
Simulation Based Deadlock Analysis for System Level Designs

Xi Chen1, Abhijit Davare2, Harry Hsieh1, Alberto Sangiovanni-Vincentelli2, Yosinori Watanabe3

1University of California, Riverside, CA 92521, {xichen, harry}@cs.ucr.edu
2University of California, Berkeley, CA 94720, {davare, alberto}@eecs.berkeley.edu

3Cadence Berkeley Laboratories, Berkeley, CA 94704, watanabe@cadence.com

ABSTRACT
In the design of highly complex, heterogeneous, and concurrent sys-
tems, deadlock detection and resolution remains an important is-
sue. In this paper, we systematically analyze the synchronization
dependencies in concurrent systems modeled in the Metropolis de-
sign environment, where system functions, high level architectures
and function-architecture mappings can be modeled and simulated.
We propose a data structure called the dynamic synchronization de-
pendency graph, which captures the runtime (blocking) dependen-
cies. A loop-detection algorithm is then used to detect deadlocks
and help designers quickly isolate and identify modeling errors that
cause the deadlock problems. We demonstrate our approach through
a real world design example, which is a complex functional model
for video processing and a high level model of function-architecture
mapping.

Categories and Subject Descriptors: I.6 [Simulation and Model-
ing]: Model Validation and Analysis; D.2.5 [Software Engineering]:
Testing and Debugging - Monitors

General Terms: Verification

Keywords: simulation, deadlock, synchronization, cyclic depen-
dency, system level, Metropolis

1. INTRODUCTION
Today’s electronic systems have become highly complex, highly

heterogeneous, and highly concurrent. The platform-based system
level design methodology is increasingly being adopted as the pri-
mary method to deal with the complexity of these modern systems.
In system level design, the desired function and the architecture at
hand are captured separately at high levels of abstraction. The de-
sign procedures refine the abstract function, refine the abstract ar-
chitecture, and map the function onto the architecture to realize the
final implementation [3, 11]. High level design procedures allow
designers to tailor their architectures to the desired functions or to
modify their functions to suit the available architectures. The or-
thogonalization of various aspects of design concerns (e.g. function
v.s. architecture, computation v.s. communication, and datapath v.s.
control) makes both design exploration and verification easier.

Even with careful methodological guidance, it is still possible to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

introduce unintended and undesirable behaviors into function spec-
ifications, high level architecture models or function-architecture
mappings. Foremost among these are deadlock, livelock and star-
vation. Being semantic in nature, their complete and precise charac-
terization requires formal analysis or verification, which can only be
done at a high level of abstraction due to the state space explosion
problem. In this work, We look for a practical solution to deal with
these design problems in realistic and complex system designs. A
simulation based analysis methodology is proposed for the detec-
tion and elimination of these “semantic errors”. Designers are re-
sponsible for coming up with simulation vectors and scenarios that
are important and may lead to undesirable behaviors such as a dead-
lock. Our approach automatically analyzes the simulation status and
reports deadlocks once they occur.

While our deadlock monitoring approach can apply to any system
level design environment, we focus our effort on the synchronization
dependency and deadlock analysis for simulation in the Metropolis
design environment [3]. Metropolis is a system level design frame-
work for modern embedded systems. In the modeling language of
Metropolis, Metropolis Meta-Model (MMM), a design is specified
as asynchronous processes with communication specified with me-
dia and with its overall behavior limited by the synchronization con-
structs: function-architecture mappings, await statements, interface
function calls, constraints, and schedulers. The function and ab-
stract architecture of a system are specified separately and corre-
lated by the synchronization of the functional events with architec-
tural events (mapping). An await statement can be used to make
a process wait until some conditions hold, establish critical sections
that guarantee mutual exclusion among different processes, and pre-
vent interface function calls by other processes. To limit the behav-
ior of processes, designers can put high-level LTL (Linear Temporal
Logic) [14] or LOC (Logic of Constraints) [2] constraints on the sys-
tem specification without giving any specific scheduling algorithm,
and leave the implementation to the lower levels of abstraction. De-
signers can also write their own schedulers in architecture models
at a high abstraction level, which are called quantity managers in
Metropolis. The high flexibility of the design platform allows de-
signers to use different modeling constructs freely in a system de-
sign. Without a platform-supported systematic analysis mechanism,
this flexibility can lead to vulnerability to design errors that may
cause deadlocks.

In this paper, we identify and analyze deadlock problems in the
Metropolis simulation environment. We propose a data structure
called the dynamic synchronization dependency graph (DSDG) that
reflects the runtime blocking dependencies among processes. We
also devise an associated deadlock detection algorithm to monitor
the simulation. The goal of the synchronization dependency analy-
sis is to help the designer identify the components (e.g. processes

15.3

260

and media) and synchronization constructs (e.g. await and synch)
that are causing any deadlock problem and provide an error trace
or a history of dependency snapshots that show how the system ar-
rives at this state. We use a real world Metropolis design, the resize
component in a picture-in-picture (PiP) video processing system, to
demonstrate the usefulness and effectiveness of the deadlock analy-
sis approach. We also use a high level mapping model that includes
a functional specification, an abstract architecture model and the
mapping to illustrate how the design problems from the function-
architecture mapping can be analyzed.

1.1 Related Work
Deadlock detection and resolution techniques have already been

extensively studied in the areas of operating systems and database
systems [5, 17, 12, 16]. In those domains, deadlock prevention is
possible if particular resource allocation policies are applied. Dead-
lock avoidance is used as a part of scheduling algorithms to choose
at least one possible execution path where no deadlock will occur.
A resource allocation graph or state graph is usually used to analyze
and identify deadlock situations for deadlock detection. Though it is
possible to incorporate these techniques in a system design to elim-
inate deadlocks, they are not general enough to apply to arbitrary
designs due to the design flexibility required by today’s platform-
based embedded system designs. Our deadlock analysis mechanism
is integrated in the design framework (rather than the designs) to
help designers analyze design errors while allowing full design flex-
ibility.

In communications and concurrent software, various formal ver-
ification techniques are employed to exhaustively search deadlock
situations in concurrent protocols [8, 7, 15, 10]. In essence, syn-
chronization protocols at a high level of abstraction, either extracted
from the design or defined a priori, are formally verified. In the
latter case, lower level implementations are then developed manu-
ally keeping as close as possible to the higher level protocols. The
current approaches suffer from at least three problems. Firstly, the
abstraction of synchronization protocols from a complex design is
non-trivial and error-prone. Secondly, complex modern synchro-
nization structures are becoming too complex and their analysis also
suffers from state explosion problem. Thirdly, when a protocol is
formally verified a priori, it is still quite difficult to get designers
to follow exactly the verified protocols, not to mention that the de-
sign flexibility is considerably reduced. Our approach is based on
simulation, so it can handle real complex system designs.

In simulation verification, assertions that are based on temporal
logics can be used to check safety properties in a certain period of
execution [1]. However, temporal assertions have to be designed ac-
cording to particular applications. They are usually used to check
the overall behavior of a system, and not suitable for identifying
the causes of those undesirable behaviors due to their “trace check-
ing” nature. A general deadlock detection mechanism is proposed
in [13] for discrete event simulation models. However, no imple-
mentation on real simulation models are discussed in the literature.
In the emerging simulation environment for heterogeneous system
level designs, an effective and efficient deadlock analysis tool that
can be tightly integrated in the design methodology is needed, which
is the main focus of this paper.

In the next section, we introduce the synchronization constructs
in Metropolis Meta-Model and show how deadlock situations can
be caused by these modeling constructs. In Section 3, we present
the dynamic synchronization dependency graph (DSDG) and an as-
sociated algorithm for deadlock analysis in Metropolis simulation.
In Section 4, we use two case studies to demonstrate the approach.
We conclude the paper in Section 5.

2. SYNCHRONIZATION IN METROPOLIS
In this section, we review the synchronization constructs in the

Metropolis Meta-Model language and discuss how deadlock situa-
tions are caused by the synchronization mechanism in a concurrent
system model.

2.1 Synchronization Constructs
The modeling constructs for synchronization in MMM include

synch constraints, await statements, interface functions, quantity
managers and LTL and LOC constraints. Most of these synchro-
nization constructs are not unique to MMM, and their counterparts
are also used in other concurrent modeling languages.

In Metropolis, the system function and the architecture are mod-
eled as separate networks of processes communicating through me-
dia. In a functional network, functional processes run concurrently
and communicate with each other through media. In an architec-
tural network, computing and storage resources are modeled with
media. Services that the architecture can provide are modeled with
processes that are called mapping processes. A function model is
mapped to an architecture model as the events of functional pro-
cesses and mapping processes are synchronized with synch con-
straints. A designer is allowed to implement particular schedulers
as quantity managers to manage architectural resources and services
in an architecture model. Quantity managers are basically schedul-
ing media that implement a particular set of functions that can be
invoked by processes to issue service requests. An architectural
mapping process may be suspended by a quantity manager if it re-
quests resources (quantities in Metropolis terminology) from it. The
corresponding functional processes that are mapped to the mapping
process can then be blocked through synch constraints.

A synch constraint is an alternative of a rendezvous used in the
concurrent programming [9, 4]. It can specify that two events in
two different processes must occur at the same time. If only one
of the two events can be scheduled to occur, the process containing
the event has to be blocked until the other event can occur also. A
synch can also require that an event cannot occur until any of the
other events occur. The execution of a process has to be blocked at a
certain event until all the synch constraints containing the event are
satisfied. For example, assume functional process p0 and mapping
processes p1 and p2 have events e0, e1 and e2, respectively, and
are synchronized by a synch constraint synch(e0 => e1||e2), which
requires that e0 cannot occur until e1 or e2 occurs. This scenario
may denote that a functional process can not run until there are free
computation resources in the architecture. The execution of p0 may
be blocked by either p1 or p2, as illustrated in Figure 1.

System Netlist

Function Netlist Architecture Netlist

P0
P1

P2
synch (e0 => (e1 || e2))

Figure 1: An example of synch constraint.

An await statement is used to establish mutually exclusive sec-
tions and to synchronize processes. It contains one or more state-
ments called critical sections, each controlled by a triple (guard;
testlist; setlist). The guard can be any Boolean expression, and the
testlist and setlist denote sets of interfaces, which essentially work
as integer semaphores that can be incremented or decremented. A

261

critical section is said to be enabled if its guard is evaluated to true
and none of the interfaces in the testlist has been set by other pro-
cesses in the system. A critical section may start executing only
if it is enabled. While the critical section is being executed, the
“semaphores” specified in the setlist are incremented and can block
other processes that require the semaphores. The interface function
calls are also prevented if the interface is set by an await. If no criti-
cal section is enabled, the execution blocks. If more than one critical
section are enabled, the choice is non-deterministic. For example,
an await statement has two critical sections:

await {
(foo(); intf00; intf01) {critical section0;}
(true; intf10, intf11; intf10, intf11) {critical section1;}}

The first critical section is enabled only if guard foo() is evaluated to
true and intf00 is not set by other awaits. If a process enters this crit-
ical section, intf01 will be set . The second critical section is enabled
only if none of interfaces intf10 and intf11 is set by other processes.
If a process enters this critical section, intf10 and intf11 will be set by
the process. Note that an interface can be set by multiple processes
at a given time and must be unset by all of them to be released.

A designer can also add general LTL and LOC constraints to a
system to further restrict the behaviors of the system. We do not
present these constraints directly in the paper since their specifica-
tion semantics are not for execution and it is up to the simulator to
make sure that the execution is consistent with the constraints.

2.2 Deadlock in Metropolis
Many different definitions can be found in the literature concern-

ing deadlock. In our approach, we define deadlock for Metropolis
designs as follows:

DEFINITION 2.1. A deadlock is a situation where two or more
processes are blocked in execution while each is waiting for some
conditions to be changed by others.

Given the constructs considered in MMM, only the following sit-
uations may block the execution of a running process:

1) A process has to wait for synchronization from other functional or
architectural processes as required by one or more synch constraints.

2) A process cannot execute an interface function due to the fact
that the interface is included in the setlist of a critical section being
executed in another process’s await statement.

3) A process is blocked at an await statement due to the unsatisfac-
tion of all its guard/testlist conditions.

4) A mapping process is suspended by a quantity manager when it
is requesting some quantity from it but cannot be satisfied.

The interaction of these synchronization constructs can be quite
complicated. A deadlock exists if and only if there exist dependency
loops among the processes in a system. We will identify and analyze
the deadlock situation and report the processes and the media to
which they are connected.

3. SYNCHRONIZATION DEPENDENCY
AND DEADLOCK ANALYSIS

In this section, we introduce a deadlock analysis methodology
for system level designs. We propose a data structure called the dy-
namic synchronization dependency graph (DSDG) used in Metropo-
lis for deadlock analysis. Once the synchronization dependencies
are captured by the graph, an algorithm can be used to detect dead-
lock situations.

System Level
Design

Compilation

Simulation
Model

Simulation
Deadlock
Analysis

Synchronization
Dependencies

Simulation
Trace

Simulation
Vectors

Analysis ReportRevise the design
and/or simulation vectors

DSDG

Deadlock
Detection

Deadlock?

update
DSDG

Deadlock
Warnings

yes

Output
Dependencies

Deadlock
Analysis

Figure 2: Deadlock Analysis Methodology.

3.1 Deadlock Analysis Methodology
Our deadlock analysis methodology is illustrated in Figure 2. By

integrating deadlock analysis tools in a simulation environment for
system level designs, designers can efficiently analyze complex con-
current systems with simulation and quickly identify design prob-
lems that may cause deadlocks. The task of design analysis becomes
much easier with the help of runtime synchronization information
combined with the regular simulation trace and the static network
structure. They can be used to guide a designer to revise the design
to eliminate the problems or modify the simulation vectors to ex-
plore different execution paths looking for other design errors. This
methodology allows full design flexibility and is able to handle large
models. The details of the deadlock analysis mechanism will be dis-
cussed in the rest of this section.

3.2 DSDG
DEFINITION 3.1. A dynamic synchronization dependency graph

(DSDG) is a directed graph S=(V, E). V is a set of four categories
of vertices representing processes in the network, or-dependency,
and-dependency, and eval-dependency. E is a set of directed edges
between vertices indicating dynamic synchronization dependencies.

In a DSDG, each process in the network is represented by a pro-
cess vertex. Other dependency vertices and edges are added or
deleted dynamically as dependencies between processes change in
the execution. And-dependency requires a process to be blocked
until all the conditions become satisfied. Or-dependency indicates
that as long as one of the conditions becomes valid, a process can
be released. Eval-dependency is used to represent that a process is
blocked by a guard of an await or by a quantity manager. Guards
are not analyzed but simply evaluated to get the valuation of “true”,
“false”, or “blocked”. Similarly, quantity managers are invoked to
decide if processes that are making requests need to be suspended
or not. If a process is blocked by a guard or a quantity manager, it
has dependencies on the processes that may change the evaluation
of the guard or the quantity manager sometime later. A DSDG is
automatically built and updated during the simulation, and it de-
scribes the status of dependencies among all the concurrent pro-
cesses of a system at a particular execution state. If a process is
actively running, there is no outgoing edge from it in the graph.
If it is blocked or released, dependency edges and vertices will be
added to or deleted from the graph dynamically (see Algorithm 1
to 4). Initially, V only includes all the process vertices and E is
set to /0. During the simulation, UPDATE DSDG() is called to up-
date S every time the synchronization dependencies of the system

262

Algorithm 1 Main procedure to build and update a DSDG.
procedure UPDATE DSDG()

for each process pi in the system do
if pi is unblocked by one or more synch. constructs then

delete all the dependency vertices and edges from pi caused by those synch’s;
end if
if pi is blocked by one or more synch. constructs then

UPDATE PROCESS(pi);
end if

end for
end procedure

Algorithm 2 Procedure to handle a blocked process.
procedure UPDATE PROCESS(px)

for each synchronization construct that blocks px do
if px is blocked by a synch constraint that requires its waiting for any of processes
p1, p2, . . ., and pn then

add an or-dependency vertex ox;
CONNECT(px, ox, {pi : i ∈ [1,n]});

else if px is blocked by an interface function I then
add an and-dependency vertex ax;
CONNECT(px, ax, {processes that prevent the interface I});

else if px is blocked by a quantity manager Q then
add an eval-dependency vertex ex;
CONNECT(px, ex, {processes that are managed by Q});

else if px is blocked by an await then
UPDATE AWAIT(px , {Ci : i ∈ [1,n] and Ci is a critical section});

end if
end for

end procedure

are changed. UPDATE PROCESS() is called to update the DSDG
for each blocked process and UPDATE AWAIT() is called for a
blocking await. CONNECT() connects newly added vertices with
directed edges.

Figure 3A shows an example DSDG of a process p0 being blocked
by a constraint synch(e0 => e1||e2) (the same example used in Sec-
tion 2.1), which requires that e0 cannot occur until e1 or e2 occurs.
Figure 3B shows an example of a process p0 being blocked by an
await (the same example used in the previous section). The await
has two critical sections C0 and C1. Assume that, in C0, the guard is
evaluated to be false and is accessible by p2 and p5, which is repre-
sented by a guard vertex. The interface intf00 in its testlist is blocked
by p3 and p4. In C1, the guard is always evaluated to be true, but
the interfaces intf10 and intf11 are blocked by other processes. Fig-
ure 3C shows an example where a process p0 is blocked by 2 synch
constraints at the same time.

Each dependency vertex is labeled to indicate the exact location in
the source code that it is corresponding to. This information can be
made available for the designer to help identify the problem quickly.

3.3 Deadlock Detection Algorithm
Given a dynamic synchronization dependency graph S = (V,E)

and a set of processes that are blocked from running P, we use Al-
gorithm 5 to detect deadlock situations. Generally, the algorithm tra-
verses the graph, searches for cyclic dependencies, and determines
deadlocked processes. The algorithm not only decides if there is
any deadlock but also identify all the processes and synchroniza-
tion constructs that are involved in deadlock situations. In the worst
case, the first step of the algorithm is to find all the simple cycles
in the graph. Its complexity is O(|V | · (|V |+ |E|)) assuming that the
adjacency-list representation is used for the graph. The rest of the
algorithm will traverse all the simple cycles at most twice with a
complexity of O(|V |). If a simple cycle only contains process ver-
tices and and-dependency vertices, then it is a deadlock. If a simple
cycle also contains or- or eval- dependency vertices, there is a dead-
lock only if other edges from these or- or eval- dependency vertices
all lead to cycles. Therefore, the complexity of the algorithm is

Algorithm 3 Procedure to connect newly added vertices
procedure CONNECT(src, mid, {desti : i ∈ [1,n]})

add an edge from src to mid;
for i := 1 to n do

add an edge from mid to desti;
end for

end procedure

Algorithm 4 Procedure to handle a blocking await.
procedure UPDATE AWAIT(px , {Ci : i ∈ [1,n]})

add an or-dependency vertex ox;
for each critical section Ci (1 ≤ i ≤ n) do

add an and-dependency vertex ai;
if the guard condition is evaluated to false then

add a eval-dependency vertex gi;
CONNECT(ai, gi , {processes that may change the guard});

else if the evaluation of the guard is blocked then
recursively call UPDATE PROCESS(ai) to add dependency vertices and edges
as if ai is a blocked process;

end if
for each prevented interface intfij in Ci’s testlist do

add an and-dependency vertex ai j;
CONNECT(ai , ai j , {the preventing processes});

end for
end for
CONNECT(px, ox , {ai : i ∈ [1,n]});

end procedure

O(|V | · (|V |+ |E|)). |V | and |E|, the numbers of vertices and edges
in a DSDG, are determined by the number of process instances, in-
terface instances, critical sections of await statements and quantity
managers in a system.

3.4 Implementation
The dynamic synchronization dependency graph and deadlock

detection algorithm have been implemented in the Metropolis simu-
lator. During the simulation of a design, a dependency graph is built
and updated as the dependency state of the system changes, i.e. as
one or more processes in the system are blocked from running or re-
leased from blocking. Whenever one or more processes are blocked
from running, the deadlock detection algorithm is invoked to search
the DSDG for any deadlock situation. Once a deadlock is detected
in the simulation, the history of DSDG updates provides a trace that
shows how the system execution goes into the deadlock. Due to the
incremental nature of the DSDG update and deadlock detection al-
gorithms, this simulation monitoring mechanism will not introduce
significant overhead to the regular simulation.

4. CASE STUDIES
In this section, we use two examples, a real design of a com-

plex function model for video processing and a high level model of
function-architecture mapping, to demonstrate the usefulness and
effectiveness of our deadlock analysis approach for system level de-
signs.

4.1 Function Model for Video Processing
Figure 4 shows a picture-in-picture (PiP) video processing design.

TS DEMUX demultiplexes the single input transport stream (TS)
into multiple packetized elementary streams (PES). PES PARSER
parses the packetized elementary streams to obtain MPEG video
streams. Under the control of the user (USRCONTROL), decoded
video streams can either be resized (RESIZE) or directly feed to
JUGGLER that combines the images to produce the picture-in-picture
videos. RESIZE is the major component of PiP that computes and
adjusts the size of MPEG video frames according to user inputs. It
consists of about 9,000 lines of Metropolis Meta-Model source code
and contains 22 concurrent processes and more than 300 media.

263

A B

P

P0

P2

P1

e

&&

||

|| P0 ||

&&

e P2

P4

P3

&&
&&

&&

&&
P5

P6

synch await

C0

C1

intf00

intf10

intf11

process vertex

eval vertex

and vertex

or vertex

C

||

P0

||

P2

P4

P3

synch

synch

P1
guard (foo())

Figure 3: DSDG Examples.

Algorithm 5 Deadlock detection.
procedure DETECT DEADLOCK(S, P)

search for simple cycles in S from process vertices in P;
let � = {Li=(Vi, Ei)} be the set of all these simple cycles;
if �= /0 then

return NO DEADLOCK;
end if
for each Li ∈� do

if Li is already marked then
continue;

end if
mark Li;
if each vertex in Vi is either a process or and-dependency then

the processes in Li are deadlocked, return;
else

D := {eval- and or-dependency vertices in Vi that have two or more outgoing
edges};
�
′ := {Li};

repeat
find unmarked cycles in � that contains vertices in D;
mark all these cycles;
D := D ∪ {eval- and or- dependency vertices with two or more outgoing
edges in these cycles};
�
′ := �

′ ∪ {these cycles};
until �′ becomes stable
if ∃ vertex in D that has an outgoing edge /∈ �

′ then
continue;

end if
the processes in �′ are deadlocked, return;

end if
end for
return NO DEADLOCK;

end procedure

The video frames and control signals are passed between processes
through around 80 communication channels specified with media.
The communication channels are modeled at the task transition level
(TTL) with bounded first-in-first-out (FIFO) buffers [6]. The mu-
tual exclusion and boundary checking of the bounded FIFO buffer
is guaranteed by a central protocol. To simulate the RESIZE unit,
three additional processes are used to mimic user inputs (USER),
send MPEG video streams to the unit (SOURCE) and absorb the
data from it (SINK) as shown in Figure 5A.

In the simulation with our runtime deadlock monitoring mecha-
nism enabled, a deadlock is reported immediately after TMUX UV
and TMEM CTL U block each other through two await statements
and their synchronization dependencies are captured in the DSDG as
shown in Figure 5C. As it turns out, there is a design error in process
TMUX UV, which fails to read all the data sent by TMEM CTL U.1

The data in the bounded buffer of the channel between the two pro-
cesses accumulates until the buffer becomes full. Then a deadlock
occurs where TMEM CTL U is blocked waiting for the buffer space

1As Figure 5B shows, process TMUX UV gets video data from both
TMEM CTL U and TMEM CTL V, combines two streams of data
and sends them to its successor process.

USRCONTROL

JU
G

G
L

E
R

MPEG

MPEG

RESIZE

PES_PARSERTS_DEMUX

Picture−in−Picture

Figure 4: Picture-in-Picture Design.

to be released by TMUX UV while TMUX UV is also blocked
waiting for reading signals from TMEM CTL U. The designer can
now focus on the two processes and the communication channels
between them to identify and correct those design errors. A solu-
tion is to modify process TMUX UV and make it absorb all the data
from its input channels even if not all the data is useful. We observe
that, without the deadlock detection mechanism, the simulation will
continue and the regular simulation trace won’t show any apparent
sign of deadlock until most of the processes in the system are even-
tually blocked. By that time, the simulation trace is long and a large
number of processes are blocked. Our approach automatically catch
the deadlock as it first occurs. Designers can then focus on solving
the deadlock without complicating themselves by the consequences
of the deadlock. The simulation and analysis results are summarized
in Table 1.

4.2 Function-Architecture Mapping
In the platform-based design, the mapping is the key procedure

that correlates the function to the architecture. In this design ex-
ample (as shown in Figure 6A), two source processes (S1 and S2)
write the data into two independent channels. A separate process
(Join) then reads data items from both channels, manipulates them,
and then sends the result data to another process (Sink) through
another channel. In the abstract architecture model, there are two
CPU/RTOS units, a bus unit, a memory unit and a quantity man-
ager (i.e. scheduler) for each architectural unit.2 A CPU unit can be
shared among several software tasks that may request services from
it. When more than one service request is issued to a CPU, arbitra-
tion is needed. The mapping procedure synchronizes the processes
in the function model and the mapping processes (representing soft-
ware tasks) in the architecture model. In this example (as shown in
Figure 6A), functional processes S1 and S2 are mapped to mapping
processes SwTask1 and SwTask2, respectively, which are associated
to CPU1 and the other two processes are mapped to CPU2. The
CPU quantity managers implement a non-preemptive static-priority
dynamic scheduling policy. The two CPUs are connected to the bus
and the bus is connected to the memory unit.

2An architectural unit is modeled as a medium in Metropolis.

264

T
M

U
X

_U
V

TMEM_CTL_U

TMEM_CTL_V

SVSRC

SVSRC

RESIZE

WINDOWSHSRC SIN
K

SO
U

R
C

E

USER

&&

&&||

||

awaitCS

guardCSawait

guard

e

eTMEM_CTL_U TMUX_UV

A

B

C

Figure 5: The RESIZE unit and its synchronization dependen-
cies.

Our deadlock detection mechanism reports a deadlock within one
minute of simulation. Due to the boundedness of the channels be-
tween processes, process S1 can not complete a task of writing
data before Join reads from and releases the channel buffer. There-
fore, with the current CPU scheduling policy, the deadlock occurs
when S1 obtains the CPU service but cannot complete a writing
task while Join is still waiting for data from S2 who cannot get CPU
service. The deadlock situation involves five processes, two await
statements, two synch constraints and a quantity manager as shown
in Figure 6B. This analysis also suggests several possible deadlock
resolutions. The deadlock can be resolved by making the chan-
nel buffer large enough to store all the data from a single writing
task, increasing the number of CPUs, or changing the CPU schedul-
ing policy. We also observe that such deadlocks only occur in the
mapped design and are not inherent in the function specification or
in the architecture model. The simulation and analysis results for
this mapping model are also listed in Table 1.

Table 1: Simulation and analysis summary for both case studies.
Example RESIZE Unit Mapping Model
Code Size 9000 lines 5900 lines
Processes 22 8
Media 300+ 16
Deadlocked Processes 2 5
Time to Catch Deadlock 2min < 1min

5. CONCLUSIONS
In this paper, we study the deadlock problem in system level de-

signs that include complex synchronization constructs and function-
architecture separation and mapping. We present our deadlock de-
tection approach with a data structure called the dynamic synchro-
nization dependency graph and an associated deadlock detection al-
gorithm. We use two examples, a complex function model for video
processing and a model of function-architecture mapping, to demon-
strate the usefulness and effectiveness of our deadlock detection ap-
proach for system level designs.

We believe that the dynamic synchronization dependency graph
can be used to not only detect deadlock situations but also help

CPUSched1CPU1 CPU2

Bus

Mem

CPUSched2

MemSched1

BusSched

SwTask1 SwTask4SwTask3SwTask2
Arch

S1

S2

Join Sink
channel1

channel2
channel3

Func

synch

Mapping

synch
synch

synch

S1

S2

||

synch

Join

&& e||

await

&&e ||

await

SwTask1

SwTask2

||

synch

guard

CS

CS

guard

CPUSched1

A

B

e

Figure 6: A mapping model and its synchronization dependen-
cies.

search for livelock or starvation problems. We are currently working
on combining our simulation-based deadlock detection mechanism
and existing formal verification techniques to search for more subtle
problems such as livelock and starvation in system level designs.

6. REFERENCES
[1] http://www.eda.org/vfv, 2003.
[2] F. Balarin, Y. Watanabe, J. Burch, L. Lavagno, R. Passerone, and

A. Sangiovanni-Vincentelli. Constraints specification at higher levels of
abstraction. In Proceedings of International Workshop on High Level Design
Validation and Test, Nov. 2001.

[3] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli. Metropolis: an Integrated Electronic System Design
Environment. IEEE Computer, 36(4):45– 52, Apr. 2003.

[4] A. Charlesworth. The multiway rendezvous. ACM Transactions on Programming
Languages and Systems, 9(3):350–366, 1987.

[5] E. G. Coffman, M. Elphick, and A. Shoshani. System deadlocks. ACM
Computing Surveys, 3(2):67–78, 1971.

[6] O. Gangwal, A. Nieuwland, and P. Lippens. A scalable and flexible data
synchronization scheme for embedded hw-sw shared-memory systems. In
Proceedings of International Symposium on System Synthesis, Oct. 2001.

[7] P. Godefroid and D. Pirottin. Refining dependencies improves partial-order
verification methods. In Proceedings of the 5th Conference on Computer Aided
Verification, volume 697 of Lecture Notes in Computer Science, pages 438–449.
Springer-Verlag, June 1993.

[8] A. N. Habermann. Prevention of system deadlocks. Communications of the
ACM, 12(7):373–377, 1969.

[9] C. A. R. Hoare. Communicating sequential processes. Communications of the
ACM, 21(8):666–677, 1978.

[10] G. J. Holzmann. The model checker SPIN. IEEE Trans. on Software
Engineering, 23(5):279–258, May 1997.

[11] K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli.
System level design: orthogonalization of concerns and platform-based design.
IEEE Transactions on Computer-Aided Design, 19(12):1523–1543, Dec. 2000.

[12] E. Knapp. Deadlock detection in distributed databases. ACM Computing
Surveys, 19(4):303–328, 1987.

[13] M. Krishnamurthi, A. Basavatia, and S. Thallikar. Deadlock detection and
resolution in simulation models. In Proceedings of the 26th Conference on
Winter Simulation, pages 708–715. Society for Computer Simulation
International, 1994.

[14] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems:
Specification. Springer-Verlag, 1992.

[15] K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
[16] J. L. Peterson and A. Silbershatz. Operating System Concepts. Addison-Wesley,

1983.
[17] M. Sfinghal. Deadlock detection in distributed systems. IEEE Computer,

22(11):37–48, 1989.

265

