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Abstract

Alignment is the first step in most RNA-seq analysis pipelines, and the accuracy of downstream 

analyses depends heavily on it. Unlike most steps in the pipeline, alignment is particularly 

amenable to benchmarking with simulated data. We performed a comprehensive benchmarking of 

14 common splice-aware aligners for base, read, and exon junction-level accuracy and compared 

default with optimized parameters. We found that performance varied by genome complexity, and 

accuracy and popularity were poorly correlated. The most widely cited tool underperforms for 

most metrics, particularly when using default settings.

The majority of RNA-seq studies start with alignment to a reference genome or 

transcriptome. Analysis is also possible without a reference genome but generally 

underperforms alignment-guided analysis1. Many algorithms have been developed for this 

critical alignment step (Supplementary Fig. 1). Most of these are specific to RNA-seq, but 
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BWA and Bowtie are designed for DNA alignment and do not properly handle intron-sized 

gaps; therefore we strongly advise against using these tools for genome alignment.

Polymorphisms, sequencing error, low-complexity sequences, intron-sized gaps, intron 

signal, incomplete annotation, alternative splicing, and pathological splicing can all 

complicate alignment. For an aligner to be viable for RNA-seq it must (i) align reads across 

splice junctions, (ii) handle paired-end reads, (iii) handle strand-specific data, and (iv) run 

efficiently. Since annotation is never perfect, the ability to align reads across unannotated 

splice junctions is also a plus. We identified 14 algorithms which satisfy these four basic 

requirements: CLC Genomics Workbench v8.5 (http://www.qiagenbioinformatics.com/

products/clc-genomics-workbench/), ContextMap2 v2.6.0 (ref. 2), CRAC v2.4.0 (ref. 3), 

GSNAP v2015-9-29 (ref. 4), HISAT v0.1.6beta5, HISAT2 v2.0.0beta5, MapSplice2 v2.2.0 

(ref. 6), Novoalign v3.02.13 (http://www.novocraft.com/products/novoalign/), OLego v1.1.6 

(ref. 7), RUM v2.0.5_06 (ref. 8), SOAPsplice v1.10 (ref. 9), STAR v2.5.0a (ref. 10), Subread 

v1.5.0 (ref. 11), and TopHat v2.1.0 (ref. 12).

Simulating data for benchmarking alignment algorithms is straightforward on account of the 

discrete nature of the data. Simulated data were used for comprehensive RNA-seq alignment 

benchmarking studies in 2011 (ref. 8) and 2013 (ref. 13), but alignment methods have 

undergone considerable development since then. Here we analyze performance at the base, 

read, and junction levels using default and optimized parameters. We also examine execution 

time and memory usage; differential behavior at canonical versus noncanonical junctions; 

the effect of untrimmed adapters; performance on indels, reads that map to multiple sites 

(multimappers); and other factors.

Even aligning human reads to a human reference presents difficulties for some genes, and 

aligning across different strains or species can be globally difficult. It is therefore necessary 

to use aligners that handle both low- and high-complexity regions effectively. Thus it is 

important to simulate different levels of complexity and preferentially use aligners that 

generally perform well in all scenarios.

RESULTS

We simulated data from human and the malaria parasite Plasmodium falciparum at three 

complexity levels (T1, T2 and T3) for each of the two organisms. Each data type was 

simulated three times, giving a total of 18 data sets, that are used throughout (Online 

Methods). P. falciparum was chosen because it is a commonly studied organism with a very 

different genome from that of the human; its genes are 80% AT rich on average14. For each 

data set, 10 million 100-base read pairs (2 × 109 bases) were generated.

The least complex data sets, denoted T1, were generated with low polymorphism rates 

(0.001 substitution, 0.0001 indel) and error rates (0.005, a typical Illumina error rate15), 

similar to aligning most RNA-seq reads to the reference human genome. T2-level 

complexity data has moderate polymorphism and error rates (0.005 substitution, 0.002 indel, 

0.01 error), similar to data from model organisms. T3 has high polymorphism and error rates 

(0.03 substitution, 0.005 indel, 0.02 error).
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Base and read level

Of our base-, read- and junction-level metrics, base-level metrics are the strictest and require 

the highest degree of accuracy (Fig. 1). Each base of each read constitutes an ‘event’ which 

can be either right or wrong. Roughly speaking, recall measures the fraction of all bases that 

were aligned correctly, and precision measures the fraction of all aligned bases that were 

aligned correctly. Precision is high for most aligners, even at T3-level complexity. In other 

words, what the aligners do align, they tend to align well, at least at the base level. The 

greatest variance in performance is seen in recall.

On T1 libraries, base-level recall is high for most tools, ranging from 86.1% (CRAC) to 

97.8% (MapSplice2) on human data and from 92.4% (CRAC) to 99.3% (CLC) on malaria 

data. For results organized by class of misalignment (misaligned, aligned ambiguously, and 

unaligned) see Supplementary Figure 2.

In contrast, T2 libraries reveal significant differences in performance, ranging from 78.8% 

(CRAC) to 98.9% (GSNAP) on human data. Five tools maintain a recall greater than 95% 

(Contextmap2, GSNAP, Mapsplice2, Novoalign, STAR). On malaria data, performance 

ranges from 72.1% (TopHat) to 98.9% (CLC).

The T3 libraries show a vast difference in recall, ranging from 12.5% (TopHat2) to 90.3% 

(Novoalign) for human and 2.1% (TopHat2) to 91.2% (CLC) for malaria data. Novoalign, 

GSNAP, CLC, STAR, Mapsplice2, and RUM exceed 50% on both organisms.

For malaria data at the base level, CLC consistently has the best recall, while Novoalign and 

GSNAP also do well. For human data, Novoalign, GSNAP, Mapsplice2, and STAR are the 

best. Despite its popularity, TopHat2 is consistently among the worst performers on both 

human and malaria T2 and T3 libraries.

Reads are considered properly aligned if they are not multimappers and at least one base is 

aligned correctly. Read-level analysis is most relevant for gene-level quantification, because 

for a read that has at least one base aligned correctly, the correct gene which produced that 

read will usually be identified. Read-level results are similar to base-level results 

(Supplementary Figs. 3 and 4). On human and malaria T1 libraries, all the tools except CLC 

map more than 96% of the reads. On human data, Contextmap2, GSNAP, Mapsplice2, 

Novoalign, and STAR have recall ≥97%. On malaria, all the tools except HISAT, HISAT2, 

OLego, and TopHat2 have recall ≥97%. CRAC shows the greatest percentage of reads 

mapped incorrectly.

Junction level

A junction is where a read is spliced across an intron-sized gap that is typically thousands of 

bases long. When a read aligns across an intron gap, the shorter aligned segment is referred 

to as the anchor. Aligning across intron-sized gaps is particularly challenging, as the anchor 

can be as short as one base. For shorter anchors, more accurate annotation should help with 

the alignment.
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Junction information is used extensively in downstream analysis programs; particularly in 

reconstructing alternative splicing events. Ambiguous cases, such as when the first base of 

an intron matches the first base of the next exon, can often be resolved by prioritizing 

canonical splice signals, but there is considerable latitude in how aligners accomplish this. 

Therefore, we assessed junction accuracy as a function of anchor length and splice signal.

An event is defined as a single read crossing a single splice junction. Not all reads involve 

events, and some reads involve multiple events. Postalignment analysis, which combines 

information across reads, is provided by some aligners and was not included in our tests; 

instead we assessed the quality of the individual read alignments. A correct event is scored 

when an algorithm aligns the read uniquely and properly identifies intron boundaries. The 

most consistently accurate performers are CLC, STAR, and NOVOALIGN (Fig. 2). As 

before, a much greater separation is seen with regards to the recall. CLC is the top performer 

in all data sets except human T1 and T2, two of the least complex data sets.

This is somewhat surprising, as CLC only detects alternative splice sites at annotated 

junctions. If, for example, an exon ends at position N1, and the adjacent exon starts at 

position N2 according to the annotation, then CLC will align reads even if they splice from 

N1 to N2 + 3, for example. However, CLC does not connect exons that are never connected 

in the annotation; if, for example, a gene has only one annotated transcript consisting of 

exons E1, E2, and E3, then CLC will not properly align a read connecting E1 and E3. In 

contrast, Novoalign can identify unannotated connections, but it does not recognize changes 

from the annotated start or end position of an exon. In spite of these limitations, both CLC 

and Novoalign are among the top performers.

We further investigated the differential effect of anchor length on performance, both with 

and without annotation, and we found large variation (Supplementary Note 1 and 

Supplementary Fig. 5). HISAT, HISAT2, and ContextMap2 are remarkably accurate even on 

the shortest anchors and without annotation. CRAC, GSNAP, and SOAPsplice have the most 

trouble with short anchors; while OLego, STAR, and MapSplice2 have trouble with anchors 

of one or two bases but perform well on longer anchors. As long as annotation is provided, 

CLC, ContextMap2, HISAT, HISAT2, Novoalign, STAR, and TopHat2 perform well. CLC 

and Novoalign require annotation.

As the vast majority of splice junctions are canonical, we analyzed canonical and 

noncanonical junctions separately (Supplementary Fig. 6). All algorithms have significantly 

lower accuracy on noncanonical junctions as compared to canonical junctions, and no 

algorithm’s performance on noncanonical junctions improves much with annotation. As 

with short anchors, STAR, HISAT, HISAT2, and ContextMap2 perform best.

Annotation

At the base and read levels, the use of annotation does not provide significant improvement

—most tools map just a few more reads (Supplementary Fig. 7) with annotation than 

without. This should not be surprising, since annotation is mainly expected to affect accurate 

placement of reads across exon–exon junctions; and the further a base is from a junction, the 

less likely it is to benefit. Only a small percent of bases are at exon–exon junctions, limiting 
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the advantage of annotation at the base level, and even more so at the read level. The greatest 

effect of annotation is seen at the junction level (Supplementary Fig. 8).

Some algorithms require annotation (CLC and Novoalign), while others cannot utilize 

annotation (CRAC, SOAPsplice, Subread). Among those that can be run in both cases, 

annotation often helps to increase the junction-level recall, while it does not tend to increase 

the precision. Not surprisingly, the improvement of recall increases from T1 to T3 

(Supplementary Note 2).

Overall the greatest improvements from annotation are seen in TopHat2, RUM, GSNAP, and 

STAR (Supplementary Table 1). Generally the two-pass aligners (such as HISAT or 

STAR-2-pass) have similar performance with and without annotations, while one-pass 

aligners (RUM, GSNAP, STAR-1-pass) benefit the most. It is worth nothing that one-pass 

performance with annotations is comparable to two-pass performance, which may reduce 

the required computing time two-fold, as the second pass is not necessary.

General improvement from annotation is perhaps more modest than one might expect. This 

could be because algorithms do not use annotation effectively, or because they achieve 

nearly optimal performance without the use of annotation. When no annotation is available, 

as in the case that sequencing of new organismal genomes outpaces their annotation, one 

should in fact favor algorithms that perform well without the need for annotation.

There may be other advantages of annotation which are not captured here. For example, 

several methods perform a postalignment analysis to produce a set of quality splice-junction 

calls. In this case annotation is likely to increase the accuracy of such calls, particularly on 

genes which are expressed at low levels.

Parameter optimization

It is important to explore the effect of parameters on performance and to identify algorithms 

which perform well with default settings. For each algorithm, the parameter space is 

enormous; we thus used a heuristic strategy to search the parameter space, which may not 

necessarily produce a global optimum (see Supplementary Note 3). Parameter optimization 

was performed on the T3-complexity data sets, which have the greatest room for 

improvement. It is generally not possible to optimize both precision and recall 

simultaneously or to optimize at the base, read, and junction level simultaneously. 

Furthermore, we found that optimizing the precision generally results in low recall. Since 

precision is already high in most cases, our focus was on optimizing the recall, which was 

done independently for base, read, and junction levels (Fig. 3 and Supplementary Figs. 9 and 

10). The algorithm that benefits most dramatically from parameter tuning is TopHat2, while 

CLC, Novoalign, GSNAP, MapSplice2, and STAR perform the best with defaults. 

Unfortunately there is no clear way to optimize parameters on real data. Therefore, an 

algorithm that is robust to parameter settings and exhibits good performance using defaults 

is desirable (see Supplementary Note 3 and Supplementary Tables 2–43 for the most 

impactful parameters for each algorithm).

Baruzzo et al. Page 5

Nat Methods. Author manuscript; available in PMC 2018 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Other analyses

In additional analyses, we addressed issues relating multimappers (Supplementary Note 4 

and Supplementary Fig. 11), adapters (Supplementary Note 5 and Supplementary Fig. 12), 

indels (Supplementary Note 6 and Supplementary Figs. 13 and 14), two-pass modes 

(Supplementary Note 7), and computational performance (Supplementary Note 8 and 

Supplementary Fig. 15).

DISCUSSION

RNA-seq alignment has not undergone comprehensive benchmarking studies, making it hard 

to know how well individual algorithms work. Our results identify some effective aligners 

that are robust to parameter settings and others that display startling differences between 

default and optimized settings. TopHat2, for example, exhibits an alignment recall on 

malaria T3 that varies from under 3% using defaults to over 70% using optimized 

parameters. This is important since many TopHat2 users only use the defaults. The most 

important TopHat2 parameter is the number of mismatches. For a random set of 20 

publications which used TopHat, the authors were contacted to determine the parameters 

they used. 10 of 13 authors who responded used the default mismatch parameter, and 5 used 

the defaults for all parameters. Since parameter optimization is not straightforward in 

practice, good default performance is an advantage. Based on this analysis the most reliable 

general-purpose aligners appear to be CLC, Novoalign, GSNAP, and STAR.

Three extensive RNA-seq alignment benchmarking studies that we are aware of considered 

both the accuracy and performance of spliced aligners8,13,16. They compared between four 

and seven spliced aligners plus some unspliced aligners. Other comparisons have considered 

only real data17,18 and are limited by the inability to know the ground truth. Fonseca et al.19 

used simulated data to assess performance at the count level; however, the analysis focused 

on quantification output and not individual steps in the pipeline. Our results are consistent 

with prior studies of full RNA-seq aligners8,13 in spite of new versions of almost all 

applications; the notable difference being runtime (Fig. 4 and Supplementary Fig. 15). STAR 

was released in 2013 with a RAM-intensive approach that dramatically increased speed. 

Since then the STAR approach influenced other developers; for example, GSNAP, whose 

runtime has decreased dramatically. The new HISAT and HISAT2 also incorporate a fast 

search algorithm, yet their accuracy is comparable to that of TopHat2. Novoalign was 

available in the public domain when the previous studies were performed, while CLC has 

never been included in a benchmarking study, as far as we are aware.

One categorical difference between aligners that can help to explain the differences in 

performances is that several aligners are built on top of Bowtie or Bowtie2, which were 

designed to align DNA without intron-sized gaps.

Although the new results are largely consistent with those of past studies, this analysis 

should be updated regularly, as it is a fast-developing field. Standardizing methods for 

benchmarking will help to facilitate this in the future.
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METHODS

Methods, including statements of data availability and any associated accession codes and 

references, are available in the online version of the paper.

ONLINE METHODS

Simulated data

Simulating data for benchmark analyses of alignment algorithms is straightforward because 

of the discrete nature of the data. Since all algorithms align reads one at a time without 

combining information across reads or across samples, it is not necessary to model sample-

to-sample variance or the dependence structure within or between samples—reads can 

therefore be generated from a reference genome and a set of accurate gene models, 

introducing polymorphisms (in the form of substitutions and indels), intron signal, and 

sequence errors, to varying degrees. Ultimately, it is introns and indels that give algorithms 

the greatest difficulty. All algorithms perform well when there are few indels or 

substitutions, as is the case for most regions of the human genome. By introducing an 

increasing number of polymorphisms, a separation of performance is observed, indicating 

which methods handle the complex regions better. Even aligning human to human presents a 

difficult challenge for some genes, while aligning across different strains or species, which is 

often necessary, can be difficult for all genes. Since most alignment tasks will involve some 

problematic regions, even when aligning human to human, it is always necessary to use an 

aligner than handles both low and high complexity most effectively.

The simulation engine BEERS8 (https://github.com/itmat/beers_simulator) was used to 

generate simulated data. Data of three different qualities were generated for each of two 

species, in triplicate, resulting in 18 data sets. Each data set consists of 10 million 100-base 

paired-end strand-specific reads. The genomes used were Homo sapiens hg19 and 

Plasmodium falciparum. Human data were limited to chromosomes 1–22, X and Y. For 

human data, 30,000 transcript models were chosen at random from a conglomeration of 

858,063 gene models obtained by taking the union of ten annotation tracks: RefSeq, 

GeneID, Aceview, Augustus, ENSEMBL, UCSC, Vega, GenCode, GenScan, and lincRNA. 

This was done so as not to give unfair advantage to any algorithm that utilizes or was 

optimized on any particular set of annotation. For each gene an alternate splice form was 

generated by randomly including or excluding exons. Thus, a total of 60,000 transcript 

models were used. Expression levels were taken from an exponential distribution with P = 

0.01 applied to a random 2/3 of the transcripts; the rest were left unexpressed. Intron signal 

was introduced at levels representative of real data, resulting in approximately 40% of reads 

coming from introns. Intron signal is introduced by inserting one intron back into the edited 

transcript before fragmentation. Two genomes, H. sapiens and P. falciparum, were simulated 

at each of three levels of complexity. Complexity level T1 had a substitution rate of 0.001, 

indel rate of 0.0005, and error rate of 0.005. Complexity level T2 had a substitution rate of 

0.005, indel rate of 0.002, and error rate of 0.01. Complexity level T3 had a substitution rate 

of 0.03, indel rate of 0.005, and error rate of 0.02. In addition, in T3 there is a higher error 

rate equal to 0.5 in the last ten bases. The fragment length distribution has minimum length 

equal to 100 bases, mean equal to 200 bases, and maximum length equal to 500 bases. The 
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P. falciparum genome was used because it is notorious for being difficult, mainly because it 

is approximately 80% AT rich in exons and 90% in introns and intergenic regions20. All 

simulated data are available at http://bioinf.itmat.upenn.edu/BEERS/bp1. Public repositories 

do not accept simulated data.

The T3 parameters were chosen to create a data set with uniformly high polymorphism rates. 

Data sets with uniform polymorphism rates are preferable to data sets with variable rates for 

benchmarking in order to isolate the performance in complex regions. T3 also represents 

polymorphism rates which can be observed when aligning across different (but similar) 

species–for example aligning Deer to Cow produces similar polymorphism rates. In practice, 

RNA-seq data is often generated for species for which the genome is not available or is of 

low quality. Aligning Deer to Cow, for example, enabled us to reconstruct the Deer clock 

pathway before any deer genomes were available (data not shown). In this way meaningful 

RNA-seq analysis of all mammals will be enabled if the genome is available from a 

sufficient number of mammalian organisms, even though it is unlikely there will be genomes 

of all mammals anytime soon; sequencing may be cheap, but genome assembly of new 

organisms is still very expensive. Therefore, RNA-seq aligners will continue to be applied to 

high-polymorphism data.

Data sets were generated in triplicate; however, as virtually no variance between replicates 

was observed, for the sake of efficiency the results shown are based on one replicate, except 

for the performance analyses (runtime and memory usage), where all three replicates were 

used.

Alignment metrics and statistics

Accuracy and performance metrics were compiled. The accuracy metrics consider accuracy 

on several levels: bases, reads, junctions, insertions, and deletions. Both the precision and 

recall were computed for each of these metrics.

An extensive set of metrics were defined in order to measure the most important aspects of 

the mapping process. First, the metrics already employed in previous studies were 

included8,13,16,17,19,21,22. Then additional metrics were defined with the goal of finding the 

smallest set of indices able to describe the most important characteristics of the RNA-seq 

data alignment. The resulting set of metrics can be organized into three levels, one for each 

basic concept of the RNA-Seq data alignment. As such, the metrics are based on events 

defined as follows: a single base of a single read aligning to the right location (base level), a 

single read having at least one base aligning to the right location (read level), and a single 

read crossing a single intron (junction level). Note that a single read may cross none, one, or 

multiple introns, in which case one read may involve none, one, or multiple junction-level 

events.

Metrics are then based on standard measures of accuracy for each type of event. In 

particular, we computed the standard accuracy metrics ‘precision’ and ‘recall’ for each level. 

Alternatively, the results can be presented as the ‘false negative rate’ (FNR) and ‘false 

discovery rate’ (FDR) using the relations FNR = 1 – recall and FDR = 1 – precision. 

Moreover, we collected summary statistics based on these basic concepts. As ground truth, 
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we used the .cig file provided by the simulator engine. The .cig file describes the true 

position of the simulated reads in similar format to that of a SAM file23. The scripts 

developed to collect the alignment metrics and statistics are available at https://github.com/

khayer/aligner_benchmark.

In the main body of this paper a few of the results were focused on and the rest can be found 

in Supplementary Notes 1–8. The base-wise accuracy involves the individual bases of the 

reads that aligned uniquely and to the correct location. There are three ways to be wrong at 

the base level: a base can either be not aligned at all, aligned to the wrong place, or aligned 

ambiguously to several places. The base-level ‘recall’ is defined as the ratio between the 

number of bases aligned correctly and uniquely to the total number of bases in the data set. 

The base-level ‘precision’ is the ratio of the number of bases that were aligned correctly and 

uniquely to the total number of bases that were aligned uniquely. There has to be some 

flexibility in this metric, in that some cases are ambiguous. For example, if GG in the 

reference is replaced by G in the read, then the aligner will typically choose one of the two 

G’s to call the aligned base and the other to call the deleted base. Ultimately the simulator 

did delete one of the two G’s specifically, but in reality evolution has replaced two G’s with 

one, so it does not make sense to indicate which one of the two G’s was retained and which 

was lost. Therefore, the aligner is credited for specifying either of the two possibilities. If 

one is interested only in gene-level quantification, then it may be sufficient to get the general 

location of the read correct without having to get every base correct. Thus accuracy is also 

measured at the read level, and accuracy in this case is determined by counting the 

percentage of reads for which at least one base is in the right location.

The SAM CIGAR string specifies whether indels are insertions, deletions, or introns. 

Junctions are differentiated from deletions in the SAM file, the former being indicated in the 

CIGAR string by an ‘N’ and the latter by a ‘D’. So the accuracy of each of these 

specifications can be measured. Furthermore, the left and right junctions were considered 

separately to determine whether any algorithm exhibits differential performance between left 

and right. Basic alignment statistics were collected on all algorithms. These consist of 

summary statistics such as the number of reads aligned and the number of reads aligned 

ambiguously. Supplementary Software developed to collect alignment metrics and statistics 

is available at http://bioinf.itmat.upenn.edu/BEERS/bp1.

For the performance metrics, the execution time, CPU time, and the maximum amount of 

RAM used by each tool were collected using the LSF tools provided by our HPC system. 

More details about the computational performance metrics are given in Supplementary Note 

8.

Alignment of RNA-seq data

The goal of the alignment process is finding the right position of the input reads in the 

reference genome. Each read would be declared as ‘aligned’ or ‘unaligned’, depending on 

the ability of the aligner to find any putative position in the reference sequence. Obviously, 

where the minimum amount of information for a correct mapping is not available, the 

aligner cannot provide an alignment as output. However, with current sequencing technology 
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the percent of reads that are impossible to align due to sequencing issues should be very 

small.

Except for being low quality, there are two main reasons why a read would be declared 

‘unaligned’: the aligner is not able to find the right position in the reference sequence, or 

there is no right position in the reference sequence. The first scenario depends on the ability 

of each tool to manage the common alignment issues: sequencing errors, splicing events, 

intron-sized gaps, low-complexity sequence, and polymorphisms. The second scenario 

happens when a portion of the read comes from an adaptor or a contaminant, for which there 

are no reference sequences. Reads declared ‘aligned’ can be summarized in three main 

groups: reads aligned correctly, reads aligned incorrectly, and reads aligned ambiguously. 

Hopefully, an effective tool will report the majority of reads aligned correctly, with a few 

reads aligned ambiguously and very few reads aligned incorrectly. Of course this depends on 

exactly how we define ‘correct’ at the read level. The details of base-level, read-level, and 

junction-level accuracy are given below.

Base-level analysis

The base-level metrics focus on the behavior of the aligner with single-base resolution. The 

base-wise accuracy is calculated by determining whether individual bases of the reads align 

uniquely and to the correct location. Some flexibility was introduced in this metric, since 

some cases are ambiguous. Other metrics involve insertions and deletions.

The basic terms used in the base-level analysis are:

• Aligned base: a base is defined as aligned if its read is aligned and its CIGAR 

character is different from ‘S’ and ‘H’ (clipping).

• Unaligned base: a base is defined as unaligned if its read is unaligned or its read 

is aligned and its CIGAR character is ‘S’ or ‘H’ (clipping).

• Ambiguously aligned base: a base is defined as ambiguously aligned if its read is 

ambiguously aligned.

• Correctly aligned base: a base is defined as correctly aligned if it is aligned 

(uniquely, not ambiguously) and the CIGAR character in the SAM file is the 

same as the corresponding one in the .cig file (as provided by the simulator).

• Incorrectly aligned base: a base is defined as incorrectly aligned if it is aligned 

(uniquely, not ambiguously) and the CIGAR character in the SAM file is 

different from the corresponding one in the .cig file (as provided by the 

simulator).

• Insertion: a base is called insertion if its CIGAR character in the SAM file is an 

‘I’.

• Deletion: a base is called deletion if its CIGAR character in the SAM file is a 

‘D’.

• Skip: a base is called a skip if its CIGAR character in the SAM file is an ‘N’ 

(these are introns).
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The base-level metrics are defined as follows:

• Base-level precision: (no. correctly aligned bases) / (no. uniquely aligned bases)

• Base-level recall: (no. correctly aligned bases) / (total no. bases)

• Insertion precision: (no. insertions called correctly by the tool) / (no. insertions 

called by the tool)

• Insertion recall: (no. insertions called correctly by the tool) / (total no. of real 

insertions)

• Deletion precision: (no. deletions called correctly by the tool) / (no. deletions 

called by the tool)

• Deletion recall: (no. deletions called correctly by the tool) / (total no. of real 

deletions)

• Skip precision: (no. skips called correctly by the tool) / (no. skips called by the 

tool)

• Skip recall: (no. skips called correctly by the tool) / (total no. of real skips)

The base-level statistics are defined as follows:

• Percent of bases aligned correctly: (no. correctly aligned bases) / (total no. bases)

• Percent of bases aligned incorrectly: (no. incorrectly aligned bases) / (total no. 

bases)

• Percent of bases aligned ambiguously: (no. ambiguously aligned bases) / (total 

no. bases)

• Percent of bases unaligned: (no. unaligned bases) / (total no. bases)

• Percent of bases aligned: (no. aligned bases) / (total no. bases)

Read-level analysis

The read-level metrics focus on the read as a unit and are appropriate for gene-level 

quantification. Indeed, in gene-level quantification it is generally sufficient to get the 

location of the read correct without the constraint of having every single base correctly 

aligned. Thus we measure accuracy at the read level in terms of percentage of reads for 

which at least one base is in the right location.

The basic terms used in the read-level analysis are:

• Aligned read: a read is defined as aligned if the SAM bit flag 0×4 is unset.

• Unaligned read: a read is defined as unaligned if the SAM bit flag 0×4 is set.

• Ambiguously aligned read: a read is defined as aligned ambiguously if either 

read in the read pair (fragment) was aligned but has multiple entries in the SAM 

file.
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• Correctly aligned read: a read is defined as aligned correctly if it is aligned 

(uniquely, not ambiguously) and at least one base of the read is mapped to the 

right position.

• Incorrectly aligned read: a read is defined as aligned incorrectly if it is aligned 

(uniquely, not ambiguously) and no base of the read is mapped to the right 

position.

The read-level statistics are defined as follows:

• Read-level precision: (no. correctly aligned reads) / (no. uniquely aligned reads)

• Read-level recall: (no. correctly aligned reads) / (total no. reads)

The read-level statistics are defined as follows:

• Percent of reads aligned correctly: (no. correctly aligned reads) / (total no. reads)

• Percent of reads aligned incorrectly: (no. incorrectly aligned reads) / (total no. 

reads)

• Percent of reads aligned ambiguously: (no. ambiguously aligned reads) / (total 

no. reads)

• Percent of reads unaligned: (no. unaligned reads) / (total no. reads)

• Percent of reads aligned: (no. aligned reads) / (total no. reads)

Junction-level analysis

Aligning over a junction is one of the most important features of RNA-seq aligners. This 

feature is so important that it defines one of the most relevant ways to classify an NGS 

aligner: ‘splice aware’ versus ‘splice unaware’. All the tools involved in our benchmark are 

splice-aware algorithms, since RNA-seq data require the ability to map reads across such 

junctions.

The basic terms used in the junction level analysis:

• Correctly called junction: a junction is defined as being called correctly if both 

the junction start and the junction end sites were identified correctly.

• Incorrectly called junction: if either (or both) junction sites were called 

incorrectly, the whole junction is classified as an incorrectly called junction.

• Junction sides none: called junctions where neither side was identified correctly.

• Junction sides left: called junctions where only the upstream junction was called 

correctly.

• Junction sides right: called junctions where only the downstream junction was 

called correctly.

• Junction sides both: correctly called junctions.

The junction-level metrics are defined as follows:
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• Junction-level precision: (no. junctions called correctly by the tool) / (no. 

junctions called by the tool)

• Junction-level recall: (no. junctions called correctly by the tool) / (total no. of 

real junctions)

The junction-level statistics are defined as follows:

• Percent of junction sides none: (no. junctions sides none) / (no. junctions called 

by the tool)

• Percent of junction sides left: (no. junctions sides left) / (no. junctions called by 

the tool)

• Percent of junction sides right: (no. junctions sides right) / (no. junctions called 

by the tool)

• Percent of junction sides both: (no. junctions sides both) / (no. junctions called 

by the tool)

Multimapper analysis

To identify the recall and precision in the case of multimapping fragments, the alignment 

with the most correct bases aligned was chosen, and any further calculations were based on 

this best alignment. Here the same statistics were calculated as introduced in the read- and 

base-level analysis section.

Read alignment

In the alignment process only the information available in a typical real data set was used. 

This information consists of annotation, read length, fragment length distribution, and raw 

data. RefSeq was used as generic base annotation for all algorithms. In order to perform a 

fair comparison, an index was created for each aligner even though some indexes were 

already available. In this way all the aligners use the same version of the genome and the 

same annotation.

For each tool an alignment was performed starting from the default parameters. When the 

tool provides specific parameter presets or precise suggestions to increase the quality of the 

alignment, these suggestions were followed. In particular, parameters related to the read 

were set (i.e., read length, fragment length, inner mate distance) or related to the genome, for 

example, suggested seed size, k-mer size, etc. This set of alignments are referred to as 

‘default’; they are the typical alignments obtained by following the tools′ documentation as 

the typical user would do.

Moreover, many alignments were performed with each tool in search of optimal parameter 

settings for our particular data sets. The documentation was followed to determine which 

parameters are most important. Usually the suggestions from the specific documentation of 

each tool are more qualitative than quantitative, for this reason they were not included in the 

default. Where these suggestions were not provided, the most exhaustive and reasonable sets 

of parameters we could identify were searched. Additionally all authors were contacted and 

given the opportunity to make further suggestions. This required performing thousands of 
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alignments involving a large amount of computation. In order to search as large a space as 

possible, each set of parameters was run on 1 million reads in the T3 complexity level data 

sets. T3 data sets were used because the greatest improvement from the defaults can be made 

in these sets. This set of alignments is referred to as ‘tweaked’ or ‘tuned’. The goal of these 

alignments is to determine how far the default performance is from the real potential of the 

tool. Moreover, this information provides some general suggestion as to what are the most 

important parameters for each tool. Most tools will use annotation as a guide. In order to 

determine the effect of using annotation, alignment was performed both with and without 

providing this information. Parameter optimization was performed with annotation, as the 

goal was to try to get the best possible performance from each tool.

Both the default and the tweaking alignments were performed using 16 threads. When 

available, the performance parameters that guaranteed the shortest execution time were used 

(without any loss of precision). These options sometimes use more RAM than the default 

option. However, in practice the available amount of RAM is usually a smaller problem than 

the required execution time.

Details about each aligner are given in Supplementary Notes 9 and 10. More details about 

the default and the optimized (tweaked) alignments can be found in Supplementary Note 3.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank A. Srinivasan for his help administrating the PMACS cluster. We thank N. Lahens, T. Grosser, D. 
Sarantopoulou, F. Coldren, E. Scarci, and E. Ricciotti for support and helpful discussions. This work was funded in 
part by the National Heart Lung and Blood Institute (U54HL117798, G.A.F.) and The National Center for 
Advancing Translational Sciences (UL1-TR-001878, G.A.F.).

References

1. Hayer KE, Pizarro A, Lahens NF, Hogenesch JB, Grant GR. Benchmark analysis of algorithms for 
determining and quantifying full-length mRNA splice forms from RNA-seq data. Bioinformatics. 
2015; 31:3938–3945. [PubMed: 26338770] 

2. Bonfert T, Kirner E, Csaba G, Zimmer R, Friedel CC. ContextMap 2: fast and accurate context-
based RNA-seq mapping. BMC Bioinformatics. 2015; 16:122. [PubMed: 25928589] 

3. Philippe N, Salson M, Commes T, Rivals E. CRAC: an integrated approach to the analysis of RNA-
seq reads. Genome Biol. 2013; 14:R30. [PubMed: 23537109] 

4. Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. 
Bioinformatics. 2010; 26:873–881. [PubMed: 20147302] 

5. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. 
Nat Methods. 2015; 12:357–360. [PubMed: 25751142] 

6. Wang K, et al. MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. 
Nucleic Acids Res. 2010; 38:e178. [PubMed: 20802226] 

7. Wu J, Anczuków O, Krainer AR, Zhang MQ, Zhang C. OLego: fast and sensitive mapping of 
spliced mRNA-Seq reads using small seeds. Nucleic Acids Res. 2013; 41:5149–5163. [PubMed: 
23571760] 

8. Grant GR, et al. Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified 
mapper (RUM). Bioinformatics. 2011; 27:2518–2528. [PubMed: 21775302] 

Baruzzo et al. Page 14

Nat Methods. Author manuscript; available in PMC 2018 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



9. Huang S, et al. SOAPsplice: Genome-wide ab initio detection of splice junctions from RNA-Seq 
data. Front Genet. 2011; 2:46. [PubMed: 22303342] 

10. Dobin A, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013; 29:15–21. 
[PubMed: 23104886] 

11. Liao Y, Smyth GK, Shi W. The Subread aligner: fast, accurate and scalable read mapping by seed-
and-vote. Nucleic Acids Res. 2013; 41:e108. [PubMed: 23558742] 

12. Kim D, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions 
and gene fusions. Genome Biol. 2013; 14:R36. [PubMed: 23618408] 

13. Engström PG, et al. Systematic evaluation of spliced alignment programs for RNA-seq data. Nat 
Methods. 2013; 10:1185–1191. [PubMed: 24185836] 

14. Aurrecoechea C, et al. PlasmoDB: a functional genomic database for malaria parasites. Nucleic 
Acids Res. 2009; 37:D539–D543. [PubMed: 18957442] 

15. Glenn TC. Field guide to next-generation DNA sequencers. Mol Ecol Resour. 2011; 11:759–769. 
[PubMed: 21592312] 

16. Wang, WA., et al. 2014 International Conference on Electrical Engineering and Computer Science 
215–218. ICEECS; 2014. Comparisons and performance evaluations of RNA-seq alignment tools. 

17. Benjamin AM, Nichols M, Burke TW, Ginsburg GS, Lucas JE. Comparing reference-based RNA-
Seq mapping methods for non-human primate data. BMC Genomics. 2014; 15:570. [PubMed: 
25001289] 

18. Fonseca NA, Rung J, Brazma A, Marioni JC. Tools for mapping high-throughput sequencing data. 
Bioinformatics. 2012; 28:3169–3177. [PubMed: 23060614] 

19. Fonseca NA, Marioni J, Brazma A. RNA-Seq gene profiling—a systematic empirical comparison. 
PLoS One. 2014; 9:e107026. [PubMed: 25268973] 

20. Gardner MJ, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. 
Nature. 2002; 419:498–511. [PubMed: 12368864] 

21. Lindner R, Friedel CC. A comprehensive evaluation of alignment algorithms in the context of 
RNA-seq. PLoS One. 2012; 7:e52403. [PubMed: 23300661] 

22. Hatem A, Bozdağ D, Toland AE, Çatalyürek UV. Benchmarking short sequence mapping tools. 
BMC Bioinformatics. 2013; 14:184. [PubMed: 23758764] 

23. Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009; 25:2078–
2079. [PubMed: 19505943] 

Baruzzo et al. Page 15

Nat Methods. Author manuscript; available in PMC 2018 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Base-level precision and recall for human and malaria data sets.
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Figure 2. 
Junction-level precision and recall for human and malaria data sets.
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Figure 3. 
The effect of tuning parameters on the human-T3-data base-level statistics. For each tool, the 

figure shows the alignment statistics for the ‘default’ (d) and the ‘tuned’ (t) alignments.
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Figure 4. 
Runtime performance on human and malaria data. Bars show average runtime in minutes 

from three replicates. Error bars, s.d. Note that Novoalign has no multithreading in its free-

license versions. To obtain comparable results, we divided the Novoalign runtime by the 

number of threads used (16). However, the real scalability could be different from the ideal 

one used here, resulting in a longer execution time.
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