulations (Veldkamp 
et al., 2001; Alshalabi et al., 2013). The Markov 
model is widely used to simulate and predict LULC 
change, representing the direction of change and 
offering a framework for examining future land 
use demand (Jiansheng et al., 2012). Nevertheless, 
traditional models are inadequate in providing spatial 
analysis, with difficulty in allocating predicted land 
requirements in geographical space (Han et al., 2015). 
The CA-Markov model, however, has strong dynamic 
simulation ability to present spatial and temporal 
changes. It combines the advantages of Markov and 
CA models in space and time series prediction and 
can be applied in LULC change simulation (Yuan et 

al., 2015). Irbid city, the capital of the governorate 
and the second largest metropolitan area in Jordan 

after Amman, is undergoing rapid urbanization and 
currently has the highest population density in the 
country (Department of Statistics, 2019). This urban 
growth is the result of natural population increase 
and migration from the bordering countries and other 
governorates in Jordan. The Irbid governorate was 
therefore selected as a case study. The unplanned 
urban expansion has led to many problems, and 
predictions of future urban expansion are vital for 
urban planning. Simulation of future LULC will provide 
decision makers and planners with an indication of 
the direction of urban expansion and growth rates, 
essential in estimating the requirements for public 
services and infrastructure. The aim of this study is 
therefore to simulate and predict future LULC change 

dynamics in Irbid governorate using GIS and RS data 
from 1984 to 2018 to propose a map of LULC for the 

years 2030 and 2050. The objectives of this study can 
be summarized as: 1) To explore and analyze LULC 
change dynamics of Irbid from 1984 to 2018; 2) To 
simulate and predict the future LULC in Irbid for 2030 
and 2050 with a focus on development of the built-
up area using a Markov model. The study was carried 
out in Irbid governorate in Jordan during 2019.
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MATERIALS AND METHODS

Study area

Irbid governorate, the second largest by population 
in Jordan and the first in terms of population density, 
has an area of 1,572 km2 accounting for 1.8% of 
the Jordan’s total area (Fig. 1). The population was 
approximately 1,911,600 in 2018, accounting for 
18.5% of the country with a population density of 
1,216.2 person/km² (Department of Statistics, 2019; 
Odeh et al., 2019), and is one of the most developed 
and urbanized regions of Jordan (Awawdeh and 
Nawafleh, 2008; Al-Kofahi et al., 2018). It was selected 
as a case study for its high rate of population growth 
(0.072% for the period 1984-2018) and urbanization 
over the last five decades. The population growth 
rate of Irbid governorate was calculated using the 
exponential equation (Vandermeer, 2010). The 
governorate is located in the extreme north-west of 
Jordan, about 80 kilometers north of Amman, between 
latitude 32.377 N and 32.745 N and longitude 35.547 
E and 36.099 E. Irbid has a Mediterranean climate 
with an average rainfall of 454.5 mm annually for the 
period 1985-2014 (JMD, 2019). The elevation within 
the governorate ranges from 150 meters below sea 
level to 1,000 meters above (Margane et al., 1999). 
The variety of LULC types, including agriculture, make 

it appropriate for detecting and simulating change 
over the years 1984 to 2050. Fertile plains occupy a 
large percentage of the study area and of the total 
area of plains in Jordan. Today, its historic function as 
the nation’s bread basket is being overcome by urban 
uses (Awawdeh et al., 2019). In 1884, Irbid was a small 
village of around 130 households with fewer than 
700 people. However, the population increased to 
about 2,500 in 1922, out of Jordan’s 225,000, and the 
built-up area did not exceed 210,000 square meters. 
By 1946, the population had risen to some 7,000. This 
population growth and commercial development 
extended the urban area (Tarrad, 2014). Commercial 
relations between northern Jordan and Damascus 
contributed to this increase. In addition to the natural 
increase in population, Irbid received the first wave 
of Palestinian refugees from the Arab-Israeli war of 
1948. The first camp to accommodate refugees in 
the study area was established in 1951, covering 0.24 
km² and inhabited by 4,000 refugees according to 
the United Nations Relief and Work Agency (UNRWA) 
(UNRWA, 2019). According to the census data, the 
population of Irbid reached 23,157 in 1952, rising to 
44,685 in 1961 (Department of Statistics, 2019). The 
second wave of migration from Palestine to Jordan 
happened after the Arab-Israeli war of 1967, with 

 
 Fig. 1: Geographic location of the study area in Irbid governorate, Jordan
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more than 700,000 people, most of whom settled in 
Amman, Zarqa and Irbid. The total number of people 
in the governorate was 113,548 in 1979, and the built-
up area had expanded. The third wave of migrants to 
the city of Irbid happened after the Second Gulf War 
when Iraq entered Kuwait in 1990; 25,000 people 
arrived in the city of Irbid from Gulf countries. By 1994 
the population of the whole governorate was over 
750,000 and by 2004 over a million. With the recent 
wave of migration by Syrian refugees, from 2011, 
the governorate’s population was approaching two 
million by the end of 2018 (Department of Statistics, 
2019; Al-Kofahi et al., 2018). This rapid population 
growth has led to several evolutionary stages for 
the city, with urbanization spreading outwards from 
the city centre into neighbouring villages. The built-
up area in the governorate has also expanded for 

several reasons in addition to population growth: 
first, the development of large commercial and real-
estate projects such as Al-Hassan Industrial Estate; 
and secondly the establishment of government 
educational institutions such as Yarmouk University 
in 1976 and Jordan University of Science and 
Technology in 1986. Together these have provided 
a large number of employment opportunities. Thus, 
the demand for land for urban use in a traditionally 
agricultural governorate has increased dramatically.   

Data

Satellite images from Landsat 5 Thematic Mapper 
(TM) and Landsat 8 Operational Land Imager 

(OLI)/Terra were acquired from the United States 
Geological Survey (USGS) website. Cloud-free images 
from March and April were selected to represent the 
LULC for 1984, 1994, 2004, 2015 and 2018. 

Image processing

Different pre-processing techniques were applied 
using ArcGIS 10.6 and ENVI classic 5.3 software to 
prepare the Landsat TM and OLI images for mapping 
the LULC changes. The image pre-processing 
techniques include: layer stacking; mosaicking; and 
subsetting or clipping to the borders of the study 
area. After that, the images were radio-metrically 
corrected using the atmospheric correction function. 
The images were then geometrically corrected using 
40 Ground Control Points (GCPs) at road junctions 
based on a Global Positioning System (GPS) device 
with ±3-meter accuracy. A third-order transformation 
model was applied to correct different images by 
minimizing Root Mean Square Error (RMSE), and then 
the images were clipped to the borders of the study 
area. This was done through rectifying the image 
data set, where the cubic convolution “third-order 
transformation” provides an overall resampled image 
that is closest statistically to the original image and is 
also useful for resampling when the scale is changing 
radically. Table 1 shows the Landsat 5-TM and Landsat 
8-OLI multi-bands with different wavelengths.

The schematic diagram shown in Fig. 2 includes a 

detailed description of these steps and procedures 
(methodology).

 

Image specification 

Image type Landsat 5-TM Landsat 8-OLI 

Swath width (km) 185 185 

 

Spectral range (μm) 

Blue band (0.45-0.52) Blue band (0.452-0.512) 

Green band (0.52-0.60) Green band (0.533-0.590) 

Red band (0.63-0.69) Red band (0.636-0.673) 

NIR band (0.76-0.90) NIR band (0.851-0.879) 

Spatial resolution (m) Visible & NIR 30 Visible and NIR 30 

Acquisition date 

(Day/Month/Year) 

Three images:- 

15-04-1984, 11-04-1994, 21-03-2004 

Two images: 

05-04-2015, 13-04-2018 

Revisit time (day) 16 16 

Launch 01 March 1984 11 February 2013 

Table 1: Specification of Landsat TM and OLI bands, wavelengths and acquisition date
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LULC mapping 

In order to generate LULC maps for assessing recent 

changes, different GIS functions and image processing 
methods were employed. Medium resolution satellite 
images for 1984, 1994, 2004, 2015 and 2018 were used 
to produce the maps through an on-screen digitizing 
procedure. The digitizing technique followed in this 
research was conducted using different Landsat images 
overlaid by the study area shapefile, as background 
image digitizing. The LULC classification scheme (Table 

2) comprised seven LULC classes, identified by codes, 
to prepare different LULC for simulating future land 
use (Memarian et al., 2012).

LULC classes were digitized as polygons by 
enclosing urban areas within specific boundaries, 
followed by the other types listed in the table. Field 
surveys were carried out throughout the study with 
the aid of GPS to verify the results of the recent LULC 
map. The maps were used to generate the predicted 
future LULC for the area.

 

 

 

 

 

 

 

 

 

 

 

 

Acquisition of Landsat 5-TM and 8-OLI (30 m) for Irbid governorate  

 

Extraction of probability and transition 

areas using Markov conversion 

matrices for each land use class 

Image processing 

Data collection from 

DOS, (Researchers) 
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years 1984, 1994, 2004, 2015 and 
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Markov chain 

Validation of model output using observed 

and predicted maps for years 2004, 2015 and 

2018 
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development areas and other classes 
Prediction of LULC for 2030 and 2050 
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Fig. 2: The flow diagram of steps in simulating LULC changes

 

Class Code Description 

Water bodies 1 Bodies of water including treated wastewater plants and dams. 

Irrigated areas 2 
Permanently irrigated lands; crop irrigated permanently or periodically, most of the crops that 

cannot be cultivated without an artificial water supply. 

Rangeland 3 
Open spaces with sparsely vegetated areas; heavily grazed open scrub and herbaceous 

rangeland. 

Rainfed 4 Non-irrigated cereal crops in low rainfall areas. 

Forest and trees 5 
Continuous and discontinuous forested areas of conifers and oak. Also rainfed olive trees in 

high rainfall areas. 

Built-up areas 6 

Continuous and discontinuous urban areas; areas occupied by dwellings and areas occupied 

used by installations, buildings and factories (commercial and industrial), including their 

connected areas (associated lands, parking lots). 

Bare land 7 Open spaces with no vegetation; bare rocks and limestone. 

 

Table 2: Land use/land cover classification scheme used in the study
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CA-Markov model

The CA-Markov model represents the integration 
of the standard Markov model and the Cellular 
Automata (CA). In the GIS environment, the spatio-
temporal raster data model was used to illustrate 
the changes in continuous data over time among 
LULC classes using transition probabilities, while the 
CA method was used to control spatial dynamics. 
The LULC maps were generated within a GIS 
environment, then the LULC were exported as tiff 
format and classified into eight classes using Clark 
Labs TerrSet IDRISI software. These classes are: 
class 0- Background; class 1- Water bodies; class 2- 
Irrigated areas; class 3- Rangeland; class 4- Rainfed; 
class 5- Forest and trees; class 6 - Built-up areas; and 
class 7- Bare land. The land change modeler was then 
used to produce the predicted LULC map based on 
both the earlier LULC map and later LULC map. The 
transition areas and probability matrices of transition 
areas were generated using Clark Labs TerrSet IDRISI 
software (Eastman, 2016), with two techniques to 
produce the 2030 and 2050 predictions. The first 
analyzed the estimated LULC based on old and new 
maps of LULC to produce transition probability matrix 
records, which express the probability of each LULC 
class changing to another class. Second, the CA-
Markov model was used to predict changes in the 
LULC classes for 2030 and 2050. This was performed 
using two LULC maps, which were produced from 
satellite images. The model was applied based on the 
number of random processes, X (t), for any moment 
in time, t1 < t2 < ··· < t

n
 < 

tn + 1
; thus, the random process 

will satisfy Eq. 1 (Singh et al., 2015).

FX ( X (tn+1) ≤ xn+1│X (tn )) = xn, X (tn−1 ) = xn−1,.., 
X (t1 ) = FX ( X (tn+1 ) ≤ xn+1│X (tn ))  = xn            (1)

Where, t
n
 is the present time and t

n+1
 denotes 

time points in the future; t
1
, t

2
, ···, t

n
 − 1 represent time 

moments in the past. According to the present data, 
the future is independent of the past. In other words, 
the future random process depends neither on where 

it is now nor on where it was. If the Markov chain is 
expressed by X[k], and xn is a set of N states {x1, x2, 
x3, ··· xn}, then the probability of transition from state 
i to state j in one time instant is as Eq. 2.

P i, j  Pr ( X [k +1] = j │X [k ] = i)                 (2)

Validation of LULC changes and urban expansion
Validation is necessary in estimating development 

in any predictive change model, and is employed 
to calculate specialized Kappa indices (K

no
, Klocation, 

K
standard

) that discriminate between errors of quantity 
and errors of location between two qualitative maps 
(Table 3). In this study, the validation technique 
was used to confirm the extent of congruence and 
difference between observed (actual) land use and 
predicted land use for the same year. Kappa statistics 
were used to reflect the simulation accuracy of the 
model based on the spatial pattern of observed and 
simulated LULC maps. The validation method was 
computed as Eq. 3 (Pontius and Millones, 2011):

( ) ( )  / 1  o c cKappa p p p= − −                      (3)

/op n N=  , 1/cp A=

Where, P
o
 is the percent of actual LULC (digitized), 

P
c
 is the expected LULC simulation in stochastic cases, 

N is the total number of raster pixels in the LULC 
pattern, n is the number of raster of correct analogue, 
and A is the number of LULC types. The result is usually 
between 0 and 1. A value of Kappa below 0.4 indicates 
less precision and less consistency; when 0.4 ≤ Kappa 
≤ 0.75 the accuracy is moderate; and when Kappa is 
greater than 0.75, there are small differences and a 
high level of consistency between the two LULC maps 
(Wu et al., 2008; Qiu and Lu, 2018), (Table 3). 

RESULTS AND DISCUSSION

Analysis of LULC changes 

Analysis of the LULC maps for 1984, 1994, 2004, 
2015 and 2018 reflects the changes in the balance 

Kappa Index Definitions of the Kappa index of agreement 

Kno Measure of the overall proportion correctly classified versus the expected proportion correctly classified. 

Klocation Measure of the spatial accuracy due to correct assignment of values. 

Kstandard The proportion assigned correctly versus the proportion that is correct by chance. 

Table 3: Kappa indices definitions
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Fig. 3a: Land use in Irbid governorate in 1984

Fig. 3b: Land use in Irbid governorate in 1994

Fig. 3c: Land use in Irbid governorate in 2004
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of the natural environment and human activity, with 
different patterns for each class in various parts of the 
governorate (Fig. 3a-e). 

The western areas, which receive high rainfall, are 
mainly used for cultivating rainfed wheat, barley and 
olives. Most of the arid and semi-arid areas in the 
eastern parts are rangelands with little vegetation 
(Abu-Zanat et al., 2004). Built-up areas have steadily 

increased, with urban growth occurring mainly in 
Irbid city, Ramtha and some other villages. The area 
under forest and trees has increased slightly as many 
are now protected under national conservation 
programs, while others are owned by local people 
and presented as agricultural tenure. Irrigated areas 
increased by 50.5% especially in the eastern part of 
the governorate because of shifts in agricultural type 

Fig. 3d: Land use in Irbid governorate in 2015

Fig. 3e: Land use in Irbid governorate in 2018
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from rainfed to irrigated crops, an adaptation to the 
gradual decrease in annual rainfall over the last three 

decades. The correlation matrix of LULC in Table 4 

shows that the built-up area is significantly correlated 
positively with irrigated areas and negatively with 
rangeland and rainfed areas. The irrigated area is 
negatively correlated with rangeland and rainfed areas.

The Ministry of Water and Irrigation (MWI) carried 
out different projects in Irbid governorate to increase 
the amount of stored rain water by the construction 
of dams, such as the Ziglab, Wadi Arab and Al Wahda 

dams; the area of water bodies thus gradually 
increased (Table 5). The quantity of stored rainfall 

water in these dams changes from year to year 
according to the amount and frequency of rainfall in 
the winter season. 

Most of the rainfed area in the governorate is used 

for barley and wheat for flour. Rangelands in the 
eastern part constitute 6.7% of the area. In this zone, 
barley is cultivated for straw to support grazing herds 
of sheep. The non-cultivated areas are also heavily 
grazed and susceptible to soil erosion (Al-Bakri et al., 

2012). 

Future simulation for LULC changes in 2030 and 2050 
The LULC maps derived from the satellite images 

Variables 

Water bodies Irrigated area Rangeland Rainfed 
Forest and 

trees 
Built-up area Bare land 

r 
p-

value 
r 

p-

value 
r 

p-

value 
r 

p-

value 
r 

p-

value 
r 

p-

value 
r 

p-

value 

Water bodies 1 0 0.600 0.155 0.404 0.369 0.692 0.085 0.334 0.464 0.674 0.097 0.253 
0.58

4 

Irrigated area 0.600 0.155 1 0 -0.915 0.00
4 -0.878 0.00

9 0.676 0.095 0.814 0.02
6 0.771 0.04

3 

Rangeland 0.404 0.369 -0.915 0.00
4 1 0 0.799 0.03

1 0.482 0.274 -0.829 0.02
1 0.558 

0.19

3 

Rainfed 0.692 0.085 -0.878 0.00
9 0.799 0.03

1 1 0 0.662 0.105 -0.958 0.00
1 0.661 

0.10

6 

Forest and trees 0.334 0.464 0.676 0.095 0.482 0.274 0.662 0.105 1 0 0.447 0.314 0.819 0.02
4 

Built-up area 0.674 0.097 0.814 0.02
6 -0.829 0.02

1 -0.958 0.00
1 0.447 0.314 1 0 0.457 

0.30

2 

Bare land 0.253 0.584 0.771 0.04
3 0.558 0.193 0.661 0.106 0.819 0.024 0.457 0.302 1 0 

*Values in bold are different from 0 with a significance level alpha=0.05 

Table 4: Correlation matrix (Pearson) (r) and (p-values) of LULC in the study area (1984-2050)

Dam Establish date Storage capacity (mcm) 

Ziglab 1965 4 

Wadi Arab 1986 20 

Al Wahda  2004 115 

Table 5: Establishment date and storage capacity of the study area dams

 

  

LULC 1984/1994 
Water 

bodies 

Irrigated 

area 
Rangeland 

Rainfed 

area 
Forest and trees 

Built-up 

area 

Bare 

land 
Percent 

Water bodies 60.58 0.76 0 38.28 0.38 0 0 100 

Irrigated area 0 71.65 0 25.21 0.52 1.5 1.12 100 

Rangeland 0 0.85 66.41 24.17 0.56 1.15 6.86 100 

Rainfed area 0.06 2.55 1.27 67.6 9.7 8.27 10.53 100 

Forest and trees 0.15 2.15 0.01 31.88 53.98 3.91 7.92 100 

Built-up area 0 1.35 1.1 10.36 1.26 83.1 2.82 100 

Bare land 0.2 1.27 0.69 44.17 3.05 7.18 43.44 100 

Table 6a: Probability of transition class for LULC 1984-1994 (round one)
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and the CA-Markov model were used to simulate 
changes for the years 2030 and 2050. According to 
the transition probability matrices (as shown in Table 
6a to h), the results for the different periods show 
the probability of each class (n) in the LULC maps 
changing in the next period (t + n). 

Accordingly, the LULC change in directions from 
one class to another was calculated using the Markov 
model (see the transition probability matrices in 

 

LULC 1984/1994 
Water 

bodies 

Irrigated 

area 
Rangeland 

Rainfed 

area 

Forest and 

trees 

Built-up 

area 
Bare land Total cell 

Water bodies 793 10 0 501 5 0 0 1309 

Irrigated area 0 66938 0 23549 487 1402 1043 93419 

Rangeland 0 1229 96580 35142 821 1672 9976 145420 

Rainfed area 535 22560 11206 597003 85704 73074 93024 883106 

Forest and trees 362 5124 30 75930 128575 9315 18869 238205 

Built-up area 0 1728 1402 13222 1614 106032 3603 127601 

Bare land 389 2524 1380 88069 6082 14315 86608 199367 

Total cell 2079 100113 110598 833416 223288 205810 213123 1688427 

changing trend 770 6694 -34822 -49690 -14917 78209 13756  

Table 6b: Transition area of each class for 1984-1994 (round one)

 

 

LULC 1994/2004 
Water 

bodies 

Irrigated 

area 
Rangeland 

Rainfed 

area 

Forest and 

trees 

Built-up 

area 

Bare 

land 
Percent 

         

Water bodies 73.6 0 2.47 14.18 3.35 5.73 0.67 100 

Irrigated area 0.04 67.15 1.67 9.36 18.86 1.33 1.58 100 

Rangeland 0 0.97 75.49 7.94 0.03 6.11 9.47 100 

Rainfed area 0.01 2.07 3.39 57.52 17.41 9.54 10.05 100 

Forest and trees 0.01 0.38 0.23 26.63 58.74 6.25 7.76 100 

Built-up area 0 2.1 0.52 11.93 5.04 75.15 5.26 100 

Bare land 0.01 0.36 1.74 29.36 10.33 8.73 49.48 100 

Table 6c: Probability of transition class for LULC 1994-2004 (round two)

 

LULC 1994/2004 
Water 

bodies 

Irrigated 

area 
Rangeland 

Rainfed 

area 

Forest and 

trees 

Built-up 

area 
Bare land Total cell 

Water bodies 919 0 31 177 42 72 8 1249 

Irrigated area 39 61057 1523 8514 17145 1210 1433 90921 

Rangeland 0 1500 117072 12311 40 9478 14684 155085 

Rainfed area 58 15197 24902 422238 127794 70056 73769 734014 

Forest and trees 34 1154 681 80429 177389 18865 23421 301973 

Built-up area 0 4179 1042 23759 10047 149689 10473 199189 

Bare land 12 743 3575 60489 21271 17986 101915 205991 

Total cell 1062 83830 148826 607917 353728 267356 225703 1688422 

changing trend -187 -7091 -6259 -126097 51755 68167 19712  

Table 6d: Transition area of each class for 1994-2004 (round two)

Table 6a to h). Negative trend values were observed 
for the rangeland, rainfed area, bare land, forest and 
trees classes during the period 1984 to 2018. This 
means that these areas changed mainly to built-up 
areas, irrigated areas and water bodies. In the tables, 
the bold values along the diagonal indicate the 
probability of a LULC class not changing from time 
t

0
 to time t (t > t

0
), while the cross diagonal shows 

the probability that one LULC experiences a change 
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LULC 2004/2018 
Water 

bodies 

Irrigated 

area 
Rangeland 

Rainfed 

area 

Forest and 

trees 

Built-up 

area 

Bare 

land 
Percent 

Water bodies 59.24 1.26 0 7.69 26.59 0 5.22 100 

Irrigated area 0 78.43 0.14 10.06 4.02 5.66 1.7 100 

Rangeland 0.01 1.45 60 25.07 0.63 8.96 3.88 100 

Rainfed area 0.04 4.2 0.92 58.92 13.1 11.4 11.42 100 

Forest and trees 0.2 5.13 0 24.12 60.11 6.53 3.91 100 

Built-up area 0.03 0.8 0.13 10.77 7.31 76.2 4.76 100 

Bare land 0.03 1.35 2.02 16.37 12.61 4.85 62.78 100 

Table 6e: Probability of transition class for LULC 2004-2018 (round three)

 

LULC 2004/2018 
Water 

bodies 

Irrigated 

area 
Rangeland 

Rainfed 

area 

Forest and 

trees 

Built-up 

area 

Bare 

land 
Total cell 

Water bodies 983 21 0 128 441 0 87 1660 

Irrigated area 0 99675 173 12781 5111 7197 2156 127093 

Rangeland 16 1639 67602 28246 705 10098 4372 112678 

Rainfed area 235 25819 5672 361930 80478 70015 70164 614313 

Forest and trees 634 16033 0 75412 187931 20416 12237 312663 

Built-up area 86 2269 372 30680 20845 217173 13574 284999 

Bare land 69 3180 4734 38441 29605 11386 147428 234843 

Total cell 2023 148636 78553 547618 325116 336285 250018 1688249 

changing trend 363 21543 -34125 -66695 12453 51286 15175  

Table 6f: Transition area of each class for 2004-2018 (round three)

 

 

LULC 1984/2018 
Water 

bodies 

Irrigated 

area 
Rangeland 

Rainfed 

area 

Forest and 

trees 

Built-up 

area 

Bare 

land 
Percent 

Water bodies 37.28 3.8 0 19.26 26.8 0 12.86 100 

Irrigated area 0 79.12 0 12.85 0.17 4.53 3.33 100 

Rangeland 0 1.61 52.71 24.7 0.97 15.86 4.16 100 

Rainfed area 0.04 4.96 0.93 47.44 16.71 19.42 10.5 100 

Forest and trees 0.4 0.38 0 26.26 53.25 11.86 7.85 100 

Built-up area 0.41 2.02 0.14 6.64 3.1 83.23 4.46 100 

Bare land 0.15 4.05 0 24.17 7.73 13.37 50.53 100 

Table 6g: Probability of transition class for LULC 1984-2018 (total round)

LULC 1984/2018 
Water 

bodies 

Irrigated 

area 
Rangeland 

Rainfed 

area 

Forest and 

trees 

Built-up 

area 
Bare land Total cell 

Water bodies 619 63 0 320 445 0 213 1660 

Irrigated area 0 100551 0 16333 213 5755 4228 127080 

Rangeland 0 1813 59379 27824 1090 17864 4687 112657 

Rainfed area 217 30474 5714 291352 102593 119283 64500 614133 

Forest and trees 1236 1200 0 82078 166462 37073 24551 312600 

Built-up area 1162 5769 401 18919 8832 237175 12715 284973 

Bare land 346 9521 0 56756 18151 31389 118653 234816 

Total cell 3580 149391 65494 493582 297786 448539 229547 1687919 

changing trend 1920 22311 -47163 -120551 -14814 163566 -5269  

Note: one cell is equal to 900 m2 
 

Table 6h: Transition area of each class for 1984-2018 (total round)
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from one type to another. The results also reveal that 
during the period 1984 to 2018, different LULC types 
exhibited various dynamic conditions. The built-up 
and irrigated area classes are the most stable, with 
transition probabilities exceeding 79%. Water bodies, 
rangeland, rainfed area, bare land and forest and 
trees show less persistence, with probabilities of 

37.3, 52.7, 47.4, 53.3 and 50.5 respectively (Table 6). 
As already explained, the governorate has received 
large numbers of migrants which, together with 
natural increase, contributes to the increase in the 
total size of the population, especially after Syrian 
refugees arrived from 2011. This process, however, 
resulted in less stability of the different LULC types. 

Fig. 4a: Predicted LULC changes in Irbid governorate for 2030

Fig. 4b: Predicted LULC changes in Irbid governorate for 2050
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During the study period, most of the arable land 
was depleted by the expansion of the built-up areas, 
which means that urbanization consumed the largest 
quantities of rainfed, rangeland, and forest and trees 
areas (Table 6). In addition to the expansion of the 
built-up area, there was a conversion of rainfed areas 
to irrigated areas because of profit-oriented farming 
practices (Bani Hani, 2005). These factors together 
caused rainfed and rangeland to be the most dynamic 
types with the lowest transition persistence, 47% and 
53% respectively. Built-up areas have the highest 
transition persistence, at 83%. After the successful 
simulation of LULC changes in 2004, 2015 and 2018, 
future changes for 2030 and 2050 were predicted 
using the LULC base map of 2018. The transition 
matrices for the period 2004 to 2018 were used to 
generate the LULC map of 2030, and the 1984 to 2018 

ones to generate the LULC map of 2050, as shown in 
Fig. 4a-b.

The actual and predicted LULC maps in Figs. 
3a-e and 4a-b show the trend of the spatio-
temporal distributions of LULC changes for the six 
selected years 1984, 1994, 2004, 2018, 2030 and 
2050. Tables 7 and 8 illustrate the total area coverage 

and percentage of gain and loss for each LULC type 
as the magnitude of change for the same periods. 
The results revealed that the spatial pattern changed 

during the study period. In 1984, rainfed, forest and 
trees, bare land, and rangeland were the dominant 
LULC types, accounting for 51.2%, 16.6%, 13.4%, and 
10.4% of the total area respectively. The built-up area 
was largely limited to two areas: the central part of 
Irbid and Ramtha cities, representing only 3.5% of 
the study area. However, the built-up area expanded 

 

LULC 

Type/years 

 

Total area coverage (1520 km2)  

1984 1994 2004 2015 2018 2030 2050 

No. % No. % No. % No. % No. % No. % No. % 

Water 

bodies 
0.3 0.0 1.2 0.1 1.1 0.1 2.2 0.2 1.5 0.1 1.4 0.1 1.6 0.1 

Irrigated 

area 
76.1 5.0 84.3 5.5 81.8 5.4 105.0 6.9 114.6 7.5 133.9 8.8 114.4 7.5 

Rangeland 
157.9 10.4 131.3 8.6 140.0 9.2 138.3 9.1 101.9 6.7 70.8 4.7 86.0 5.7 

Rainfed 
777.6 51.2 791.3 52.1 664.1 43.7 556.7 36.6 556.0 36.6 493.1 32.4 445.0 29.3 

Forest and 

trees 
252.1 16.6 224.5 14.8 269.8 17.8 270.9 17.8 279.6 18.4 292.8 19.3 254.9 16.8 

Built-up area 53.1 3.5 114.8 7.6 179.4 11.8 240.2 15.8 253.4 16.7 302.8 19.9 417.2 27.4 

Bare land 
203.1 13.4 173.0 11.4 183.9 12.1 206.8 13.6 213.2 14.0 225.2 14.8 200.9 13.2 

 

Table 7: Summary of LULC changes during the period 1984 to 2018 in Irbid governorate.

LULC 

Type/year

s 

Gain/ loss (%) Between Different Times 

1984 -

1994 

1994 -

2004 

2004 -

2015 

2015 -

2018 

2004 - 2018  

(to produce 

2030) 

1984 - 2018  

(to produce 

2050) 

2018 -

2030 

2030 -

2050 

Water 

bodies 
262.7 -4.4 100.3 -33.6 33.0 361.3 -4.2 15.0 

Irrigated 

area 
10.7 -2.9 28.2 9.2 40.0 50.5 16.9 -14.6 

Rangelan

d 
-16.8 6.7 -1.2 -26.3 -27.2 -35.4 -30.5 21.4 

Rainfed 1.8 -16.1 -16.2 -0.1 -16.3 -28.5 -11.3 -9.8 

Forest 

and trees 
-10.9 20.2 0.4 3.2 3.6 10.9 4.7 -12.9 

Built-up 

area 
116.0 56.2 33.9 5.5 41.3 376.9 19.5 37.8 

Bare land -14.8 6.3 12.5 3.1 16.0 5.0 5.7 -10.8 

Table 8: The percentage of gain/loss of area for LULC (1984 to 2050)
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and increased by 377% between 1984 and 2018, 
accounting for 16.7% (Fig. 3a-e and Table 7), mainly 
at the expense of rangeland, rainfed, forest and trees 
cover types as shown in Table 6. During the period 
1984 to 2018, water bodies increased from 0.3 km² 
to 1.5 km² due to the establishment of Al Wahda dam 
in 2004. Rangeland and rainfed types were negatively 
impacted by the increase in other types, showing a 
decrease in the same period. Even though the built-
up and irrigated areas continue to increase more 
than other LULC types, the results indicate that the 
positive gain in expansion area was observed for the 
built-up area during the period 1984 to 2018, while 
between 2004 and 2018 the largest expansion was 

Table 9: Summary of Kappa indices for model validation

Fig. 5: Development of built-up area in Irbid governorate from 1984 to 2050

Maps used for simulation Maps used for validation Degree of compatibility Kappa Index 

Observed LULC 

(Digitized) 

Predicted LULC 

(Simulated) 

Digitized LULC 

(Observed) 

Validation of simulating 

CA-Markov (%) 
Kno 

 

Klocation 

 

Kstandard 

1984 - 1994 2004 2004 81.1 0.78 0.81 0.76 

1994 - 2004 2015 2015 79.7 0.77 0.77 0.75 

1984 - 2004 2018 2018 78.4 0.75 0.77 0.73 

 

observed for the irrigated area, as compared to the 
earlier decades.

The general trend of built-up area changes in Irbid 
governorate reveals that the changes that occurred 

during the study period are expected to continue 
in 2030 and 2050. According to the predicted 

results, the spatio-temporal pattern of built-up 
area continues to expand and is expected to cover 
more than 19.9% of the total study area in 2030 
and and 27.4% in 2050 (Fig. 4a-b and Tables 7 and 
8). Additionally, the irrigated area will continue to 
increase due to high economic returns for this LULC 

type. The predicted results also indicate that the 
rainfed and rangeland classes will witness a decrease 
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in future, as shown in Table 7. Generally, these LULC 
types have been replaced by built-up and irrigated 
areas (Table 6). Therefore, the current and ongoing 
trends (gains and losses) have compressed those 

LULC classes with significant environmental value, 
which may result in dilapidation and devastation. 
Finally, the governate as an arid and semi-arid 
area (Farhan et al., 2013) is highly sensitivity to 
adverse effects on environmental sustainability. 
Therefore, appropriate management for land use 
plans and utilization is needed, with emphasis on 
controlling the encroachment of built-up areas 
(residential, commercial and industrial) on rainfed 
area, rangeland, forest and trees. Fig. 5 shows the 
development of built-up area in the governorate 
from 1984 to 2050. 

Validation of CA-Markov model results
A comparison of the LULC maps for the years 

2004, 2015 and 2018 with the CA-Markov simulated 
map was made based on the Kappa statistics (Table 
9). The results show good agreement with a high 
level of consistency and small differences between 
the predicted values and the observed values of the 
LULC types, with Kno, Klocation and K

standard
 above 0.75, 

0.77 and 0.73 respectively. Thus, there are almost 
no or small quantification and location errors. On 
the other hand, Kappa indices of agreement were 
used to validate and confirm different changes 
that could happen in the LULC maps of 2030 and 

2050. The results proved that the CA-Markov 
model is an effective tool to simulate and analyze 
different changes of LULC in 2030 and 2050. Thus, 
the model is considered reliable and trustworthy 
in simulating and predicting future LULC change. 
The LULC was generated using On-screen digitizing 
due to the heterogeneity features in the study 
area; so if different techniques are applied, such as 
supervised or unsupervised classification methods, 
the percentage of error will increase in this case. 
Thus, the On-screen digitizing method is the best 
method for reflecting the current feature (LULC) 
with an accuracy of more than 98% based on the 
ground resolution of Landsat and equal ± 30 meters. 
After that, LULC maps for the years 2004, 2015 and 
2018 were simulated as shown in Table 9. These 
maps were compared with actual maps that were 
generated using GIS software. The Kappa index 
indicates that there is good agreement to produce 

the LULC maps of 2030 and 2050 with an accuracy 
level of approximately 80 %.

CONCLUSION

The study has examined LULC changes in Irbid 
governorate during the period 1984-2018 and 

simulated land use demand in the future using a CA-

Markov model, which gives a better understanding 
of possible changes in LULC within the study area. 
The results indicate that with rapid urban growth, 
fertile plains were converted to built-up land by 
21.4% with an area of 200.3 km², a trend that will 
become the main feature of LULC in the future. The 
changes are significant and clearly noticeable in four 
main zones, mainly in the north and northeast of the 
governorate. Results revealed that the built-up area 
expanded from only 53.1 km² in 1984 to 253.4 km² in 
2018, an increase of 377%. This change in the built-
up land is caused by the rapid population increase, 
with population growth rate at 0.072, resulting from 
immigration and internal migration. The irrigated 
area has also increased, with intensive use of land 
to meet the population demand. However, other 
LULC types decreased significantly during the same 
period, especially the rainfed and rangeland types 
which were converted to built-up area. These 
noticeable changes have altered the identity of 
the governorate from an agricultural region to an 

urban area. Urban sprawl is considered as a key 
indication that urban planning strategy should be 
given more attention. A simulation of future LULC 
was also demonstrated using a CA-Markov model 
for 2030 and 2050. The results revealed that built-
up land will continue to increase and is expected to 
cover around 20% and 27% of the total study area in 
2030 and 2050 respectively. Agricultural types such 
as rainfed and rangeland areas will be threatened. 
The implication of this study is the importance 
of considering these predicted changes. The city 
must plan for future infrastructure, road networks, 
and allocating locations for future services such 
as health centers, schools and public parks. At the 
same time, planning to control urban sprawl and 
protecting the remaining agricultural areas should 
be a priority for planners and decision makers for 
sustainable development. The CA-Markov model 
has proved to be a powerful tool for analyzing LULC 
dynamic change and predicting future scenarios. 
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CA Cellular automata

DoS Department of Statistics
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Fig. Figure
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LULC Land Use and Land Cover
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