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ABSTRACT

SIMULATION-BASED DESIGN UNDER UNCERTAINTY FOR COMPLIANT 

MICROELECTROMECHANICAL SYSTEMS

Jonathan W. Wittwer

Department of Mechanical Engineering

Doctor of Philosophy

The high cost of experimentation and product development in the field of micro-

electromechanical systems (MEMS) has led to a greater emphasis on simulation-based

design for increasing first-pass design success and reliability. The use of compliant or

flexible mechanisms can help eliminate friction, wear, and backlash, but compliant

MEMS are sensitive to variations in material properties and geometry. This dissertation

proposes approaches for design stage uncertainty analysis, model validation, and robust

optimization of nonlinear compliant MEMS to account for critical process uncertainties

including residual stress, layer thicknesses, edge bias, and material stiffness. Methods for

simulating and mitigating the effects of non-idealities such joint clearances, semi-rigid

supports, non-ideal loading, and asymmetry are also presented. Approaches are demon-

strated and experimentally validated using bistable micromechanisms and thermal micro-

actuators as examples.
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CHAPTER 1 INTRODUCTION

1.1  Motivation

Research and development in the field of microelectromechanical systems

(MEMS) usually involves fabrication processes that push the limits of technology or pro-

cesses that are under development. In such cases, it is common to deal with large uncer-

tainties due to lack of data, inherent variation in material properties and feature

dimensions, variable loading conditions, adverse environmental effects, and other reliabil-

ity issues. The use of compliant or flexible mechanisms has helped minimize the effects of

friction, wear, and backlash in MEMS. However, compliant MEMS can be highly sensi-

tive to variations in material properties and geometry. Due to the high cost and slow turn-

around during the prototyping stage of micro mechanism design, it is important to take

these uncertainties into account in order to increase reliability and shorten the product

development cycle.

Using computer simulations to consider uncertainties during design can provide a

cost-effective approach to MEMS development, particularly when little can be done to

reduce inherent process variations. For example, uncertainty analysis can aid in develop-

ing testing procedures and designing devices to be insensitive to variation in order to
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increase yield and reliability. Simulation-based design under uncertainty for MEMS has

the potential for enabling the following important objectives:

� Increased first-pass design success

� Improved understanding of device behavior

� Model validation using both experimental data and computer simulations

� Feasibility studies for deciding whether a given design can achieve perfor-

mance objectives

� Improved device performance through robust design

One of the methods for increasing first-pass success in MEMS design is to fabri-

cate multiple devices using various design-of-experiment approaches. Uncertainty analy-

sis and sensitivity analysis can aid in screening variables and determining factor levels in

order to reduce the size of these experiments and increase the chances that the desired

results will be obtained. An indirect benefit of uncertainty analysis is a better understand-

ing of the behavior of the device. This is helpful for identifying lurking variables when

unexpected results are obtained.

Model validation is particularly important in MEMS because designers must often

deal with non-idealities or phenomena not common in macro mechanism design. Due to

the cost and difficulty of obtaining experimental data, it is often not practical to obtain a

sufficient amount of data required for traditional model validation. Modern simulation-

based uncertainty analysis methods offer a means to validate models where only a limited

amount of data is available.

Feasibility studies can be used to assess the risk in pursuing the development of a

particular design when sources of uncertainty are understood for the fabrication process.
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By identifying the significant variables affecting design performance, modifications can

either be made to the process to try to reduce variation, or the design can be modified to

avoid or design around the known variations.

Methods for optimization under uncertainty can be used to reduce sensitivity to

variations in order to create more robust designs, thereby increasing reliability and yield.

This approach is particularly useful in MEMS design, where there is little control over the

process variations or tolerances.

1.2  Purpose

The purpose of this research is to develop approaches for simulation-based design

under uncertainty in compliant microelectromechanical systems and to demonstrate how

these can be used to evaluate design performance, increase first-pass success, validate

models, and increase device yield. Results will be demonstrated through simulation, fabri-

cation, and testing.

1.3  Approach

Implementation of design-stage uncertainty methods requires (1) an understanding

of the sources of errors and variation, (2) a parametric model that can be used for simulat-

ing effects of variation, and (3) an efficient means for running the computer experiment

and analyzing the data. In order to make simulation-based design under uncertainty an

effective approach for MEMS, all three of these challenges must be met.
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Chapter 2 provides a review of compliant MEMS and the application of design-

stage uncertainty analysis in MEMS. It also provides a general review of uncertainty anal-

ysis methods.

Chapter 3 discusses in detail some of the important sources of variation in compli-

ant MEMS. It presents a generalized method for uncertainty analysis when a model con-

sists of implicit systems of equations. A linear displacement bistable micromechanism is

used as an example, where the main focus is to show how design-stage uncertainty analy-

sis can aid in achieving first-pass design success.

Chapters 4 and 5 discuss modeling issues related to compliant MEMS, providing

ways to reduce modeling error by improving accuracy or mitigating non-idealities. In

addition to the effects of joint clearances discussed in Chapter 3, these chapters consider

the effects of local elasticity in semi-rigid supports, non-ideal loading conditions, and

asymmetry that may result from process variations.

Chapter 6 provides a detailed overview of an approach for simulation-based design

under uncertainty that can be used for analyzing nonlinear finite element models. A simple

and efficient second-order uncertainty analysis method is presented that can account for

large relative uncertainties in complex models, while maintaining simplicity and transpar-

ency (ease of interpretation). The approach is used in model validation of a thermal micro-

actuator. Some of the specific contributions related to this method are:

� Use of multivariate multiple linear regression to create efficient first and 

second-order surrogate models
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� Visualization of relative uncertainty contributions via area charts, including 

correlation

� Inclusion of distribution information via surrogate-based Monte Carlo sim-

ulation

The main contribution of this dissertation is the demonstration that simulation-

based design under uncertainty can enable the development of MEMS devices that are less

sensitive to existing process variations. In Chapter 7, this approach is experimentally vali-

dated, using a case study involving a nonlinear, fully compliant, bistable micromecha-

nism.

The final chapter summarizes the main contributions of this dissertation and pro-

vides recommendations for further research. Several of the chapters have been published

or submitted for publication as separate articles, so additional background and conclusions

are provided within individual chapters.
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CHAPTER 2 BACKGROUND AND LITERATURE REVIEW

2.1  Compliant MEMS

The past decade has seen a rapid expansion of methods for designing and analyz-

ing flexible mechanisms (Howell, 2001; Lobontiu, 2003; Smith, 2000). The need for

greater accuracy and precision, along with advances in the ability to model complex elas-

tic systems, has led to an increase in the use of flexible or compliant mechanisms in preci-

sion machinery and instrumentation (Smith and Chetwynd, 1992; Smith, 2000). The

elimination of traditional mechanical joints through the use of material compliance or

elasticity eliminates some of the largest problems in precision mechanism design, namely

backlash, wear, and friction. These characteristics have made compliant mechanisms par-

ticularly useful in micro-electro-mechanical systems (MEMS) (Kemeny et al., 2002),

where assembly is either difficult or impossible, and joint clearances and wear have

proven to be one of the main problems in reliability (Tanner et al., 2000a).

One of the most common compliant components in MEMS is the linear suspension

spring, or folded-beam linear suspension. It is used in electrostatic comb drives to provide

a mechanical restoring force, to eliminate friction, and to prevent shorting by providing

purely linear motion (Zhou et al., 2001; Legtenberg et al., 1996; Jaecklin et al., 1993).

This type of spring or a similar configuration has also been used for micro resonators
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(Tanner et al., 2003), on-chip force gauges (Wittwer et al., 2002a), and tunable capacitors

(Xiao et al., 2002). One of the advantages of this type of spring is that it can be modeled

using simple analytical equations for the linear spring stiffness, maximum stress, and nat-

ural frequency.

A variety of other configurations for suspension springs have been used for RF

switches (Peroulis et al., 2003), variable capacitors (Nguyen et al., 2004; Chen et al.,

2003), electrostatic actuators (Chan and Dutton, 2000), and electromagnetic actuators

(Sadler, et al. 2000). Closed-form solutions for the spring stiffness(es) can sometimes be

derived or estimated, but the implementation of multi-physics solutions in commercial

finite-element analysis software is making it possible to model these devices coupled with

electrostatic or electromagnetic models. These models are often complex and computa-

tionally expensive, so it is still common to decouple the analysis in order to perform sepa-

rate structural, modal, dynamic, thermal, and electrostatic analyses.

In addition to using compliant components as springs or suspensions, the small

scale of micromachined beams enables the use of the material resistivity to achieve actua-

tion via coulomb heating and thermal expansion. Thermal actuators that make use of this

principle have some advantages over electrostatic actuation since they can provide higher

forces using lower actuation voltages. The two most common micro thermal actuators are

the bent-beam (Lott et al., 2001; Que et al., 2001; Sinclair, 2000; Park et al., 2000; Que et

al., 1999; Cragun and Howell, 1999), and asymmetric cross-section (Huang et al., 2000;

Lerch et al., 1996; Comtois et al., 1995) configurations. A significant amount of work has

been done to model these types of thermal actuators in order to provide a means for
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designing actuators for specific applications or requirements. Predicting actuator behavior

based upon voltage or current input is a very complex problem, involving a combination

of thermal, electrical, and structural properties, and efforts are still being made to validate

models and investigate non-idealities.

Compliant bistable mechanisms are another common MEMS component, particu-

larly for applications such as switches, relays, valves, nonvolatile or mechanical memory

cells, clamps, hinges, and positioners. The first bistable MEMS device, reported by Hälg

(1990), made use of residual stress to provide initial curvature to a beam. An electrostatic

force was then applied to toggle it into a second stable equilibrium position. Although

there are other methods for deriving bistable behavior in MEMS such as electrostatic pull-

in, making use of nonlinear compliance can be beneficial since no power is required to

hold the device in the two stable equilibrium positions. Although the analysis can be com-

plex, often requiring nonlinear finite-element analysis, the pseudo-rigid-body model has

helped simplify the analysis and improve understanding of how compliant bistable mech-

anisms behave (see Opdahl et al., 1998). Pseudo-rigid-body models provide a way to

transform the bending of flexible members to a rigid-body kinematics problem. These

models have helped to group the different configurations for compliant bistable MEMS

that have been developed into the following categories:

� buckling of pre-stressed beams (Saif, 2000; Vangbo, 1998; Yang and Kim, 

1995a; Yang and Kim, 1995b; Matoba et al., 1994; Halg, 1990)

� buckling of bistable membranes (Capanu et al., 2000; Goll et al., 1996; 

Wagner et al., 1996)
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� having pseudo-rigid-body models that resemble double-slider toggle mech-

anisms (Qiu et al., 2004; Masters and Howell, 2002; Qiu et al., 2001; 

Chang et al., 2001; Parkinson et al., 2000)

� having pseudo-rigid-body models that resemble four-bar toggle mecha-

nisms (Jensen et al., 1999b; Jensen et al., 1998)

� having pseudo-rigid-body models that resemble slider-crank mechanisms 

(Kruglick and Pister, 1998; Howell et al., 1994a)

� pinned-pinned snap-through devices (Wittwer et al., 2002b ; Baker et al., 

2000).

Due to the planar nature of surface micromachining, MEMS design often provides

an ideal application of advanced compliant mechanism design techniques such as topol-

ogy and size/shape optimization. Kota et al. (2001) used size/shape optimization to design

a motion amplifier for an electrostatic comb drive in order to reduce the overall device

footprint. Topology optimization has been applied to thermal actuator design, where the

additional electrical and thermal energy domains add a high degree of complexity (Yin

and Ananthasuresh, 2002; Li and Ananthasuresh, 2001; Jonsmann et al., 1999).

2.2  Modeling Methods for Compliant Mechanisms

Modeling the behavior of compliant mechanisms gives a designer greater power to

develop custom solutions to specific design problems. Predictive models can also help

save development cost and decrease the time to production. Choosing the design method

that is most appropriate is a decision that comes down to a complex trade-off between sim-

plicity, efficiency, accuracy, and cost. The modeling method can also affect what uncer-

tainty analysis approach is practical.
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Compliant mechanism models can be grouped into one of four categories:

� Classical models

� Finite element models

� Kinematic models (pseudo-rigid-body model)

� Metamodels, surrogate models, or surface response models

Classical modeling methods for compliant mechanisms include shear and moment

diagrams, Castigliano's theorem and other energy methods (Gere and Timoshenko, 1997;

Juvinall, 1967; Young, 1989), and elliptical integral solutions (Gorski, 1976; Bisshopp and

Drucker, 1945). The advantage of some of these models is that for the most part, they

involve simple explicit equations that can be solved directly, without iteration. This makes

them computationally efficient, but they often involve a great many assumptions that will

result in systematic modeling error. The small-deflection assumption is the most common,

along with the assumption of isotropy, linear elasticity, and homogeneity.

Finite element models for compliant mechanisms are those based upon continuum

mechanics and involve the use of custom or commercial software packages (Sevak and

McLarnan, 1974; Gandhi and Thompson, 1981). The main advantage of FEM is the abil-

ity to accurately model complex mechanisms, taking into account such things as complex

geometries, nonlinear and anisotopric material properties, residual stresses, temperature

gradients, dynamics, etc. The disadvantage is that these models are often computationally

expensive. Much of the compliant mechanism literature is associated with design methods

that make use of FEM, such as topology optimization (Ananthasuresh et al., 1994a) and

size and shape optimization (Kim and Kota, 2002).
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Pseudo-rigid-body models are often derived from classical models or FEM, but

they are unique in that they transform the problem from the bending of flexible members

to the analysis of rigid-body mechanisms. These models take advantage of the intuition

and expertise gained through experience in traditional mechanism design, and are popular

for use in developing concepts. Through the use of rigid-body replacement, these concepts

are converted to compliant mechanisms using a pseudo-rigid-body model (PRBM), which

models the compliance and energy storage in elastic members using torsional and linear

springs connected to rigid links (Howell, 2001).

The last major type of model is called a metamodel or a surface response model.

Surface response modeling is usually associated with developing a model from experi-

mental data (Morris, 2000; Myers and Montgomery, 1995; Myers et al., 1989). Finite-ele-

ment analysis and other computer modeling methods can be so complex that simplified

models are often derived from virtual or computer experiments (Giunta et al., 2003; Simp-

son et al., 1997; Montgomery and Evans, 1975). The term metamodel is used to represent

a “model of the model” or “surrogate model” derived from these computer experiments.

These simpler, more computationally efficient models can then be used for variable

screening (Welch et al., 1992), reducing design costs (Wang and Ge, 1999), design optimi-

zation (Giunta, 2002; Jin et al., 2001), optimization under uncertainty (Jin et al., 2003;

Eldred et al., 2002; Wojtkiewicz et al., 2001), and model validation (Doebling, et al. 2002;

Baghdasaryan et al., 2002). Pseudo-rigid-body models could be thought of as metamodels

because of how they are derived (from FEA or elliptic integral solutions), but they are kept

as a separate category because of the correlation to rigid-body kinematics. 
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2.3  MEMS Reliability and Uncertainty

Current standards for the expression of uncertainty and the methods for detailed

uncertainty analysis group uncertainties into two classes, systematic and random (ANSI/

ASME, 1998; ISO, 1993). Systematic, bias, or reducible uncertainty is reduced by increas-

ing the accuracy of the predictive model and through calibration and control of a device

after fabrication or assembly. Random, precision, or irreducible uncertainty is a result of

random fluctuations in controlled and uncontrolled variables that cannot be reduced

through calibration. It is important to distinguish between these two types of uncertainty

when performing experiments and reporting measurement uncertainty, but in design-stage

uncertainty analysis, all errors are grouped together and considered to be random during

the early design stages (Coleman and Steele, 1999).

Reliability has many definitions but probably the most general definition used in

mechanical design is the probability that a device will meet certain functional specifica-

tions or performance criteria. Haldar and Mahadevan (2000a, pg 2) refer to reliability as a

“probabilistic assurance of performance.” A more common but narrow definition of reli-

ability is the “...the probability of a device performing its function over a specified period

of time and under specified operating conditions” (Rao, 1992). This definition applies par-

ticularly to fatigue life estimations which are important in compliant mechanism design.

In this research, reliability is used in the general sense to refer to both the probability of

failure due to static loading and the probability of meeting general performance specifica-

tions.
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Although the term reliability-based design (RBD) can indicate that the reliability

of a device is considered during design, RBD is often specifically associated with quanti-

tative failure analysis through the use of a mathematical performance function. RBD and

parametric design-stage uncertainty analysis are practically synonymous, except that eval-

uation of reliability requires a performance metric, specification, or limit-state function

(Haldar and Mahadevan, 2000a).

MEMS reliability is an active field of research, and is mostly concerned with iden-

tifying failure modes and finding ways of preventing failures (Tanner et al., 2000a; Rosing

et al., 2000; Smith et al., 1999). Parametric design-stage uncertainty analysis is one

method for preventing failures, but it cannot account for all the different failure modes and

effects associated with MEMS reliability. Layout errors, configuration management, pack-

aging, handling, storage, modeling errors, and other qualitative or subjective uncertainties

all affect the reliability of a device, but may not be quantifiable. Only those quantifiable

sources of uncertainty that can be associated with one or more of the model parameters

can be included in an uncertainty analysis.

A formal approach for systematically identifying failure modes and their effects is

known as FMEA, or failure mode and effect analysis (Stamatis, 1995) and this approach

has been applied in the design of pressure sensors (Rosing et al., 2000). The FMEA con-

cept provides a way to integrate qualitative failure analysis with quantitative fault simula-

tion and is a widely accepted approach for evaluating and improving system reliability.

Some of the issues known to affect MEMS reliability are listed below:

� Stiction and release
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� Packaging, handling, and storage

� Modeling errors, assumptions, and simplifications

� Geometric or dimensional variations due to mask misalignments, etch bias, 

photolithography, conformal deposition, etching, and polishing.

� Bending of support structures or semi-rigid links

� Residual stresses and stress gradients

� Clearances, wear, and particulate contamination and shorting

� Charging and electrostatic discharge

� Non-ideal, unexpected, or variable loading conditions

� Material property variations, nonlinearity, homogeneity, or isotropy

� Fatigue and thermal cycling

� Humidity, stress corrosion cracking, creep, optical degradation, thermal 

degradation, dormancy

� Radiation

� Shock and vibration

These issues do not affect all MEMS devices, but identifying what effects are sig-

nificant in the performance of a device will continue to be a necessary part of MEMS

research. This dissertation addresses only those sources of uncertainty that can be quanti-

fied and included in the parameterization scheme of the model.

In addition to identifying sources of uncertainty in MEMS, it is important to obtain

data relative to common levels of replication (Coleman and Steele, 1999; Figliola and

Beasley, 1995). For example, Limary et al. (1999) provides reproducibility data regarding

the SUMMiT V process in the form of trend charts for layer thicknesses, sheet resistance,

and line widths. These charts indicate lot-to-lot (process-level) variation and wafer-to-

wafer (lot-level) variation. Tanner et al. (2003) showed that there is also a significant mod-
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ule-to-module (wafer-level) variation for line widths, following a center-to-edge trend that

is commonly understood as being a factor in many micro fabrication processes. To be

complete, uncertainties ought to also be defined relative to feature-to-feature (module-

level) variation,  time-dependency (first-order replication), and resolution (zero-order rep-

lication).

2.4  Uncertainty Analysis in Compliant MEMS

Considering uncertainty in design is not a new concept, but before stochastic meth-

ods were developed, designers typically used deterministic safety factors in order to

design for strength-based reliability. The trade-off between increasing accuracy and reli-

ability and minimizing cost has led to reliability-based optimization (Haldar and Mahade-

van, 2000a, 2000b; Kuo et al., 2001), tolerance allocation (Hong and Chang, 2002), robust

optimization (Parkinson et al., 1993), and sensitivity analysis (Saltelli et al., 2000), all of

which are related to modifying a design to meet some performance criteria. These research

areas are fairly similar and include both deterministic and probabilistic methods.

One of the earliest papers on error analysis in compliant mechanisms discussed the

issue of parasitic deflections (Jones and Young, 1956). The term parasitic error was used

to represent any motion other than the desirable motion. In modern kinematic terminology

this would be a combination of both structural and mechanical error (Hartenberg and

Denavit, 1964). Ryu and Gweon (1997) discussed the effects of machining imperfections,

specifically the position variation in drilled holes, on the behavior of flexure-based linear

suspensions. But, most of the literature having to do with error analysis in compliant

mechanisms is associated with structural error resulting from the choice of modeling
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methods, and not mechanical or operational error due to tolerances, clearances, variable

loading, or material properties.

Statistical uncertainty and reliability analysis techniques have only recently been

applied to compliant mechanisms. Mirfendereski et al. (1993) applied stochastic finite-

element methods to analyze uncertainty in micro strain gauges. Howell et al. (1994d)

included variation in link lengths, material properties, and cross-sectional dimensions in

the analysis of the strength-based reliability of a bistable compliant mechanism. Smith

(2000) provides a fairly detailed discussion of manufacturing issues in compliant mecha-

nisms, but discusses only basic uncertainty and tolerance analysis principles. Wittwer

(2001) explored the use of first-order second moment (FOSM) methods for systems of

implicit equations as a means of estimating the precision and reliability of micro compli-

ant mechanisms considering the effects of variations in material property and dimensional

parameters using the pseudo-rigid-body model. This method is only accurate for cases

involving relatively small variations or tolerances, but can be useful in design to determine

the effects of uncertainty in individual parameters on various performance functions.

There has not been extensive research on reliability-based design methods or

design-stage uncertainty analysis in MEMS, although it is widely known that large varia-

tions in material geometric characteristics do exist in microfabrication processes (Limary

et al., 1999). Most of the existing literature addressing uncertainty analysis in MEMS has

to do with microsystem metrology, where basic structural material properties, such as

Young's modulus, fracture strength, and residual stress must be inferred from other mea-

surable quantities (Wittwer et al., 2002a; Baker et al., 2002; Pryputniewicz et al. 2002;



18

Jensen et al., 2001; Allen and Johnson, 2001; Tanner et al. 2000a; Gupta 2000; Johnson et

al., 1999; Gianchandani and Najafi, 1996; Mirfendereski et al., 1993). In most of these

cases, basic uncertainty quantification methods were used to determine overall measure-

ment uncertainty. Mirfendereski et al. (1993), Gupta (2000), and Wittwer et al. (2002a)

provided some discussion of how individual uncertainties contribute to device perfor-

mance.

Recently, Maute and Frangopol (2003) embedded topology optimization inside of

a reliability-based design optimization framework, providing a stochastic method for reli-

able compliant MEMS design. While this technique has the benefit of taking advantage of

modern reliability-based design methods, reliability assessment assumes that (1) you have

an accurate understanding of the distributional form of the uncertainties, (2) you have

clearly defined metrics and performance specifications, (3) your model has been fully val-

idated. In MEMS, these conditions are rarely ever met, so the reliability or probability of

success becomes a rather subjective metric. Still, reliability-based design optimization

using stochastic finite-element analysis may be useful for robust design of compliant

MEMS.

Visualizing and quantifying uncertainty through the use of error bands, confidence

intervals, and relative uncertainty contributions can help a designer make qualitative deci-

sions based upon the predicted performance of a micro sensor or measurement device

(Wittwer et al. 2002a , Wittwer et al., 2002b). Initial research completed by the author

(Wittwer, 2002a) demonstrated a generalized design-stage uncertainty analysis method

based upon mechanical tolerance analysis for models involving systems of implicit equa-
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tions. The method was applied to the design of a micro linear-displacement bistable mech-

anism and provides a first example of designing a micro mechanism to meet specific

performance requirements based upon the use of process uncertainties to ensure first-pass

design success. This method will be described in the next, along with the discussion of the

sources of uncertainty associated with the design.

2.5  Uncertainty Analysis Methods

Fundamental to almost all analytic or sampling-based uncertainty quantification

(UQ), uncertainty analysis (UA),  tolerance analysis (TA), and reliability analysis (RA)

methods is the principle of error propagation or transmission of variation. Computer mod-

els are inherently deterministic, in that the same set of inputs will yield the exact same

responses. Real systems are inherently stochastic, so simulating error propagation

involves statistical methods for changing the input variables and evaluating the resulting

response to determine the mean, standard deviation, or distribution of the response.

Many texts have been written to document the wide variety of methods for per-

forming reliability analysis or probabilistic uncertainty analysis (Haldar and Mahadevan,

2000a; Haldar and Mahadevan, 2000b; Saltelli et al., 2000; Coleman and Steele, 1999;

Figliola and Beasley, 2000; Rao, 1992; Wadsworth, 1990). These methods are typically

either sampling-based or sensitivity-based. The most common sampling based methods

are Monte Carlo (MC) simulation and Latin Hypercube (LH) sampling, but others include

bootstrap sampling (BS), importance sampling (IS), quasi-Monte Carlo simulation (qMC),

and Markov chain Monte Carlo simulation (McMC). The most common sensitivity-based

methods are known as differential analysis methods in that the function is expanded using
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a first or second-order Taylor series expansion. Propagation of system moments (Shapiro

and Gross, 1981; Cox, 1979) is then used to determine the statistical characteristics of the

response. Second-order methods combined with the propagation of system moments have

been shown to be useful when the function is nonlinear and uncertainties are relatively

large (Glancy and Chase, 1999; Lewis, 1993). Another second-order method involves run-

ning a Monte Carlo simulation using the second-order Taylor series expansion as a surro-

gate model (Iman and Helton, 1985).

A third method for uncertainty analysis that applies to computational continuum

mechanics is stochastic finite element (SFEA). This approach has been widely developed

for structural analysis (Haldar and Mahadevan, 2000b; Ghanem and Red-Horse, 1999; Ma

et al., 1996; Ghanem and Spanos, 1991; Kam and Lin, 1990; Contreras, 1980; Kleiber,

1980) and has been applied to MEMS (Mirfendereski et al. 1993) and compliant mecha-

nisms (Maute and Frangopol, 2003). SFEA is currently used mostly for static assemblies

and structures. It is not a very efficient means for analyzing compliant mechanisms, where

it is often desirable to predict variation at many positions, because there is a significant

amount of work involved in setting up the model.

Another advanced area of research for studying error propagation in engineering

models is Bayesian analysis (Chandrashekar and Krishnamurty, 2002; Welch et al., 1992),

which can be grouped into the sampling-based methods, because much of the research

involves choosing optimal sampling plans. Bayesian methods can often be used to include

both quantitative and qualitative information for predicting the stochastic response of a

model, and the problems are formulated so that information can be updated as it becomes
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available. For this reason, Bayesian methods are receiving attention as useful approaches

for model validation. However, an advanced understanding of statistics is required.

Most uncertainty and reliability analysis methods are probabilistic, where proba-

bility distributions are used to represent uncertainty in input parameters. Fuzzy-set or pos-

sibility-based methods are another type of uncertainty analysis, that is typically used when

there is a lack of information and uncertainties are based upon subjective estimates

(Nikolaidis et al., 2004; Ayyub, 1998; Ayyub and Gupta, 1997).

No single method is ideal for all problems that may be encountered in compliant

MEMS design, since each method has a number of advantages and disadvantages. For

example, sensitivity-based methods cannot account for discontinuities in the model and

Monte Carlo simulation is too computationally expensive to use with a finite-element

model. For this reason, hybrid methods based upon creating surrogate uncertainty models

are popular for large-scale problems (many variables) and small-scale problems involving

complex FEA models (Wojtkiewicz et al., 2001).

A wide variety of software is available for implementing various UA methods, but

most of the effort in uncertainty quantification is in developing the parametric model to

accurately propagate sources of error and uncertainties. Therefore, toolkits such as

DAKOTA (Eldred et al., 2002), that treat the model as a “black box” and allow the same

model to be used for design and analysis of computer experiments (DACE), optimization,

design exploration, and uncertainty quantification studies, have particular appeal for

research and development (Giunta, 2002). DAKOTA also takes advantage of the fact that

UA and optimization routines involve parallel processes. The idea of using an object-ori-
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ented approach to computer simulation is also part of a new design methodology, where

automated encapsulations of a streamlined design process are created in order to reduce

cycle time and errors in the design and layout of MEMS (Cherry et al., 2003).
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CHAPTER 3 UNCERTAINTY ANALYSIS FOR ANALYTICAL 

COMPLIANT MECHANISM MODELS

This chapter presents a generalized uncertainty analysis method for compliant

MEMS where models consists of analytical implicit systems of equations. The approach is

demonstrated using a micro linear-displacement bistable mechanism, considering the

effects of joint clearances, dimensional and material property variations, and friction. The

analysis is performed at multiple deflections to estimate uncertainty bands around the

force-displacement curve of the mechanism. Effects of joint clearances are minimized by

ensuring a forced-closed contact condition through the use of compliant segments. Apply-

ing design-stage uncertainty analysis resulted in a functional first-time prototype of a

bistable mechanism that can be actuated using a non-amplified thermal actuator.

3.1  Introduction

Reliable engineering design involves the use of uncertainty analysis during all

stages of the experimental process. Due to the high cost and slow turn-around during the

prototyping stage of micro mechanism design, great advantage can be gained by perform-

ing uncertainty analysis during the early design stages.

Joint clearances, variable loading due to friction forces, dimensional variations,

and uncertain material properties all contribute to the uncertainty of micro system behav-
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ior. For micro mechanisms, these uncertainties are often relatively large, making it diffi-

cult to design functional first-time prototypes.

The purpose of this chapter is to demonstrate how general uncertainty analysis can

be used to evaluate the design of a micro linear-displacement bistable mechanism

(LDBM) (Baker et al., 2000) that must meet certain force-deflection requirements.

Bistable mechanisms have two stable equilibrium positions within their range of

motion. They are used in many types of applications, including switches, valves, clamps,

hinges, and positioners. Application of bistable mechanisms at the micro level is of inter-

est because the mechanism remains in each position without requiring any input power.

One of the most common bistable mechanism designs involves the use of a com-

pression or tension spring attached to a link that is then toggled between two positions.

When the motion of this toggle link is linear, the mechanism is called an LDBM and the

link is often referred to as a shuttle. Figure 3.1 shows a schematic of an LDBM that uses

��������	
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Figure 3.1   Kinematic model for the LDBM showing the (a) fabricated position and the (b) 
second stable position.

(a)

(b)

Shuttle
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this type of design. The force, F, represents an applied force required to move the shuttle.

When the shuttle passes the unstable equilibrium position, it will snap to the second stable

position without requiring any additional power. The spring function can be achieved

using any number of methods employing the elastic deflection of flexible members. The

micro LDBM described in this chapter (Figure 3.2) is fabricated using surface microma-

chining, and compliant functionally binary pinned-pinned segments (Wittwer and Howell,

2002; Howell, 2001) are used as springs.

When the LDBM is used as a precision positioner, a designer may need to estimate

the position error in the second stable equilibrium position. Figure 3.3 shows an LDBM

being used as an electro-mechanical switch. To ensure an adequate electrical contact, the

designer may need to know where to place the contact and be able to ensure a minimum

contact force. In addition, there may be a limit on the maximum force required to actuate

Figure 3.2   A micro LDBM using functionally-binary pinned-pinned segments as springs.

Applied Force, F

Shuttle

Spring 1

Spring 2

Figure 3.3   An LDBM used as an electro-mechanical switch.
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the mechanism due to the capabilities of the micro actuator. In all of these cases, estimat-

ing the effect of uncertainty on the performance of the mechanism during the design pro-

cess may not only save time and cost, but will help in designing more robust mechanisms.

Methods for estimating uncertainty for models that are described with explicit

functions are well-established (Coleman and Steele, 1999). However, kinematic models

such as the one used to model the bistable mechanism in Figure 3.1 are generally systems

of equations that are both implicit and nonlinear. Uncertainty analysis of such systems is

not a new concept, but the analysis is often avoided during design due to mathematical or

statistical complexity.

A method common to tolerance analysis, known as the Direct Linearization

Method (DLM) (Chase et al., 1995) describes a way to model position error in assemblies

using vector loops, that combine to form an implicit system of nonlinear equations. The

DLM uses a set of rules for developing correct vector models based upon effects of geo-

metric variation, part tolerances, and dimensioning schemes. These rules provide the

guidelines for ensuring that the model can correctly simulate the effects of variation or

uncertainty. The DLM has been shown to be useful in the analysis of mechanisms which

require uncertainty analysis to be performed for a series of positions (Wittwer, 2001). The

mathematical basis of the DLM is simply a matrix form of the error propagation equation

used in uncertainty analysis. This chapter presents the DLM in a generalized form that can

be applied to a system of equations that involves force and stress in addition to position.

Following the description of the general uncertainty analysis method for implicit

systems of equations, some of the main sources of uncertainty in micro mechanisms will
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be discussed. The model for the LDBM will then be described, followed by a discussion

of the results of the design-stage uncertainty analysis. The analysis is performed at multi-

ple displacements of the shuttle, resulting in error bands around the nominal force-deflec-

tion curves. These results can then be used to evaluate the performance of the LDBM in

terms of the design requirements.

3.2  Generalized Uncertainty Analysis

The mathematical basis of the Direct Linearization Method is similar to the gen-

eral uncertainty analysis method described by Coleman and Steele (1999), but the DLM

uses matrix notation. Both methods are based upon a first-order Taylor series expansion

and use only second-moment statistics. In general uncertainty analysis, the equation that

describes the way errors propagate in a model is known as the error propagation equation.

This section describes a generalized form of the error propagation equation, where the

sensitivity matrix is determined based upon the DLM.

First, let G be a system of equations in implicit form 

(3.1)

where u is a vector of q primary variables, , and v is a vector of p

secondary variables, . Let Su be the estimated covariance matrix for

u. If all elements of u are independent, then Su is a diagonal matrix, where each element sii

is the variance of ui. The estimate of the covariance of v is found using

(3.2)

G u,v( ) g1 u,v( ) g2 u,v( ) … gp u,v( ), , ,[ ]T
0= =

u u1 u2 … uq, , ,[ ]T=

v v1 v2 … vp, , ,[ ]T=

Sv θSuθT
=
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which is derived from second-moment statistics and a multivariate Taylor series expansion

about the nominal or mean values of u and v.  is the sensitivity matrix of size p x q where

the elements θij represent .

There are numerous ways of obtaining the sensitivity matrix, . A common

approach is to estimate it using finite-difference techniques. For small systems of equa-

tions, where it is possible to obtain partial derivatives of gi with respect to ui and vi sym-

bolically, the procedure used in the DLM is more precise. The sensitivity matrix is found

using

(3.3)

where A is a matrix of size p x q with elements aij equal to , and B is a matrix of

size p x p with elements bij equal to  (see Wittwer et al., 2004).

In uncertainty analysis, it is usually a good practice to describe the model in terms

of the most fundamental physical variables in order to ensure that all the primary variables

are independent. When this is not possible, Equation (3.2) is still general enough to handle

linear correlation between the primary variables. Otherwise, the only additional assump-

tions in Equation (3.2) are the assumptions made in estimating Su, such as the distribu-

tional forms of the primary variables. A detailed discussion of confidence intervals will

not be included in this chapter, so all uncertainties will be reported at one standard devia-

tion.

θ

∂vi ∂uj⁄

θ

θ B
1–
A–=

∂gi ∂uj⁄

∂gi ∂vj⁄
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3.3  Sources of Uncertainty

Current standards for the expression of uncertainty and the methods for detailed

uncertainty analysis make use of a differentiation between systematic (bias) error and ran-

dom (precision) error (ANSI/ASME, 1998; International Organization for Standardiza-

tion, 1993). Although it is important to distinguish between these two types of uncertainty

when performing experiments, in general uncertainty analysis, all errors are grouped

together and considered to be random during the early design stages (Coleman and Steele,

1999).

The bistable mechanism described in this chapter was fabricated using the MCNC

multiuser MEMS process (MUMPs), a surface micromachining process that consists of

three polycrystalline silicon layers (Poly0, Poly1, and Poly2), two sacrificial phosphosili-

cate glass (PSG) layers (Oxide1 and Oxide2), and a gold metal layer. Further details of the

process are described in the MUMPs Design Handbook (Koester et al., 2001). The

remainder of this section describes some of the specific sources of uncertainty that ought

to be considered in designing bistable MEMS using this process.

3.3.1   Film Thickness Uncertainty

The growth of the polysilicon and PSG layers is timed and subject to varying oper-

ating conditions. Although there is usually negligible variation in thickness from mecha-

nism-to-mechanism on a single wafer, the variability in the operating conditions leads to
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significant variation in thickness from wafer to wafer and batch to batch. Table 3.1 shows

the target values reported in the MUMPs Design Handbook and the estimated process

mean  and process standard deviation  for each layer. These estimates were based on

data from 38 different batches (MUMPs runs 10-47) with sample sizes of about 15.

The estimate of variance for the thickness of each ith layer  is found by adding

the variances corresponding to the systematic and random uncertainties.

(3.4)

where  is the estimate of the random uncertainty, and  is the estimate of the systematic

uncertainty or the standard deviation of the process mean.

The flexible beams used in the LDBM are a Poly1-Poly2 laminate, so the uncer-

tainties combine by root-sum-square to give an overall thickness of h = 3.5 ± 0.05 µm.

3.3.2   Width Variation and Cross-Section Shape

It is important to consider the uncertainty in cross-sectional shape because both the

forces and stresses in beams undergoing planar bending are highly sensitive to the in-plane

width of the beam. Inspection of beams fabricated using MUMPs reveals that the cross-

Table 3.1  Mean and standard deviation for layer thicknesses in MUMPs (in µm).

Layer Target

Nitride 0.600 0.602 0.022 0.013 0.025

Poly0 0.500 0.505 0.004 0.008 0.009

Oxide1 2.000 2.019 0.055 0.057 0.079

Poly1 2.000 1.990 0.029 0.029 0.041

Oxide2 0.750 0.753 0.021 0.019 0.029

Poly2 1.500 1.500 0.018 0.022 0.028

Metal 0.520 0.506 0.019 0.028 0.034
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section of etched polysilicon is trapezoidal rather than rectangular (Sharpe et al., 2001;

Mirfendereski et al., 1993). Although there is some variation in the width due to the irreg-

ularities caused by the etch process, the cross-section is fairly constant along the length of

the beam. 

A detailed analysis for in-plane bending should use the trapezoidal moment of

inertia about the vertical axis

(3.5)

where wt is the width of the top surface, wb is the width of the bottom surface, and h is the

layer thickness. Sharpe et al. (2001) have made measurements of the top and bottom sur-

faces of beams ranging from 2 to 20 µm in width using TEM images. They found that the

bottom surface was generally one micron wider, regardless of the beam width. This

implies that the side wall angles may be independent of the width. Using this assumption,

a more practical approach is to use optical or SEM images to measure the width of the top

surface. The width of the bottom surface can be estimated by assuming an angle for the

side wall and using

(3.6)

where θ is the angle of the side wall.

Preliminary measurements have found that the top surface of a Poly1-Poly2 lami-

nate specified as 3 µm wide results in a width of about 2.45 ± 0.15 µm. Assuming a simi-

lar bias for a 4 micron wide beam, the width of the flexible segment for the LDBM will be

considered to be wt = 3.45 ± 0.15 µm. Measurements made from images such as that in

I
h
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Figure 3.4 show that the sidewall angle is approximately θ = 3.5 ± 2 degrees from vertical.

These measurements were taken from multiple features on a single wafer, so they do not

represent the process mean and standard deviation. Better estimates for the actual cross-

sectional shape will be possible as more data becomes available.

3.3.3    Joint Clearances

Joint clearance is one of the largest contributors to position and force uncertainty at

the micro level. Many micro system designs are made impractical due to the effects of the

joint clearances alone, especially when a system is limited by the force and displacement

capabilities of a micro actuator. While extensive work has been done to predict the effects

of clearance on the position error of macro machines (Garrett and Hall, 1969; Choi et al.,

1998), only some attention has been given to these effects at the micro level (Kosuge et

al., 1991; Sacks and Allen, 1998; Behi et al., 1990).

Pin joints created using surface micromachining methods typically have relatively

large clearances. The amount of clearance is determined by the thickness of the sacrificial

oxide layer (Oxide2) that separates the contacting surfaces and is usually defined as the

differences in diameters of the hole and pin. Mali et al. (1999) found that the thickness of

the film coverage of Oxide2 on vertical sidewalls is approximately 40% of the layer thick-

Figure 3.4   SEM image of an array of cantilever beams showing angled side walls.
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ness indicated in Table 1. This means that the nominal half-clearance c is approximately

0.3 µm and the uncertainty of c is correlated with the uncertainty in thickness of Oxide2.

Figure 3.5 shows SEM images of a grounded and floating planar revolute joint

used in the surface micromachined LDBM. After a mechanism is released (i.e. the sacrifi-

cial oxide layers are removed), the links generally fall to the substrate. Not only is there a

possibility of rotation out of plane, but the angle of the side walls contributes to the uncer-

tainty in the clearance. Although not reported by Mali et al., there is some systematic

uncertainty associated with the 40% conformability factor and some random uncertainty

due to the surface roughness caused by reactive ion etching of polysilicon (Behi et al.,

1990). When all these sources of uncertainty are taken into account, the estimate used in

this chapter for pin joint clearance in MUMPs is c = 0.34 ± 0.06 µm. Measurements of

clearance from images such as those in Figure 3.5 are in general agreement with these val-

ues.

3.3.4   Material Property Uncertainty

Uncertainty in material properties often presents a challenge for predicting mecha-

nism performance and reliability. Mechanisms that rely on the force and deflection charac-

teristics of elastic members are particularly sensitive to uncertainty in material stiffness

Figure 3.5   (a) Anchored and (b) floating pin joints showing joint clearance.

(a) (b)
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and fracture strength (Wittwer et al., 2002). Polysilicon exhibits a high degree of variation

from batch to batch. It is often not practical to determine the exact properties for each

batch and therefore material properties can remain a large source of uncertainty.

Sharpe et al. (2001) provides a summary of experiments performed by several dif-

ferent groups to determine Young's modulus for polysilicon, and gives a range of values

between 135 and 173 GPa. Using three separate approaches, Sharpe et al. determined that

for design purposes, a conservative value for Young's modulus is E = 158 ± 10 GPa. They

also found that specimen size had no significant effect on Young’s modulus, but strength

increased from 1.21 ± 0.08 GPa to 1.65 ± 0.28 GPa as specimen size decreased. Due to

the large discrepancies in reported fracture strengths, a conservative value used in this

chapter is Sy = 1.50 ± 0.25 GPa.

3.3.5   Uncertainty Due to Friction

A number of factors contribute to friction in MEMS devices, including viscous

drag forces, surface roughness, surface contamination, electrostatic attraction, and van der

Waals forces. Though efforts have been made to reduce the causes of friction, it cannot be

eliminated entirely and is often difficult to quantify. Lim et al. (1990) used polysilicon

folded beam structures to measure static friction coefficients, and de Boer et al. (1998b)

used a hinged microstructure to measure a sliding coefficient of friction. The results for

these two experiments were very different, illustrating the wide range of values for friction

coefficients depending on surface conditions and experimental environments. In addition

to uncertainty in the coefficient of friction, there will also be uncertainty in the normal

forces from which the friction force is calculated. This chapter will consider the effects of
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friction by representing it as a force Ffriction that acts in opposition to the shuttle motion.

The prediction of the friction force ought to be fairly conservative due to the large varia-

tion that is common in MEMS. Based upon prior experience with similar devices, a con-

servative estimate of the friction force for the LDBM is Ffriction = 15 µN.

3.4  Nominal Force and Position of the LDBM

The first stage in analyzing the LDBM is to develop a model that relates the

applied force to the displacement under nominal conditions. This chapter uses a kinemat-

ics-based approach to modeling the LDBM, where clearances are modeled using clearance

vectors (Choi et al., 1998), and linear springs are used to represent the compliant seg-

ments. The goal is to develop a system of equations G(u,v) which can then be used to per-

form the uncertainty analysis of the complete system. Although the equations will be

placed into implicit form, the example used in this chapter does not require a nonlinear

solution method to obtain the nominal positions, forces, and stresses.

If the springs on the right side of the LDBM are the same as the springs on the left,

then when a force is applied at the center of the shuttle as shown in Figure 3.1, there is no

rotation of the shuttle. This symmetry allows a simplification of the model shown in Fig-
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ure 3.6, where the applied force for the half-model is F/2. The boundary condition on the

shuttle is a result of the symmetry and also assumes that the variation in spring constants

and dimensions does not lead to any rotation. This assumption is reasonable because the

batch-to-batch variation that leads to systematic uncertainty is much larger than the ran-

dom variation that exists after fabrication of an individual mechanism.

The kinematic model for the LDBM is shown in Figure 3.6, where δ is the dis-

placement from the initial fabricated position, and the initial position is given by

µm, µm, µm, µm, and 

µm. These initial values will be considered to be constant because the location of the ideal

centers of the holes in the Poly1 layer are determined by a single mask and the accuracy of

the relative placement of different features within a single mask is very precise. The pins

are created based on the conformity of the Poly2 layer within these holes, so the axes of

the pins and holes are almost perfectly aligned during fabrication.

F /2

r 1

r 2

y 1o

y 2o

r 5

δ

Figure 3.6   Kinematic model for the LDBM in its fabricated position.
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3.4.1   Springs

The micro LDBM in Figure 3.2 uses functionally binary pinned-pinned (FBPP)

segments, which will be modeled as linear springs. The linear spring constant found using

Castigliano’s method is

(3.7)

where  is based upon the initial shape of the pinned-pinned segment. This value will be

treated as a constant in this chapter, but a more detailed description of how  is derived

can be found in the work by Wittwer and Howell (2002). The main source of uncertainty

introduced by Equation (3.7) is the systematic uncertainty due to using the linear spring

model for typically nonlinear FBPP segments. This uncertainty is specified as a percent

uncertainty. To include modeling error when the error is a percentage as opposed to a fixed

value, the spring constant equation is

(3.8)

where pk is nominally zero and will be considered a primary variable. If the maximum

modeling error is ±5% and this is treated as systematic uncertainty, then the estimate of the

standard deviation of pk is .

3.4.2   Modeling Clearances

For static analysis of force-closed assemblies and mechanisms, clearance vectors

provide an accurate method of considering both the direction that clearances are taken up

and the statistical variation in the size of the clearance. The direction corresponds to the
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direction of the resultant contact force at the joint. A pinned-pinned segment or link can

only support forces along the axis between the two pinned ends. Therefore, the direction

of the clearance vectors will always be parallel to the spring vector when the spring is

loaded. Figure 3.7 shows how these clearances are modeled for a spring in compression.

In compression, the length of the first spring is determined by , while in ten-

sion, the length of the spring is . A zone of contact loss in which the force in

the spring is zero can be described mathematically as  when .

Similar equations apply to the second spring as well.

A common method of reducing the position error due to joint clearance is applying

a load on the joints such that the joints always maintain contact. For surface-microma-

chined planar mechanisms, this technique is not possible in the initial fabricated state, but

for the LDBM, the position error at the second stable equilibrium position can be reduced

by using two or more springs with different initial positions (i.e. ). This can be

Figure 3.7   Schematic showing how clearance is taken up when a pinned-pinned 
spring is compressed.
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seen in Figure 3.8, which is a plot of the y-component of force applied to the springs as a

function of δ. The flat regions in the figure represent the zero-force regions where there is

no forced contact in the joints. The plot of the combined force of the two springs, F/2,

shows that the second stable position does not fall within a zone of contact loss.

For a micro positioner, designing an LDBM to have no contact loss at the second

stable position is possible by using statistical interference theory (Rao, 1992) to estimate

the variation in the location of the no-contact zones. The displacements at which the points

of loss of contact, or discontinuities, occur near the second stable equilibrium position are 

(3.9)

(3.10)

where  and  are the displacements of springs 1 and 2, and  and  are the ini-

tial y-positions of the pin joints on the shuttle as shown in Figure 3.6. The variations in the

positions of the discontinuities are shown as normal distributions at the bottom of Figure

8. These distributions were estimated using a separate uncertainty analysis of Equations

Figure 3.8   Individual and combined force-displacement curves for two different springs.
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(3.9) and (3.10) considering the clearance c as a normal random variable. The mechanism

described in this chapter was designed to ensure that the probability of contact loss in the

second stable position was less than 0.27%, which can be seen by the small overlap of the

two center distributions.

3.4.3   Stresses

The maximum stress in each spring is an important consideration in design. The

equation for the maximum tensile or compressive stress using the linear model is

(3.11)

where Fs is the force in the spring,  is the distance from the neutral axis to the

outer edge of the beam,  is the cross-sectional area, and b is a distance

based upon the initial shape of the beam (see Wittwer and Howell, 2002). To avoid a com-

pletely separate analysis, the stress equations for each spring will be included in the sys-

tem of equations. The strength-based reliability, or the probability that , can

then be evaluated during the uncertainty analysis of the complete system.

3.5  Performance Uncertainty of the LDBM

After evaluating the nominal performance of the device at a given displacement,

we can use the generalized uncertainty analysis method described in Section 3.2 to esti-

mate the uncertainty in performance (i.e. the variances for the secondary variables). The
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equations developed in the preceding sections must first be placed into a system of

implicit equations:

(3.12)

(3.13)

 for 

 for (3.14)

 for 

 for (3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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The sgn(x) function used in Equations (3.14) and (3.15) is defined as +1 for posi-

tive x and -1 for negative x. There are 14 equations, so v consists of 14 secondary vari-

ables,

 (3.26)

There are 7 primary random variables that form the u vector:

(3.27)

All other variables in Equations (3.12)-(3.25) are considered to be constants, except for δ,

which is the displacement of the shuttle. The values for , , b1, and b2 are 1.474E-

5 µm-3, 1.479E-5 µm-3, 44.57 µm, and 44.58 µm, respectively. It is important to ensure

that all the values for the primary variables conform to some base unit system. The system

used in this chapter is a variation of the mks system which is convenient for micro mecha-

nism analysis, where the units are µm for length, µN for force, and MPa for stress. The

nominal values of the primary variables in the u vector are

(3.28)

Because the uncertainties are uncorrelated, the only non-zero elements in the primary

covariance matrix Su are along the diagonal. The diagonal elements are the squares of the

standard deviations for the corresponding primary variables. The standard deviations cor-

responding to the u vector can be written as the vector

(3.29)
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The A and B matrices were formed symbolically to evaluate the sensitivity matrix

, and the sensitivities were verified using finite-difference. The evaluation of the uncer-

tainty was then automated by incrementing the displacement of the shuttle and using

Equations (3.2) and (3.3) to solve for the covariance matrix of the secondary variables at

each position.

The result of the uncertainty analysis is shown in Figure 3.9, where a separate

uncertainty analysis at incremental values of δ lead to error bands about the nominal

force-deflection curves. The heavy line in the center represents the case where the friction

force is zero. Friction shifts the curve according to the direction of motion. The upper

curve is the force for forward actuation. The lower curve represents the force required to

return to the initial stable position. Instead of using an average friction force with uncer-

θ

Figure 3.9   Result of uncertainty analysis for the LDBM.
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tainty, a more conservative approach was used, where the maximum expected friction

force was assumed to be 15 µN. This was done because the large friction uncertainty

masked the effects of the other variations. With the variation in friction set to zero, the

error bands in Figure 3.9 are representative of the uncertainty in clearances, dimensions,

and material properties. The gaps in Figure 3.9 and Figure 3.10 represent the regions close

to the points of loss of joint contact, where the accuracy in the evaluation of the uncer-

tainty is unknown because of the problem of linearizing the system of equations near dis-

continuities, and the violation of the distribution assumptions.

The graph in Figure 3.9 can now be used to evaluate the performance of the

LDBM. Friction changes the location of the unstable equilibrium position, so an actuator

must displace the shuttle a minimum of 11 microns; however, this displacement is still

within the range of a non-amplified linear-displacement thermal actuator (Cragun and

Howell, 1998). The maximum force required to actuate the mechanism occurs at about 5

microns. The force uncertainty is quite large at this position, so a reliable system would

require an actuator with an output of about 100 µN or more.

Friction also changes the location of the second stable equilibrium position, which

is undesirable for precision positioning. A better way to achieve precise positioning when

friction is an issue is to place a stop before the first discontinuity, or around δ = 15 µm.

When the LDBM is used as an electrical switch, the variation in the contact force

becomes an important consideration. If a minimum contact force requirement had to be

met, the location of the contact most likely to meet the requirement would be at about

δ = 14 µm.
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The strength-based reliability needs only to be evaluated at the points of maximum

deflection of the springs, but including the equations for stress in the overall system makes

it a simple matter to obtain the variation at multiple positions. Figure 3.10 shows that the

stresses in the springs are well below the fracture strength of 1.5 GPa, even when consid-

ering the uncertainty. The probability of failure can be evaluated using the technique

described by Rao (1992). Assuming a normal distribution for the maximum stress and the

fracture strength, the probability of failure for both springs, or the probability that

 is less than zero, was lower than 0.27%.

In summary, when applied to the design of the LDBM shown in Figure 3.3, the

general uncertainty analysis method helped lead to a successful first-time prototype.

Although the friction was somewhat greater than expected, the LDBM was successfully

actuated using a non-amplified linear thermal actuator.

3.6  Conclusions

This chapter has demonstrated a generalized uncertainty analysis method applied

to a linear displacement bistable mechanism. Adapting the DLM approach using matrix

notation results in an efficient method for performing uncertainty analysis for a system of

implicit equations. One of the main benefits of this approach is the ability to evaluate the

uncertainty of multiple dependent variables simultaneously, such as position, force, and

stress. Although the method is simple to apply, the main limitation is that interpretation of

the estimated uncertainty near discontinuities is difficult. This example leads to a more

general question of what methods ought to be used to automate the error analysis of kine-

matic models that may involve discontinuous functions.

Sy Smax– 0<
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Finally, the work has shown how the results of the uncertainty analysis can be used

to predict the performance of the LDBM. A graph containing the nominal force-deflection

curve and the uncertainty bands showed the effects of friction, material properties, dimen-

sional uncertainty, and clearances. These results were used to evaluate design constraints

based upon the force required to overcome friction, the force and displacement character-

istics of the actuator, or the force required to maintain a closed electrical contact. Using

the techniques described, a first-time prototype that pushed the design limits of the

MUMPs process was successfully actuated using a non-amplified thermal actuator.
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CHAPTER 4 NON-IDEAL BOUNDARY CONDITIONS - 

MITIGATING EFFECTS OF LOCAL ELASTICITY

It is not always possible to develop analytical uncertainty models like the one

described in the previous chapter, so compliant mechanisms are often analyzed using

finite-element models. As models become more computationally expensive, uncertainty

analysis can become less practical, so much of the work in simulation-based design has to

do with investigating non-idealities and identifying ways to simplify the model without

making assumptions that lead to significant modeling error.

This chapter discusses the effects of local elasticity in semi-rigid supports and

beam segments, focusing on the analysis of monolithic planar compliant mechanisms,

which are common components in precision devices and MEMS, such as folded-beam lin-

ear suspension springs and micro force gauges (Wittwer et al. 2002a; Jaecklin et al., 1993;

Zhou et al., 2001). It is often desirable to use beam elements when modeling compliant

mechanisms, but these elements and classical beam theory cannot account for the effects

of local elasticity. A method for mitigating the effects of local elasticity in planar compli-

ant mechanisms through the use of optimally sized fillets is presented, which allows beam

elements or classical analytical methods to be used without a significant loss of accuracy.
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4.1  Introduction - Support Elasticity

It is common to assume that flexible members are attached to perfectly rigid sup-

ports. However, the seminal works by O’Donnell (1960) and Small (1961) demonstrate

through analysis and experiment that the local flexibility at the juncture of a support and a

cantilever beam or plate can lead to a significantly larger deflection for a given load. The

stress distributions in Figure 4.1 show the local distortion occurring at the juncture of a

beam and an elastic support, or a discontinuity in the cross section. To account for this

additional deflection, O’Donnell (1963) and Matusz et al. (1969) developed flexibility

coefficients to use in a variety of classical equations for the deflections and stresses in

beams. Recently, Allen and Johnson (2001) considered this effect in the analysis of a

micro resonator, since the difference in the spring constant affects the natural frequency of

the device. Other recent works have also demonstrated the importance of modeling the

elasticity of the support instead of assuming boundary conditions in MEMS (Jensen et al.,

2001; Kobrinsky et al. 2000; Jensen et al. 1999a; Gill et al., 1998; Meng et al. 1993).

This chapter derives a novel approach to the analysis of planar loading of cantile-

ver beams by using appropriately sized fillets to mitigate the effects of local elasticity in

the support. It stands to reason that if the local flexibility of the support results in addi-

Figure 4.1   Stress distribution at the juncture of a flexible beam and (a) an elastic half-plane, (b) an 
elastic quarter-plane, and (c) semi-rigid segments in series.

(a) half-plane support (b) quarter-plane support (c) flexure-hinge
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tional deflection from bending and shear loading, then adding material to the beam in

some optimal geometry would provide the additional stiffness to mitigate the effect. It is

common practice to use fillets to reduce stress concentrations and improve manufactura-

bility, so the additional stiffness will be applied by optimizing the size of the fillet at the

built-in end of the beam.

The optimal fillet radius is specified in terms of a non-dimensional parameter

called the optimal fillet ratio, ρ*, which is equal to the fillet radius divided by the beam

width ( ). This parameter is shown to be nearly constant for a wide range of beam

geometries under predominantly bending loads. This discovery makes it a useful parame-

ter in the design of planar monolithic flexible mechanisms. It enables the designer to use

simplified analytical models during design that do not account for localized distortion,

while achieving accurate predictions by specifying the appropriate fillet prior to manufac-

ture.

4.2  Determining the Optimal Fillet Ratio

Using Castigliano’s displacement theorem for the analysis of an end-loaded rect-

angular cantilever beam, the vertical deflection, δ, due to an applied moment or shear

force are given by the following equations:

(4.1)

(4.2)
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where E is the elastic modulus, ν is Poisson’s ratio, w is the beam width, h is the beam

thickness, and L is the beam length. The general assumptions are that deflections are

small, cross-sections remain plane, and the material is linearly elastic, isotropic, and

homogenous. For small deflections, the deflection is proportional to the applied force,

with a proportionality constant, C, commonly termed the compliance, which is the inverse

of the spring constant or spring rate. The subscripts for  indicate that the compliance

is related to the deflection δ for an applied load M. Note that Equation (4.2) includes the

effect of transverse shear, in addition to the deflection due to bending.

The optimal fillet is determined based upon a comparison of Equation (4.1) or

(4.2) with the results obtained from finite element analysis of a cantilever attached to an

elastic half-space or quarter-space as shown in Figure 4.2. These two geometries represent

the most common types of junctures in planar compliant mechanisms, where w is the out-

of-plane width. The results are given in terms of an error in the compliance

Cδ M,

Figure 4.2   Schematics for a cantilever beam attached to (a) an elastic half-plane, and (b) an elastic 
quarter-plane under moment and shear loading.
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 or spring rate , where the subscript, a, refers to the

“actual” value as simulated using the FEA model. These expressions are equivalent to the

equations below:

For a given load, L: (4.3)

For a given displacement, δ: (4.4)

The error ε will often be reported as a percent. The optimal fillet is defined herein as the

fillet that reduces this error to zero.

FEA models were used to obtain the results and check the sensitivity of the opti-

mal fillet ratio to factors such as plane size, poisson’s ratio, material stiffness, transverse

shear, beam width, and FEA parameters such as element size and mesh refinement.

Although not all of these models are discussed in detail, the following section describes

the setup of the primary model used to determine the optimal fillet ratio for mitigating the

flexibility at the juncture of a cantilever beam and an elastic half-space and quarter-space

under pure bending.

4.2.1    FEA Model Setup

The first stage of the analysis involved determining the appropriate parameters for

the FEA models, including element size, mesh refinement, loading conditions, boundary

ε C Ca–( ) Ca⁄= ε ka k–( ) k⁄=

ε δa δ–( ) δ⁄=

ε L La–( ) La⁄=
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conditions, etc. This was necessary to minimize the systematic error inherent in the simu-

lation.

Figure 4.3a shows the model used to simulate pure bending at the juncture of the

beam and the support. The deflection at the reference point (Point 1) was compared to the

vertical deflection of a moment end-loaded cantilever beam with a perfectly rigid support

Figure 4.3b. A two-dimensional 8-node structural solid element, which is well-suited to

curved geometry, was used in all the FEA models. The plane elements allow only three

degrees of freedom, and therefore do not allow application of rotational displacement or

moment load. To simulate a moment applied at Point 1, a couple was applied to an exten-

sion of the beam far enough from the point of interest so that the local distortions at the

application of the forces are insignificant.

To ensure that the loading conditions were appropriate and to determine an appro-

priate element size, a 2-D model with a rigid boundary condition was compared to Figure

Figure 4.3   (a) FEA model and (b) simplified model for simulating a constant-moment end-loaded 
cantilever beam of length, L, attached to an elastic half-plane.
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4.3b. Using a mapped mesh with a basic element size of h/6 resulted in a systematic error

of about ε = 0.0003 or 0.03% using Equation (4.3). Figure 4.3a was therefore determined

to be an appropriate model for simulating constant-moment bending between the refer-

ence point and the elastic support.

 A good approximation to an infinite plane can be achieved using a large finite

plane size, a (see Figure 4.3). Following the procedure used by Matusz et al. (1969), an

appropriate value was determined by increasing the plane size until the sensitivity of the

results to the plane size was insignificant. As in Matusz et al. (1969), a value of 

was found to be sufficient for the quarter-plane, but the value used in this study was

 in order to reduce the systematic error to less than 0.1%. A value of 

with  was found to be sufficient for the half-plane, but a conservative value

of  was used. In each model, the mesh was refined around the points of high

stress in order to obtain a more accurate determination of the stress concentration factor.

4.2.2   Optimal Fillet Ratio for a Specific Geometry and Loading Condition

As mentioned in the introduction, adding a fillet to the beam can provide the addi-

tional stiffness necessary to mitigate the effect of the support elasticity. The two main fac-

tors for determining the optimal size of the fillet are (1) the geometry of the beam and the

support, and (2) the type of loading.

a h⁄ 5≥

a h⁄ 15= a h⁄ 9≥

b a 2⁄( ) h–=

a h⁄ 20=
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The results for pure bending found that the percent error was only significantly

affected by three non-dimensional geometric parameters: the slenderness ratio (L/h), the

fillet ratio , and the plane size .

Figure 4.4 shows the results for pure bending of a beam with a slenderness ratio of

 and where the support has been modeled as an infinite half-plane. The percent

error using Equation (4.3) has been graphed vs. the fillet ratio. A positive percent error

means that the beam will have a larger deflection than predicted when using Equation

(4.1). The point where the line crosses the x-axis is defined as the optimal fillet ratio, ρ∗.

At this point, the results from the FEA model match the simplified analytical equation.

4.2.3   Results for Moment End-Loading, or Pure Bending

A significant discovery was made when beams with varying geometry were ana-

lyzed and compared. For a fixed plane size, the percent error was plotted as a function of

Figure 4.4   Graph of percent error vs. fillet ratio for pure bending of a beam with a 
specific geometry.
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the fillet ratio as in Figure 4.4. Three different geometries were chosen to determine how

the percent error varied with the beam slenderness, L/h. Figure 4.5 shows the results of

this study for both the half-plane (Figure 4.5a) and quarter-plane (Figure 4.5b) supports.

These graphs show that for relatively small fillets, the error due to local elasticity in the

support can be highly significant, especially for non-slender beams. The serendipitous dis-

covery was that each of the lines in the plots intersected the x-axis at nearly the same

point. Or, in other words, ρ* is nearly identical for each geometry.

Figure 4.5   Plot of the percent error vs. the fillet ratio and slenderness for the (a) half-plane 
model, and (b) the quarter-plane model, under pure bending.
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The optimal fillet ratio does have a slight dependence on the plane size and the

slenderness. Because the optimal values are very similar and the sensitivity to variation is

small, a sufficient approach is to use the same fillet ratio for all geometries. Using the

graphs in Figure 4.5, appropriate approximations of ρ* for the half-plane and quarter-

plane are  and , respectively. The robustness of these values to

changes in slenderness and plane size will be discussed later.

An approximate analytical equation can be developed for the graphs in Figure 4.5,

since the individual curves are nearly linear for each value of L/h. The slopes of these lines

are inversely proportional to L/h. Thus, an approximate analytical equation for represent-

ing the error is

(4.5)

where c is a constant found through linear regression and is equal to 1.43 and 1.28 for the

half-plane and quarter-plane, respectively. It can be seen from this equation that using a

fillet ratio  equal to ρ* will result in zero error.

The geometric stress concentration factor is usually a concern in design for deter-

mining both a static safety factor, and for calculating an estimate of the fatigue life. Most

charts of geometric stress concentrations are only for fillet ratios below 0.3, since values

larger than that result in very small or negligible stress concentrations (Pilkey, 1997).

When using the ratios  and , the results obtained from the finite ele-

ment model for pure bending show essentially no stress concentration (Kt = 1.00). This

ρH 0.64= ρQ 1.1=

ε c
L

h
--- 

  r

h
--- 

  ρ*–=

r h⁄( )

ρH 0.64= ρQ 1.1=
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shows that not only does using the optimal fillet ratio mitigate the effects of the flexibility

of the juncture, but it also practically eliminates the geometric stress concentration.

4.2.4   Results for Vertical End-Loading or Nonuniform Bending

It is common to have both bending and shear loading of beams, so the analysis dis-

cussed in the previous section was repeated for the case of a vertically end-loaded cantile-

ver beam. Figure 4.6 shows the FEA model used for the quarter-plane geometry with this

type of loading.

The results shown in Figure 4.7 show the same trends as those for pure bending in

that the intersections of the lines and the x-axis are nearly identical. The important result

from these graphs is that the optimal fillet ratios are all fairly close to the same values as

those for pure bending, namely  and . Combined loading involving

bending and shear makes up a large portion of problems in compliant mechanisms analy-

sis, so the fact that the same fillet ratio works to mitigate the effect of local elasticity for

P

L

(a)

y

x

(b) P

Figure 4.6   (a) FEA model and (b) simplified model for simulating a vertically end-loaded 
cantilever beam of length, L, attached to an elastic quarter-plane.

ρH 0.64= ρQ 1.1=
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both loading conditions is advantageous. In addition, the geometric stress concentration

for vertical end-loading was less than 1.06 when the optimum fillet ratio was used.

4.3  Robustness of the Optimal Fillet Ratio

Although in theory there exists a unique ρ* for nearly any loading condition and

beam geometry, the application of the approach described in this chapter is based upon

using a constant value of ρ for a large class of problems. It is therefore important to deter-

mine how robust this approach is with respect to varying loads and geometries.
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Figure 4.7   Plot of the percent error vs. the fillet ratio and slenderness for the (a) half-plane 
model, and (b) the quarter-plane model, under nonuniform bending.
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4.3.1   Beam Slenderness

It was mentioned in the previous section that the results of the finite element anal-

ysis models show some dependence of ρ* on the slenderness of the beam. This depen-

dence is graphed in Figure 4.8, showing that ρ* is larger for less slender beams. The

results for both pure bending (constant moment load) and nonuniform bending (constant

shear load) are shown, and it can be seen that the effect of slenderness on ρ* is more evi-

dent for nonuniform bending than for pure bending. The optimal fillet ratio was found to

be inversely proportional to the slenderness, so the lines in Figure 4.8 represent the regres-

sion fit of the FEA data. These graphs are bounded by physical limits for . For infi-

nitely slender beams, . The minimum value for  is limited by the size of the

fillet, or . 

The important factor to recognize is that the majority of compliant mechanisms

use fairly slender beams, where the value of  is greater than 5 and the value of ρ* is

Figure 4.8   Optimal fillet ratio vs. slenderness for different loading conditions of a cantilever 
beam attached to an elastic half-plane and quarter-plane.
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nearly constant. In these cases, using the values  and  will reduce the

percent error by at least an order of magnitude and in most cases two orders of magnitude.

4.3.2   Flexure hinges

A large class of problems in which flexible beams will be non-slender are cases

where compliant mechanisms implement short flexible segments, called flexure hinges or

small-length flexural pivots. These cases represent classic examples of where discontinui-

ties in cross section occur and Castigliano’s method cannot account for the localized elas-

ticity at the junctures. Figure 4.9 shows schematics of two common types of flexures,

classified as longitudinally symmetric and non-symmetric (Lobontiu, 2003). Although the

junctures for these flexures correspond to the half-plane and quarter-plane, respectively,

there arises the question of how large the ratio of the thickness of the semi-rigid segment

should be to the thickness of the flexible segment ( ). In the design of compliant

ρH 0.64= ρQ 1.1=

Figure 4.9   (a) Longitudinally symmetric flexure hinge and (b) longitudinally non-symmetric 
flexure hinge.
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mechanisms, this ratio is generally chosen to be large so that the semi-rigid segments can

be modeled as perfectly rigid.

To investigate the effect of the thickness ratio  on ρ*, finite element results

were compared to a corresponding beam-element model that did not include the fillets.

The relationship between ρ* and the thickness ratio is graphed in Figure 4.10, showing

that as the thickness ratio increases, ρ* converges to values close to those chosen earlier

(  and ). These results suggest that the same design rule (large )

used to model the semi-rigid members as perfectly rigid also applies to the application of

the optimal fillet ratio. From Figure 4.10, an appropriate design rule to apply when imple-

menting the optimal fillet ratio would be to maintain a thickness ratio of .

The use of flexure hinges and long slender beams attached to flexible supports rep-

resent a large class of problems in the design of precision instruments. It is often desirable

to use simple analytical equations or rectangular finite beam elements in these cases and

hr h⁄

Figure 4.10   Relationship between the optimal fillet ratio and the relative thickness of semi-
rigid segments.
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application of the optimal fillet ratio would allow these approaches to be more accurate

and would be an important aid in the design of precision mechanisms.

4.4  Example 1

A device used in both precision instrumentation and in microelectromechanical

systems (MEMS) is a folded-beam linear suspension (Howell, 2001; Jaecklin et al, 1993;

Zhou et al., 2001). This suspension is based upon the same principles as the compound

linear leaf springs described in Jones et al. (1951). A schematic for the suspension is

shown in Figure 4.11 along with the corresponding simplified model that can be used to

obtain the spring constant. This suspension uses a combination of half-plane and quarter-

plane junctures. These junctures do not represent beams attached to infinite half-planes or

quarter-planes, but as mentioned in the previously section, the method of using optimal fil-

lets is robust to these boundary conditions when the rigid members are over 5 times the

Figure 4.11   Schematic for a folded-beam linear suspension and the simplified model for 
applying Castigliano’s method to obtain the spring constant.
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thickness of the beams ( ). From Castigliano’s method, the compliance of this lin-

ear suspension  for a load F and deflection d, applied in the y-direction (see Figure

4.11), is

(4.6)

where w is the out-of-plane thickness of the suspension, and the last two terms represent

the compliance of the semi-rigid segment as shown in Figure 4.11. It is common to leave

the last three terms out of the equation because they contribute little to the compliance;

however, they are included here for completeness and to prevent confounding the error

with the additional compliance due to flexibility at the juncture. A full model using beam

elements was used to validate the assumptions made in deriving Equation (4.6). The per-

cent difference between the beam element model and Equation (4.6) was 0.5%, indicating

that the schematic shown in Figure 4.11 is an appropriate simplification of the suspension

spring.

Two finite element models were made for the linear suspension. The first was

modeled without fillets (Figure 4.12a), and the second was modeled using fillets based

upon the values  and  (Figure 4.12b). The models are simplified

using a symmetric boundary condition, which is valid for the given load. The distribution

of the stress for these two models can be seen in Figure 4.12, where it is clear that there is
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distortion in the semi-rigid segments near the junctures in both models. Adding a fillet

does not eliminate local elastic strain, but it does change the compliance or spring con-

stant. These plane-element FEA models, which can account for local elasticity, serve as

benchmarks for comparison to Equation (4.6) and the beam-element model. Table 4.1 lists

the values of the variables used in this example.

The results for this example are summarized in Table 4.2. Note that the overall

spring constant  is being compared instead of the compliance since the

mechanism is typically used as a spring. The percent error is calculated as

, where the subscript, a, refers to the plane-element FEA model that is

Figure 4.12   Stress distribution in the linear suspension for (a) the no-fillet model, and (b) the 
optimal fillet model.

(a) (b)

Table 4.1  Parameter values used in Example 1.

Variable Value Units

E 162000 MPa

ν 0.22 - -

w 3.5 µm

L 75 µm

h 3 µm

Lr 9 µm

hr 18 µm

rH 1.9 µm

rQ 3.3 µm

kd F, 1 Cd F,⁄=

100 k ka–( ) ka⁄
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used to simulate the actual mechanism. The results indicate that when designing the

mechanism using models that can not account for local elasticity, manufacturing the

mechanism using the estimated optimal fillet ratios  and  may lead

to insignificant error. If the mechanism were to be made without fillets, the FEA simula-

tion indicates that the percent error would be as much as two orders of magnitude higher.

So, instead of building a more complicated analytical model to match the behavior of the

real device, physical adjustments can be made to the actual mechanism to make it behave

more like the analytical model. In the process, the geometric stress concentrations at these

junctures are eliminated through the use of relatively large fillets.

It should be noted that it is the percent error that is being reduced, and therefore the

benefits obtained from this improved accuracy are dependent on the actual magnitude of

the force or deflection. For example, if a spring is being used as a measuring instrument, a

large percent error for small forces may be acceptable, but the error for larger forces will

of course be amplified. In micro mechanisms, where it is often not possible to separate

force and displacement measurement loops, as in the case of micro force gauges (Wittwer

et al., 2002a), the benefits obtained from improving the accuracy by an order of magnitude

can be important.

Table 4.2  Comparison of analytical and finite element results for Example 1.

Model
FEA without fillets

(Figure 4.12a)

FEA using estimated ρ*

(Figure 4.12b)

 (µN/µm) 63.1 72.0

Simplified, Eq. (4.6) 72.1 14.3% 0.18%

Beam Element 71.6 13.5% -0.51%

kd F,

ρH 0.64= ρQ 1.1=
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4.5  Example 2

This second example is similar to the linear suspension in Example 1, but it

involves a series of flexure hinges instead of long flexible segments. These types of

designs are particularly common in ultra-precision machinery, and are called double com-

pound linear springs in Smith, 2000. Most flexure hinges involve half-plane junctures, so

the value for ρ used in this example is again .

This example compares the results of plane-element FEA models to two types of

simplified equations. A beam-element model was also created for this example, to serve as

a benchmark for the analytical equations. The schematic for the flexure-hinge linear sus-

pension is shown in Figure 4.13. The fillets are shown in the schematic to indicate that

they will be added when the mechanism is manufactured, but the analytical equations

below do not use them. Table 4.3 lists the values of the parameters unique to this example.

The variables not specified have values equal to those in Table 4.1 of Example 1.

The first simplified analytical equation is called a pseudo-rigid-body model

(PRBM) (Howell, 2001). It assumes that all of the semi-rigid links are perfectly rigid and

ρH 0.64=

Figure 4.13   Schematic for a flexure-hinge linear suspension spring.
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models the flexures as pin joints with torsional springs. The compliance equation using the

PRBM is:

(4.7)

The second model uses Castigliano’s theorem to account for the flexibility of the middle

semi-rigid segment (having length Lm and width hm):

(4.8)

Table 4.4 shows a comparison of each of the modeling methods to an FEA model

that includes the fillet. The results are specified in terms of the spring constant,

. The simplified analytical Equations (4.7)-(4.8) compared to the beam-

element model indicate that very little of the error is due to neglecting bending of the

Table 4.3  Parameter values used in Example 2.

Variable Value Units

L 9.65 µm

h 2.5 µm

Lm 55.70 µm

hm 15 µm

rH 1.6 µm
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Table 4.4  Comparison of analytical and finite element results for Example 2.

Model
FEA without 

fillets

FEA using 

estimated ρ*

 (µN/µm) 58.3 70.3

PRBM, Eq. (4.7) 71.7 23.0% 1.93%

Castigliano, Eq. (4.8) 70.9 21.7% 0.87%

Beam Element 69.8 19.8% -0.77%

kd F,

kd F, 1 Cd F,⁄=
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semi-rigid links. However, the local flexibility at the junctures is a considerable issue in

this example as shown by the difference between the two plane-element FEA models. As

in the previous example, the FEA simulation that uses optimal fillets closely matches the

results from the models that cannot account for local elasticity at the junctures. This

implies that an accurate spring constant or compliance factor can be obtained without the

need for a complex FEA model, by mitigating the effects of local elasticity through the use

of optimal fillets.

4.6  Conclusions

This chapter has presented an approach for mitigating the effects of the local flexi-

bility at built-in ends of beams and flexures using optimal fillets. The optimal fillet ratio,

ρ∗, was shown to be a useful non-dimensional parameter for the design of planar mono-

lithic flexible mechanisms and structures under predominantly bending and shear loads. It

enables the designer to use simplified analytical equations or beam elements in the design,

while achieving accurate predictions by implementing the optimal fillet at the manufactur-

ing stage, and eliminating the geometric stress concentration factor. This method applies

to planar mechanisms involving half-plane and quarter-plane junctures which are common

in a large number of problems in flexible mechanisms. The examples demonstrated that

the percent error can be reduced by as much as two orders of magnitude, compared to the

case where the effects of fillets and local elastic deflections are neglected.
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CHAPTER 5 SIMULATION OF NON-IDEAL THERMAL 

MICROACTUATOR PERFORMANCE

The previous chapter discussed the importance of considering the elasticity of sup-

ports and semi-rigid segments in the design of compliant mechanisms. Other common

modeling assumptions for finite element models involve symmetry and loading condi-

tions. This chapter describes the effects of asymmetry and non-ideal loading on the behav-

ior of chevron-shaped thermal in-plane microactuators.

Predicting the force capabilities of thermal microactuators is a key issue when

designing to meet specific size and power requirements. In this chapter, simulation and

experimental results show that a significant decrease in performance can occur for some

designs due to non-ideal buckling, which may be caused by an offset load or process vari-

ations that lead to asymmetry. Nonlinear finite element models are used to simulate the

behavior, provide predictions of the force output capability, and develop design rules for

mitigating the effect of non-ideal buckling.

5.1  Introduction

Thermal microactuators can provide larger forces and greater deflections than

other devices of similar size that use piezoelectric, magnetic, and electrostatic actuation.
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High forces combined with low drive current and low voltage makes thermal actuation

particularly useful for compatibility with CMOS circuity (Reid et al., 1996). Thermal

actuation has been used in a number of applications including linear micromotors (Mal-

oney et al., 2004), precision micropositioning (Chu and Gianchandani, 2003), microgrip-

pers (Comtois and Bright, 1997), microrelays (Gomm et al., 2002), bistable switches

(Baker and Howell, 2002), and optical-fiber switches (Comtois and Bright, 1997).

Two main topologies for in-plane thermal actuators are the heatuator or bimorph

design (Comtois and Bright; 1995) and the chevron or bent-beam design (Cragun and

Howell, 1999; Que et al., 1999), both of which can be grouped into arrays to provide

higher output forces. Sinclair and Wang (2003) provide a description of these two topolo-

gies, and describe the chevron-shaped actuator as more efficient since “all bending beams

are force-producing, even when they are arrayed to increase output force”.

Force measurements are usually obtained through in-situ force testers which con-

sist of anchored beams or springs. Reid et al. (1996) provided experimental force data

related to the bimorph thermal actuator configuration using cantilever beams rigidly sup-

ported on one end that pointed to an indicator to provide amplification of the displace-

ment. Cragun and Howell (1999) used a compliant parallel guiding spring anchored to the

substrate which deflected under the force applied by a chevron-shaped thermal actuator.

Others (Maloney et al., 2004; Que et al., 2001; Park et al., 2001; Sinclair, 2000; Jonsmann

et al., 1999; Que et al., 1999) have used similar approaches, but experimental data has

been limited, often due to the fact that the springs are too soft to determine the true actua-

tor capability. Recently, Lai et al. (2004) used an acupuncture needle with known stiffness
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attached to a positioning stage to obtain ex-situ force measurements by measuring the

deflection of the needle. The advantage of this approach was that measurements could be

made on a single actuator at multiple power levels.

When fixed or anchored load springs are used for force measurements, a single test

setup can only provide one data point at each input power level, resulting in a single load-

line. In order to fully characterize a particular design, an array of tests needs to be fabri-

cated in which the stiffness of the spring is varied, but creating an array of test structures

introduces uncertainties having to do with variations in geometry between different actua-

tors. Sinclair and Wang (2003) describe the use of a variable-length cantilever beam to

change the stiffness of the load spring, but if the beam is stiff enough to measure peak out-

put forces, the deflection of the beam may be too small to measure accurately. An alterna-

tive method is to use a single movable in-situ force gauge (Wittwer et al., 2002a) designed

to measure the full range of force of an actuator at multiple power levels.

The purpose of this chapter is to characterize the force capabilities of chevron-

shaped thermal microactuators through simulation and experiment. Force measurements

are obtained using a novel approach that includes both anchored spring tests and in-situ

force gauge measurements. Non-ideal buckling is shown to cause reduced performance as

compared to ideal conditions. This may be caused by non-ideal loading or asymmetry due

to process variations. Nonlinear finite element models are used to simulate the behavior,

provide predictions of the force output capabilities, and determine design rules for mitigat-

ing the effect of non-ideal buckling.
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5.1.1   Thermal Microactuators

Figure 5.1 shows a schematic of a thermal in-plane microactuator (TIM). The

device can be fabricated with a single layer of material of thickness t, although in surface

micromachining, laminated layers are often used to increase the aspect ratio. A current is

passed through the legs of the TIM and the beams expand due to Joule heating and since

the beam-pairs are fixed at both ends, buckling occurs. The initial angle of the beams

determines which direction the center shuttle moves as the legs buckle, and a large aspect

ratio (t/w) ensures that only in-plane buckling occurs. This creates a lateral displacement δ

of the center shuttle which can provide an in-plane actuation force F.

Predicting the unloaded output displacement of the actuator for a given input cur-

rent is a complicated heat transfer problem in which the temperature distribution is not

uniform (Sinclair and Wang, 2003; Lott et al., 2001). When predicting the force output via

simulation, it is possible to decouple the heat transfer problem from the structure model by

assuming a constant thermal strain. A nonlinear finite element model can then be used in

which a thermal strain is first applied, followed by an incremental displacement back to

the zero-strain position, generating a force vs. displacement curve.

Figure 5.1   Schematic of a thermal in-plane microactuator with 4 beam-pairs.
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Figure 5.2 shows graphs of the predicted force capability of a thermal actuator in

which the surface represents the force equilibrium at specific displacements and thermal

strains. The surface, created using multiple force-displacement curves, provides a full

characterization of the force output of the powered actuator. The designs characterized in

Figures 5.2a and 5.2b have initial offsets of Ly = 2.5 µm and Ly = 15 µm, respectively.

There is a distinct trade-off between displacement and force as the initial offset is

increased. Adding more leg-pairs can increase the magnitude of the output force without

changing the displacement, but this also results in higher power requirements (Cragun and

Howell, 1999; Lai et al., 2004).

The thermal strain is controlled by changing the current across the beams, but a

limit is reached where the legs become so hot that material properties are adversely

affected and the TIM becomes permanently damaged or warped (Sinclair and Wang,

2003). Even with zero thermal strain, there is some amount of displacement in chevron-

shaped thermal actuators due to the residual stress inherent in surface micromachining of

Figure 5.2   Force equilibrium surface for a TIM with (a) a large initial offset and (b) a small 
initial offset.

(a) (b)
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polysilicon or the fabrication of other materials. This is not surprising, since similar

devices have been used as strain sensors (Gianchandani and Najafi, 1996). A compressive

stress of 10 MPa has been used in these simulations.

5.1.2   Model Description

A nonlinear structural finite element model is used to analyze the force output of

the TIM. Beam elements were used that take the moment of inertia (I) and cross-sectional

area (A) of the beams as inputs. When ideal loading conditions and symmetry apply, a

simplified model shown in Figure 5.3a is used. With this model, the force output is a mul-

tiple of the number of beams (n) in the actuator. Ideally, using more than one beam-pair

prevents rotation of the shuttle, leading to a higher-order buckling mode that can provide

larger output forces. In order to take into account non-idealities such as an offset load or

asymmetry, the full model shown in Figure 5.3b is used, where  is the spacing between

the beam pairs and  is the width of the shuttle.

The model is exercised on two main designs that are summarized in Table 5.1. The

two actuators were designed to have approximately the same maximum forces by adjust-

Figure 5.3   Finite element model for (a) ideal loading conditions and (b) an offset 
load and asymmetry.
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ing the beam length ( ), width (w), and vertical offset ( ). The beam angle

(α) for the two designs are similar. The main difference is the beam slenderness, or the

ratio of the length to the width ( ). The actuators were fabricated using the SUMMiT

V™ surface micromachining process (Sniegowski and de Boer, 2000).

In addition to the design variables that describe the topology in Figure 5.1, the

beam cross-section geometry is also important. Figure 5.4 shows a schematic of the cross-

section of the beam legs. In order to prevent the TIM from deflecting or buckling out-of-

L Lx
2 Ly

2+= Ly

Table 5.1  Parameter values.

Variable Design I Design II

Lx (µm) 300 200

Ly (µm) 3.5 2.5

t (µm) 6.95 6.5

w (µm) 3.8 3.8

α (degrees) 0.716 0.668

L/w 52.6 79.0

bs (µm) 80 80

ws (µm) 10 10

E (MPa) 164000 164000

v 0.23 0.23

Sr (MPa) -10 -10

L w⁄

Figure 5.4   Cross-section of a thermal actuator I-beam.
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plane, an I-beam shape was used. This was done by connecting two layers using a via

(etching the sacrificial oxide layer). For Design I, these two layers are Poly12 (Poly1-

Poly2 laminate) and Poly3 and in Design II, the two layers are Poly3 and Poly4. No data

has been published regarding the shape of the web, but based upon measurements of

images obtained using a focused ion beam as shown in Figure 5.4, the angle of the side-

wall in the web ( ) is approximated as 10 degrees. A summary of the other nominal

dimensions used for designs I and II are given in Table 5.2.

Variations in the cross-sectional geometry occur during the fabrication process that

can affect the model uncertainty. The area and moment of inertia are affected by variations

in line widths, layer thicknesses, mask alignment, and the slope of the sidewalls for the

web. At the device level, these variations are often correlated so that they affect each beam

similarly, but there may also be some degree of variation between the geometry of differ-

ent beams (and possibly even within the same beam). The full model assumes that each

beam has a constant cross-section, but it allows each beam to have a different area and

moment of inertia in order to investigate the effects of small variations between beams, as

discussed later.

θ2

Table 5.2  Cross-section parameter values.

Variable Design I Design II

t1 (µm) 2.5 2.25

t2 (µm) 2 2.2

t3 (µm) 2.25 2.25

yc1=yc2=yc3 0 0

b1 (µm) 3.8 3.8

b3 (µm) 3.8 3.8

a2 (µm) 2 2

θ2 (degrees) 10 10
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5.2  Force Measurement

A new test approach is proposed to obtain experimental force data. A dual stage in-

situ force gauge is introduced that performs the functions of both a fixed load spring and a

movable force gauge. This allows both load-line and force-curve testing on the same

device, eliminating device-to-device uncertainty in the measurements. Figure 5.5 shows a

scanning electron micrograph of one of the designs used in our experiment with a dual

stage force gauge attached. The gauge acts as an anchored spring when the tethers are in

place and as a movable force gauge after the tethers are broken. Verniers on both the ther-

mal actuator and gauge are used to obtain displacement measurements in increments of

0.33 µm. An additional guide spring was used to help keep the force gauge off the sub-

strate and to help prevent laterally applied forces from manually manipulated probes.

The first stage of the testing was to gather data using the load-line approach before

the tethers were broken. Each load-line test consisted of applying a specific current across

the TIM and recording the displacements from each vernier. These tests were found to be

highly repeatable within the accuracy achievable with the verniers.

Figure 5.5   Scanning electron micrograph of a thermal actuator with an in-situ force gauge attached.
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The second stage involved a series of force-curve tests using the movable force

gauge. Each test was run using a different current level, beginning with the highest current

level and stepping down. After applying a current, the force gauge was positioned such

that the vernier on the gauge read zero. This represented the unloaded displacement of the

TIM. The gauge was then moved incrementally to obtain force measurements at each

0.33 µm increment of displacement of the actuator, similar to the way in which the force

curves are generated using the finite element models.

The results of the tests for Design I are shown in Figure 5.6, along with the ideal-

model (Figure 5.3a) predictions. The significance of this graph is that all the tests come

from a single device using a single gauge, providing data that is not subject to device-to-

device variation. The error bars on each of the data points represent the 2-sigma (95%)

uncertainty resulting from vernier measurements and the dimensional and material prop-

Figure 5.6   Force measurement results for Design I compared to the ideal model.
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erty uncertainties in the force gauge, as explained in Wittwer et al. (2002a). The thermal

strain used in the model is based upon the measured unloaded displacement.

After performing the test at the lowest current level (7.5 mA), the test was repeated

at the highest current level (15 mA). This test was conducted to ensure that the length of

time involved in gathering the data, the high temperatures, and high stress in the actuator

did not result in permanent deformation and a resulting shift in the data. The test verified

that there was no significant shift in the data, making it possible to perform multiple tests

on the same device. Also, it is encouraging to note that the results of the load-line tests

correspond well to the force-curve tests.

The force-test data in Figure 5.6 shows a significant difference in performance

from that predicted by the ideal model. The difference was hypothesized to be caused by

the beams buckling in a non-ideal manner, a visibly noticeable phenomenon that was also

observed by Cragun and Howell (1999) for actuators with long beams. An example of a

non-ideal buckling mode is shown in Figure 5.7. Non-ideal buckling was observed in pre-

Figure 5.7   Schematics showing (a) ideal buckling and (b) non-ideal buckling of a 
thermal actuator.
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vious tests and was the cause for including the guide spring (Figure 5.5) to help prevent

non-ideal loading conditions that might cause the shuttle to rotate.

The test results for Design II in Figure 5.8 do not show the same non-ideal buck-

ling phenomenon. This data provides evidence that the ideal behavior can be achieved.

The following section addresses the development of models that predict the non-ideal

behavior, with the goal of identifying ways to prevent or mitigate non-ideal buckling.

5.3  Non-Ideal Buckling

The two main factors that we predicted to be probable causes of the instability of

the actuator were non-ideal loading conditions and asymmetry due to variations in geome-

try. After developing models to simulate the behavior of the actuator under these condi-

tions, an investigation of the effects of design parameters led to identifying a design rule

for preventing non-ideal buckling.

Figure 5.8   Force measurement results for Design II compared to the ideal model.
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5.3.1   Effects of Non-Ideal Loading

Non-ideal loading conditions can occur during testing if lateral forces are intro-

duced as the force gauge is moved, but the non-ideal buckling phenomenon was also

observed when Design I was used to push on a linear-motion mechanism. The width of the

shuttle is 10 µm, so when used to actuate another device, it is possible that small varia-

tions in the contacting surfaces as shown in Figure 5.9 could lead to a load offset of up to

5 µm. Therefore, we performed simulations using the full FEA model (Figure 5.3b) to

investigate what effects an offset load could have on the force curve.

Figure 5.10 shows a comparison of simulations for Design I in which the offset is

increased from zero (the ideal curve) to 10 µm. The measured data is included to show

Figure 5.9   Roughness of the contact surface resulting in an offset load.




Figure 5.10   Comparison of offset-load simulations and experimental data for Design I.
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how the simulation more closely matches the experimental results. The offset causes some

rotation of the shuttle due to the moment induced by the off-axis load, but the shape of the

force curve is mostly dependent upon the buckling mode, causing a discrete difference

between the shapes of the curves rather than a gradual shift in the curve as the offset is

increased. These simulations demonstrate that the ideal force-displacement curve can be

fairly difficult to achieve because even a small offset of 1 µm can result in the lower, or

worst-case performance curve. Therefore, off-axis loading is a plausible cause for the

buckling observed in testing Design I. To avoid the possibility of applying an offset load

due to surface roughness variation, it may be better to use a pointed rather than flat contact

surface.

The offset-load simulation was performed using Design II, and the results in Fig-

ure 5.11 show that the difference between the ideal and worst-case force-displacement

curve is much smaller than for Design I. Force tests were performed at the same current

level (14 mA) on two additional devices at different locations on the wafer to help validate

the model. In each case the peak actuation force was close to the model prediction.

Figure 5.11   Comparison of offset-load simulations and experimental data for Design II.
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5.3.2   Effects of Asymmetry Due to Process Variations

In addition to loading conditions, the maximum force capability of the actuator

depends in large part on the symmetry of the device. Another possible reason for non-ideal

buckling might be the asymmetry caused by small variations in the cross-sectional geome-

try of different beams. Mask alignment combined with edge bias variation can result in a

change in beam width and a shift in the centroid (yci) of each individual layer. The geome-

try of the web may also vary somewhat between different beams. Little data is available to

determine the statistical distributions for variations at the device level, so the purpose of

this simulation is to use reasonable estimates of the uncertainties and determine whether

small deviations could be a factor in affecting the stability of the TIM.

A Monte Carlo simulation was run to simulate the effects of random variation in

the beam legs within a reasonable expected tolerance. The widths of the layers (b1, b2, a2)

were allowed to vary by ±0.05 µm. The angle of the sidewall of layer 2, θ2, was allowed to

vary by ±2 degrees. The shift in the individual centroids, yci, for each layer was allowed to

vary by ±0.05 µm.
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Figure 5.12 shows the results of 50 simulations for Design I at the maximum

power level tested in Section 5.2. 50% of the simulations resulted in the lower force curve,

indicating that variation in beam geometry is also a plausible cause for the non-ideal buck-

ling behavior in the actuators. The results of the Monte Carlo simulation show the same

discrete steps in the force curve as in the offset-load model. Therefore, when designing a

thermal actuator, it may be sufficient to use the offset-load model to determine the worst-

case force curve.

It is usually assumed that increasing the spacing between the beam-pairs will

increase the stability of the TIM. While it is true that using multiple beam-pairs helps pre-

vent rotation of the shuttle due to lateral loads or moments, the Monte Carlo simulation

shows that even with no offset load or moment, small differences in beam geometry can

lead to non-ideal buckling modes.

5.3.3   Effects of Design Variables

The difference between the effects of non-ideal buckling in Designs I and II led to

the hope that certain design variables could be identified that govern the behavior. Exten-

Figure 5.12   50 random force curves generated via Monte Carlo simulation for Design B.
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sive simulations were run to investigate various design changes, such as changing the ini-

tial angle, the spacing between beam pairs, and the beam length. At first, it was thought

that a metric for the stability of the device would be the distance of the load offset for

which non-ideal buckling was first observed. However, simulations1 suggested that the

ideal buckling mode requires nearly zero offset for some designs and it is therefore wise to

assume the worst-case scenario when using such designs for high-force applications.

Fortunately, a geometric design variable was identified as the most important fac-

tor contributing to the difference between the stability of Design I and II. Perhaps not sur-

prisingly, this variable was the beam slenderness ratio, a common non-dimensional

parameter in columnar buckling problems (Gere and Timoshenko, 1997). The slenderness

ratio, L/w, is 79.0 and 52.6 for Designs I and II, respectively. Figure 5.13 shows the effect

of the beam slenderness on the shape of the force-displacement curve of Design I with an

offset load of 10 µm. The slenderness is decreased incrementally by changing the length

1. For a given offset load, the convergence of the nonlinear finite element solution at the bifurcation point is 
usually what determines the specific buckling mode. Therefore, the resulting buckling mode is highly 
dependent upon the number of load steps. Increasing the number of load steps can result in non-ideal 
buckling being observed at a smaller offset.

Figure 5.13   Effect of beam slenderness on worst-case buckling (via simulation).
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of the beam while holding the beam angle and all other parameters constant. When the

slenderness ratio for Design I is the same as Design II, the curves are very similar, in spite

of the minor variations in the overall beam thickness and beam angle as given in Table 5.1.

These results lead to the following design rule: “For chevron-shaped thermal actuators,

maintain a slenderness ratio, L/w, less than 50, or assume the worst-case force curve asso-

ciated with non-ideal buckling.”

5.4  Backforce

As discussed in Cragun and Howell (1999), a substantially larger force can be

achieved at large deflections by removing the current and using the force available from

the thermal strain energy. Figure 5.14 shows a comparison of the powered (heated) force

and the backforce or unpowered (cooled) force for Design I. Both simulations use an off-

set load of 10 µm. This analysis is particularly useful for stepper or ratcheting motors, in

which both the powered force and backforce are used.

Simulating the steady-state backforce is simply a matter of applying a displace-

ment to the nonlinear model of an unpowered thermal actuator to determine the reaction

Figure 5.14   A comparison of the backforce and the powered force for Design I with a 
load offset of 10 µm.
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force. Although the backforce is much higher at the maximum deflection, the force drops

off to zero as the actuator contracts back to its initial position. The backforce is not suscep-

tible to the buckling instabilities of the pushing force discussed above because it is a result

of tension in the beams rather than compression. Consequently, there is practically no dif-

ference in the backforce when an offset load of 10 µm is applied vs. the ideal zero offset

case.

5.5  Conclusions

This chapter provides experimental force measurements for two different thermal

in-plane microactuators, using a combination of both anchored spring or load-line tests

and in-situ force gauge measurements. This novel test setup allows more data to be gath-

ered on a single mechanism, thus eliminating device-to-device uncertainty in the measure-

ments.

The experimental results for one of the designs showed a significant decrease in

the expected performance as compared to the ideal half model. Simulation showed that the

phenomenon could be a result of non-ideal loading or small variations in geometry leading

to asymmetry. The data matched the simulated worst-case force curve predicted using the

full model.

Both the experimental results and simulation showed that an actuator can be

designed to reduce the effects of non-ideal buckling by decreasing the beam slenderness

ratio, L/w. A general design rule is to use a slenderness ratio L/w less than 50 or assume

the worst-case force curve associated with non-ideal buckling.
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CHAPTER 6 SURROGATE-BASED UNCERTAINTY 

ANALYSIS FOR COMPUTER MODELS

This chapter describes approaches for uncertainty analysis that can be applied to

nonlinear1 finite element models for compliant MEMS. The first stage of the simulation

process involves building and verifying a parametric model to ensure that uncertainty is

propagated correctly. The second stage involves the creation of a first or second-order sur-

rogate2 model, or metamodel (“model of a model”), that can be used in place of the more

computationally expensive model. The surrogate model can then be used for sensitivity

analysis and uncertainty analysis through a direct use of the attributes (coefficients) of the

model (Doebling et al., 2002). Finally, the metamodel can be used in a Monte Carlo simu-

lation in order to account for non-Normal distributions and relatively large uncertainties

(Iman and Helton, 1984). This approach is demonstrated using the thermal microactuator

described in Chapter 5 as an example.

1. The term nonlinear can apply to many different aspects of modeling and analysis. Nonlinear finite ele-
ment analysis for compliant mechanisms usually refers to the fact that the small-angle assumption does 
not apply for large displacements, and therefore the stiffness matrix must be updated at incremental dis-
placements. Also, nonlinear can refer to the fact that the force vs. displacement relationship is not a 
straight line. In statistics, nonlinear often refers to a function that does not consist of the addition of terms 
with constant coefficients. All of these definitions apply to the methods described in this chapter, but only 
linear polynomial regression models are considered (according to the statistical definition). One of the 
other common uses of the term nonlinear in FEA is to describe material properties, but this aspect is not 
covered in this dissertation.

2. Surrogate model and metamodel are used interchangeably and both are used to refer to a “model of a 
model”.
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6.1  Model Parameterization

Parametric uncertainty analysis treats a model as a “black box”, as shown in Figure

6.1. The key to implementing uncertainty algorithms is therefore to be able to first create a

parametric model and then be able to interface with the model in a way that permits auto-

mated iteration using different inputs.

It is convenient to use a coding scheme that takes a vector of input variables

 and returns a vector of output (response) variables

. The computer model or response surface is then represented by the

vector function .

When performing uncertainty analysis, we attempt to model the actual behavior of

the true system by making x a set of variables that can be used to simulate the propagation

of error and uncertainty. These variables may or may not correspond to design parameters.

For example, there may be uncertainty associated with the stiffness of a material, but for a

given material we may not have direct control over the stiffness.

Figure 6.1   A deterministic model treated as a “black box” in which a given set of inputs 
yield a set of outputs.
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Correct parameterization is important particularly when we need to consider corre-

lation. For example, in surface micromachining, the uncertainty associated with different

flexible beams of width  and  may be affected by both independent and correlated

sources of variation. It is reasonable to assume that width bias affects both beams equally,

but there may also be variation that affects the beams independently, such as surface

roughness (usually negligible in MEMS compared to uncertainty in width bias) or spacing

(known to affect the side wall angle and the width bias).

There are two main ways of parameterizing the model to account for variation in

the beam widths (assuming a constant cross-section along the length of the beam). The

first parameterization, and probably the most straight forward, is to treat the width bias,

, as a separate design parameter. The input vector would be

(6.1)

In this case, the model would need to include the reassignments  and

 in order to propagate variation in the inputs.

The alternative parameterization eliminates the width bias as one of the inputs by

correlating the uncertainty in  with the uncertainty in the beam widths, or

(6.2)

The second approach requires the use of more advanced statistical analysis tech-

niques by considering the uncertainty to be correlated rather than handling the correlation

within the model itself (see Section 6.5.1). It also has the advantage of reducing the num-

ber of inputs, resulting in fewer function evaluations. The benefit of the first approach is

w1 w2

∆w

x x1 x2 x3, ,[ ]T w1 w2 ∆w, ,[ ]T= =

w1 x1 x3+=

w2 x2 x3+=

∆w

x x1 x2,[ ]T w1 w2,[ ]T= =
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that it is easier to discern from the results whether variations in width bias or the indepen-

dent variations in the individual beams are more significant (through sensitivity analysis).

If the independent random effects are not significant, then you might use  to

further reduce the number of variables.

Choosing a parameterization scheme may be the most important part of setting up

a problem for uncertainty analysis. In many (if not most) cases, an existing model must be

modified or completely re-created in order to properly handle parametric variation. Taking

the time to carefully plan the parameterization scheme early in the design process can not

only help save time, but can also lead to the creation of a more re-usable model.

6.2  Metamodeling

The goal in metamodeling is to develop an approximate model that is computa-

tionally inexpensive to evaluate and provides a better understanding of the functional rela-

tionship between x and y. One of the most well-established and simple methods for

developing the surrogate model is to create a first-order or second-order polynomial

approximation via regression. This approach is straight forward and the results provide a

great deal of information about the behavior of the system that can be used in design.

When the true response surface  of a computer model is not known or is com-

putationally expensive to evaluate, a metamodel can be constructed as an approximation

or surrogate model. The true response surface is then:

(6.3)

x ∆w[ ]=

y x( )

y g x( ) e+=
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where  is the surrogate response surface and  is the error. If the true response sur-

face is a deterministic computer model, then the error is just the error of approximation, as

discussed in Simpson et al. (1997).

6.2.1   First-Order Polynomials

For uncertainty analysis, where we are evaluating the response surface over only a

small portion of the design space, polynomials can often provide a good approximation.

Fitting a linear model is usually sufficient for small variations, and it is also the most com-

putationally efficient approach. The first-order response surface can be described as 

(6.4)

where the coefficients bij are estimates of the partial derivatives of gi with respect to xj. If

it is desirable to have zero error at the nominal design point, then we can model the first-

order error surface using:

(6.5)

If we substitute  for  in Equation (6.5), then we obtain the first-order Taylor series

polynomial

(6.6)

Compliant mechanisms are typically nonlinear with respect to design parameters.

For example, the spring constant for a vertically end-loaded rectangular cantilever beam
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involves a multiplicative relationship, . In this case, interactions

between the random variables w, L, t, and E may require the use of a second-order

response surface to obtain an accurate estimate of the uncertainty in k, particularly when

the uncertainties in the random variables are relatively large.

6.2.2   Second-Order Polynomials

The second-order response surface, as in a second-order Taylor series expansion,

involves the use of quadratic and interaction terms. The response surface is

(6.7)

In Equation (6.7), the coefficients bij do not represent the partial derivatives of gi with

respect to xj. However, as in Equation (6.6), we can create an error surface that is identical

to the second-order Taylor series expansion by substituting  for , or 

(6.8)

where , , and .

Second-order polynomials are not always the best choice for forming accurate

response surfaces, particularly for models with high-order nonlinearity or discontinuities.

Simpson et al. (1997) and Jin et al. (2001) provide a review and comparison of various

metamodeling methods, including polynomial regression, orthogonal arrays, neural net-

works, inductive learning, kriging, multivariate adaptive regression splines, and radial

k Etw3 4L3( )⁄=

gi x( ) bio bijxj bijjxj
2+( )

j 1=

n

∑ bijkxjxk

k j>

n

∑
j 1=

n 1–

∑+ +=

∆x x

gi ∆x( )∆ bij∆xj bijj ∆xj( )2+( )
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∑ bijk∆xj∆xk
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n

∑
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n 1–

∑+=

bij ∂gi ∂xj⁄= bijj 0.5 ∂2gi ∂xj
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basis functions. The trade-offs between these methods have to do with the statistical char-

acteristics of experimental designs (e.g. orthogonality, rotatability, variance, and bias),

accuracy, robustness, simplicity, transparency (ease of interpretation), and efficiency.

Polynomial regression is one of the most simple approaches and is very accurate for mod-

els with low-order nonlinearity (Jin et al. 2001).

6.3  The Design Matrix

In order to evaluate sensitivities, perform uncertainty analysis, and create surro-

gate models, we begin by choosing a design for our computer experiment. The sequence

of model evaluations is typically described using a design matrix, D, such that each row of

the matrix represents the levels of the inputs at which to evaluate the computer model

(Montgomery and Evans, 1975). For N evaluations of the model,

 or (6.9)

In order to compare or describe specific methods for design of experiments, design

matrices are usually scaled to . For uncertainty analysis, it is convenient to use the

vector  to scale the design matrix based upon the standard deviations of the inputs

(s). The design matrix can be calculated from the scaled matrix using

(6.10)

D x1 x2 … xN, , ,[ ]T= D

x11 x21 … xn1

x12 x22 … xn2

… … … …
x1N x1N … xnN

=

1– 1,[ ]

∆x s=

D jxT Ds* j ∆x( )T[ ]+=
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where  is the scaled design matrix,  is a vector of 1s of length N, and the operator “*”

is used to describe element-wise multiplication, or . It is often useful to

define an input perturbation matrix ( ) as the second term in the right-hand side of

Equation (6.10), or

 (6.11)

There are many possible designs that can be used to create both first-order and sec-

ond-order response surfaces (Montgomery and Evans, 1975). This section describes a

design that corresponds directly to methods used for tolerance analysis where sensitivities

are evaluated numerically using finite difference formulae as in Glancy and Chase (1999).

6.3.1   First-Order Designs

There are two main designs for first-order metamodels. The first design corre-

sponds to the model evaluations required to evaluate first-order sensitivities using a for-

ward difference formula. For n = 3 variables, the scaled design matrix is

(6.12)

requiring  function evaluations. The first row of the matrix represents the

model evaluated at the nominal inputs. Each variable is then subsequently varied one at a

time. Although this design is not accurate over a very large range for nonlinear models, it

can be used in optimization routines and for screening variables that may not have a sig-

nificant impact on the response or the overall uncertainty.

Ds j

A*B aijbij≡

∆X

∆X Ds* j ∆x( )T[ ]=

DFD

0 0 0

1 0 0

0 1 0

0 0 1

=

N 1 n+=
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The second design corresponds to the function evaluations required to evaluate

first-order sensitivities using a central difference formula. For n = 3 variables, the scaled

design matrix is

 (6.13)

requiring  function evaluations. The elements  are shorthand notation for

indicating two function evaluations, one at the  level, and one at the  level. This

design can be used to assess the linearity of the main effects and obtain better approxima-

tions of first-order sensitivities for nonlinear models. It does not include the interaction

effects that are almost always present in compliant mechanisms.

6.3.2   Second-Order Designs

There are many possible designs for second-order metamodels. A design that cor-

responds to the function evaluations used to evaluate second-order sensitivities using cen-

tral difference formulae is

(6.14)

DCD

0 0 0

1± 0 0

0 1± 0

0 0 1±

=

N 1 2n+= 1±

+1 1–

DBBD

0 0 0

1± 0 0

0 1± 0

0 0 1±
1± 1± 0

1± 0 1±
0 1± 1±

=
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This design is formed by augmenting Equation (6.13) with a Box-Behnken design (BBD),

where each row containing ( , ) represents four function evaluations corresponding to

a 22 factorial design for each pair of parameters. The full design requires 

function evaluations.

One of the benefits of this design is that the simulation can be performed in stages

as the need for greater accuracy arises. Another design that has this same benefit is the

central composite design (CCD), which is formed by augmenting Equation (6.13) with a

 full factorial design. Both the BBD and CCD families of designs are commonly used

for fitting second-order response surfaces.

The disadvantage of second-order metamodels is that they are only practical for

problems involving a small number of variables (less than 10). However, for compliant

MEMS, the uncertainty is usually dominated by only a few significant variables, and these

variables can usually be identified and screened via sensitivity analysis.

It is not always necessary to use integer values of  in the scaled design matrices.

For convenience, it is often useful to evaluate the axial points or main effects at  and

the interactions at  or vice versa. Although not necessarily optimal designs3, the results

of the computer experiment can help provide intuition about how the model is behaving at

the extreme levels and to help determine whether there are discontinuities in the model. As

an example, Figure 6.2 shows a plot of the simulated force vs. displacement curves for a

3.  It is not within the scope of this dissertation to discuss the details of choosing optimal design matrices. 
However, it is important to realize that using different design matrices and even different factor levels can 
lead to differences in the accuracy of a surrogate model.

1± 1±

N 1 2n2+=

2n

1±

1±

2±
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thermal microactuator using a second-order design of experiments (varying stiffness,

beam width, beam thickness, and residual stress). Graphing the results is an extremely

important step in analyzing the results of a computer experiment.

6.3.3   Sampling-Based Designs

Sampling-based simulation methods like pseudo-Monte Carlo (MC) sampling,

Latin hypercube sampling (LHS), and orthogonal array (OA) sampling, also make use of a

design matrix. In Monte Carlo sampling, each row of the matrix represents a “draw” from

the individual marginal distributions of the inputs. MC simulations often involve more

than 10,000 function evaluations in order to obtain accurate results.

Latin hypercube sampling provides a more efficient sample of the design space

while preserving the probabilistic characteristics of the inputs. OA is similar to LHS and

can be used to generate Latin hypercube samples (LHS can be considered a special case of

OA). LHS and OA are both more complex than Monte Carlo simulation and will not be

Figure 6.2   Plot of the simulated force vs. displacement curves for a thermal microactuator 
using a second-order design of experiments.
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discussed in this dissertation. However, these methods warrant further investigation for

use in MEMS and compliant mechanisms due to their superior accuracy and computa-

tional efficiency (Guinta et al., 2003).

6.4  Multivariate Polynomial Regression

Multivariate polynomial regression can be used to estimate the coefficients of

polynomial metamodels for multiple response variables, thereby determining the sensitiv-

ities with respect to individual input parameters (Jin et al., 2003; Simpson et al., 1997;

Myers and Montgomery, 1995). Polynomial regression is particularly convenient for anal-

ysis of nonlinear finite element models, where we may want to estimate error bands for

force-displacement curves.

If we have stored the results of the computer experiment in a matrix Y of size

N x p, we can use multivariate multiple linear regression (Rencher, 1995) to evaluate the

coefficients in Equations (6.4) and (6.7), because the polynomial response surface is of the

form . The estimates of the coefficients are found using a least-squares fit, or

(6.15)

6.4.1   Example: Area Properties of a Rectangle

To demonstrate how this approach is applied, assume we want to determine the

uncertainties in the area properties of a rectangle due to variations in the width and height.

We start with the parameterization, , where  is the width in the y-direc-

tion and  is the thickness in the z-direction. The standard deviations for w and t are

Y XB=

B XTX( ) 1–
XTY=

x w t,[ ]T= w 2=

t 5=
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specified as . The model calculates the outputs, , where

 is the area, and  and  are the centroidal moments of

inertia about the y and z axes, respectively.

The next step is to decide on a design matrix. For this example, we use the BBD

design, which for 2 variables is identical to a central composite design. The scaled design

matrix is 

(6.16)

resulting in  function evaluations. We then use Equation (6.10) to define the design

matrix, D, and Equation (6.10) to define the input perturbation matrix, .

At this point, the model is run by looping through the design matrix D and evaluat-

ing y for each set of inputs. The result is an N x 3 matrix Y. Subtracting the nominal value

for the response y from each row of Y results in the error response, .

The next step is to create the matrix X based upon the type of model that we want

to fit. In this case, we use a second-order error surface using the model given in Equation

(6.8). For this model, the X matrix, or matrix of regressors, is

(6.17)

s 0.08 0.02,[ ]T= y A Iy Iz, ,[ ]=

A wt= Iy wt3 12⁄= Iz tw3 12⁄=

Ds

0 0

1± 0

0 1±
1 1

1 1–

1– 1

1– 1–

=

N 9=

∆X

∆Y

X ∆w ∆t ∆w( )2 ∆t( )2 ∆w*∆t, , , ,[ ]=
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where  and  are the first and second columns of D, respectively, and element-wise mul-

tiplication is used for  and .

Solving for the regression coefficients using Equation (6.15) results in

(6.18)

The first two rows of B are the transpose of the sensitivity matrix, θ, where the elements

 are estimates of . The remaining rows can be parsed to form the Hessian

matrix for each individual response variable yi. The MATLAB code for this example prob-

lem can be found in Appendix A.5.

6.4.2   Application to Nonlinear Finite Element Analysis

This approach can be extended to nonlinear finite element analysis of compliant

mechanisms to obtain a metamodel for force vs. displacement. For this type of problem,

the “black box” becomes the finite element code that accepts x as input and returns as out-

put the force evaluated at discrete displacements. The displacements, defined as the vector

, correspond to the output . Each model evalu-

ation results in a single force-displacement curve, plotted as y vs. d.

w t

∆w( )2 ∆w*∆t

B

5 10.417 5.003

2 12.5 0.669

0 0 2.5

0 2.5 0

1 6.25 1.001

=

θij ∂yi ∂xj⁄

d d1 d2 … dp, , ,[ ]T= y y1 y2 … yp, , ,[ ]T=
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6.4.3   Application to Kinematics

In kinematics, it is common to evaluate the coordinates of a coupler point along the

path of the mechanism, given the angular displacement of one of the links as the input. In

this case, we could define  to be the angular displacements at 10

discrete points,  to be the x-position of the coupler point, and

 to be the y-position of the coupler point. Formulating the problem in

this manner and using first-order variance propagation described below (Section 6.5.2),

one could evaluate the covariance between the x-position and y-position as described in

Wittwer et al. (2004).

6.4.4   Metamodel Accuracy

It is important to point out that test statistics used in regression for evaluating

goodness of fit and other parameters usually do not apply to deterministic computer mod-

els, because there is no random component (see Simpson et al., 1997). The BBD and CCD

designs described above usually provide “just enough” function evaluations to create sec-

ond-order response surfaces. Therefore, the R-Squared metric for regression (model sum

of squares divided by the total sum of squares) is often insufficient. Creating residual plots

after testing the metamodel at different data points is important for verifying the accuracy

of the metamodel.

6.5  Uncertainty and Sensitivity Analysis

This section describes analysis procedures that make use of the first-order uncer-

tainty and sensitivity analysis, including correlation in x. This approach is often sufficient

d θ1 θ2 … θ10, , ,[ ]T=

y1 y2 … y10, , ,[ ]T

y11 y12 … y20, , ,[ ]T
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for most small-scale problems (less than 30 variables), but the example in Section 6.8

demonstrates a case in which second-order methods are required.

6.5.1   The Covariance Matrix, Sx

For first-order parametric uncertainty analysis, the uncertainties in the inputs are

described using a covariance matrix Sx. In general uncertainty analysis, random and sys-

tematic uncertainties are grouped together and treated as random (Coleman and Steele,

1999, pg. 48), although we can define a separate covariance matrix for random and sys-

tematic uncertainties in order to perform detailed uncertainty analysis (this does not affect

the number of function evaluations).

If the uncertainties associated with each of the inputs in x is independent, then we

can define a vector  where si is the standard deviation of xi. If the

inputs are correlated, then we can define a covariance matrix Sx that can be used to take

into account linear correlation. If all x’s are independent, then Sx is a diagonal matrix

where each element sii is the variance of xi, or .

Feature geometries in MEMS are usually correlated due to the effects of edge bias

and layer deposition and conformity (see Chapter 7). When inputs are correlated, it is

often convenient to work with the correlation matrix, Rx, which is analogous to Sx through

the relationships

(6.19)

s s1 s2 … sn, , ,[ ]T=

sii si
2=

Sx DsRxDs=
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and

(6.20)

where Ds is a diagonal matrix with elements  (see Rencher, 1995, pg. 69).

The elements of Rx are known as correlation coefficients, defined as

(6.21)

The diagonal elements of Rx are all equal to 1, and if all x’s are independent, the off-diag-

onal elements are zero. An exact linear relationship between two inputs results in rij equal

to either 1 or -1, depending on the slope of the line. If the exact linear relationship is

known, then including the functional relationship in the model can reduce the number of

inputs and the complexity of the analysis (see Chapter 7).

6.5.2   First-Order Variance Propagation

First-order approximations of the uncertainty in y are almost always useful. It is

not unreasonable to say that the majority of design problems can be greatly enhanced

through first-order sensitivity and uncertainty analysis techniques (also known as first-

order second-moment, FOSM, methods). More advanced methods may be applied to a

particular problem when greater accuracy is needed, or when the problem involves discon-

tinuities or an extremely large number of variables. In practice, the designer must consider

the issue of diminishing return on investments made to implement more advance methods

in design.

Rx Ds
1– S

x
Ds

1–=

dii sii si= =

rij rji

sij

siisjj

---------------= =
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The estimate of the covariance of y can be found using

(6.22)

which is derived from a first-order multivariate Taylor series expansion about the nominal

values of x and y. θ is the sensitivity matrix of size p x n where the elements θij represent

. In order to see how this equation relates to univariate notation, note that the vari-

ance of yi is calculated as

(6.23)

It is usually advisable to develop a model such that the inputs are uncorrelated (see

Saltelli et al., 2000, pg. 134). When the inputs are independent, then  and all the

covariance terms involving  are zero. It is then straightforward to determine the relative

effects of the individual parameter uncertainties sj on the total variance of yi. When uncer-

tainties are not independent, it is not as straightforward to determine the effects of individ-

ual variables on the overall variance because correlation could have either the effect of

increasing or decreasing the total variance.

For systems of implicit equations, the sensitivity matrix can be found as described

in Chapter 3 (also Wittwer et al. 2002b), but an approach more amenable to automation is

to estimate the sensitivities using finite-difference techniques or regression as described in

Section 6.4. In other words, the sensitivities are obtained directly from the metamodel.

Sy θSxθT
=

∂yi ∂xj⁄
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------- 
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Figure 6.3 shows the uncertainty in the force of a bistable micromechanism evalu-

ated at discrete displacements. The 95% confidence level is estimated by multiplying the

standard deviation by a factor of ±2. This assumes the distribution is Normal, but even as

an approximation, visualization of the uncertainty in this manner can be useful. Note that

in this example, the response variable  consisted of  points,

corresponding to the discrete displacements  where  and

.

6.5.3   Sensitivity Analysis

It is often helpful to evaluate a design based upon the sensitivity of performance

with respect to variations. There are many methods for sensitivity analysis, with a good

overview provided by Saltelli et al. (2000)4.

Figure 6.3   Force vs. displacement relationship for a bistable mechanism, including estimates 
of the 95% confidence limits.
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In order to judge which parameters contribute the most to the uncertainty, the sen-

sitivities must first be scaled or normalized appropriately. This can be accomplished using

uncertainty percentage contributions (UPCs) and uncertainty magnification factors

(UMFs) as described by Coleman and Steele (1999). Neglecting correlation (an important

assumption), the UPCs can be found using

(6.24)

where the diagonals of  and  are the diagonals of the Sx and Sy matrices, respec-

tively. The [UPC] matrix is a p x n matrix where each element represents  normal-

ized by multiplying by  or

(6.25)

If the uncertainties of x are not known, the sensitivities can be compared using

UMFs (see also Saltelli et al., 2000, pg. 87) which are found by

(6.26)

where Dy is the diagonal matrix of y and Dx is the diagonal matrix of x. The [UMF] matrix

is a p x n matrix where each element represents  normalized by multiplying by

 or

(6.27)

4. The approach in this section would be described as a first-order local sensitivity analysis method because 
it is based upon an expansion at a specific design point. Although the analysis can be applied to a vector 
y and not just a single response variable, global sensitivity analysis is used to describe a method that 
investigates the effects of the uncertainty over the full range of the design parameters.

UPC[ ] DSy

1– θDSx
=

DSx
DSy

∂yi ∂xj⁄

sxj syi⁄

UPC[ ]ij
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  sxj

syi
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xj yi⁄
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A problem with using UMFs for normalizing sensitivities is that for when yi is equal to

zero, the UMF is undefined.

Sensitivity analysis often involves the creation of bar charts to visualize and rank

the effects of individual uncertainties on the total variance. For nonlinear finite element

models, sensitivities may change with time or displacement. In these cases, area charts are

useful for graphing the uncertainty contributions (Wittwer et al., 2002a). An area chart

provides a visual representation of Equation (6.23), where the magnitude of each individ-

ual term is represented by the thickness of the shaded area in the chart (see Figure 6.4).

The total variance is represented as the sum of the stacked areas. Effects of individual

input correlations cannot be visualized with these types of area charts, because the areas

overlap if the covariance is negative. Therefore, a single area, included as the lower area in

the chart, is used to represent the sum of the terms in which the covariance is non-zero

( ). Figure 6.4 shows an example area chart for a bistable mechanism that is used

as a case study in Chapter 7.

sjk 0=

Figure 6.4   Uncertainty contributions visualized using an area chart (including correlation).
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6.6  Monte Carlo Simulation

One of the main benefits of metamodeling is that Monte Carlo (MC) simulation

can be run using the surrogate model to benefit from the dramatic increase in computa-

tional efficiency. Inclusion of non-normal distributions and the analysis of the results is

straight forward and intuitive. In practice, the principles behind MC simulation are easily

explained and understood by even those without an extensive background in statistics.

Figure 6.5 shows a schematic of how stochastic simulation and uncertainty propagation

work. 

The Monte Carlo method is just one of many sampling-based methods for analyz-

ing uncertainty propagation, where the goal is to determine how random variation, lack of

knowledge, or error affects the sensitivity, performance, or reliability of the system that is

Figure 6.5   Schematic showing stochastic uncertainty propagation (the basic principle 
behind Monte Carlo simulation).
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being modeled. Monte Carlo simulation is categorized as a sampling method because the

inputs are randomly generated from probability distributions to simulate the process of

sampling from an actual population. It is important to choose a distribution for the inputs

that most closely matches existing data, or best represents the current state of knowledge.

The only additional error associated with a surrogate-based MC simulation as

opposed to a simulation using the original computer model, is the error of approximation

in the metamodel. Many error metrics exist to help estimate this error, and this is an active

area of research (Doebling et al., 2002; Jin et al., 2001; Simpson et al., 1997). It could be

argued that the validity of using surrogate-based approaches requires the determination of

the error in the metamodel, making these techniques not necessarily more efficient for

design. However, just as with most design, modeling, and simulation tasks, the experience

and understanding contributed by the designer is essential for determining the validity and

value of the approach and for determining what level of experimental validation may be

required.

A full second-order metamodel is not required to perform surrogate-based Monte

Carlo simulation. Any computationally efficient metamodel should work, provided the

model parameterization correctly propagates sources of uncertainty and variation. If a

first-order model is sufficiently accurate, then MC can be performed to take into account

non-Normal distribution information.

The data generated from the simulation can be represented as probability distribu-

tions (or histograms) or converted to error bars, reliability predictions, tolerance zones,

and confidence intervals. Methods for analyzing the data can be found in most basic statis-
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tics textbooks (see Vardeman, 1994). A good overview of Monte Carlo simulation is pro-

vided in the thesis by David Larsen (1989).

6.7  Implementation

In order to facilitate methods for uncertainty analysis, optimization, and design

and analysis of computer experiments, a quasi-object-oriented toolkit has been developed

in MATLAB based upon the interface used by the existing optimization toolkit. Although

other software exists, the motivation for developing this tool was the fact that many of the

MEMS models used as case studies for this research were developed using MATLAB. In

addition, MATLAB provides a powerful base of mathematical and graphing functions that

make implementing various computer experiments straightforward.

Figure 6.6 shows a schematic of how the toolkit interfaces with an existing para-

metric model in MATLAB. The model is simply a function that accepts a vector x as input

and returns any number of output vectors. After the parametric model is created, a sepa-
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Figure 6.6   Schematic showing how the uncertainty analysis toolkit function (UATOOL) 
interfaces with a parametric MATLAB model.
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rate script file is created to define the input parameters and uncertainties, set parameters

for telling the UATOOL function what type of analysis to perform, and processing the

results (creating graphs and reports). Any number of design parameters  can be

passed from the script to the model. Only the values in x are modified by UATOOL.

The model can be defined entirely within MATLAB, or the function can act as an

interface between MATLAB and some other commercial or custom simulation software.

Many analysis packages provide the ability to run an analysis in “batch” mode using com-

mand line input and text files. For this research, the ANSYS Parametric Design Language

(APDL) is used to create a parametric finite element models that can be run in batch mode

from MATLAB.

To take the analysis a step further, the entire uncertainty model can be nested

inside of a separate function that is called by an optimization routine in order to perform

robust design under uncertainty. This procedure has been applied to the design of a fully

compliant bistable mechanism, described in the next chapter.

6.8  Example: Thermal Actuator Uncertainty

To demonstrate how the procedures discussed in this chapter can be used in com-

pliant MEMS, the thermal microactuator model described in the previous chapter will be

used. This example demonstrates a two-stage procedure involving both an analytical

model to calculate the area and moment of inertia of the beams (Stage 1) and a finite ele-

P1 P2 …, ,
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ment model to determine the force vs. displacement relationship (Stage 2). Figure 6.8

shows a diagram depicting these two stages and the variables that are used as inputs.

One of the reasons for performing the analysis in two stages has to do with the

number of uncertain parameters. In Stage 1, there are 10 variable parameters and in stage

2, there are 2 more (E and Sr). With 12 variables, a second-order method would result in

 function evaluations (using the DBBD design matrix). The TIM model

takes about 25 seconds to run, so the experiment would take about 1.6 hours to complete.

With the staged analysis, the TIM model has only 4 uncertain variables, and the time can

be cut to 11 minutes (33 function evaluations).

Another reason for performing the analysis in stages is that it can help determine

how errors or variations are propagating through the different models. Other MEMS

devices may use similar beam cross-section models, so the first stage of the analysis can

provide information useful to many other design problems.

Figure 6.7   Diagram of the thermal actuator uncertainty model. Stage 1 evaluates cross-section 
properties and Stage 2 evaluates the force vs. displacement curve using FEA.
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6.8.1   Stage 1: Uncertainty Analysis for Cross-Section Area Properties

The first stage of the analysis involves determining the area (A) and moment of

inertia ( ) of the beam based upon the cross-section described in Figure 6.8. The areas in

the diagram correspond to the Poly3, Oxide4, and Poly4 layers in the SUMMiT process.

(The second area is actually formed by etching Oxide4, and the conformity of the Poly4

deposition fills in the hole, forming a via.)

Some correlation exists between A and  because variations in widths and thick-

nesses affect both of these area properties. The model calculates the results using equa-

tions for a set of stacked rectangles and trapezoids (see Appendix B). These equations can

be found in most strength of materials (Gere and Timoshenko, 1997) and machine design

textbooks.

The sources of uncertainty affecting the area and moment of inertia are variations

in line widths, layer thicknesses, mask alignment, and uncertainty associated with the

Izc

Figure 6.8   Cross-section of a thermal actuator beam.

Izc
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slope of the sidewalls for the web. The variables and their associated uncertainties and

assumed distributions are summarized in Table 6.1. The thicknesses are assumed to follow

a normal (N) distribution because the fabrication process targets specific layer thick-

nesses. The other variables are assumed to follow a uniform (U) distribution to provide a

conservative estimate of variation (due to the lack of data).

6.8.2.1  Investigating Nonlinearity

Figure 6.9, sometimes called a “spider graph”, shows the deterministic relationship

between the individual sources of uncertainty and the moment of inertia. To create this

type of plot, the model is run by changing a single variable at a time, but at multiple incre-

Table 6.1  Cross-section parameter values.

Variable Units Nominal St.Dev. Dist.

t1 µm 2.25 0.041 N

t2 µm 2 0.181 N

t3 µm 2.25 0.042 N

yci µm 0 0.2 U

b1 µm 3.8 0.08 U

b3 µm 3.8 0.08 U

a2 µm 2 0.08 U

θ2 degrees. 10 2 U

Figure 6.9   A spider graph showing the relationship between input perturbations and 
deviations in moment of inertia.
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ments in order to investigate nonlinearity. The equation for the moment of inertia is non-

linear with respect to the input variables, so this type of plot helps to determine whether

linear (first-order) uncertainty analysis methods are appropriate. The plot shows that for a

small portion of the domain (i.e. the deviation space),  may be linearized5 with respect

to all variables except for yc1, yc2, and yc3. To properly account for uncertainty associated

with these variables (which is due to mask misalignment and/or differences in edge bias

between the left and right side of the beam), a quadratic or second-order method would

have to be used, because the first derivative of  with respect to yci is zero, or

 for i = 1, 2, and 3.

Another use for the spider graph is to show the relative contributions of the uncer-

tainties on the response (i.e. the sensitivities). To compare the sensitivities, the uncertain-

ties are normalized using the standard deviations (σ) of the inputs such that [-2σ,2σ]

scales to [-1,1]. The graph shows that the variation in b1 and b3 (the widths of the first and

third layer) are affecting  more than the other uncertainties.

The MATLAB code for generating the design matrices and creating the spider

graph is listed in Appendix A.4.

6.8.3.2   Uncertainty Analysis

The results of the uncertainty analysis using both the second-order Monte Carlo

(SOMC) method and direct Monte Carlo Simulation (MCSIM), using a sample size of

5. This assumes that the interactions between the variables are not significant. The spider graph does not 
take into account interactions. It is only meant to assess linearity with respect to main effects.

Izc

Izc

∂Izc
∂yci⁄ 0=
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50000 function evaluations, are summarized in Table 6.2 for a number of different area

properties. The standard deviation estimated with a first-order second-moment method

(FOSM) using central difference derivatives is also included, but as mentioned above, this

method cannot correctly account for variation in mask alignment when calculating .

One of the interesting results is that variations in yci can lead to a non-zero product of iner-

tia  which may be undesirable if out-of-plane motion must be avoided.

Figure 6.10 shows the results of the Monte Carlo simulation for A and  as a

shaded 2-D histogram. (The MATLAB code for the 2-D histogram can be found in Appen-

Table 6.2  Cross-section uncertainty analysis results.

Property Nominal
FOSM SOMC MCSIM

St.Dev. Mean St.Dev. Mean St.Dev.

A 20.40 µm2 0.46 20.38 0.47 20.38 0.47

85.53 µm4 7.36 85.67 7.34 85.67 7.35

21.36 µm4 0.97 21.89 1.06 21.89 1.06

0 µm4 5.14 0.02 5.15 0.02 5.15

ttotal 6.5 µm 0.19 6.50 0.19 6.50 0.19

Iyc

Izc

Iyczc

Izc

Iyczc

Figure 6.10   2-D histogram showing results of the Monte Carlo simulation for the area and 
moment of inertia.

Izc
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dix A.1.) As expected, these results show that the variation in area and moment of inertia

are linearly correlated. The correlation coefficient is 0.68. Because the TIM force model

takes as input the area and moment of inertia of the beams, we can use the correlation in

the uncertainty analysis rather than assuming that variations in area and moment of inertia

are independent.

6.8.4   Stage 2: Force vs. Displacement

To evaluate the force vs. displacement curve for the thermal actuator requires a

nonlinear finite element model. The model was discussed in detail in the previous chapter,

and the ANSYS batch file can be found in Appendix C.1. The method discussed in Sec-

tion 6.5.2 is used to estimate the uncertainty due to variations in A, , E, and Sr.

The results of the first-order uncertainty analysis are shown in Figure 6.11, along

with the data obtained from multiple tests of three different devices as described in the

previous chapter. The estimated uncertainty from the computer simulation is shown as a

95% confidence boundary. The data is well within the confidence boundary, so we can use

this as evidence that our model is valid. For statistical model validation as described in

Izc

Figure 6.11   Model validation for Design II of the thermal microactuator.
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Baghdasaryan et al. (2002), it is important to consider errors that are not included in the

simulated uncertainty propagation. This is done by including error bars on the data points.

In Figure 6.11 the error bars represent the measurement error associated with the uncer-

tainty in displacement measurements and the force gauge spring constant. Because the

confidence regions for both the simulation and the error bars overlap, there is not enough

evidence to declare the model invalid.

The sensitivity analysis of the thermal actuator, shown in Figure 6.12, provides

more insight into the behavior of the device with respect to the uncertainties. Residual

stress is a major contributor to uncertainty in force, with the effect increasing with dis-

placement. It is also interesting that for displacements larger than 1.6 µm, the correlation

between the area and moment of inertia (the only inputs with non-zero covariance) results

in a negative force covariance term. Because this is a stacked area chart, the positive vari-
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Figure 6.12   Uncertainty contributions for Design II of the thermal microactuator showing the 
effect of negative covariance.
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ance contributions overlap the negative covariance, so the area corresponding to the corre-

lation is shown separately below the chart.

For the thermal actuator, a negative covariance is beneficial because it means that

the effects of the uncertainty are being reduced. To understand what is happening, it is

helpful to analyze the covariance term associated with the correlation between A and ,

(6.28)

The analysis in Stage 1 showed that the correlation is positive, so  is positive. The sen-

sitivities,  and , must have opposite signs in order to result in a negative

covariance term. The spider graph in Figure 6.13 verifies that for a displacement of 3.2,

where the covariance is negative,  is negative and  is positive.

The spider graphs also show that the effects of A, , and Sr are not linear for dis-

placements of 0.2 and 1.2. According to the simulations in the previous chapter, these dis-

placements are in the region of the force-displacement curve where non-ideal buckling

occurs. A first-order metamodel may not be sufficient for accurate uncertainty predictions

in this region.

Izc
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Figure 6.13   Spider graphs at three displacements (x) of the thermal actuator.
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6.8.5   Second-Order Monte Carlo Simulation

To obtain a more accurate estimate of the uncertainty including distribution infor-

mation, we can try a second-order Monte Carlo simulation. This is done in two steps. The

first step is to create a second-order metamodel. The design matrix is created using the

vectors x and ∆x shown in Table 6.3. For this example, a Box Behnken design is used.

Figure 6.14 shows a comparison between the finite element simulations and the second-

order metamodel. The residual error, or difference between the metamodel and the FEA

simulations is less than 15 µN or 6% over the entire range of displacement.

Table 6.3  Stage 2 metamodel parameters.

Variable Units x ∆x

E MPa 164000 3200

Sr MPa -10 5

A µm2 20.40 0.5

Iz µm4 21.36 1.1

Figure 6.14   Comparison of finite element simulations to the second-order metamodel.
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The second step is to perform a Monte Carlo simulation using the metamodel. To

create the design matrix for the Monte Carlo simulation, the results from the simulation in

Stage 1 are combined with independent random samples for E and Sr. This ensures that the

we are taking into account the correlation between A and Iz. After assembling the matrix

of regressors, X, as explained in Section 6.4.1, evaluating the results using the metamodel

is simply a matter of performing a matrix multiplication

(6.29)

where B is a 14 x 4 matrix of regression coefficients calculated using Equation (6.15), and

 is a 50000 x 31 matrix where each row represents a single force-displacement curve.

To visualize the results of the simulation, a quantile function (Appendix A.3) can

be used to generate probabilities contours. Figure 6.15 shows a probability plot in which

∆Y XB=

∆Y

Figure 6.15   Shaded probability plot for visualizing Monte Carlo simulation results.
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the higher density is represented as a darker grayscale value. Figure 6.16 shows the 95%

confidence region, calculated using the 0.025 and 0.975 quantiles. For this problem, there

is actually very little difference between the confidence regions shown in Figure 6.11 and

Figure 6.16. However, if the distribution of the results is required, surrogate-based Monte

Carlo simulation may provide a practical solution for cases involving computationally

expensive finite element models.
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Figure 6.16   Model validation using a 95% confidence region from Monte Carlo simulation.
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CHAPTER 7 ROBUST DESIGN AND MODEL VALIDATION OF 

NONLINEAR COMPLIANT MEMS

Unless a device is designed as a sensor in which high sensitivity to variation is

desired, the next logical step after quantifying the uncertainty via simulation is to find

ways to reduce the uncertainty in order to improve reliability. In order to reduce the uncer-

tainty, there are two main approaches. The first is to identify which sources of uncertainty

are the most significant and attempt to reduce these variations. Since this is usually an

expensive approach, an alternative method is to decrease the sensitivity of the device to

variations.

This chapter proposes an approach for design stage uncertainty analysis, model

validation, and robust optimization of nonlinear MEMS to account for critical process

uncertainties including residual stress, layer thicknesses, edge bias, and material stiffness

(based on the techniques described in Chapter 6). A fully compliant bistable micromecha-

nism (FCBM) is used as an example, demonstrating that the approach can be used to han-

dle complex devices involving nonlinear finite element models. The general shape of the

force-displacement curve is validated by comparing the uncertainty predictions to mea-

surements obtained from in-situ force gauges. A robust design is presented, with experi-

mental results to verify that the performance is less sensitive to process variations, leading

to an increase in reliability and yield.
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7.1  Introduction

Research and development in the field of microelectromechanical systems

(MEMS) usually involves fabrication processes that push the limits of technology or pro-

cesses that are under development. In such cases, it is common to deal with large uncer-

tainties due to lack of data, inherent variation in material properties and feature

dimensions, variable loading conditions, adverse environmental effects, and other reliabil-

ity issues (Tanner et al., 2000a; Gupta, 2000).

The use of compliant or flexible mechanisms has helped minimize the effects of

friction, wear, and backlash in MEMS (Kemeny et al., 2002; Ananthasuresh et al., 1994).

However, compliant MEMS can be highly sensitive to variations in material properties

and geometry (Wittwer et al., 2002b).

Due to the high cost and slow turn-around during the prototyping stage of micro

mechanism design, it is important to take uncertainty into account in order to increase

first-pass success and shorten the product development cycle. Perhaps an even more

important consideration is that profitable commercial production of batch-fabricated

MEMS relies on high reliability and high yield (Delauche et al., 2002). If devices are not

designed to be robust to variations, exhaustive post-fabrication screening or calibration is

often required.

Considering uncertainty in simulation-based design of MEMS can aid in accom-

plishing a variety of objectives. These include:

� Increased first-pass success to shorten the product development cycle
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� Model validation using both computer simulation and experimental data

� Improved understanding of device behavior

� Identification of important parameters for in-process monitoring (Muchow 

et al., 2002)

� Evaluation of device performance and reliability for feasibility studies

� Improved device performance through robust or reliability-based design 

optimization (Han and Kwak, 2001)

� Increased yield for reduction of production costs (Delauche et al., 2002)

This chapter proposes an approach for design stage uncertainty analysis, model

validation, and robust optimization of nonlinear MEMS to account for critical process

uncertainties including residual stress, layer thicknesses, edge bias, and material stiffness.

A fully compliant bistable micromechanism (FCBM) is used as an example to demon-

strate that the approach can be used to handle complex devices involving nonlinear finite

element models in which the effects of uncertainties may vary with displacement. Experi-

mental results are used for model validation and to verify that the performance of the

robust design is less sensitive to uncertainties.

Methods for uncertainty analysis (Coleman and Steele, 1999), reliability-based

design (Kuo et al., 2001; Haldar and Mahadevan, 2000a, 2000b), robust optimization

(Parkinson et al., 1993), and sensitivity analysis (Saltelli et al., 2000) are well-established,

and there is increasing interest in applying these methods in MEMS. Much of the existing

literature pertaining to uncertainty analysis in MEMS has to do with microsystem metrol-

ogy, where geometries and basic structural material properties, such as Young's modulus,

fracture strength, and residual stress are extracted from other measurable quantities or

electronic probing (Wittwer et al., 2002a; Baker et al., 2002; Pryputniewicz et al., 2002;
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Jensen et al., 2001a; Allen and Johnson, 2001; Tanner et al., 2000a; Gupta, 2000; Johnson

et al., 1999; Gianchandani and Najafi, 1996; Mirfendereski et al., 1993). In most of these

cases, basic uncertainty and sensitivity analysis methods are used to determine measure-

ment error and compare which process variations contribute the most to measurement

uncertainty. Schenato et al. (2001) discussed other approaches for variation analysis in

MEMS, including the use of Monte Carlo simulation for probabilistic analysis and a

robust optimization approach for deterministic (worst-case) analysis. Monte Carlo simula-

tion is a useful approach for tolerance analysis in MEMS (Muchow et al., 2002; Germer et

al., 2002) particularly for analytical or computationally efficient models. A variety of soft-

ware tools for statistical simulation and optimization are in development, with much of the

emphasis on integration with existing MEMS analysis tools (Germer et al., 2002,

Delauche et al., 2002; Schenato et al., 2001).

Designing for reliability and robustness is becoming an important topic in MEMS

as the field matures and more emphasis is placed on developing reliable commercial appli-

cations. Han and Kwak (2001) presented the use of robust optimization in the design of a

microgyroscope using Monte Carlo simulation to compare predicted yields. Delauche et

al. (2002) are evaluating a variant of the Taguchi industrial approach for parametric yield

optimization. Liu et al. (2002) used analytical equations to determine the effects of feature

width variation on MEMS resonators and developed analytical equations for making reso-

nators robust to width variations. Mawardi and Pitchumani (2004) later applied a more

general robust optimization approach to the design of MEMS resonators. Maute and Fran-

gopol (2003) combined topology and reliability-based design optimization, providing a
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stochastic method for compliant MEMS design. This technique takes advantage of mod-

ern reliability-based design methods.

Reliability assessment requires an accurate knowledge of the distributional form of

the uncertainties, clearly defined metrics and performance specifications, and a valid

model. In MEMS, these conditions are rarely ever met, so the reliability or probability of

success can be a subjective metric. More work is needed to characterize uncertainties, val-

idate models, and demonstrate the importance of considering uncertainty during design.

7.2  FCBM Model and Uncertainties

 Bistable mechanisms are advantageous for use in microsystems because power is

only required during actuation of the device. This makes them useful in a wide range of

applications, including components in switches and relays (Gomm et al., 2002; Kruglick

and Pister, 1998), optical switches (Hoffman et al., 1999b; Jang et al., 1996), nonvolatile

memory (Hälg, 1990), and discrete sensors (Saif, 2000).

Figure 7.1 shows a scanning electron micrograph of a fully compliant bistable

mechanism (FCBM) fabricated using the SUMMiT V™ process. The device is shown in

Figure 7.1   Scanning electron micrograph of a fully compliant bistable mechanism in its 
second stable position. Position measurements are made using the attached vernier.
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its second stable position with the attached vernier used to make position measurements.

The schematic in Figure 7.2 shows the design parameters that define the mechanism topol-

ogy. The topology is similar to that presented by Jensen et al. (2001b), but without side

springs at the anchor points. The device is planar, consisting of three layers of polycrystal-

line silicon (polysilicon) that together form an out-of-plane thickness, µm. The

nominal parameters for the three designs discussed in this chapter are summarized in

Table 7.1. The values for residual stress (Sr), Young’s modulus (E), Poisson’s ratio (ν), and

profile offset ( ) are discussed in detail in Sections 7.2.2 and 7.2.3.

Figure 7.2   Schematic showing the parameterization of the FCBM quarter-model.

    
 

t 4.75=

Table 7.1  Parameter values for three designs.

Variable
Design 1 

(high force)

Design 2 

(sensitive)

Design 3 

(optimal)

l1 (µm) 13.7 15.5 29

l2 (µm) 13.7 15.5 29

lr (µm) 103.3 100 25

θ1 (deg) 2.44 2 4.12

θ2 (deg) 2.44 2 4.71

θr (deg) 2.44 3 2.42

w1 (µm) 1.4 2.5 1.4

w2 (µm) 1.4 2.5 1.4

wr (µm) 6.2 6.2 6.2

poffset (µm) 0.1 0.1 0.1

t (µm) 4.75 4.75 4.75

E (MPa) 164000 164000 164000

v 0.23 0.23 0.23

Sr (MPa) -10 -10 -10

poffset
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The force vs. displacement relationship for this mechanism is nonlinear due to

large deflections and stress stiffening, or the complex relationship between longitudinal

and transverse deformation of the flexible segments. Therefore, a nonlinear finite-element

model using beam elements was created to analyze the mechanism. Figure 7.3 shows the

graph of the applied force F required to maintain static equilibrium at 25 discrete displace-

ments, δ. These displacements correspond to the load steps used in the nonlinear solution.

The maximum force, minimum force, and x-intercepts are found through interpolation.

A variety of force-displacement curves can be generated using the FCBM topol-

ogy, but the mechanism is bistable only when the minimum force Fmin is negative. For

bistable switches, it is desirable to maintain an adequate contact force, so the contact is

usually placed at the position corresponding to Fmin. For discrete positioning, a contact or

mechanical stop can be used, but friction and wear problems can be avoided by using the

second stable position (SSP). When choosing an actuator, the forces and the displacement

required to toggle the mechanism must also be considered.

Figure 7.3   Force vs. displacement curve for a bistable mechanism.
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7.2.1   Modeling Assumptions

An important aspect of finite-element modeling of compliant MEMS is the choice

of boundary conditions and other assumptions. The boundary conditions, element type,

element size, plane stress or plane strain conditions, and material properties (i.e. linear

elasticity, isotropy, and homogeneity) can affect the systematic error, making it important

to experimentally validate the model.

Using symmetry and two beam-pairs as shown in Figure 7.1 helps constrain the

second buckling mode by preventing rotation of the shuttle. This is an important require-

ment to achieve bistability as discussed by Que et al. (2004) for curved-beam bistable

mechanisms. Symmetry enables the use of a quarter-model where the shuttle is treated as a

slider with only one degree of freedom. This model assumes that the only significant force

on the mechanism is the in-plane applied force, F. In order to prevent deflection and buck-

ling perpendicular to the desired plane of motion, the moment of inertia for in-plane bend-

ing must be kept smaller than that for out-of-plane bending or buckling.

Support compliance can be an important factor in some MEMS devices (Jensen et

al., 2001a). The schematic shown in Figure 7.2 assumes a perfectly rigid support, but tech-

niques based upon those in Gill et al. (1998) and Baker et al. (2002) have been used to

minimize bending in the support.

Additional compliance due to local elasticity at the junctures of flexible beams and

supports and at discontinuities in cross-sections can affect the behavior of compliant

MEMS (Wittwer and Howell, 2004; Allen and Johnson, 2001). In the case of in-plane

bending, the effect can be mitigated by using optimally sized fillets (Wittwer and Howell,
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2004), making the idealized beam element model more accurate. The alternative would be

to use 2D plane elements or a full 3D model, with a loss in computational efficiency.

Besides computation efficiency, an advantage of using beam elements is the simplicity in

creating parametric models that are important for design-stage uncertainty analysis.

7.2.2   Residual Stress and Material Properties

Residual stress. Residual stress in polysilicon can be an important factor to consider in

the design of compliant MEMS, particularly those with fixed-fixed boundary conditions.

With these boundary conditions, residual stress is known to induce buckling (Masters et

al., 2001). Baker et al. (2002) have presented some data for the SUMMiT V™ process

which gives a rough idea of an amount of residual stress to consider. For this chapter, a

residual stress of Sr = -10 MPa (compressive) is used, with a standard deviation of 5 MPa1

(see Table 7.2).

Young’s modulus. A significant amount of research has been done to measure the modu-

lus of polysilicon (Sharpe et al. 2001; Sharpe et al. 1998), with reported values ranging

from 135 to 173 GPa. Since the material properties of polycrystalline materials are known

to be dependent upon grain size, isotropy, and homogeneity, the actual value for the mod-

1. Baker et al. (2002) found that the residual stress varied across three adjacent die locations on a wafer by 
2.5 MPa. It is reasonable to assume that variation across the entire wafer would be larger, but more data is 
needed.

Table 7.2  Summary of uncertainties.

Parameter Nominal St. Dev. Reference

Sr -10 MPa 5 Baker et al., 2002

E 164 GPa 3.2 Jensen et al., 2001

t 4.75 µm 0.065 Limary et al., 1999

poffset 0.1 µm 0.04 Sandia ..., 2004
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ulus is dependent upon the specific fabrication process. For the SUMMiT V™ process,

Jensen et al. (2001a) measured the modulus to be E = 164 GPa, with a standard deviation

of 3.2 GPa (see Table 7.2). A value of ν = 0.23 is used for Poisson’s ratio.

Fracture strength. The fracture strength of polysilicon has been shown to vary signifi-

cantly (Sharpe et al., 1998; Sharpe et al., 1999) with measurements ranging from 1 to

3 GPa. The strength can be affected by specimen size, with larger specimens having lower

strength, likely due to the higher probability of defects (Sharpe et al. 2001). A conserva-

tive design approach uses a maximum stress of 1 GPa, unless sufficient data is available to

make more accurate reliability predictions.

7.2.3   Geometric Variations

Layer thicknesses. Uncertainty in film thicknesses of polysilicon deposited using

LPCVD is a result of variations in deposition rates, run-to-run drifts in the equipment, and

uniformity across a wafer (Elbrecht and Binder, 1999). Limary et al. (1999) presents data

for polysilicon film thicknesses and uniformity for the SUMMiT V™ process. The mech-

anisms described in this paper are planar, consisting of two layers of polysilicon, with a

nominal overall thickness of µm. Based upon the reported data for

SUMMiT V™, we assume the overall thickness to have a standard deviation of 0.065 µm

(see Table 7.2).2

2. The thickness of sacrificial oxide layers planarized using chemical-mechanical polishing (CMP) can also 
be affected by pattern density (Hetherington and Sniegowski 1998). These layers are ignored in the 
FCBM model because the in-plane force vs. displacement behavior is only significantly affected by the 
structural polysilicon layers.

t 4.75=
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Profile offset. Surface micromachining of polysilicon features is known to result in a pro-

file offset, or edge bias, due to photolithography exposure, etch undercut, proximity and

pattern density (Tanner et al., 2003; Wittwer et al., 2002b; Gupta, 2000; Limary et al.,

1999; Liebmann et al., 1997). This effect, shown exaggerated in Figure 7.4, can affect

both line widths and the lengths of flexible segments. The nominal profile offset, poffset, is

commonly assumed to be 0.1 µm in the SUMMiT V™ process, but values ranging from

0.05 µm (Limary et al., 1999) to 0.15 µm (Tanner et al., 2003) have been used. From the

reproducibility data for SUMMiT V™, available in the Sandia MEMS Advanced Design

Short Course, the profile tolerance zone shown in Figure 7.4 (at 95% confidence) is taken

to be ±0.08 µm based upon a pooled standard deviation of 0.04 µm (combining measure-

ments from wafer-to-wafer and lot-to-lot). This means that the uncertainty for the width of

a flexible beam is about ±0.16 µm, even after taking into account the nominal profile off-

set. In addition to the reproducibility data, Tanner et al. (2003) have shown that line

widths can vary significantly across a wafer, generally in a radial pattern from the center

to the edge, with a difference in the line width as much as 0.2 µm.

Figure 7.4   Profile offset and tolerance zone resulting from surface micromachining of 
polysilicon features (effect is exaggerated for visualization purposes).

mask layout

actual profile

profile tolerance, ptol

profile offset, poffset
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An important point to consider when dealing with uncertainty in line widths is that

the profile offset results in a correlation between line widths of different beams within a

mechanism. Although the profile offset may vary across a wafer, local variation within a

wafer is usually much smaller than the stated ±0.08 µm tolerance. More data is needed to

determine the actual die-level and device-level variation. For the purposes of this chapter,

the variation in beam widths and lengths of flexible segments within a device are assumed

to be linearly correlated, based upon the relationship

 (7.1)

where  represents the difference between the fabricated and as-drawn width

of a beam due to the profile offset.

Fillets and rounding. In addition to a profile offset, photolithography and etching pro-

cesses are known to result in fillets and rounded corners. Rounding of corners usually has

very little effect on the stress distribution of compliant mechanisms, but fillets are known

to affect the stiffness and stress concentrations (Wittwer and Howell, 2004; Pilkey, 1997).

As mentioned in Section 7.2.1, adding optimally sized fillets to the mask layout helps mit-

igate the effect of local elasticity, making beam element models more accurate. The

increase in size of the fillet due to the profile offset can be taken into account in the design

and layout. However, since most flexible segments in MEMS are fairly slender, the effect

of the local elasticity and fillet will often be negligible compared to other uncertainties.

Cross-sections.  The cross-sections of polysilicon beams are rarely perfectly rectangular,

but rather trapezoidal due to tapered side walls (Mirfendereski et al., 1993; Sharpe et al.,

∆w1 ∆w2 ∆wr ∆lr ∆– l1 ∆– l2= = = = =

∆w 2poffset=
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2001; Wittwer et al., 2002b). This can be important when calculating moments of inertia

and other area properties. The side walls of etched polysilicon features in SUMMiT V™

are close to vertical, so it is usually sufficient to assume that the beams are rectangular.

Surface roughness, tapering, and bowing along the length of flexible beams can lead to

non-constant cross-sections, but uncertainty in the width due to edge bias is typically

much larger than these effects.

7.3  Uncertainty and Sensitivity Analysis

7.3.1   Uncertainty analysis

Since we are using a parametric finite element model, uncertainty analysis is per-

formed by treating the model as a generic function that takes a vector of uncertain or vari-

able inputs  and returns a vector of output (response) variables

. For the bistable mechanism, the vector y represents the force eval-

uated at discrete displacements. Additional outputs such as the maximum force, minimum

force, and x-intercepts can also be included in the analysis.

The approach used in this chapter is based upon the general uncertainty analysis

method described by Coleman and Steele (1999). This method involves creating a first-

order Taylor series expansion about the nominal values of x and y, followed by the use of

the propagation of variance equation. Stating this equation in matrix notation, the estimate

of the covariance of y can be found using

(7.2)

x x1 x2 … xn, , ,[ ]T=

y y1 y2 … yp, , ,[ ]T=

Sy θSxθT
=
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where θ is the sensitivity matrix of size p x n and Sx is the covariance of x. If the input

uncertainties are independent (i.e. no correlation), then Sx is a diagonal matrix where each

element sii is the variance of xj. The elements  represent the sensitivities  from

the coefficients of the Taylor series expansion. These sensitivities can be found numeri-

cally using finite-difference (Glancy and Chase, 1999) or multivariate polynomial regres-

sion (Jin et al., 2003; Simpson et al., 1997; Myers and Montgomery, 1995).

To determine the relative effects of the uncertainties on the total variance, Equa-

tion (7.2) can be written in expanded form as

(7.3)

where  if the inputs are independent. To compare the variance contributions, the

individual terms in Equation (7.3) are normalized by dividing by the total variance,

.

The simplest approach for uncertainty analysis of the FCBM is to ensure that the

vector x is an independent set of parameters, such as . We would

then define a corresponding vector  as the vector of standard

deviations of x. The covariance matrix Sx is then formed by setting .

An alternate approach that allows us to observe the relative contributions of the

lengths and widths is to use , where the lengths and

θij ∂yi ∂xj⁄

var yi( )
∂yi

∂xj

------- 
 

2

sjj

j 1=

n

∑ 2
∂yi

∂xj

------- 
  ∂yi

∂xk

-------- 
  sjk

k j 1+=

n

∑
j 1=

n 1–

∑+=

sjk 0=

var yi( )

x E t Sr poffset, , ,[ ]T=

s 3200 0.065 5 0.04, , ,[ ]T=

sii si
2=

x E t Sr w1 w2 wr L1 L2 Lr, , , , , , , ,[ ]T=
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widths are correlated. It can be shown that , , , and  are not significant com-

pared to w1 and w2, so for this chapter we use . Due to the profile

offset described in Section 7.2.3, the standard deviations of w1 and w2 are twice that of the

profile offset, with a correlation coefficient of 1. This leads to the covariance matrix

(7.4)

A detailed discussion of covariance and correlation matrices can be found in Rencher et

al. (1995, pp. 65-70).

When using Equation (7.2) to estimate the uncertainty in the force, we typically

only use the diagonal elements of Sy which represent the force variance at each discrete

displacement. Using the variance, we can plot an estimate of the 95% confidence band

based upon limits of , as shown in Figure 7.5 for Design 2 of the FCBM.

L1 L2 Lr wr

x E t Sr w1 w2, , , ,[ ]T=

Sx

32002 0 0 0 0

0 0.0652 0 0 0

0 0 52 0 0

0 0 0 0.082 0.082

0 0 0 0.082 0.082

=

2 sii±

Figure 7.5   Force uncertainty for design 2 represented as 2-sigma error bands.
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For the intended application of the FCBM as a component in a discrete sensor, it

was desirable to have the minimum force be as close to zero as possible, while remaining

reasonably certain that the fabricated devices would be bistable. In addition, the force out-

put of the electrostatic actuator used by the sensor was limited to 50 µN. The problem with

Design 2 is that the uncertainty in the minimum force and second stable positions is very

large, so without fabricating multiple versions of the device, we could not be confident

that all the devices would be bistable and have a minimum force between 0 and µN.

7.3.2   Sensitivity Analysis

It is often helpful to evaluate a design based upon the sensitivity of performance

with respect to individual variations. There are many methods for sensitivity analysis,

with a good overview provided by Saltelli et al. (2000).

Sensitivity analysis often involves the creation of pie graphs or bar charts to visu-

alize and rank the effects of individual uncertainties on the total variance. For nonlinear

finite element models, these sensitivities may change with time or displacement, so area

50–

Figure 7.6   Uncertainty contributions for Design 2 visualized using an area chart 
(including correlation).
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charts (or stacked line graphs) can provide a helpful visualization tool (Wittwer et al.,

2002a). Figure 7.6 shows a graph of the force covariance for Design 2 of the FCBM,

including the individual effects of modulus, thickness, residual stress, beam widths, and

correlation in the beam widths. 

The area chart is a graphical representation of Equation (7.3), with the magnitude

of each term in the equation represented by the thickness of a shaded region in the chart.

The total force variance is the sum of the stacked areas. A single area, included as the

lower area in the chart, is used to represent the sum of the terms in which the input covari-

ance is non-zero ( ). For this example, the only non-zero input covariance is the

one associated with the beam widths.

Figures 7.5 and 7.6 provide valuable information about the behavior of the FCBM.

Figure 7.6 shows that the uncertainty in the minimum force and SSP is due mainly to vari-

ations in the beam widths, with correlation compounding the problem. We have not

included additional independent random variation in the widths, so the sum of the contri-

butions of the widths and the covariance represents the total contribution of the profile off-

set uncertainty. It is interesting that unlike the thickness and modulus, the variance due to

width uncertainty is not necessarily a function of the magnitude of the force, as one might

expect from results obtained from the analysis of linear springs (Wittwer and Howell,

2002). Another point of interest is that the residual stress is the dominant source of varia-

tion at the initial position, but the device is practically insensitive to residual stress at a dis-

placement of 6.0 µm3. This displacement does not correspond to the unstable equilibrium

position (7.9 µm), nor does it correspond exactly to the sum of the vertical components of

sjk 0=
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the beams (6.3 µm) from Figure 7.2. The peculiarities in these results led to an investiga-

tion of whether robust optimization could be used to find a design that would be less sen-

sitive to process variations for a specific set of design constraints.

7.4  Model Validation

Obtaining experimental measurements is essential for validating the FCBM model,

discovering possible lurking variables, and gaining confidence in the simulation. Tradi-

tional statistical model validation methods involve the replication of an experiment to

gather a sufficient amount of data to estimate uncertainty and test whether the model

agrees with the data. Due to the cost and difficulty of obtaining experimental data in

MEMS, it is often not practical to obtain a sufficient amount of data required for statistical

model validation.

A number of researchers have described how simulation-based uncertainty models

can aid in model validation when experiments are expensive or time-consuming to repeat

(Hills and Trucano, 1999; Doebling et al., 2002; Baghdasaryan et al., 2002). First, the

model is used to predict the uncertainty based upon parameter variations and other mea-

surement uncertainties. In this way, even a single experimental data point can be used to

help validate models, by determining whether the measurement falls within the confidence

region predicted by the uncertainty analysis4. This approach was used to validate the

FCBM force-displacement prediction.

3. Found through quadratic interpolation of the variance contribution vs. displacement. From the graph, the 
minimum appears to be at 6.2 µm.

4. Statistical hypothesis testing can then be used to decide whether the model should be rejected, or whether 
it is consistent with the experimental results. Baghdasaryan et al. (2002) applied this approach to a sheet 
metal flanging process, showing that reducing the number of physical tests to one and using efficient 
computational uncertainty analysis techniques, the model could be validated over more design settings.
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7.4.1   Force-Displacement Model Validation

To obtain force-displacement data for the FCBM, in-situ micro force gauges simi-

lar to those described in Wittwer and Howell (2002a) were used. Force measurements

were obtained by measuring the displacements of the gauge and backing out the force

based on the material properties and dimensions of the gauge. Tests were performed for

Design 1 at three different locations on the wafer, and repeated at one of these locations.

The results are shown in Figure 7.7 along with the 95% uncertainty bands representing the

systematic uncertainty in the fabricated mechanism as estimated from the design-stage

simulation. The measurement uncertainty for the force was ±14% (shown as error bars on

the data from location 3). The uncertainty in the displacements from vernier measure-

ments was ±0.17 µm. This data provides an adequate validation of the general shape of the

force-displacement curve.

7.4.2   Uncertainty Model Validation

Because edge bias and residual stress are known to vary significantly across a

wafer, measurements were taken at multiple locations in order to determine if the spread

Figure 7.7   Model validation of Design 1 using experimental data obtained from in-situ micro 
force gauges. The data is contained within the estimated 95% uncertainty bands.
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of data was similar to the predicted uncertainty. When using in-situ force gauges, the force

measurement uncertainty can be correlated with the uncertainty in the device being char-

acterized. Therefore, without measuring the actual dimensions and properties of each

gauge that is used, one cannot make good statistical comparisons between identical

devices at different locations on the wafer. A more practical approach for validating the

uncertainty predictions was to measure the second stable position (SSP), which involved

toggling the mechanism and reading the displacement directly from verniers on the

device.

Figure 7.8 shows measurements of the SSP taken at 34 locations across a wafer,

plotted vs. the radial distance of the device from the wafer center. The nominal SSP was

10.34 µm with an estimated 95% uncertainty interval of [9.71, 10.90] µm, shown as hori-

zontal lines in Figure 7.8. The error bars on the data points represent 95% confidence in

the displacement measurements, or ±0.17 µm from the vernier readings. The repeatability

of the measurements was less then the resolution of the vernier, resulting in identical mea-

surements of the SSP for repeated tests.

Figure 7.8   Measurements of the second stable position (SSP) for Design 2 vs. the radial distance 
from the wafer center. Uncertainty model predictions shown as 10.34 ±0.32 µm.
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The spread of the data compared to the predicted uncertainty in Figure 7.8 suggests

that our uncertainty model, or the assumed process variations and the manner in which

these variations affected the performance of the device, was reasonable5. The effects of

residual stress and edge bias variation cannot be separated, but the plot in Figure 7.8

shows a definite radial trend. Given that Design 2 is theoretically more sensitive to edge

bias variation and the fact that an increase in the profile offset leads to an increase in the

SSP, the trend is consistent with that found in Tanner et al. (2003) where the profile offset

was found to be largest at the edge of the wafer.

7.5  Robust Design Optimization

The next logical question after analyzing uncertainty and sensitivities is whether

the variation in the device performance can be reduced. Although reducing the variation in

the residual stress and profile offset would be one solution, it may be too expensive or not

currently possible to do so. Another approach is to make the device more robust to varia-

tion by modifying design parameters, an approach made popular in the 1980s by Genichi

Taguchi (Taguchi et al., 1989).

Designing for robustness is often an optimization problem, particularly when the

relationship between the output performance and the input parameters is complex. In order

to design for robustness, we used a nested approach, where the full uncertainty model was

wrapped inside of a gradient-based optimization routine. While not necessarily the most

efficient optimization formulation, it was highly practical since no modifications had to be

5. These results do not directly validate the uncertainty estimations at every location along the force-dis-
placement curve, but we can infer from these results and Section 7.4.1 that the uncertainty model is rea-
sonable.
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made to the uncertainty model. Eldred et al. (2002) provide other formulations for surro-

gate-based optimization under uncertainty that may be more efficient.

7.5.1   Optimization Formulation

The objective function for the optimization problem was to minimize the variance

of the minimum force, or . The design variables and limits are given

in Table 7.3 The constraints, summarized in Table 7.4, included the requirements neces-

sary for a specific application as a component in a discrete sensor. The maximum force

Fmax was chosen based upon the output capabilities of a specific thermal microactuator.

The requirements for Fmin and the displacement at the point of minimum force x(Fmin)

were chosen to ensure bistability while remaining within the force output capabilities of a

specific electrostatic actuator. The maximum stress Smax in the device had to be low

enough to prevent failure.

Although uncertainty in maximum stress could be included in the analysis, using a

deterministic safety factor for the constraint was sufficient for this problem. The con-

minimize var Fmin( )( )

Table 7.3  Design variables for optimization.

Variable(s) Min Max

w1, w2 1.4 µm 2.0 µm

θ1, θ2, θr 1 deg 10 deg

l1, l2 10 µm 30 µm

lr 25 µm 75 µm

Table 7.4  Optimization constraints.

Constraint Min Max Result

Fmin -25 µN -15 µN -15.6 µN

Fmax 75 µN 125 µN 121 µN

x(Fmin) 6 µm 8 µm 6.3 µm

Smax - 1000 MPa 870 MPa
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straints for the other variables were also soft constraints chosen as guidelines and not hard

specification limits. For problems in which it is desirable to ensure that the design remains

within the constraint boundaries even under uncertainty, an alternative reliability-based or

robust optimization formulation (Eldred et al. 2002; Parkinson et al., 1993) could be used,

such as specifying a stochastic interval for a 3-sigma level reliability on Fmax as

(7.5)

where  is the variance estimated from the nested uncertainty analysis, and

 represents the 3-sigma or 99.73% reliability level (assuming a normal distribu-

tion).

Optimization of the FCBM resulted in Design 3 with the parameters given in Table

7.1. The force-displacement curve and uncertainty bands are shown in Figure 7.9(b) com-

pared to Design 2 in Figure 7.9(a). The simulation predicts that the minimum force and

second stable position are much less sensitive to process variation than Design 2, and this

is validated experimentally in the next section.

It is interesting that the optimization resulted in the widths of the flexible segments

binding on the minimum value. These results are counterintuitive, since the general

approach for reducing sensitivity to variations is to reduce the relative uncertainty by

increasing the beam width, rather than decreasing it6. While it is reasonable to hypothesize

that a nonlinear mechanism could have such behavior, the fact that an actual device has

6. Part of the reason for the narrow beams compared to Design 2 is the constraint on the maximum force and 
the stress. However, neither the maximum force nor the length of the flexures were binding constraints. 
Intuitively, one might expect the length and the force to be binding since using a wider beam reduces the 
relative (percent) uncertainty in the beam width.

50 n var Fmax( ) Fmax 150 n var Fmax( )–≤ ≤+[ ]

var Fmax( )

n 3=
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been shown to have this effect opens up the question of whether there are not other micro

devices that may exhibit such behavior.

7.5.2   Robust Design Validation

One of the first steps taken to validate the robust design was to use a more accurate

simulation. The approach described in Section 7.3 is based upon a linear expansion at the

nominal design point. For a more precise estimate of the uncertainty, we used a surrogate-

based (metamodeling) method in which a second-order surface response was first created,

followed by a Monte Carlo simulation (Doebling et al., 2002; Baghdasaryan et al., 2002;

Iman and Helton, 1984). The 95% uncertainty bands shown in Figure 7.9 come directly

from the results of the Monte Carlo simulation, assuming normal distributions for the

inputs. The differences between these results and those from Section 7.3.1 were insignifi-

cant.

To experimentally validate that Design 3 is more robust, a subsequent experiment

to that described in Section 7.4.2 was performed in which Design 2 and Design 3 were

fabricated side-by-side on the same die. Figure 7.9 shows the measurements of the SSP for

both devices at multiple locations across the wafer. Using verniers, it was possible to

resolve displacement measurements to 0.125 µm, so the number of data points shown in

Figure 7.9 is actually 29 points for the sensitive device (Design 2) and 32 points for the
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optimized device (Design 3). The distribution of the data is shown using histograms, since

many of the data points overlap.

The spread of the SSP measurements in the optimized device is clearly less than

that of Design 2, showing that the optimized device is indeed more robust. The fact that

the spread of the data is close to the prediction provides further evidence that the uncer-

tainty model is reasonable. The significance of this is further demonstrated by the bistable

behavior of the devices. Although the nominal minimum force for Design 2 was much far-

ther from zero than Design 3, it is also more sensitive to variation. This resulted in 3 of the

Design 2 devices not being bistable, while all of the Design 3 devices were bistable. The

location of the minimum force, , for the 3 non-bistable devices relative to the
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Figure 7.9   Measurements of the SSP for (a) Design 2 and (b) Design 3, with histograms to 
show the distribution of the data.
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wafer center is shown in Figure 7.10. The spread of the SSP data for the two designs is

consistent with the trend observed in the previous experiment (see Figure 7.8).

7.6  Conclusions

An approach for uncertainty and sensitivity analysis of nonlinear micromecha-

nisms was described that can provide valuable information about the behavior of a device

with respect to both process variations and design variables. The uncertainty model of the

FCBM shows that the sensitivities can change with displacement, and that correlation in

geometric variations due to edge bias can be a significant factor to consider. In addition to

visualizing the uncertainty in force vs. displacement for nonlinear finite element models,

this approach could also be applied to position vs. voltage for electrostatic switches, or

amplitude vs. frequency for dynamic models.

This work demonstrates the value of using process variation data in the design of

MEMS. Robust design optimization does not necessarily require exact knowledge of

actual process variations, but it is necessary to know what factors may be important to

Figure 7.10   Measurements of the second stable position (SSP) for Design 2 and Design 3 
vs. the radial distance from the wafer center.
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consider in the analysis. The sources of uncertainty summarized in this chapter are highly

process and design dependent, and since MEMS technologies improve and change over

time, there will continue to be a need for uncertainty analysis, model validation, and

design for reliability and robustness.

This chapter demonstrates the experimental validation of robust optimization for

nonlinear compliant MEMS using a fully compliant bistable micromechanism as an exam-

ple. Prior to the design of the robust device, the general shape of the force-displacement

model was validated using in-situ force gauges on a mechanism with the same topology

designed for use as a micro relay component (Design 1). Measurements of the second sta-

ble position on another design (Design 2) were taken at multiple locations on a wafer in

order to help validate the uncertainty model. The uncertainty model was then nested inside

of an gradient-based optimization algorithm using the variation in the minimum force as

the objective function. A final experiment comparing Design 2 to the optimized device

(Design 3) showed that although each device was subject to the same process variations,

the performance of the optimized device was less sensitive to these variations. This dem-

onstrates the importance of design stage uncertainty analysis and the feasibility of design-

ing MEMS that are robust to the uncertainties associated with the fabrication process. The

device used to demonstrate this approach has potential for use in force-threshold switches

and discrete sensors, where robustness to variations can lead to an increase in reliability.
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CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS

8.1  Conclusions and Contributions

The purpose of this dissertation was to develop approaches for simulation-based

design of compliant micromechanisms to evaluate design performance under uncertainty,

increase first-pass design success, validate models, and increase device yield.

A generalized analytical method was presented for uncertainty analysis of compli-

ant MEMS where models consist of implicit systems of equations (Chapter 3). The

approach was applied to a linear displacement bistable micromechanism and included a

detailed discussion of the sources of uncertainty common in compliant MEMS. It demon-

strated how performing design-stage uncertainty analysis could aid in achieving first-pass

design success.

Much of the work in simulation-based design has to do with investigating non-ide-

alities in order to reduce modeling error and identify causes for differences in model pre-

dictions and experimental results. Listed below are the main issues presented in this

dissertation related to modeling of compliant MEMS:

� Joint clearances. (Chapter 3) A method for modeling the effects of clear-

ances in compliant micromechanisms was developed, enabling first-pass 

design success of a linear displacement bistable micromechanisms. Com-
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pliance results in a force-closed condition which makes clearance vectors 

dependent upon reaction forces at the joints.

� Semi-rigid supports. (Chapter 4) Localized elasticity at the junctures of 

flexible beams and semi-rigid supports can lead to significant modeling 

error when supports are assumed to be perfectly rigid. A method was 

developed to mitigate the effects of local elasticity in planar compliant 

mechanisms through the use of optimally sized fillets. This allows beam 

elements or classical analytical methods to be used without a significant 

loss of accuracy.

� Non-ideal loading. (Chapter 5) It was observed through experiment and 

demonstrated through simulation that non-ideal loading of thermal micro-

actuators can lead to a significant decrease in the force output due to non-

ideal buckling. Simulations were used to develop design rules to avoid this 

problem.

� Asymmetry. (Chapter 5) Monte Carlo simulation was used to show that 

asymmetry due to small variations in the cross-sectional properties of 

beams is a plausible cause for non-ideal buckling observed in some thermal 

microactuators.

An approach for uncertainty analysis of compliant MEMS was developed (Chapter

6) that can account for large relative uncertainties in complex models, while maintaining

simplicity and transparency (ease of interpretation). Some of the specific contributions

related to this approach are listed below:

� Use of multivariate multiple linear regression to create first and second-

order surrogate models

� Visualization of relative uncertainty contributions via area charts, including 

correlation

� Inclusion of distribution information via surrogate-based Monte Carlo sim-

ulation
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� Application of the approach for uncertainty analysis and model validation 

of nonlinear compliant mechanisms, including a thermal microactuator 

(Chapter 6) and a fully compliant bistable micromechanism (Chapter 7)

A quasi-object-oriented toolkit was developed in MATLAB to enable the implementation

of various uncertainty, sensitivity, optimization, and computer experiment methods while

treating the model as a “black box”.

The main contribution of this dissertation was the demonstration that simulation-

based design under uncertainty can enable the development of MEMS devices that are less

sensitive to existing process variations. This approach was experimentally validated in a

case study involving a nonlinear, fully compliant, bistable, micromechanism. Such an

approach is particularly important for new technologies where there is little control over

process tolerances. Not all devices can be made insensitive to variations in micro fabrica-

tion processes, and there are almost always trade-offs in performance. However, design-

stage uncertainty analysis can provide valuable information about complex systems that

might otherwise only be attainable through extensive testing.

8.2  Recommendations for Further Work

As explained in the introduction, simulation-based design under uncertainty

requires (1) an understanding of the sources of errors and variation, (2) a parametric model

that can be used for simulating effects of variation, and (3) an efficient means for running

the computer experiment and analyzing the data. These three requirements are often more

difficult to meet than designing based upon the prototype-testing-redesign cycle. This dis-

sertation has demonstrated the value of design-stage uncertainty analysis in MEMS, and
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additional work related to meeting the above requirements will be beneficial to compliant

MEMS design.

8.2.1   Parametric Data

The amount of information available to MEMS designers regarding the types of

errors and amount of variations within a given micro fabrication process is usually quite

limited. This is due in part to the fact that a process may be in early developmental stages

and sufficient data is not available to provide accurate measures of uncertainty. Intellec-

tual property concerns can also play a significant role in limiting the amount of informa-

tion available to external customers or vendors that submit designs for fabrication either

for academic or commercial research. Where data is not available, conservative uncertain-

ties may be assumed based upon expert opinion in order to justify the collection of more

data and identify areas that warrant further research.

8.2.2   Investigation of Non-Idealities

Non-idealities in MEMS will continue to be an issue for design and model valida-

tion. When experimental results fail to follow expectations, investigation into the reasons

for the difference between model predictions and the data could lead to the discovery of

physical phenomena that may potentially be exploited in some beneficial way.

8.2.3   Model Parameterization

One of the roles of a design engineer is to develop physical models of a system in

order to improve a design, customize a device for a given application, and to gain a better

understanding of the system or device behavior. In order to enable the use of automated



157

design-stage uncertainty analysis, a model must be parametric with respect to both design

variables and uncertainties in order to correctly simulate the propagation of error. How-

ever, parameterizing a model with respect to uncertainties can dramatically increase the

complexity, particularly when certain assumptions can no longer be made to increase com-

putational efficiency. Analysis software that allows custom function or relation definitions

along with parametric feature geometry may help simplify the process of creating models.

8.2.4   Metamodeling

Creation of simplified models from more complex simulations can enable more

rapid design of MEMS. As compliant components and elements become commonplace in

a variety of MEMS, development of metamodels and design tools that can be used to

quickly customize devices for specific applications may prove valuable. Development of

metamodeling methods is an active area of research and one that warrants further investi-

gation as applied to compliant mechanisms, MEMS, uncertainty analysis, and design opti-

mization. Some specific techniques to investigate are the use of radial basis functions,

kriging, nonlinear regression, and orthogonal arrays.

8.2.5   Global Model Validation

Model validation will continue to be an important aspect of research and devep-

ment. As our ability to model more complex systems increases, particularly in fields

where experimentation is expensive or not yet possible, there will be a tendency to rely

more on simulation. When effects of uncertainty can be accounted for through simulation,

it may be more advantageous to perform experiments covering a larger design space rather

than spend most of the time and resources on obtaining repeated measurements. More
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research is needed to determine proper procedures for setting up global model validation

experiments, including consideration of cost and time.

8.2.6   Reliability and Yield Predictions

Making estimates of reliability and yield for MEMS through simulation is largely

dependent upon the accuracy of the distributions assumed for various inputs and parame-

ters. This requires a continual collection of parametric process data. Assuming that the

data can be collected, what is the best way to archive and retrieve the data so that it can be

used for model validation, uncertainty analysis, and reliability-based design?

8.2.7   Taking Advantage of Correlation

Although correlation can substantially increase the complexity of uncertainty anal-

ysis techniques, it is one of the only aspects of probabilistic design that allows input uncer-

tainties to effectively cancel each other out. The idea of robust design has been around for

many years, but this usually involves tuning design variables. Is there some way to take an

inherently sensitive device that cannot be modified and add some feature or system so that

the overall system is more robust? Could correlation in feature geometries be a key to

accomplishing this?

8.2.8   Additional Sources of Uncertainty

The sources of uncertainty discussed in this dissertation represent only a small

number of the many factors that can contribute to the reliability of MEMS. Human factors,

operational variation, modeling errors, and other issues are all important to consider in

designing for reliability and first-pass success. In addition, a designer must consider the
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life cycle and how environmental and operational variations affect the life of the device.

What is the best way to consider these errors and sources of uncertainty during design,

without causing the simulation to be more expensive than testing?

8.2.9   MEMS Component Simulations

Many models can be divided into components that can be analyzed separately

from the overall system. Simulations on sub-components may help improve computa-

tional efficiency, aid in design of other devices, and provide greater design intuition.

For example, in Chapter 6 the analysis of the cross-sectional properties of the ther-

mal microactuator beams was separated from the force-displacement model. The cross-

section model could be used to investigate the effects of mask alignment and edge bias on

the product of inertia for layered cross-sections (which may affect the out-of-plane dis-

placement of planar compliant mechanisms). It could also be used to determine the advan-

tages and disadvantages of using multiple layers to mitigate the effects of edge bias

variation.

8.2.10   Practical/Political Issues

Accounting for uncertainty in design is not trivial. As in tolerance analysis at the

macro level, it requires collaboration between design, analysis, fabrication, and testing

groups. Organizations are not always set up to encourage such interaction. Tasks are often

accomplished not only by separate individuals, but also different organizations within a

company. From a practical stand-point, the discussion of uncertainty and process variation

is often a delicate subject. How does a designer get the information required to account for
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variability without causing legal or intellectual property concerns for suppliers or found-

ries? What is the best way to capture, store, and retrieve uncertainty data for processes and

technologies that are constantly under development?

8.2.11   Modern Computer Simulations

Parallel processing provides a means for running multiple model evaluations

simultaneously, enabling the use of uncertainty quantification and optimization for com-

putationally expensive models. As parallel computing becomes commonplace (i.e. in

desktop computers or readily available via networks), there will continue to be a need for

advanced uncertainty analysis approaches since the growing computational power avail-

able for simulation allows the modeling of more complex systems. However, Monte Carlo

simulation will become practical for more and more engineering design problems. Partic-

ular emphasis should be placed on the development of stochastic methods and simulation

tools that can be easily implemented without the need for an advanced understanding of

statistics.
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APPENDIX A MATLAB CODE

A.1 hist2d.m - 2D Histogram Function

The following code is a self-documented MATLAB m-file used to create a 2D his-

trogram with various shading and graphics options. It requires the use of the optionget

function in Appendix A.2.

function freq2d = hist2d (XY, Xbins, Ybins, options)

%---------------------------------------------------------------------

% hist2d.m - 2 Dimensional Histogram

%

% USAGE:

%  freq2d = hist2d ([X, Y], Xbins, Ybins, options)

%       Counts number of points in the bins defined by vYEdge, vXEdge.

%       size(freq2d) == [length(Ybins)-1, length(Xbins)-1]

%

%  freq2d = hist2d ([X, Y])     % Use default Xbins, Ybins, options

%  freq2d = hist2d ([X, Y], options)    % Use default Xbins, Ybins

%  freq2d = hist2d ([X, Y], Xbins, Ybins)   % Use default options

%

% INPUT:

%   XY = [X, Y] = n x 2 Matrix consisting of two n x 1 vectors

%   Xbins = Vector defining X bins

%   Ybins = Vector defining Y bins

%   options = graphing options (see below)

%

% OUTPUT:

%   freq2d = 2d frequency matrix

%

% OPTIONS:

%   .graph = [0=false] Create a 2D histogram graph

%            Otherwise, just return the freq2d matrix

%   .type = ['surf']

%            Use 'pcolor' or 'surf' 3D plot

%   .shade = [1=true] use: shading interp

%       .colormap = ['ibone'] colormap to use for shading

%          Choices: 'bone','ibone','gray'

%       .colorbar = [1=true] add a colorbar

%   

% EXAMPLE

%   XY = randn(10000,2);
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%   Xbins = linspace(-3,3,40)';

%   Ybins = linspace(-3,3,50)';

%   freq2d = hist2d(XY,Xbins,Ybins);

%

%   nXBins = length(Xbins);

%   nYBins = length(Ybins);

%   xLab = 0.5*(Xbins(1:(nXBins-1))+Xbins(2:nXBins));

%   yLab = 0.5*(Ybins(1:(nYBins-1))+Ybins(2:nYBins));

%   pcolor(xLab, yLab, freq2d); shading interp; colorbar;

%   surf(xLab, yLab, freq2d); shading interp; colorbar;

%   colormap(gray);  %See: help graph3d

%

% (c) 2004, 2005 Jon Wittwer

%-----------------------------------------------------------

% The following default options will be used if not set

defaultopt = struct( ...

    'graph',0,...

    'type','surf',...

    'shade',1,...

    'colormap','pcolor',...

    'colorbar',1);

if nargin == 1 | nargin == 3

    options = defaultopt;

end

if nargin == 2

    options = Xbins

end

[points,cols] = size(XY);

if cols ~= 2

    error ('XY must have at least two columns');

end

Y = XY(:,2);    %Row

X = XY(:,1);    %Col

if nargin < 3

   % Set default number of bins based upon the number of points.

   % Max 50 bins

   Xbins = linspace(min(X),max(X),min(ceil(points/10),50))';

   Ybins = linspace(min(Y),max(Y),min(ceil(points/10),50))';

end

nRow = length(Ybins)-1;

nCol = length(Xbins)-1;

freq2d = zeros(nRow,nCol);

for iRow = 1:nRow

    rRowLB = Ybins(iRow);

    rRowUB = Ybins(iRow+1);

    

    [mIdxRow] = find (Y > rRowLB & Y <= rRowUB);

    XFound = X(mIdxRow);

    

    if (~isempty(XFound))

        vFound = histc (XFound, Xbins);
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        nFound = (length(vFound)-1);

        

        if (nFound ~= nCol)

            [nFound nCol]

            error ('hist2d error: Size Error')

        end

        

        [nRowFound, nColFound] = size (vFound);

        

        nRowFound = nRowFound - 1;

        nColFound = nColFound - 1;

        

        if nRowFound == nCol

            freq2d(iRow, :)= vFound(1:nFound)';

        elseif nColFound == nCol

            freq2d(iRow, :)= vFound(1:nFound);

        else

            error ('hist2d error: Size Error')

        end

    end

end

if optionget(options,'graph',defaultopt)

    nXBins = length(Xbins);

    nYBins = length(Ybins);

    xLab = 0.5*(Xbins(1:(nXBins-1))+Xbins(2:nXBins));

    yLab = 0.5*(Ybins(1:(nYBins-1))+Ybins(2:nYBins));

    switch optionget(options,'type',defaultopt);

    case 'pcolor'

        pcolor(xLab, yLab, freq2d);

    case 'surf'

        surf(xLab, yLab, freq2d);

        view(0,90);

    otherwise

        error(sprintf('"%s" graph type not recognized',...

            optionget(options,'type',defaultopt)));

    end

   

    if optionget(options,'shade',defaultopt)

        shading interp;

        switch optionget(options,'colormap',defaultopt)

        case 'bone'

            colormap(bone);

        case 'ibone'

            z = linspace(length(bone),1,length(bone))';

            ibone = [z, bone];

            ibone = sortrows(ibone,1);

            ibone = ibone(:,2:4);

            colormap(ibone);

        case 'gray'

            colormap(gray);

        case 'igray'

            z = linspace(length(gray),1,length(gray))';

            ibone = [z, gray];

            ibone = sortrows(ibone,1);

            ibone = ibone(:,2:4);

            colormap(ibone);

        end
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    end

    if optionget(options,'colorbar',defaultopt)

        colorbar;

    end   

end

A.2 optionget.m - Get values from structures

function value = optionget(options,name,default)

%-----------------------------------------------------------------

%optionget.m  -  Get parameters from an options-type structure.

%

% USAGE:

%   value = optionget(OPTIONS,'name')

%   value = optionget(OPTIONS,'name',DEFAULT)

%   

%   Returns the value of the structure field 'name' from the 

%   OPTIONS structure. If OPTIONS is empty or does not have a 

%   field named 'name', then optionget returns the value of 

%   the structure field 'name' from he DEFAULT structure. If 

%   DEFAULT is not a structure, then if no matching field is

%   found in OPTIONS, optionget returns DEFAULT (value=DEFAULT).

%

% EXAMPLE:

%   opts.label = 'xdata';

%   opts.value = [1 2 3];

%   default.ydata = [45 57 68];

%

%   optionget(opts,'lab',20)        % returns 20

%   optionget(opts,'label')         % returns 'xdata'

%   optionget(opts,'ydata',default) % returns [45 57 68]

%   optionget(opts,'lab')           % returns []

%   optionget(opts,'lab',default)   % returns []

%   optionget([],'ydata',default)   % returns [45 57 68]

%

% (c) 2004, 2005 Jon Wittwer

%-----------------------------------------------------------------

if nargin < 2

  error('Not enough input arguments.');

end

if nargin < 3

  default = [];

end

if ~isempty(options)

    if ~isa(options,'struct')

        error('OPTIONS must be a structure.');

    end

    if isfield(options,name)

        value = getfield(options,name);

    else

        value = [];

    end

else

    value = [];
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end

if isempty(value)

    if isa(default,'struct')

        if isfield(default,name)

            value = getfield(default,name);

        else

            value = [];

        end

    else

        value = default;

    end

end

A.3 quantile.m

function [q] = quantile(x,probs,rmnan)

%---------------------------------------------------------------------

% quantile.m - Generic Quantile Function

%     Produces sample quantiles corresponding to the given 

%     probabilities. The smallest observation corresponds to a 

%     probability of 0 and the largest to a probability of 1.

%

%SYNTAX:

%   [q] = quantile(x,probs,rmnan)

%

%INPUTS:

%

%       x = numeric vectors whose sample quantiles are wanted.

%   probs = numeric vector with values in [0,1].

%   rmnan = logical; if TRUE, any NaNs values are removed from X

%           before the quantiles are computed. Default is FALSE.

%

%OUTPUTS:

%       Q = vector of length 'length(probs)'

%

%Details:

%

%     After ordering the vector x ...

%     Basic quantile is based upon prob = (i-0.5)/n

%     This function is based upon prob = (i-1)/(n-1)

%

%     The value is found by linearly interpolating between the two

%     points surrounding the desired quantile level.

%     

%     NaNs in PROBS are propagated to the result.

%

%EXAMPLES:

%

%   quantile(x,[0.025,0.975]') % gives a 95% confidence interval

%

%TO TEST:

%       This example uses the quantile as an inverse normal distribution

%       function. Note that quantile is not accurate in the 'tails', so for

%       a Normal distribution, it is only accurate within +/- 3 sigma.

%   x = randn(1000000,1);

%   probs = [pnorm(-6),pnorm(-3),pnorm(-2),pnorm(2),pnorm(3),pnorm(6)]';
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%   quantile(x,probs)

%---------------------------------------------------------------------

if nargin < 2

    error('Not enough input arguments.');

end

% Remove NaNs from Vector

try

    if rmnan

        x = x(~isnan(x));

    end

end

n = length(x(:,1));

ox = sort(x);

% Need to add one more point to make interpolation work

ox(n+1) = ox(n);

% Force probs to be a column vector

[zzz1,zzz2] = size(probs);

if zzz2 > 1

    probs = probs';

end

r = 1 + (n-1)*probs;

r1 = floor(r);

f = r - r1;

q = ox(r1) + f.*(ox(r1+1)-ox(r1));

A.4 Spider Graph Functions

The dcespider.m and gspider.m functions can be used to create spider graphs

which help evaluate the nonlinearity of a model with respect to input perturbations. The

dcespider.m function creates the design and input matrices based upon a vector of inputs

and perturbations. After evaluating a function at each design point, the gspider.m function

can be used to create the spider graph.

A.4.1 dcespider.m

function [D,X,dX] = dcespider(x,dxmin,dxmax,options)

%---------------------------------------------------------------------

% dcespider.m - Creates a design matrix for a spider graph

%   This is used for evaluating a model at evenly spaced 

%   points for the creation of spider graphs.

%

% USAGE:

%   [D, X, dX] = dcespider(x,dxmin,dxmax,options)
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%   [D, X, dX] = dcespider(x,dxmin,dxmax) uses default options

%

%   [D, X, dX] = dcespider(x,dx,options) evaluates at ±dx

%   [D, X, dX] = dcespider(x,dx) uses default options

%

%   [D, X, dX] = dcespider(x,options) dx is a percent of x

%   [D, X, dX] = dcespider(x) uses default options

%

% INPUTS:

%   x - Vector of k parameters: Nominal Values

%   dxmin - Vector of k parameters: Backward perturbation

%   dxmax - Vector of k parameters: Forward perturbation

%   options - Structure (see below)

%

% OUTPUTS:

%   D - (N+1) x k design matrix representing N experimental runs

%   X - (N+1) x k matrix of input values

%   dX - (N+1) x k matrix of perturbations from nominal

%

% OPTIONS:

%   Use OPTIONS = [] as a place holder if no options are set.

%   .points = [4] Vector for specifying the number of points 

%            for each input variable. A single integer can be

%            used to indicate the same number points for all variables.

%            Minimum (default) is 3 (dxmin, nominal, dxmax)

%   .percent = [10] If dx is empty, dx is set to percent*x

%   .nonom = [0=false] If true, nominal is not included

%

% INFO:

%   k - Number of parameters

%   N+1 - Number of runs + nominal: sum(points)+1

%         or points*length(x)+1

%

% EXAMPLE:

%   x = [ 1 2 3 ]';

%   dx = 0.5*x;

%   [D, X, dX] = dcespider(x,dx);

%

%   opts.points = 10;

%   [D, X, dX] = dcespider(x,-dx,dx,opts);

%   [D, X, dX] = dcespider(x,dx,opts);

%

% (c) 2004, 2005 Jon Wittwer

%---------------------------------------------------------------------

defaultopt = struct( ...

    'points',4,...

    'nonom',0,...

    'percent',10);

if nargin < 1 

    error('dcespider: Not Enough Input Arguments');

end

if nargin == 1

    options = defaultopt;

    dxmax = optionget(options,'percent',defaultopt)/100*x;

    dxmin = -dxmax;

end

if nargin == 2
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    if isa(dxmin,'struct')

        options = dxmin;

        dxmax = optionget(options,'percent',defaultopt)/100*x;

        dxmin = -dxmax;

    else

        options = defaultopt;

        dxmax = dxmin;

        dxmin = -dxmax;

    end

end

if nargin == 3

   if isa(dxmax,'struct')

       options = dxmax;

       dxmax = dxmin;

       dxmin = -dxmax;

   else

       options = defaultopt;

   end

end

points = optionget(options,'points',defaultopt);

if length(points) == 1

    points = points*ones(length(x),1);

end

[k,z] = size(x);

if z > 1 & k > 1

    error('x must be a column vector (k x 1)');

elseif z > 1

    % change row vector to column vector

    x = x';

end

k = length(x);

% Set Up Design Matrix

row = 1;

if ~optionget(options,'nonom',defaultopt)

    D(row,:) = zeros(k,1)';  % Nominal

    row = 2;

    N = sum(points)+1;

else

    N = sum(points);

end

jn = ones(N,1);

dX = zeros(N,k);

for i = 1:k

    dxnorm = linspace(-1,1,points(i))';

    dxactual = interp1([-1 1],[dxmin(i) dxmax(i)],dxnorm);

    D(row:(row+points(i)-1),i) = dxnorm;

    dX(row:(row+points(i)-1),i) = dxactual;

    row = row+points(i);

end

    

% Create Input Matrix

X = (x*jn')' + dX;
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A.4.2 gspider.m

function [xplot,yplot] = gspider(D,y,options)

%---------------------------------------------------------------------

% gspider.m - Create a Spider Graph

%

% USAGE:

%   gspider(D,y)

%   gspider(D,y,options)

%

%   [X,Y] = gspider(...) returns the data used to create the plot

%           (X and Y are sorted in ascending order)

%

%   Note: This function uses the plot3() function, allowing you to 

%         rotate the graph in 3D to see whether lines are overlapping.

%

% INPUTS:

%   D = n x k Scaled design matrix

%   y = n x 1 Output vector

%

% OPTIONS:

% Use OPTIONS = [] as a place holder if no options are set.

%   options.format = ['o-'] Format for lines in graph

%   options.legend = {xLABELS} where xLABELS is an array of 

%                    strings: xLABELS={'var1','var2','var3'}

%

% EXAMPLE:

%   x = [ 1 2 3 ]';

%   dx = 0.2*x;

%   [D, X, dX] = dcespider(x,dx);

%

%   %y = sum function to evaluate the model at each design point

%   y = [ X(:,1) + X(:,2).^3 + X(:,3).^2 ];

%

%   gspider(D,y);

%

%   opts.format = 'x-';

%   opts.legend = {'var1','var2','var3'};

%   opts.error = 1;

%   gspider(D,y,opts);

%

% (c) 2004, 2005 Jon Wittwer

%---------------------------------------------------------------------

% The following default options will be used if not set

defaultopt = struct( ...

    'format','o-',...

    'error',0);

% Check input arguments

if nargin < 2

    error('Not enough input arguments.');

end

if nargin < 3 | isempty(options)

    options = defaultopt;

end

% Determine size of input matrices



184

[n,k] = size(D);

[ny,p] = size(y);

if p > 1

    error('y must be a single column vector');

end

if ny ~= n

    error('length of y must match length of D');

end

gformat = optionget(options,'format',defaultopt);

% Transform y to Deviation Space

% Assumes that the first row is the nominal value

if optionget(options,'error',defaultopt)

    y = y-y(1);

    ylabstr = 'Deviation from Nominal Response';

else

    ylabstr = 'Response Value';

end

% Plot lines based upon main effects only

for i = 1:k

    cols = zeros(1,k);

    cols(i) = 1;    % set desired column to 1=true

    rows = sum(abs(D(:,cols~=1))')'==0;

    gplot(:,1) = D(rows,i);

    gplot(:,2) = y(rows);

    gplot = sortrows(gplot,[1]);

    xplot(:,i) = gplot(:,1);

    yplot(:,i) = gplot(:,2);

    zplot(:,i) = (i-1)*ones(length(xplot(:,i)),1);

end

%plot(xplot,yplot,gformat);

plot3(xplot,yplot,zplot,gformat);

view(2); %top view

title('Spider Plot');

ylabel(ylabstr);

xlabel('Normalized Perturbations');

if isfield(options,'legend')

    legend(options.legend);

end

A.5 Chapter 6 Example

% =========================================== 

% Define NOMINAL PARAMETERS

w = 2; w_sd = 0.08;

t = 5; t_sd = 0.02;

x = [w t]';

xmean = x; % Assume nominal = mean

% =========================================== 

% Define UNCERTAINTIES and PERTURBATIONS

xsd = [w_sd t_sd]';
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dx = xsd;

% =========================================== 

% Create the DESIGN matrices

Ds = [ 0 0; 1 0; 0 1; -1 0; 0 -1; ...

       1 1; 1 -1; -1 1; -1 -1];

[N,k] = size(Ds);

jN = ones(N,1);

dX = Ds.*(jN*dx');  % input perturbation matrix

D = jN*x'+dX;   % design matrix

% =========================================== 

% Run the MODEL

b_vec = X(:,1);

h_vec = X(:,2);

A = b_vec.*h_vec;

Iy = b_vec.*h_vec.^3/12;

Iz = h_vec.*b_vec.^3/12;

Y = [A Iy Iz];

dY = [A-A(1) Iy-Iy(1) Iz-Iz(1)];

% =========================================== 

% Create the Xreg MATRIX

Xreg = [ dX(:,1) dX(:,2) dX(:,1).^2 dX(:,2).^2 dX(:,1).*dX(:,2) ];

% =========================================== 

% Perform Multiple Regression

B = inv(Xreg'*Xreg)*Xreg'*dY
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APPENDIX B CROSS-SECTION MODEL IN MATLAB

The following MATLAB scripts and functions are used to calculate various cross-

sectional area properties for stacked or laminated beams. The MATLAB code to calculate

the cross-section properties for an I-beam created using the Poly3 and Poly4 layers in the

SUMMiT V™ process  is:

layersSUMMiT;

layers = { poly12; oxide3; poly3 };

areaprops = Xsection(layers);

The m-files for the layersSUMMiT and Xsection scripts are given below.

B.1 layersSUMMiT.m

This script is used as a configuration file to define the cross-section geometry for

layers in the SUMMiT V™ process. Values defined in this file are subject to change

depending on the current state of the technology.

% Layer Definitions

%

%   The widths (*.b and *.a) should be modified to match a 

%   specific design. Other properties such as layer thicknesses

%   and uncertainties are process-specific. The distributions

%   should also be chosen carefully.

% 

% Layer Shapes:

%   See help on Xtrap, Xtrap2, and Xrect

%

% Structure Field Names:

%   The field names are important, as they are used in other scripts

%   for defining the set of uncertainties.

edgebias = 0.1; % Sometimes 0.15 is used
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edgebias_sd = 0.04; % Rule-of-thumb edge bias variation

% Note that *.b_sd takes into account edge bias variation

% Rule-of-thumb alignment variation

dx_sd = 0.1; %dx_sd = 0.25; % Design rules state 0.5 enclosure 

dx_dist = 'u';

poly1.h = 1; poly1.h_sd = 0.021;

poly1.b = 4-2*edgebias; poly1.b_sd = 0.064;

poly1.shape = 'rect';

poly1.dx = 0;

poly2.h = 1.5; poly2.h_sd = 0.037;

poly2.b = 4-2*edgebias; poly2.b_sd = 0.064;

poly2.shape = 'rect';

poly2.dx = 0;

poly12.h = 2.5; poly12.h_sd = 0.05;

poly12.b = 4-2*edgebias; poly12.b_sd = 0.064;

poly12.shape = 'rect';

poly12.dx = 0;

% Oxide3 target is 1.8 with a 0.4 backfill

oxide3.h = 2.2; oxide3.h_sd = 0.350;

oxide3.a = 2; oxide3.a_sd = 0.2;

oxide3.q = -10; oxide3.q_sd = 2;

oxide3.shape = 'trap2';

oxide3.dx = 0;

poly3.h = 2.25; poly3.h_sd = 0.041;

poly3.b = 4-2*edgebias; poly3.b_sd = 0.08;

poly3.shape = 'rect';

poly3.dx = 0;

% Oxide4 target is 1.8 with a 0.2 backfill

oxide4.h = 2; oxide4.h_sd = 0.181;

oxide4.a = 2; oxide4.a_sd = 0.08;

oxide4.q = -10; oxide4.q_sd = 2;

oxide4.shape = 'trap2';

oxide4.dx = 0;

poly4.h = 2.25; poly4.h_sd = 0.042;

poly4.b = 4-2*edgebias; poly4.b_sd = 0.08;

poly4.shape = 'rect';

poly4.dx = 0;

B.2 Xsection.m

%-----------------------------------------------------------

% Area Properties for Stacked Beams

%

% USAGE:

%  areaprops = Xsection(layers)

%

% INPUTS:

%  layers = cell array of layer structures

%
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% OUTPUTS:

%  Structure areaprops with the following fields:

%  .A = total Area

%  .xc = distance from y-axis to centroid

%        (y-axis is relative to chosen ex values)

%  .yc = distance from x-axis to centroid

%        (x-axis is at the bottom of the lowest layer)

%  .Ixc = centroidal moment of inertia about x-axis

%  .Iyc = centroidal moment of inertia about y-axis

%  .Ixcyc = centroidal product of inertia

%  .thetap = angle (in degrees) to principal moments

%  .htotal = total height

%

% REFERENCE:

%  More information + schematic: help Xtrap

%-----------------------------------------------------------%

function areaprops = Xsection(layers)

n = length(layers);

% Define vectors

vA = zeros(n,1);

vdyc = zeros(n,1);

vdxc = zeros(n,1);

vIxc = zeros(n,1);

vIyc = zeros(n,1);

% htotal keeps track of current height relative to bottom

htotal = 0;

for i = 1:n

    theLayer = layers{i,1};

    if strcmp(theLayer.shape,'rect')

        [vA(i,1),zzzxc,yc,vIxc(i,1),vIyc(i,1),vIxcyc(i,1),Ip] = ...

               Xrect(theLayer.b,theLayer.h);

        vdxc(i,1) = theLayer.dx;

        vdyc(i,1) = htotal + yc;

        htotal = htotal + theLayer.h;

    end 

    if strcmp(theLayer.shape,'trap')

        S = Xtrap(theLayer.a,theLayer.b,theLayer.h);

        vA(i,1) = S.A;

        yc = S.yc;

        vIxc(i,1) = S.Ixc;

        vIyc(i,1) = S.Iyc;

        vIxcyc(i,1) = S.Ixcyc;

        vdxc(i,1) = theLayer.dx;

        vdyc(i,1) = htotal + yc;

        htotal = htotal + theLayer.h;

    end

    if strcmp(theLayer.shape,'trap2')

        S = Xtrap2(theLayer.a,theLayer.q,theLayer.h);

        vA(i,1) = S.A;

        yc = S.yc;

        vIxc(i,1) = S.Ixc;

        vIyc(i,1) = S.Iyc;

        vIxcyc(i,1) = S.Ixcyc;

        vdxc(i,1) = theLayer.dx;

        vdyc(i,1) = htotal + yc;



190

        htotal = htotal + theLayer.h;

    end

end    

vec.A = vA;

vec.dyc = vdyc;

vec.dxc = vdxc;

vec.Ixc = vIxc;

vec.Iyc = vIyc;

areaprops = Xtotal(vA,vdxc,vdyc,vIxc,vIyc,vIxcyc);

areaprops.htotal = htotal;

areaprops.vec = vec;

areaprops.thetap = 180/pi*areaprops.thetap; % degrees

B.2.1 Xtrap.m

%-----------------------------------------------------------%

% Properties of Plane Areas - Y-Symmetric Trapezoid

% areaprops = Xtrap(a,b,h)

%

% INPUT:

%   a - top width

%   b - bottom width

%   h - height or thickness

%   Origin of Axes at the Centroid

%

% OUTPUT:

%   areaprops = Structure with the fields 'A', 'xc', 'yc',

%               'Ixc','Iyc','Ixcyc'

%

%           |--a--|

%     y     |  yc |

%_____|___  a/2|__|

% |   |    /   |   \

% |   |   /    |    \

% h   |  /     |     \

% |   | /      |------\--------- xc

% |   |/       |       \    yc

%_|__ /___b/2__|________\_______ x

%     |                 |

%     |----------- b ---|

%

% Example:

%   Xtrap(1.9,1,2)

%-----------------------------------------------------------%

function areaprops = Xtrap(a,b,h)

    q = 180/pi*(atan((b-a)./(2*h)));

    areaprops.a = a;

    areaprops.b = b;

    areaprops.q = q;

    areaprops.h = h;

    areaprops.A = h./2.*(a+b);

    areaprops.xc = b./2;

    areaprops.yc = h./3.*(2*a+b)./(a+b);

    areaprops.Ixc = h.^3.*(a.^2+4*a.*b+b.^2)./(36.*(a+b));
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    areaprops.Iyc = h./48.*(a.^3+b.^3+a.*b.^2+a.^2.*b);

    areaprops.Ixcyc = 0;

return

B.2.2 Xtrap2.m

%-----------------------------------------------------------%

% Properties of Plane Areas - Y-Symmetric Trapezoid

% areaprops = Xtrap2(a,q,h)

%

% INPUT:

%   a - top width

%   q - (degrees) angle measured from vertical

%       Positive angle results in a < b

%   h - height or thickness

%   Origin of Axes at the Centroid

%

% OUTPUT:

%   areaprops = Structure with the fields 'A', 'xc', 'yc',

%               'Ixc','Iyc','Ixcyc'

%

%           |--a--|

%     y     |  yc |

%_____|___  a/2|__|

% |   |    /   |   \

% |   | q /    |    \

% h   |  /     |     \

% |   | /      |------\--------- xc

% |   |/       |       \    yc

%_|__ /___b/2__|________\_______ x

%     |                 |

%     |----------- b ---|

%

% Example:

%   Xtrap2(1.9,-12.6804,2)

%-----------------------------------------------------------%

function areaprops = Xtrap2(a,q,h)

    q = q*pi/180;   % convert to radians

    b = a+2*h*tan(q);

    areaprops.a = a;

    areaprops.b = b;

    areaprops.q = q;

    areaprops.h = h;

    areaprops.A = h./2.*(a+b);

    areaprops.xc = b./2;

    areaprops.yc = h./3.*(2*a+b)./(a+b);

    areaprops.Ixc = h.^3.*(a.^2+4*a.*b+b.^2)./(36.*(a+b));

    areaprops.Iyc = h./48.*(a.^3+b.^3+a.*b.^2+a.^2.*b);

    areaprops.Ixcyc = 0;

return

B.2.3 Xrect.m

%-----------------------------------------------------------

% Properties of Plane Areas - Rectangle
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% [A,xc,yc,Ixc,Iyc,Ixcyc,Ip] = Xrect(bx,hy)

%

% INPUTS:

%   bx - width in the x-direction

%   hy - height in the y-direction

%   Origin of Axes at the Centroid

%

%   y    yc

%   |____|____

%   |    |    |

% h |    |    |

%   |    |----|--- xc

%   |         |

%   |_________|___ x

%        b

%

% Example:

%   [A,xc,yc,Ixc,Iyc,Ixcyc,Ip] = Xrect(3,4)

%-----------------------------------------------------------

function [A,xc,yc,Ixc,Iyc,Ixcyc,Ip] = Xrect(b,h)

    A = b.*h;

    xc = b./2;

    yc = h./2;

    Ixc = b.*h.^3/12;

    Iyc = h.*b.^3/12;

    Ixcyc = 0*b;

    Ip = b.*h/12.*(h.^2+b.^2);

return

B.2.4 Xtotal.m

%-----------------------------------------------------------%

% Stacked Area Properties

% results = Xtotal(vA,vxc,vyc,vIxc,vIyc,vIxcyc)

%

% INPUTS:

%    vA - vector of component areas

%    vxc - vector of x-coordinates of the centroids

%    vyc - vector of y-coordinates of the centroids

%    vIxc - vector of centroidal moments of inertia (about y-y)

%    vIyc - vector of centroidal moments of inertia (about x-x)

%    vIxcyc - vector of centroidal products of inertia

%

% OUTPUTS:

%    results = [Structure]

%-----------------------------------------------------------%

function results = Xtotal(vA,vxc,vyc,vIxc,vIyc,vIxcyc)

    n = length(vA);

    j = ones(n,1);

    % Total the Area

    A = sum(vA);

    % Find the Centroid

    xc = sum(vxc.*vA)/A;

    yc = sum(vyc.*vA)/A;

    % Moments of Inertia via Parallel Axis Theorem
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    vdx = vxc-xc*j;

    vdy = vyc-yc*j;

    Ixc = sum(vIxc + vA.*vdy.^2);

    Iyc = sum(vIyc + vA.*vdx.^2);

    Ixcyc = sum(vIxcyc + vA.*vdx.*vdy);

    I1 = (Ixc+Iyc)/2 + sqrt(((Ixc-Iyc)/2)^2+Ixcyc^2);

    I2 = (Ixc+Iyc)/2 - sqrt(((Ixc-Iyc)/2)^2+Ixcyc^2);

    thetap = 0.5*atan(-2*Ixcyc/(Ixc-Iyc));

    

    % Place output into Structure

    results.A = A;

    results.xc = xc;

    results.yc = yc;

    results.Ixc = Ixc;

    results.Iyc = Iyc;

    results.Ixcyc = Ixcyc;

    results.I1 = I1;

    results.I2 = I2;

    results.thetap = thetap;

return
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APPENDIX C THERMAL ACTUATOR FEA MODEL

C.1 ANSYS batch file

!===============================================================

!  FileName: ansys_ta_full.inp

!  Created by Jon Wittwer, 11 Nov 2004

!  ANSYS Parametric Batch File - ADPL Language

!===============================================================

FINISH

/CLEAR

/TITLE,Analysis of a Linear Thermomechanical Microactuator

/PREP7

*AFUN,DEG

!===============================================================

!               INPUT VARIABLES

!===============================================================

!ts = 4.5

!Ey = 164000

!Sr = -10

!Pr = 0.23

!Et = 0.000003

!Lx = 200

!Ly = 2.5

!ws = 10

!Px = 5

!Py = 10

!Tmax = 450

!getdYmax = 1

!dYmax = 8.5

!dYmin = 0

!expansionSteps = 10

!loadSteps = 20

!legpairs = 4

!saveimage = 1

!*DIM,b,ARRAY,legpairs-1,1

!b(1) = 80

!*DIM,w,ARRAY,legpairs,2  ! w(legpair, 1=left or 2=right)

!w(1,1) = 3.8

!w(2,1) = 3.8

!w(1,2) = 3.8

!w(2,2) = 3.8

!*DIM,A,ARRAY,legpairs,2  ! w(legpair, 1=left or 2=right)

!A(1,1) = 

!A(2,1) = 

!A(1,2) = 
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!A(2,2) = 

!*DIM,I,ARRAY,legpairs,2  ! w(legpair, 1=left or 2=right)

!I(1,1) = 

!I(2,1) = 

!I(1,2) = 

!I(2,2) =

! === Read from input file ===

/INPUT,ANSYS_ta_inputs,txt

!===============================================================

!               RELATIONAL PARAMETERS

!===============================================================

datapoints = expansionSteps+1+loadSteps+1

prestrain = Sr/Ey

segments=100

Is=ts*ws*ws*ws/12

As=ts*ws

!===============================================================

!               MODEL SETUP

!===============================================================

/PNUM,LINE,1

/PNUM,KP,1

K,1000,Px,Py,0

K,1,0,0,0

L,1,1000

bsum=0

*DO,n,1,legpairs-1,1

  bsum=bsum-b(n)

  K,1+n,0,bsum,0

  L,n,1+n

*ENDDO

LSEL,S,LINE,,1,legpairs

LESIZE,ALL,,,20

bsum=0

*DO,n,1,legpairs,1

  K,100+n,-Lx,bsum-Ly,0

  L,n,100+n

  *IF,n,NE,legpairs,THEN

    bsum=bsum-b(n)

  *ENDIF

*ENDDO

bsum=0

*DO,n,1,legpairs,1

  K,200+n,Lx,bsum-Ly,0

  L,n,200+n

  *IF,n,NE,legpairs,THEN

    bsum=bsum-b(n)

  *ENDIF
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*ENDDO

LSEL,S,LINE,,legpairs+1,3*legpairs

LESIZE,ALL,,,segments

LSEL,ALL

! === Element Type ===

ET,1,BEAM3

type,1

! === Material Properties ===

MP,EX,1,Ey

MP,PRXY,1,Pr

MP,ALPX,1,Et

MP,REFT,1,0

! Material used for lower thermal expansion

MP,EX,2,Ey

MP,PRXY,2,Pr

MP,ALPX,2,Et/100000

MP,REFT,2,0

! === Real Constants and MESH ===

R,1,As*10,Is*1000,ws*10,,0,0

mat,2

real,1

LMESH,1

R,2,As,Is,ws,,prestrain,0

mat,1

real,2

LMESH,2,legpairs,1

mat,1

*DO,n,1,legpairs,1

  R,2+n,A(n,1),I(n,1),w(n,1),,prestrain,0

  real,2+n

  LMESH,legpairs+n

*ENDDO

*DO,n,1,legpairs,1

  R,legpairs+2+n,A(n,2),I(n,2),w(n,2),,prestrain,0

  real,legpairs+2+n

  LMESH,2*legpairs+n

*ENDDO

! === Get Node Numbers from Keypoints ===

KSEL,S,KP,,1000

NSLK,S

*GET,nkp1000,NODE,0,NUM,MAX

NSEL,ALL

KSEL,ALL

! === Get Node Numbers from Keypoints ===

KSEL,S,KP,,1

NSLK,S

*GET,nkp1,NODE,0,NUM,MAX

NSEL,ALL
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KSEL,ALL

FINISH 

!===============================================================

!               SOLUTION STEPS

!===============================================================

/SOLU

! === Nonlinear ===

NLGEOM,1

! === Static Problem ===

ANTYPE,0

! === Boundary Conditions

*DO,n,1,legpairs,1

  DK,100+n,ALL,0

  DK,200+n,ALL,0

*ENDDO

!============ INITIAL THERMAL EXPANSION  =============

TREF,0

*DIM,Temps,ARRAY,datapoints,1

*DO,mm,1,expansionSteps+1,1

  Temps(mm,1) = (mm-1)*Tmax/expansionSteps

  TUNIF,Temps(mm,1)

  lswrite,mm

*ENDDO

lssolve,1,expansionSteps+1

*IF,getdYmax,EQ,1,THEN

  *GET,dYmax,NODE,nkp1000,U,Y

*ENDIF

!============ VERTICAL DISPLACEMENT  =============

*DO,mm,1,loadSteps+1,1

  DK,1000, ,dYmax-(mm-1)*(dYmax-dYmin)/loadSteps, , , ,UY, , , , ,

  lswrite,mm+expansionSteps+1

*ENDDO

lssolve,expansionSteps+2,datapoints

FINISH

!===============================================================

!                  POST PROCESS RESULTS

!===============================================================

/POST1

*DIM,Ydis,TABLE,datapoints

*DIM,Yforce,TABLE,datapoints

*DIM,Smax,TABLE,datapoints

*DIM,Zrot,TABLE,datapoints

*DO,mm,1,datapoints,1

  SET,mm

  ETABLE,,NMISC,1

  ETABLE,,NMISC,2

  ETABLE,,NMISC,3

  ETABLE,,NMISC,4
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  SABS,1

  SMAX,ms1,NMIS1,NMIS3

  SMAX,ms2,NMIS2,NMIS4

  SMAX,ms3,ms1,ms2

  ESORT,ETAB,ms3,0,1,,

  *GET,stress,SORT,,MAX

  *SET,Smax(mm),stress

  *GET,disY,NODE,nkp1000,U,Y

  *SET,Ydis(mm),disY

  *GET,rotZ,NODE,nkp1000,ROT,Z

  *SET,Zrot(mm),rotZ

  *IF,mm,GT,expansionSteps+1,THEN

    *GET,forceY,NODE,nkp1000,RF,FY

    *SET,Yforce(mm),forceY*(-1)

    *SET,Temps(mm),Tmax

  *ELSE

    *SET,Yforce(mm),0

  *ENDIF

*ENDDO

*VPLOT,Ydis(1,1),Yforce(1,1)

/output,ANSYS_ta_results.txt

*VWRITE

        Displacement                Force               Stress                 Temp

Zrot

*VWRITE,Ydis(1),Yforce(1),Smax(1),Temps(1),Zrot(1)

%20e %20e %20e %20e %20e

/output

*IF,saveimage,EQ,1,THEN

  SET,LAST

  ! Background Colors: WHIT, BLAC, LGRA (light gray)

  /COLOR,WBAK,WHIT

  /SHOW,JPEG

  PLETAB,ms3,NOAV

  /SHOW,TERM

*ENDIF

FINISH

/eof
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