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Abstract

Dynamically Reconfigurable Systems (DRS), implemented using Field-Programmable

Gate Arrays (FPGAs), allow hardware logic to be partially reconfigured while the rest

of a design continues to operate. By mapping multiple reconfigurable hardware modules

to the same physical region of an FPGA, such systems are able to time-multiplex their

circuits at run time and can adapt to changing execution requirements. This architec-

tural flexibility introduces challenges for verifying system functionality. New simulation

approaches need to extend traditional simulation techniques to assist designers in testing

and debugging the time-varying behavior of DRS. Another significant challenge is the

effective use of tools so as to reduce the number of design iterations. This thesis focuses

on simulation-based functional verification of modular reconfigurable DRS designs. We

propose a methodology and provide tools to assist designers in verifying DRS designs

while part of the design is undergoing reconfiguration.

This thesis analyzes the challenges in verifying DRS designs with respect to the user de-

sign and the physical implementation of such systems. We propose using a simulation-

only layer to emulate the behavior of target FPGAs and accurately model the char-

acteristic features of reconfiguration. The simulation-only layer maintains verification

productivity by abstracting away the physical details of the FPGA fabric. Furthermore,

since the design does not need to be modified for simulation purposes, the design as

implemented instead of some variation of it is verified.

We provide two possible implementations of the simulation-only layer. Extended ReChan-

nel is a SystemC library that can be used to model DRS at a high level. ReSim is a library

to support RTL simulation of a DRS reconfiguring both its logic and state. Through a

number of case studies, we demonstrate that with insignificant overheads, our approach

seamlessly integrates with the existing, mainstream DRS design flow and with well-

established verification methodologies such as top-down modeling and coverage-driven

verification. The case studies also serve as a guide in the use of our libraries to iden-

tify bugs that are related to Dynamic Partial Reconfiguration. Our results demonstrate

that using the simulation-only layer is an effective approach to the simulation-based

functional verification of DRS designs.
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Chapter 1

Introduction

Driven by the desire to integrate more and more functionality into a single solution,

Integrated Circuits (IC) are becoming increasingly complex. As a result, the develop-

ment cost of cutting-edge ICs has been skyrocketing and has become a threat to the

continuation of the semiconductor roadmap [3]. It has been estimated that the cost of

developing a chip at 28nm technology node could reach over 170 million USD (see Figure

1.1) [105]. Furthermore, the significant investment and engineering effort do not reduce

the risk of project failure. The development cycle of chips ranges from months to years

with high uncertainty [3].

Figure 1.1: Estimated chip design cost [105]

The costs and risks associated with customized IC solutions can only therefore be justi-

fied for a limited number of ultra-high volume electronic products. The electronic indus-

try has begun shifting towards using reconfigurable devices such as Field-Programmable

Gate Arrays (FPGAs) as computing platforms. An FPGA is a special type of inte-

grated circuit that can be programmed and reprogrammed at system design time, run

time and after deployment. Compared with customized chips, the programmability of re-

configurable devices has increased the flexibility of designs while introducing acceptable

overheads in power, area and performance. Hardware/software systems implemented

on reconfigurable devices can achieve shorter time-to-market and are more amenable to
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2 CHAPTER 1. INTRODUCTION

upgrades or bug fixes over the product life-cycle. It is predicted that by 2024, on aver-

age 70% of the chip functionality will be reconfigurable in various forms [3]. Currently,

the number of design starts targeting FPGAs keeps increasing whereas the number is

in decline for Application-Specific Integrated Circuits (ASIC) [2]. FPGA vendors are

moving into ASIC markets by releasing programmable System-on-Chip platforms (e.g.,

[8, 103]).

Dynamically Reconfigurable Systems (DRS) further extend design flexibility by allow-

ing hardware sub-modules to be partially reconfigured at run time while the remaining

system continues to operate. By mapping multiple reconfigurable hardware modules

(RM) to the same physical reconfigurable region (RR) of the FPGA, the system loads

required modules on demand, which significantly saves resource usage, increases design

density and reduces system cost [90]. An application can also flexibly time-multiplex its

modules at run time to adapt to changing execution requirements. For example, a net-

worked multiport switch [98] and a software-defined radio [75] reconfigure their protocol

processing logic according to the protocol of the incoming traffic. A video-based driver

assistance system swaps image processing modules as the driving conditions change (e.g.,

from highway to urban and from open roads to tunnel) [18]. By reconfiguring the de-

sign with new modules, the functionality of a system can be extended at run time. For

example, a network flow analysis application reconfigures its flow monitor module into

an intruder detection module when identifying suspected attacks [107].

Designing effective DRS poses several challenging research problems. At a high level, we

lack tools for exploring the application design and implementation space so as to easily

identify those run-time reconfigurable architectures that would be effective. The ven-

dor tools provided to implement partially reconfigurable designs are relatively immature

and inflexible, and unduly constrain the manner in which the technique can be applied.

Furthermore, integrated support for verifying that a system undergoing reconfiguration

is correct is lacking. The need to develop purpose-specific run-time reconfiguration con-

trollers, which often require detailed knowledge of the target device and the application,

adds to the complexity and overheads of a design. Finally, current device architectures

impose reconfiguration delays that can often eliminate the performance advantages of

employing dynamic reconfiguration.

Functional verification is the bottleneck of hardware design projects and is a signifi-

cant contributing factor of the high development cost of electronic systems [106]. In

cutting-edge ASIC design projects, the ratio of dedicated verification engineers to de-

sign engineers is two to one [3]. Although bugs in reconfigurable designs can quickly be

recovered by downloading a correct version of the configuration bitstream instead of re-

fabricating the entire chip, the effort required to detect and fix functional bugs does not

depend on the target technology and therefore shows similar trends as for ASIC designs.

Functional verification is therefore a crucial but a costly step in FPGA-based designs

[99]. Accelerating verification closure can thus reduce time-to-market and thereby con-

siderably reduce the cost and enhance the profitability of FPGA design projects.

Dynamic Partial Reconfiguration (DPR) introduces further challenges to the functional

verification of DRS designs. In particular, it presents two new verification problems that

do not exist in traditional static designs:
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• Design time verification. At design time, simulation is the most common method

for verifying hardware design functionality. FPGA vendors such as Xilinx claim

that each valid configuration of a DRS can be individually tested using traditional

simulation methods, but do not support simulating the reconfiguration process

itself [98]. However, partial reconfiguration should not be viewed as an isolated

process. Although correctly verified sub-systems are necessary, they are not suf-

ficient for ensuring design correctness since the most costly bugs are encountered

in system integration [3]. For the sake of system-level verification, the designer

should verify that reconfiguration does not introduce bugs to those parts of the

system that are not reconfiguring, and that the static part of the design does not

introduce bugs to the reconfiguration process.

• Run-time verification. With dynamic reconfigurability, a DRS can be repro-

grammed with hardware modules that are not known at system design time. These

modules can be designed and verified separately and their configuration bitstreams

can be transferred to the DRS system from external sources instead of using pre-

defined bitstreams from a local storage device [98]. However, it is not known

whether such modules can be correctly integrated to the DRS. A bug may exist in

the module itself or in the reconfiguration process. Therefore, these modules need

to be verified while the DRS is running, so that the newly configured modules do

not introduce bugs to the rest of the system. In particular, the DRS itself requires

mechanisms to check the correctness of the incoming module at run time.

In contrast to the challenges in verifying DRS designs, there are no well-accepted veri-

fication tools for DRS designs. Traditional simulation methods assume that the design

hierarchy is defined at compile time and do not support swapping modules during a

simulation run. Furthermore, configuration bitstreams used to re-program the target

device can only be interpreted by the FPGA and are meaningless to traditional sim-

ulation tools. This inability to simulate the reconfiguration process poses significant

difficulties for verifying the functionality of a DRS design while it is undergoing recon-

figuration, during which the outgoing RM needs to be properly paused, the RR needs

to be isolated and reconfigured, and the incoming RM needs to be activated before it

commences execution.

Apart from the need to develop simulation techniques, a more significant challenge to

functionally verifying dynamic hardware designs is the effective use of existing tools [3].

For traditional static hardware systems, targeting either ASICs or FPGAs, effective de-

sign methodologies, such as top-down modeling and coverage-driven verification, reduce

the number of design iterations, assist in ensuring verification closure, and are proven

to be more important than individual design tools [3]. For DRS designs, partial recon-

figuration introduces new scenarios that need to be tested. For example, in order to

test whether RMs are properly paused upon the arrival of reconfiguration requests, the

simulation environment needs to initiate partial reconfiguration in all possible states of

the currently active RM. In order to verify that an ongoing reconfiguration doesn’t in-

troduce any error (e.g., deadlock) to the rest of the design, all legal transitions between

any two RMs need to be exercised in simulation. It is therefore essential to provide

designers with guidelines for verifying the correctness of a design in such DPR-related

scenarios.



4 CHAPTER 1. INTRODUCTION

1.1 Thesis Objectives

This thesis aims to provide solutions to the significant challenges in verifying DPR and

to provide assistance to designers in testing and debugging DRS designs. Since design

engineers also spend significant time testing and debugging their designs, this thesis does

not explicitly distinguish between design engineers and verification engineers but refers

to both as designers. The thesis has three objectives.

Mainstream Objective. DRS can be designed in various ways and each design style

introduces different types of challenges to verification. This thesis focuses on the func-

tional verification of the mainstream DRS design flow, i.e., modular reconfiguration

[98][6]. For modular reconfigurable DRS designs, reconfiguration is performed at the

design module level and the system does not change configuration bits within a module

(i.e., does not support fine-grained reconfiguration). Reconfigurable modules are known

to the designer at design time so we do not consider the run-time verification problem

mentioned above.

Reconfiguration can be performed by the design itself or by an external host [98]. The

reconfiguration process for both methods is similar but the location of the reconfiguration

controller differs. Since most DRS designs in the literature use internal reconfiguration,

and without loss of generality, we focus our discussion on self-reconfigurable DRS designs,

while also describing the verification of externally reconfigured designs.

There are two main approaches to verifying the correctness of a design. This thesis focus

on the most common simulation-based verification approaches. By creating a high-level

or Register Transfer Level (RTL) description of the design, simulation-based verification

requires a designer to check that the responses of a Design Under Test (DUT) to given

stimuli are as expected. While having the disadvantage of not being able to exercise all

possible scenarios, this approach is commonly used in industry because it is efficient [3].

Although formal methods prove mathematically that a design matches a specification,

their execution times do not scale with design size [3].

Furthermore, we focus on simulation-based verification using mainstream Hardware De-

scription Languages (HDL, e.g., Verilog [37]/VHDL [38]) or high-level modeling lan-

guages (e.g., SystemC [40]), and off-the-shelf commercial HDL simulators (e.g., Model-

Sim [57]). We therefore use mainstream tools to verify designs described by conventional

languages.

It should be noted that focusing on mainstream DRS design styles (i.e., modular re-

configuration), mainstream verification techniques (i.e., simulation), mainstream design

languages (i.e., HDL and SystemC) and mainstream tools (e.g., ModelSim, FPGA ven-

dor design flow) does not limit the contribution of this thesis. Indeed, having analyzed

the state-of-the-art verification techniques for DRS designs (see Chapter 2), we believe

there is no well-accepted method for verifying mainstream DRS designs. We therefore

believe it is significant to focus on mainstream DRS designs before considering possible

extensions to more flexible DRS design styles.
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The Mainstream Objective is essential for our work to live within the ecosystem of the

current DRS design community. By focusing on mainstream design styles, techniques,

tools and languages, we hope to encourage the uptake of DRS designs by industry.

Nevertheless, we also discuss the application of our approach to non-mainstream DRS

designs and non-mainstream verification methods, so as to demonstrate the flexibility

of our approach.

Functional Verification Objective. This thesis focuses on functional verification

of DRS designs. Therefore, we aim to assist designers in identifying and fixing functional

bugs, which are bugs introduced to the design specification and to the captured design

(see Section 2.1). A typical functional bug in a hardware design is a cycle mismatch.

Design errors introduced in the implementation step such as timing violations, incorrect

constraints and failures in placing and routing modules are typically handled by the

implementation tools provided by the vendor and are therefore out of the scope of

functional verification.

As required by the Mainstream Objective, we focus on simulation-based approaches for

functional verification. We emphasize that the purpose of simulation is functional ver-

ification instead of other usages such as design space exploration, performance analysis

or power analysis. Therefore,

• The simulation environment must be accurate enough to capture the behavior of

the implemented design. Simulation accuracy is crucial to reveal design defects.

Mismatches between the simulated and the implemented design can lead to the

identification of false positive and false negative bugs during simulation. In con-

trast, simulation for performance analysis purposes may hide details of a design

so as to improve simulation speed.

• To improve simulation and debug productivity, the simulation should not include

information that is irrelevant to detecting functional bugs. For example, we do

not collect signal toggle rate in simulation, which is only useful for power analysis.

Similarly, it is also not necessary to consider placement and routing information

in simulation.

• The simulated design must be implementation-ready and simulation should verify

the design itself instead of a variation of the design. In particular, for RTL simula-

tion to be effective, it is desirable to implement the simulated and verified design

without any changes.

Although the above-mentioned requirements look straightforward, they are not easy

to fully comply with in practice. For example, some designs may contain third-party

IPs, which are delivered as netlists or hard macros. Simulation using netlists or hard

macros is performed at too low a level and contains information that is irrelevant to

detecting functional bugs. Alternatively, the design can be simulated using a functionally

equivalent simulation model, which may not be completely accurate. As will be described

in Chapter 2, the conflict between simulation accuracy and productivity is much more
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difficult to resolve for DRS designs. Therefore, designers for either static or DRS designs

need to strike a balance between simulation accuracy and productivity in simulation and

the simulated design should be implementation-ready.

Tools and Methodologies Objective. Following the Functional Verification Ob-

jective, this thesis aims to provide designers with simulation tools to verify DRS designs.

The tools should be able to model and simulate the reconfiguration process of DRS de-

signs. Furthermore, similar to the verification of static FPGA-/ASIC-based designs,

there is no push-button solution that automatically guarantees the correctness of any

DRS design. From a methodology perspective, it is more significant for designers to in-

tegrate the simulation tools with their design flow, and to effectively use the simulation

tools to assist in detecting bugs. In particular:

• We emphasize the use of simulation tools to test and debug integrated DRS designs

instead of simulating DPR as an isolated process.

• We cannot provide a complete list of all possible bugs that could exist in DRS

designs. Rather, we aim to provide guidelines and examples to demonstrate the

effective use of tools in detecting DPR-related bugs.

• Our simulation tool cannot and does not aim to replace other debugging meth-

ods such as on-chip debugging. Nevertheless, we aim to inspire researchers and

designers to consider the value of simulation to facilitate functional verification of

DRS designs, thereby reducing, if not eliminating, reliance on costly on-chip debug

cycles. Generally speaking, it is essential for designers to understand the pros and

cons of various tools and to choose the right tool at the right time, in order to

minimize the number of design iterations.

It should be noted that the tools and methodologies aim to cope with the new challenges

of verifying DRS designs so that the functional verification of DRS designs is as easy

as that of static designs. In this regard, verifying static designs itself is not easy but is

out of the scope of this thesis. Nevertheless, this thesis aims to bridge the gap between

verifying DRS designs and verifying traditional static designs.

1.2 Thesis Contributions

As described earlier, traditional simulation does not support swapping modules during

simulation. In addition, simulation cannot interpret real bitstreams that are used to re-

configure the target FPGA. The core idea of this work is to use a simulation-only layer,

a collection of behavioral models, to emulate the FPGA fabric and the DPR-related

activities (known as characteristic features of DPR) such as swapping modules and in-

terpreting bitstreams. Using the simulation-only layer, designers can thereby exercise

various DPR-related scenarios in order to expose functional bugs in the DRS design

while part of it is undergoing reconfiguration. For example, we use a simulation-only
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bitstream (SimB) to substitute for a real bitstream in simulation so that the process of

transferring bitstreams and the subsequent module swapping can be realistically simu-

lated and tested. The key contributions of this thesis are:

• We propose a generic method for modeling DPR, namely using the simulation-only

layer. As has been described, simulating DRS designs using the simulation-only

layer assists designers in detecting DPR-related functional bugs, thereby fulfilling

the Functional Verification Objective.

• From a CAD tool perspective, we propose the ReSim library to support RTL

simulation of DRS designs, and extend its core ideas to an Extended ReChannel

library for the high-level modeling of DRS designs. The two libraries are two

possible implementations of the concept of the simulation-only layer. In accordance

with the Mainstream Objective, the two libraries are seamlessly integrated into the

existing and mainstream DRS design flow.

• From a methodology perspective, we integrate ReSim and Extended ReChan-

nel with well-established verification approaches, such as top-down modeling and

coverage-driven verification, for the verification of DRS designs. We provide a

comprehensive set of case studies to demonstrate the use of our integrated veri-

fication tools and methodologies, thereby fulfilling the Tools and Methodologies

Objective.

• Release of the ReSim library as an open source tool together with examples of using

the tool. ReSim is publicly available via http://code.google.com/p/resim-

simulating-partial-reconfiguration .

1.3 Thesis Outline

The rest of this thesis is organized as follows. After reviewing state-of-the art DRS

designs, Chapter 2 analyzes the challenges in verifying DRS, and assesses related verifi-

cation approaches according to the challenges identified.

Chapter 3 sets forth the general concepts of the simulation-only layer. We analyze the

capabilities and the limitations of our idea with regard to the verification challenges

identified in Chapter 2.

Chapter 4 applies the idea of a simulation-only layer to high-level modeling and RTL

simulation. Our work on high-level modeling extends a previous open source SystemC

library, ReChannel [67] with concepts of the simulation-only layer. We created a ReSim

library from scratch for RTL simulation of DRS designs.

We present the use of our tool on a range of case studies in Chapter 5. The case

studies include in-house designs, a third-party design and reference designs. We illustrate

the development progress and the bugs detected for each case study as examples to

guide future designers in verifying their DRS designs. We also assess the development
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overhead and simulation overhead of using our library. We demonstrate that ReSim can

be seamlessly integrated into mainstream DRS design flows.

The last chapter concludes the thesis and discusses directions for future work in verifying

DRS designs.

The thesis has one Appendix, which describes all DPR-related bugs detected in the case

studies. This Appendix can be used as a reference by future designers to help understand

the potential source of bugs in DRS designs.



Chapter 2

Background and Related Work

The purpose of this chapter is to provide background related to verifying dynamically

reconfigurable FPGA designs. The chapter starts with a general discussion on func-

tional verification techniques (Section 2.1). By comparing DRS designs with traditional

FPGA-based static designs, we then discuss the challenges in verifying DRS designs

(Section 2.2). Sections 2.3 and 2.4 review previous work on verifying DRS designs us-

ing simulation and non-simulation methods, respectively, with the goal of emphasizing

the shortcomings of previous verification approaches. The last section summarizes the

chapter.

2.1 Functional Verification of FPGA-based Designs

Figure 2.1 illustrates a typical design flow for hardware systems targeting reconfigurable

devices. Starting with the design intent, the designer creates, using human language, a

specification, which is transcribed into a Register Transfer Level (RTL) description us-

ing Hardware Description Languages (HDL). The conversion process could also involve

Intellectual Property (IP) from third parties or previous projects, and the IP can be

represented as HDL code or synthesized macros. The designer then creates constraints

and the captured design is synthesized and implemented using FPGA vendor tools (e.g.,

Xilinx ISE [97]). A design can also be captured by high-level languages such as Sys-

temC [40] and mapped to the target FPGA using High-level Synthesis (HLS) tools (e.g.,

Vivado-HLS [102]). After this sequence of steps, the implemented design is ready to run

on the target device.

To ensure the correctness of the design, each step needs to be verified and any mismatch

in the representation between two consecutive steps is known as a design error or a bug.

Assuming that the vendor tools are reliable, bugs introduced in the implementation

process (e.g., incorrect design constraints, timing violation, etc) can be identified and

eliminated with the assistance of vendor tools [97]. On the other hand, bugs introduced

to the specification and the captured design are known as functional bugs, and functional

verification is the process of identifying and fixing functional bugs so that the captured

design meets the design intent [66]. It should be noted that, in general, a captured FPGA

9
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Design Specification Captured Design Implemented DesignDesign Intent
Functional Verification

Bugsintroduced inspecification� Bugsintroduced inRTL coding� Bugsintroduced inimplementation�
Figure 2.1: Typical hardware design flow

design can also target ASIC technology without much change. Therefore, the techniques

for functionally verifying a captured hardware design can, in general, be applied to both

ASIC-based and FPGA-based designs.

Simulation is the most common method for verifying hardware design functionality. By

feeding the simulated design with selected stimuli, the designer checks the response of

the Design Under Test (DUT) and fixes bugs exposed by the simulated scenario. Figure

2.2 illustrates the tradeoff between simulation accuracy and verification productivity

when simulating a design at various levels of abstraction (i.e., high-level modeling, RTL

simulation and timing simulation). Generally speaking, the more details that have been

included in simulation, the more accurate the simulation is. However, since the design

is modeled in more detail, the simulation throughput (i.e., the number of simulated

cycles per elapsed second) decreases and it is often more time-consuming for designers

to trace the root of a bug when the simulation fails. Therefore, verification productivity

decreases with increasing simulation accuracy.Verification Productivity

Simulation Accuracy

High-level modelinge.g. C/C++/SystemCRTL simulatione.g. Verilog/VHDLTiming simulationi.e., simulating the design netlistwith delay annotation
+

+

+

Figure 2.2: Tradeoff between simulation accuracy and verification productivity (for static
designs)

Hardware designs can be modeled and simulated using high-level languages such as

SystemC, which describe the design at a level of abstraction higher than RTL. Although

the simulation is not cycle-accurate, high-level modeling is accurate enough to verify

hardware architecture (i.e., the execution and communication flow of submodules) and

run embedded software before the design is captured in more detail. High-level modeling
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therefore facilitates early system integration. Furthermore, the simulation throughput

of high-level modeling is orders of magnitude higher than for RTL designs and high-level

models are easier to debug. Therefore, high-level modeling sacrifices simulation accuracy

for the sake of verification productivity (see Figure 2.2).

Through a top-down modeling and refinement process, the verified model is typically

manually converted to the synthesizable RTL design, which is optimized for performance,

area and power consumption. A significant overhead of high-level modeling is the need

to create a high-level model solely for verification purposes. To reduce this overhead,

there is a growing trend to synthesize the high-level model directly to the target FPGA

[20]. However, in order to achieve the desired level of performance, resource utilization

and power consumption, HLS requires many more design iterations than RTL-based

design flows and is still not widely accepted in industry. While high-level modeling is

widely used as a verification method to assist the designer in detecting functional bugs,

it is not commonly used for synthesis.

At the other end of the accuracy-productivity spectrum is timing simulation, which back-

annotates the design netlist with timing information in simulation [99]. Timing simula-

tion assists in identifying incorrect timing constraints, bugs on asynchronous paths, and

verifies timing closure. Since the timing information is extracted from the implemented

design, timing simulation is dependent on the implementation process. Therefore, timing

simulation sacrifices productivity for simulation accuracy (see Figure 2.2).

Simulation is most commonly performed at RTL level. Using the high-level model as

a reference, the RTL design is described using HDL languages and focuses on signal

interactions, data flow and timing optimization, which are details not captured in the

reference model but required for implementation. Therefore, RTL simulation focuses

on verifying signal interactions and the verified design is ready to be implemented.

It should be noted that a designer can also bypass high-level modeling and directly

describe the design at RTL level. Referring to Section 1.1, RTL simulation meets the

three requirements of the Functional Verification Objective.

• Since the simulation is cycle-accurate, RTL simulation can expose bugs introduced

either in the specification or RTL coding, as long as the bug is exercised by the

stimuli. However, the limited throughput of RTL simulation only allows exercising

the design with selected scenarios. The choice of scenarios needs to be carefully

planned to maximize the chances of exposing bugs.

• Since the simulation is physically independent, RTL simulation does not rely on

any results from the implementation process or on the details of the target de-

vice to which the design is intended to be mapped. Therefore, the simulation

can be performed before the time-consuming implementation step and the itera-

tive design-simulate-debug process does not include the lengthy implementation

step. Moreover, physically independent simulation improves debugging productiv-

ity, during which designers are only interested in identifying and fixing potential

functional bugs in the captured design. Last but not least, physically independent

simulation has acceptable simulation throughput since the design is modeled at

the right level of detail to detect functional bugs.
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• Since the simulated design is implementation-ready, the verified design can be

synthesized and implemented using vendor tools without any changes to the design

source. RTL simulation therefore verifies the design intent.

RTL Design
Design Under Test(DUT)Stimuli generation Results checkingExpected resultsCoverage analysis

High-level Model
Figure 2.3: A typical simulation environment

Apart from the design to be simulated and verified, the simulation environment also

includes components for stimuli generation, result checking and coverage analysis (see

Figure 2.3). In particular, the designer needs to create tests to exercise various execu-

tion scenarios of the DUT, and checks the responses of the DUT against the expected

results. Since RTL simulation can only exercise a limited number of scenarios, a well-

managed design project adopts coverage-driven verification to guide stimuli generation

so as to increase the coverage of simulation [66]. The starting point of coverage-driven

verification is a test plan, which describes (using natural languages) a list of scenarios

that need to be tested. Next, the designer maps the scenarios of interest to coverage

items (using formal languages), which can then be compiled and kept track of by the

simulator. By analyzing the coverage data collected by the simulator after a simulation

run, the designer identifies coverage items that have not yet been stimulated (i.e., cov-

erage holes) and creates more tests targeting the uncovered scenarios. The functional

verification ends by covering all required scenarios without failure.

Although state-of-the-art simulators assist designers in collecting coverage data, coverage

analysis still involves manpower to identify all scenarios to be stimulated and to map

the scenarios to coverage items that can be tracked by a simulator. Coverage items

can either be converted from the design source code (i.e., code coverage) or be derived

from the design specification (i.e., functional coverage). Therefore, apart from the HDL

source code, the designer explicitly defines functional coverage items using Hardware

Verification Languages (HVL, e.g., SystemVerilog [36]), and functional verification ends

when all scenarios defined by HDL and HVL items are covered.

IP-reuse and platform-based design are two methodologies that aim to improve de-

sign productivity. IP-reuse significantly reduces verification effort by integrating or

re-integrating proven IP from previous projects [68]. However, while thoroughly verified

sub-modules and IP are essential, they do not guarantee the correctness of the integrated

system [3]. It is therefore highly desirable to build a simulation environment capable of

testing the integrated design.
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By parameterizing and customizing a generic computing platform, a platform-based de-

sign methodology can meet the needs of a variety of applications from a specific domain,

thereby reducing the associated development effort [73]. A platform-based verification

approach can reuse the simulation/verification platform from previous projects so as to

verify newly added modules to a derived design [68]. However, various applications may

expose defects in corner cases from different parts of the platform, and it is therefore

essential to thoroughly verify all execution scenarios of the platform.

It should be noted that the above-mentioned methodologies are only guides and that

the designer needs to adapt them to the requirements of specific projects. For example,

if the design itself is relatively small, the overhead of creating a high-level model may

outweigh its benefit. On the other hand, if the system uses legacy IP from previous

projects, it is not necessary to perform coverage analysis over those components, but it

is still essential to test the integration of the proven IP with the new project.

Apart from simulation, a design can also be verified using formal methods and field

testing. Formal methods thoroughly explore all possible scenarios and prove that the

design either matches or does not match the specification. The specification can contain

a list of design properties captured by formal languages such as SystemVerilog Assertions

[36, 87] and Property Specification Language [39] (i.e., property checking), or represent

the same design at a higher level of abstraction (as used in equivalence checking) [23].

However, the run time of formal methods do not scale well with design size, and are

therefore only suitable for small designs [68]. Furthermore, there is no straightforward

way to verify the correctness and the completeness of the formal specification itself. In

particular, a bug can be introduced to the formal specification or it may only capture a

subset of the required design functionality. As a result, formal verification is typically

used to supplement simulation [68].

Field testing runs the implemented design on the target device under real-world condi-

tions. However, tracing the cause of a bug on the implemented design requires extra

effort to insert probing logic using vendor tools (e.g., ChipScope [95] and SignalTap

[7]) and the design needs to be re-implemented every time a different set of user design

signals is to be probed. The debug turnaround time of on-chip debugging is therefore at

least as long as the time-consuming implementation stage. Furthermore, since probing

logic can only visualize a limited number of signals for a limited period of time, on-

chip debugging typically involves more iterations to identify the source of a bug than

simulation requires. Last but not least, collecting and analyzing coverage data on chip

is not guided by quantifiable metrics. As a result, it is essential to perform thorough

simulation-based functional verification to detect as many logic errors as possible before

testing the implemented design on the target FPGA [99].

2.2 Challenges in Verifying DRS Designs

Using DPR, hardware modules that do not need to run simultaneously can be time-

multiplexed. For example, considering a traditional FPGA-based static hardware design

(upper half of Figure 2.4), two modules whose temporal activities are mutually exclusive
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are both statically configured on the FPGA. Since only one of the modules is needed

at a time, a multiplexer is used to interleave the communication between the selected

module and the rest of the design.

 FPGA Staticapplication logicStaticreconfiguration controller Isolation
Reconfigurable Module ASync, InitReconfigurable Module BSync, InitReconfigurableRegion

 FPGA Staticapplication logic StaticModule AStaticModule B
bitstreamsapplication data

application data

Figure 2.4: User design layer of a DRS design

In the DRS version of the same design (lower half of Figure 2.4), the two modules are

mapped to the same physical region and are time-multiplexed by partial reconfigura-

tion instead of being selected by a multiplexer. The static region of the DRS design is

comprised of the common part of each configuration and is kept intact during the whole

system runtime. Since only the required module is loaded to the FPGA, partial recon-

figuration saves resource usage, which is more significant if a large number of RMs are

used and each RM requires a large amount of FPGA resource. Since the reconfiguration

delay is significantly longer than selecting the multiplexer in the static version, DPR is

typically beneficial to designs that do not need frequent reconfiguration. Compared with

the static version, the DRS version of a design adds synchronization and initialization

logic to the RM to pause and initialize the RM before and after reconfiguration. In the

static region of the DRS, a reconfiguration controller is added to transfer configuration

bitstreams and the region undergoing reconfiguration is isolated. The reconfiguration

controller can also reside off-chip and perform DPR via an external configuration port.

We refer to the logic that performs the synchronization, isolation and initialization of

RMs as well as the bitstream transfer as the reconfiguration machinery (moderately

shaded blocks in the figure). Jointly, such reconfiguration machinery manages the re-

configuration process.

Figure 2.5 illustrates the reconfiguration process of DRS designs targeting commercial

and off-the-shelf FPGAs (e.g., Virtex series FPGAs [94, 100, 101, 104]). During re-

configuration, configuration bitstreams (depicted by a sequence of small black squares

alongside communication links in the figure) are transferred either by the static design

(i.e., the static reconfiguration controller), or by an external host (i.e., the external

reconfiguration controller) to overwrite selected configuration bits stored in the config-

uration memory. By the end of bitstream transfer, a new module (i.e., reconfigurable
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module B) is swapped in to replace the old module (i.e., reconfigurable module A). It

should be noted that although the latest Stratix V FPGA devices from Altera support

partial reconfiguration [6], Altera has not yet integrated the DPR design flow into their

CAD tools. However, the modular/ECO-based reconfiguration approaches proposed by

Altera also involve a similar reconfiguration process [5].

Figure 2.5 indicates that DRS designs have two conceptual layers:

Configuration Port (ICAP) Configuration MemoryPhysical Layer

 Reconfigurable Regionbitstreams
User Design
application data Staticapplication logicStaticreconfiguration controller Isolation Reconfigurable Module ASync, Init

Reconfigurable Module BSync, Init
Figure 2.5: Conceptual diagram of a DRS design

• User Design Layer: The user design comprises all user-defined modules. These

include the application logic (lightly shaded blocks) performing the required pro-

cessing tasks of the application, as well as the reconfiguration machinery (moder-

ately shaded blocks) that interact with the physical layer and manage the recon-

figuration process.

• Physical Layer: The physical layer (darkly shaded blocks) contains elements

of the FPGA fabric, such as the configuration port (e.g., Internal Configuration

Access Port (ICAP) or SelectMap [94, 100, 101, 104]), the configuration memory,

and configuration bitstreams, the implementation of which are proprietary to the

FPGA vendors.

Compared with traditional static designs, both the user design and physical layers intro-

duce new challenges to the functional verification of DRS designs. The rest of this section

analyzes the challenges presented by both layers. Following the Mainstream Objective

of this thesis (see Section 1.1), this section focuses on the challenges in simulation-based

functional verification of DRS designs.

2.2.1 Verification Challenges Arising from the User Design Layer

Compared with static designs, the user design layer of DRS designs include extra recon-

figuration machinery, and the designer needs to verify that the reconfiguration machinery
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is correct and is correctly integrated with the rest of the system. As illustrated in Fig-

ure 2.5, the reconfiguration machinery only operates during the reconfiguration process.

Therefore, it is essential to exercise various reconfiguration scenarios in simulation so as

to test and verify the reconfiguration machinery. From a temporal perspective, reconfig-

uration scenarios can be categorized according to the phase of the partial reconfiguration

process during which they occur, i.e., BEFORE, DURING, or AFTER reconfiguration.

We describe the three phases in more detail below.

BEFORE reconfiguration. This phase spans the time interval from when a request

for reconfiguration occurs until just before the first byte of the bitstream is written to

the configuration port. During this phase, proper synchronization is required to pause

the on-going computation between the static region and the RM. One approach is to

reconfigure the RM immediately such as in fault tolerant applications, in which a faulty

module is discarded and then reconfigured immediately by a fresh copy of the module

[35]. In hardware multitasking, a module preempted by the Operating System can save

its execution state for later restoration [80], or can roll back to its previous known

state when resumed later [70]. Another approach is to wait until current processing

is finished, such as in a video-based driver assistance system, in which each frame is

needed to process the driving conditions and reconfiguration is blocked until the end of

processing a frame [18]. In some pipelined designs, the RM needs to drain all pipelines

of data before acknowledging the reconfiguration. Whatever approach is taken, the

designer needs to verify the chosen synchronization mechanism is working as expected

and should exercise a number of scenarios. Some examples follow.

• For each individual reconfiguration operation, requests for reconfiguration may

occur at any time (i.e., when the RM is either idle or busy) and the occurrence in

each possible state of the RM should be exercised. For example, a reconfiguration

request may occur precisely when the RM starts or ends computation and the

system may not be able to process such concurrent events correctly.

• With respect to a sequence of reconfiguration operations that occur in a system,

all possible reconfiguration sequences should be exercised. For example, an RM

may receive multiple reconfiguration requests that conflict with each other, such

as to unload an already unloaded module [69] or to cancel an acknowledged re-

configuration. If the design has multiple RRs, illegal sequences of reconfiguration

requests could deadlock the system.

• For designs that save module state BEFORE reconfiguration, various scenarios

need to be exercised to test the robustness of state saving. For example, the

state saving process can be interrupted or delayed by other activities (e.g., higher

priority bus traffic or interrupts). In the process of state saving, the RM may not

have been kept frozen and the saved state could become inconsistent.

• Reconfiguration requests can arise from within or from outside of the user de-

sign. For example, depending on the desired tasks, an FPGA-based robot plat-

form dynamically switches between internal timer-driven reconfiguration mode and

external event-driven reconfiguration mode [60]. The designer therefore needs to
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exercise all possible reconfiguration sources to verify various reconfiguration modes

of the system.

DURING reconfiguration. This phase spans the period during which the config-

uration bitstream is being transferred to the configuration port of the FPGA. During

this phase, the bitstreams may require processing such as decompression and decryption

[13], whereas bitstream transfer could be performed over a dedicated datapath [52], or

over a shared bus [93].

During reconfiguration, the behavior of the logic inside the RR is undefined and should

be properly isolated to prevent the propagation of spurious RM outputs and/or to avoid

breaking ongoing operations of the static part. The simplest design option for isolation

is to drive a default value to the static region during reconfiguration (e.g., assert the

module’s reset signal throughout reconfiguration [75]). In case the static region is a

master, extra logic is required to indicate the availability of the RM. Such extra logic

can be a single signal from the slave, or a time-out counter in the master. In some

complex designs such as the reconfigurable video processing engines of the AutoVision

system (studied in Chapter 5), the slave registers have to be moved from inside the

RM to the static region so that the unavailability of the RM does not break the daisy

chain of software-accessible registers [4]. Data arriving during reconfiguration might be

discarded [91] or buffered in the system for further processing [76]. To verify the isolation

mechanism used by the system, the simulation needs to exercise various scenarios. For

example,

• If the design has multiple RRs and there are communication events between the

RMs associated with the RRs, all legal transitions between two RMs in the same

RR need to be exercised and each transition should be simulated with all possible

configurations of other RRs. Furthermore, all legal reconfiguration sequences must

be tested so as to, for example, exercise potential deadlock scenarios.

• All possible scenarios for bitstream processing and transfer need to be covered.

For example, if the bitstreams are to be decrypted, the length of the bitstream

may or may not be a multiple of the size of the encryption key. If using a shared

bus to transfer bitstreams, simulation should cover the potential traffic contention

between bitstream traffic and application data. The bitstream itself could be

corrupted, for example, by an invalid pointer in the system software.

• The scenarios in which requests for communication are attempted from the static

part to the RM, or vice versa, should be exercised in simulation to verify that the

static region and the RR are adequately isolated from each other. In particular, if

the static part relies on feedback from the RR, failure to cancel a communication

attempt may cause the static logic to wait for a response that will never arrive.

• Since the timing of isolation is critical, all possible scenarios of signal transitions

need to be simulated. In particular, isolating one cycle too early may cause the

static module to fail to transmit the last dataset to the RM, and isolating one

cycle too late may cause the RM to inject spurious data into the static part.
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• If the static region buffers incoming data while the RM is being reconfigured, the

overflow and underflow of the buffer should be exercised during simulation.

AFTER reconfiguration. This phase spans the time interval from just after the last

byte of the bitstream is written until the new module is activated. In the last phase

of reconfiguration, the designer needs to verify the method used to initialize the newly

downloaded RM, which may involve simply resetting the RM or restoring the RM to a

previous execution state. Module state can be restored via the configuration port [80]

or via user logic [46] and can be restored from previously saved values [80] or from other

modules [44]. In complex designs such as the fault recovery application of [35], a special

instruction and interrupt is added to a softcore microprocessor to restore its internal

registers. The scenarios of interest to partial reconfiguration include:

• As the module can be in any possible state AFTER reconfiguration, in order

to thoroughly test reset-based initialization, the design should be reset from any

possible module state in simulation.

• The reset operation should be combined with the operation of the rest of the

system and all possible combinations need to be tested. For example, a scenario

of interest is attempting to communicate with the RM immediately before, during

and after the reset operation.

• For pipelined RMs, their state can only be initialized by loading the pipelines with

meaningful data, and the designer needs to verify that the undefined data flushed

out from the pipeline are not inadvertently propagated to the static system [69].

• For designs restoring module state, all possible scenarios for restoring the module

state need to be tested. For example, the static region should attempt to interrupt

or delay the restoration process. Restoration should be initiated in various system

states so as to test that the restoration does not affect the rest of the design.

* * * * * * * * * * * *

For all three phases, partial reconfiguration scenarios need to be properly simulated and

thoroughly tested. It should be noted that the above-mentioned scenarios are only guides

and the designer needs to adapt them to specific DRS design projects. In simulation,

designers need to select stimuli to exercise scenarios of interest.

2.2.2 Verification Challenges Arising from the Physical Layer

The physical layer of a DRS design represents the FPGA device, which contains the

logic/routing resources comprising the fabric of the device, the configuration memory

controlling the function and interconnection of the fabric, and the configuration distri-

bution network commencing with the configuration port. Although the organization of

the FPGA fabric differs between FPGA families, the general concept of a basic building

block of the fabric can be illustrated as in Figure 2.6 [19]. A basic building block has a
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Look Up Table (LUT, see the 4-LUT module) to implement combinational logic, a flip-

flop (see the DFF module) to implement sequential elements such as pipeline registers

or Finite State Machines (FSM), and Carry Logic to implement carry-related compu-

tation (e.g., add, wide AND, etc). A basic block contains multiple configuration points

(depicted as Pn) that control the logic settings (e.g., P1, P2, P4), switch settings (e.g.,

P5) and memory elements (e.g., P3) of the fabric. Changing these configuration points

leads to different user designs being instantiated. For example, user design A can be

mapped to the fabric by setting the LUT to an AND gate and enabling the flip-flop

while user design B is mapped by configuring the LUT to be an OR gate and bypassing

the flip-flop. All configuration points are connected to an SRAM-based configuration

memory, which can be accessed via the configuration port (e.g., Internal Configuration

Access Port, ICAP) of the FPGA. In particular, configuration settings can be overwrit-

ten by transferring a configuration bitstream to the configuration port, from which the

bitstream is internally parsed and distributed to the configuration memory.I1 I2 I3 I4
4-LUTCarry Logic
DFFP2

P4
P1 CinCout

O1

I1 I2
DFFO1
ANDUser Design Representation

Fabric Representation
Configuration Memory

I1 I2

O1
OR

 User Design A  User Design B
P3

Connection Box & Switch BoxP5
Figure 2.6: Basic Logic and Routing Block of FPGAs, after [19]

In traditional FPGA-based hardware designs, the physical layer is statically configured

and is not visible to the user design. Bitstreams are only transferred at power up and are

typically loaded by off-chip controllers, which are not part of the on-chip user design. In

DRS designs, the target FPGA is reprogrammed at run time and the reconfiguration ma-

chinery, either on-chip or off-chip, is part of the user design. Therefore, the user design,

and the reconfiguration machinery in particular, interacts with the physical layer in the

reconfiguration process. We refer to such interactions as inter-layer interactions (see the

links between the two layers in Figure 2.5) and the configuration bitstream is the medium

for such inter-layer interactions. In particular, it is the configuration bitstreams that are

transferred by the user design that subsequently change the configuration settings of the

FPGA fabric and thus the functionality of the user design. Depending on how partial

reconfiguration is performed, the level of interactions between the user design and the

FPGA fabric varies.
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Modular Reconfiguration. One way of performing partial reconfiguration is modu-

lar reconfiguration [98][6], which is supported by mainstream vendor tools (e.g., PlanA-

head [98]) and academic tools (e.g., GoAhead [49], OpenPR [82]). For a modular re-

configurable DRS design, RMs are swapped in and out as atomic entities. Limited by

the capability of vendor tools, the affiliation between RMs and RRs is defined at design

time and therefore modules cannot be relocated in DRS designs created by vendor tools.

Modular reconfiguration is the most straightforward and mainstream way to design a

DRS and it benefits applications in various ways.

• Using modular reconfiguration, an application can update its modules at run time

to adapt to changing execution requirements. For example, a video-based driver

assistance system dynamically swaps image processing engines when the driving

conditions change between highway, country, urban and tunnel driving [18]. An

automobile cabin controller use modular reconfiguration to swap in the required

control logic on demand [86]. Depending on the desired task, an FPGA-based robot

platform dynamically switches from target acquisition mode to target tracking

mode by reconfiguring itself with various computer vision modules [60]. A scalable

Discrete Cosine Transfer (DCT) core dynamically reconfigures the size of its DCT

array (1*1 – 5*5) according to the required Signal-to-Noise Ratio (SNR) [34],

which varies between day and night conditions. An FPGA-based Monte-Carlo

Simulator adaptively adjusts its simulation precision by reconfiguring its number

representation mechanism at run time [84]. Modular reconfiguration is used to

dynamically balance workload of a network processor [43]. The network processor

keeps track of the number of each packet type, and if a particular traffic type

is increasing, then it reconfigures more of its eight co-processors to process that

particular traffic type.

• Some applications can be partitioned into a few sequential steps and an RM can be

reconfigured for each step using modular reconfiguration. For example, A DVB-T2

decoder time-multiplexes a demodulation module and an error correction module

to decode wireless signals [25]. The two modules are mapped to the same physical

region of the FPGA and are executed sequentially. For an FPGA-based sorting

accelerator, a large sorting problem is divided into two execution stages, in which a

FIFO-merge-sort engine and a Tree-merge-sort engine are reconfigured respectively

[48].

• Modular reconfiguration can also be applied to change the communication in-

frastructure for hardware modules at run time. For example, the routers of the

CoNoChi [65] Network-on-Chip (NoC) can be removed or inserted at run time

to reroute the communication path. Instead of looking up the destination node

as traditional routers do, the R2NOC router directly connects the initiating node

with the destination node, and such direct connection is reconfigured at system

run time using modular reconfiguration [22].

In modular reconfigurable DRS designs, since each RM can only be mapped to its pre-

defined RR, the inter-layer interactions are mediated by the partial bitstream in its

entity and individual configuration bits are of limited interest to the designer. Since
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each RM is reconfigured as an entity, designers are not required to be experts on the

relationship between the configuration memory bits and the elements of the FPGA fabric

the configuration bits control.

State Saving and Restoration. Apart from reconfiguring module logic, state saving

and restoration (SSR) is a common and sometimes essential requirement of DRS. For

FPGA-based designs, state data include the contents of storage elements such as flip-

flops and memory cells such as Block RAM (BRAM) located in the FPGA fabric. In

DRS designs, state data can be saved from RMs before reconfiguration for later restora-

tion [19]. For example, to recover from an error, a module can be restored to a saved

checkpoint [46]. For periodic/phased applications, the system configures the required

computational module for each period of execution and copies the results across periods

[42]. In hardware multitasking, a module can be preempted and later resume execu-

tion from the interrupted state [80]. To defragment FPGA resources, modules can be

relocated from their original locations to other areas of available resources [44]. The

FPGA accelerator platform in [71] uses the Message Passing Interface (MPI) protocol

to communicate with the host PC and state data of RMs are saved and restored by

passing messages.

To save and restore module state, the designer needs to create a datapath to access

the state. There are currently two approaches for creating such a datapath. The first

method adds design-specific application logic to read/write storage elements (e.g., [71],

[46], [58], [33]). Using this approach, state saving and restoration does not involve any

inter-layer interactions. Alternatively, the other approach utilizes the configuration port

of the FPGA to access state data (e.g., [44], [80]). In particular, after reading back the

configuration bitstream, bits that correspond to storage elements are extracted from the

bitstream and are saved in a database. These state bits are later restored to the RM

during partial reconfiguration. Therefore, the media for cross-layer interactions are the

state bits of configuration bitstreams.

Comparing the two methods, it is more general to save and restore module state via

the configuration port since this method can access arbitrary storage elements without

changing the RMs. Therefore, it does not introduce any side effect to the system such as

extra resource usage or tighter timing requirements. However, the designer needs expert

knowledge of the FPGA fabric in order to correctly design a system that extracts/restores

state data from/to configuration bitstreams. In contrast, customized state access logic

needs to be carefully inserted for each module in the system.

Module Relocation. Since the FPGA fabric has, in general, a regular structure, RMs

do not have to be restricted in module placement. Module relocation can significantly

increase the design flexibility of DRS. For example, an FPGA-based database query

application dynamically assembles its datapath with relocatable modules from a module

library to perform various queries [21]. Run-time management systems have been pro-

posed to dynamically allocate and defragment FPGA resources [89] [26] so as to increase

resource utilization.
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Various methods have been proposed to enhance the relocatability of RMs. For example,

the REPLICA filter is able to change the module placement information of configuration

bitstreams to a different location and to restore the execution state of the relocated

module [44]. By constraining RMs to use resources that are identical between the source

and the target location, modules can be relocated on FPGAs with heterogeneous resource

distribution [10]. Furthermore, this work provides software APIs to manipulate the

placement information of modules at run time so as to relocate RMs.

Apart from relocating the RMs, the communication infrastructure of the system also

needs to be carefully designed so that modules can be correctly connected to the rest

of the system before and after relocation. The ReCoBus approach proposes a bus-based

interconnection mechanism with a regular routing structure so as to relocate RMs to

compatible reconfigurable slots [47]. In a sandbox-based approach, RMs can be placed

and relocated within a large pre-defined RR and module interconnections are routed at

run time to support the changing communication requirements between RMs [62].

For DRS with relocatable RMs, a bug in processing the placement information could

cause an RM to be allocated to a location that overlaps another RM, and a bug in

processing the routing information could cause the relocated module to be connected to

incorrect logic. Correct execution of the user design thus relies on correct processing of

placement and routing information from the physical layer.

Fine-grained Reconfiguration. Since the SRAM-based configuration memory cells

can be individually programmed, reconfiguration does not have to be performed in a

modular manner. A fine-grained reconfigurable DRS design only updates a few config-

uration bits of the configuration memory so as to change the design functionality. For

example, by updating the content of LUTs, a network measurement application dynam-

ically updates the rules against which the incoming network packets are checked [45].

A LUT-based, fine-grained reconfigurable switch box is used to dynamically change the

communication patterns of NoCs [32]. The system determines the desired configuration

bits of such LUT-based switch boxes and generates bitstreams at run-time to update

the LUTs. To support fine-grained reconfiguration in processor-based FPGA designs,

[12] creates a set of software APIs to manipulate configuration bits of the FPGA fabric.

In these designs, the medium of cross-layer interactions are the few configuration bits

that control the logic and routing of the FPGA fabric.

Since only a very small portion of the design is required to be updated, fine-grained re-

configuration significantly reduces the reconfiguration overhead. However, fine-grained

reconfiguration requires the designer to have expert knowledge of the FPGA fabric so

that correct configuration bits are identified and updated. Furthermore, since the or-

ganization of the FPGA fabric varies between different FPGA families and vendors,

fine-grained reconfigurable DRS designs are, in general, not portable.

Coarse-grained Reconfiguration. Compared with the bit-level configurability of

FPGAs, DRS designs can also target coarse-grained reconfigurable architectures. In
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particular, the datapath of such systems contain optimized and commonly used process-

ing blocks of a specific application domain and reconfiguration is performed by selecting

multiplexers or multiplexer-like structures on the datapath. For example, FlexiTreP is

an Application-Specific Instruction Set Processor (ASIP) for channel decoding in wire-

less communication [88]. Similarly, the reconfigurable functional unit presented in [31] is

composed of coarse-grained reconfigurable modules optimized for Wireless Sensor Net-

work applications. The DReAM architecture [15] is a dynamically reconfigurable DSP

processor targeting baseband processing for software-defined radios.

Since coarse-grained reconfigurable DRS designs do not target off-the-shelf FPGAs,

the designers need to define the organization of the physical layer. The configura-

tion bitstreams are loaded through customized configuration mechanisms (e.g., software-

accessible registers). The multiplexers that select processing blocks are explicitly instan-

tiated in the datapath of the user design. Therefore, there is no clear boundary between

the user-design layer and the physical layer for customized coarse-grained reconfigurable

DRS designs.

Utilizing the Physical Layer. Apart from storing configuration bits, the physical

layer of the FPGA can also be included as part of the user design to perform desired

tasks. Hardware modules can utilize the configuration port as a unified access point for

all resources of the FPGA so as to transfer application data [72] [79]. A hardwired NOC

has been integrated to the FPGA fabric as the communication infrastructure for both

application data and configuration bitstreams [30].

External Reconfiguration. Reconfiguration can be performed by the design itself

or by an external host. While for externally reconfigured DRS designs, bitstreams are

transferred by off-chip reconfiguration controllers, the reconfiguration process is similar

to that of internally reconfigured DRS designs. The nature of inter-layer interactions is

not affected by the place where the reconfiguration controller resides.

* * * * * * * * * * * *

For modular reconfigurable DRS designs, RMs are reconfigured as a whole and the

medium of inter-layer interactions is the bitstream. For non-modular reconfigurable

DRS designs, inter-layer interactions can involve configuration bits, state and placement

information. In DRS designs that target customized reconfigurable architecture or utilize

the FPGA fabric to transfer application data, the user design layer merges with the

physical layer. In order to verify the behavior of DRS designs undergoing reconfiguration,

it is therefore essential to model and simulate the inter-layer interactions.

2.2.3 Simulation Accuracy vs. Verification Productivity

As described in Section 2.2.1, designers need to cover all possible reconfiguration sce-

narios so as to thoroughly verify DRS designs. Since the reconfiguration process in-

volves interactions between the user design layer and the physical layer (see Section
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2.2.2), exercising reconfiguration scenarios requires the designer to accurately simulate

the inter-layer interactions during reconfiguration. Unfortunately, it is non-trivial to

model and simulate the inter-layer interactions using traditional simulation techniques.

We use RTL simulation as an example to illustrate the difficulties involved.

• As described in Section 2.1, RTL simulation is cycle accurate. However, as FPGA

vendor tools do not openly provide simulation models for the physical layer, it

is non-trivial for designers to accurately model the impact of the physical layer

on the user design layer during the reconfiguration process. In particular, the

configuration bitstreams, which are the medium of inter-layer interactions, can

only be interpreted by the target FPGA. Without an accurate simulation model

of the FPGA fabric, traditional RTL simulations of DRS designs cannot interpret

the bitstreams and thus cannot perform cycle-accurate simulation of the inter-layer

interactions. Without accurate simulation, potential bugs, either arising from the

reconfiguration process or from integrating partial reconfiguration with the rest of

the system, cannot be detected until the integrated design is tested on the target

device.

• On the other hand, even if the simulation model of the FPGA fabric were available,

the simulation would be performed at too low a level of detail. In particular, using

the simulation model of the FPGA fabric, the user design has to be represented by

configuration bits (as in the left half of Figure 2.6) instead of as the desired user

logic (as in the right half of Figure 2.6). As a result, simulating the FPGA fabric

does not meet the physical independence requirement described in Section 2.1. For

the sake of verification productivity, it is desirable that functional verification is

independent of the FPGA fabric.

An ideal simulation method therefore needs to strike the right balance between the

level of accuracy of the simulation and the level of detail of the fabric being modeled.

Furthermore, this balance is constrained by the desire for the simulated design to be

implementation ready (see Section 2.1). Thus, the captured design should not be changed

for simulation purposes.

It should be noted that for high-level modeling, designers also need to model and verify

the behavior of the user design during reconfiguration while abstracting away the internal

activities of the FPGA fabric. For formal verification, since a designer needs to describe

the intended behavior of the system in the formal specification (see Section 2.1), it is

desirable to model the FPGA fabric at the right level of detail so as to formally capture

the intended inter-layer interactions.

Referring to the Functional Verification Objective of this thesis and the general descrip-

tion of functional verification in Section 2.1, the requirements for simulation/modeling

accuracy, physical independence and implementation-readiness can, in general, be met

for static designs. However, since DRS designs involve inter-layer interactions during

reconfiguration, these requirements conflict with each other. We therefore conclude that

the conflicting requirements of simulation/modeling accuracy and verification produc-

tivity constitute the fundamental difficulty in the functional verification of DRS designs,
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whatever functional verification methods (i.e., high-level modeling, RTL simulation, or

formal verification) are used.

2.3 Simulation-based Verification of DRS Designs

Simulation can be performed at various levels of abstraction (i.e., high-level modeling,

RTL simulation, or timing simulation) and it is inevitable that simulation accuracy

and verification productivity are traded off (see Figure 2.2 of Section 2.1). However, for

DRS designs, it is particularly challenging to find the right balance between accuracy and

productivity in simulation (see Section 2.2.3). This section reviews previous simulation-

based verification methods.

Virtual Multiplexing. In traditional HDL languages, hardware modules are stat-

ically compiled before running simulation and cannot be swapped in the middle of a

simulation run. The most common approach for simulating DPR has been to use a

Virtual Multiplexer to interleave the communication between reconfigurable modules

connected in parallel [53] [54]. During implementation, modules connected by Virtual

Multiplexers are implemented separately, and are loaded onto the FPGA as required at

run time [54]. The MUX can also be mapped to an actual multiplexer, which switches

modules that are statically configured on the FPGA [53].

MUX-based simulation is the basis for more recent efforts in simulating DPR. How-

ever, since MUX-based simulation was initially proposed to model partial evaluation

applications on XC6200 FPGAs, it fails to simulate the inter-layer interactions of DRS

designs targeting more recent FPGAs. For example, Virtual Multiplexing associates

module swapping with a constant reconfiguration delay and does not simulate the pro-

cess of bitstream transfer. As a result, potential bugs on the bitstream transfer datapath

cannot be detected in simulation.

Dynamic Circuit Switch. The Dynamic Circuit Switch (DCS) [69] was the first

systematic study of simulating DPR. The idea is to automatically add simulation-only

artifacts to the RTL code so as to model reconfiguration activities. For example, to

model module swapping, the dynamic task selector artifact ensures mutually exclusive

access to one of the RMs connected in a mutex set. The dynamic task modeler artifact

forces RM outputs to undefined “x” values so as to model the spurious outputs of RMs

undergoing reconfiguration. The reconfiguration condition detector artifact monitors

designer selected RTL signals to trigger module swapping. In DCS, state saving and

restoration is modeled by modifying the RTL description of all storage elements (i.e.,

flip-flops and memory cells) in simulation.

Since DCS also instantiates RMs in parallel and selects one active module at a time, it

can be viewed as being similar to Virtual Multiplexing. On the other hand, a Virtual

Multiplexer can be viewed as being an artifact that mimics module swapping. Therefore,

DCS can be considered as an extension to Virtual Multiplexing. Compared with [54],
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the artifacts of DCS capture more inter-layer interactions of DPR and improve the

modeling accuracy. However, the added artifacts do not exist on the target device and

the simulated design therefore doesn’t replicate what is implemented. For example, on

FPGAs, reconfiguration is triggered by writing a bitstream to the configuration port

instead of the reconfiguration condition detector artifact. Module state is saved and

restored via reading and writing bitstreams instead of modifying the storage elements.

As a result, DCS changes the design for simulation purposes and the simulation therefore

verifies a variation of the design instead of the implementation-ready design.

Modifying the Simulator Kernel. Apart from simulating the design at RTL

level, DRS designs can also be modeled using high-level modeling languages such as

SystemC. Like HDL languages, SystemC does not support modeling run-time reconfig-

uration. By modifying the SystemC kernel, [14] keeps track of the status of all RMs

and stops executing a thread if the corresponding RM is deactivated. The simulated

user design performs partial reconfiguration by calling newly added SystemC functions

(i.e., dr_sc_turn_on() and dr_sc_turn_off()), which changes the status of RMs in

the modified SystemC kernel. The modified SystemC kernel is used in the design and

verification of a dynamic reconfiguration manager [50]. A significant drawback of this

work is that the modified SystemC kernel is not standard and is incompatible with the

SystemC simulators of other vendors. Furthermore, it does not support the simulation

of configuration readback.

ReChannel. ReChannel [67] is a SystemC-based, open source library to model DRS

designs. Using a library-based approach, ReChannel is more flexible compared with [14]

and can be applied to SystemC simulators from various vendors. In ReChannel, RMs are

derived from the rc_reconfigurable base class and are connected to the static design

through an rc_portal, a MUX-like SystemC class. Furthermore, RMs are modeled with

novel resettable threads instead of standard SystemC threads so that they can be reset

to their default state after reconfiguration. To model state saving and restoration, the

library provides call-back functions for user designs to save and restore user-specified

variables of the modeled design. To further simplify the modeling of DRS designs,

the library has a built-in rc_control class that models a user-defined reconfiguration

controller, which unloads and activates RMs mapped to an RR. The library also has

built-in synchronization mechanisms to properly pause an RM before reconfiguration.

Although the classes and utility functions of the library simplify the modeling of DRS de-

signs, the modeled DRS design does not capture enough design details to assist with de-

bugging the reconfiguration scenarios. For example, since the reconfiguration controller

is modeled as a built-in rc_control class instead of a user-defined SystemC module,

the design-specific details of the reconfiguration controller (e.g., software-accessible reg-

isters, interrupts, FIFO depth) can not be verified. As another example, the library

uses non-synthesizable call-back functions to model state saving and restoration, while

there is no equivalent user logic to implement such call-back functions on target FPGAs.

ReChannel is thus insufficiently accurate for verification purposes.
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OSSS+R. OSSS+R [74] is a design methodology for automatic modeling, synthesis,

and simulation of DRS. This approach uses the polymorphism feature of C++ to model

RMs mapped to the same RR. In particular, RMs share a common C++ interface while

deriving their module specific implementations. During synthesis, the tool automatically

generates reconfiguration control logic to manage the swapping of RMs. Therefore,

this approach is more akin to a HLS approach than a functional verification approach.

Although HLS significantly improves the design productivity of DRS, the synthesized

DRS can only use the pre-defined reconfiguration control mechanism, which potentially

limits the design space for DRS.

Dynamically Reconfigurable Fabric (DRCF). The DRCF [64] approach uses a

wrapper, a template SystemC class that represents a RR, to model the reconfiguration

operations of RMs. In particular, the DRCF wrapper instantiates RMs and has member

functions/classes to schedule and swap RMs mapped to it. However, the DRCF wrapper

can only be used as a slave attachment to a system bus, which significantly limits the

wider use of this approach.

Fabric-accurate Simulation. If a simulation model of the FPGA fabric were avail-

able, the user design could be represented by configuration bits and partial reconfig-

uration could be modeled as the process of rewriting the content of the configuration

memory. We refer to this approach as fabric-accurate simulation. Fabric-accurate sim-

ulation can be viewed as the cycle-accurate simulation of an FPGA device, whereby the

configuration data of a user design can be viewed as data items that are processed by the

device. As described in Section 2.2.3, fabric-accurate simulation would be completely

cycle accurate but would also include a multitude of unnecessary details for functional

verification. Since the entire FPGA fabric would be simulated, the simulation speed

could even be slower than the timing simulation of static designs. Furthermore, since

the user logic would be represented by configuration bits instead of RTL signals, the

designer would not be able to focus on the desired logic in the user design layer and

verification productivity could thus be significantly reduced. Since vendors do not gen-

erally provide fully accurate simulation models of their FPGAs, this approach is only

considered as a concept for comparative purposes.

Device Simulator. Instead of using a simulation model of the FPGA, VirtexDS [56]

is a customized simulator of the FPGA device. By modeling all resources of the tar-

get FPGA, the VirtexDS simulator can simulate implemented DRS designs with full

accuracy. It should be noted that VirtexDS is a special-purpose simulator, rather than

a model of the FPGA fabric, which can be compiled and simulated by a general pur-

pose HDL simulator such as ModelSim [57]. Since VirtexDS is optimized for simulating

designs targeting Virtex FPGAs, the simulation is faster than general-purposed HDL

simulators. Unfortunately, since the simulator is dependent on the target device, it needs

to be updated for each FPGA family. Furthermore, the customized simulator cannot be

integrated with mainstream verification methodologies such as coverage analysis.

* * * * * * * * * * * *
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This section reviews previous work on simulation and modeling methods of DRS designs.

Since traditional HDL languages cannot be used to simulate DPR, researchers have

tried to model DPR using artifacts [54] [69], by modifying the simulator kernel [14], by

providing libraries [67], using high-level synthesis [74], using templates [64], and building

customized simulators [56]. Figure 2.7 assesses previous DRS simulation approaches

in terms of accuracy and productivity. Since there is no well-established quantitative

measurement of either simulation accuracy or verification productivity, Figure 2.7 only

assesses previous approaches from a qualitative perspective.

High-level modelinge.g. C/C++/SystemCRTL simulatione.g. Verilog/VHDLTiming simulationi.e., simulating the design netlistwith delay annotationFabric-accurate simulation
+

+

+
x

x

High-level modeling  e.g. [65] MUX [52]DCS [67]x

 + Static designsx DRS designsVerification Productivity

Simulation Accuracy
Figure 2.7: Tradeoff between simulation accuracy and verification productivity (for static
and DRS designs)

Fabric-accurate simulation is the cycle-accurate simulation of the FPGA device and it

can therefore achieve comparable simulation accuracy to traditional RTL simulation.

However, since it depends on the FPGA fabric, fabric-accurate simulation is the least

productive approach in terms of simulation speed and debug efficiency. It can even be

less productive than traditional timing simulation since timing simulation only simulates

the netlist and the signal delays of the user design.

Alternatively, by sacrificing accuracy, previous work models DPR without being depen-

dent on the FPGA fabric. For example, no previous work models bitstream traffic and

therefore cannot exercise reconfiguration scenarios that need to test the bitstream trans-

fer logic. As another example, both high-level modeling and RTL simulation assume that

the reconfiguration delay is a constant. Therefore, simulated modules are swapped after

such a constant delay regardless of whether or not there is a bug during reconfigura-

tion. Furthermore, although some previous work models DPR-related activities such

as state saving and restoration [69] [67], the original designs need to be changed for

simulation purposes. This does not meet the implementation-ready requirement, which

states that the user design should not be modified for simulation purposes. As a result,

previous simulation-based approaches do not meet the Functional Verification Objective

(see Section 1.1).
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2.4 Formal and Run-time Verification of DRS Designs

Formal verification mathematically proves that a hardware design meets its formal spec-

ification (see Section 2.1). For DRS designs, formal verification can be used to verify the

design either when it is operating normally, or when it is being reconfigured. We focus

on applying formal methods to verify the reconfiguration process of DRS designs.

With dynamic reconfigurability, a DRS can be designed to be open-ended, which means

that hardware RMs are not known at system design time and the system is open to

various applications that may be mapped to the system after it has been deployed.

For example, DRS computing platforms such as the Erlangen Slot Machine [13], the

VAPRES streaming architecture [41], the Sonic video processing system [76] and the

MPI-based generic parallel computing accelerator [71] provide basic infrastructure so

that future applications can easily be mapped to the platform. Therefore, apart from

verifying partial reconfiguration, the designer also needs to verify that newly introduced

RMs can be correctly integrated with the existing system. We refer to this type of

verification as run-time verification.

This section reviews previous formal and run-time verification methods. We cover both

methods in one section because previous work often combines them. In particular,

by definition, run-time verification verifies a DRS design on its target FPGA under

real-world conditions instead of in a simulated environment. Furthermore, since formal

verification does not require creating a simulation testbench, it is more suited to being

applied at run time compared with simulation. However, formal verification and run-

time verification can also be used independently of each other.

Verifying Reconfigurable Cores. Formal methods have been used to verify recon-

figurable cores at run-time [81]. The authors propose to run a light-weight, proof system

which converts both the reconfigured core and its specification into propositional logic

and verifies that the two versions are equivalent. The core to be verified is optimized

for the target FPGA while the specification is a general, un-optimized RTL description

of the same core.

This approach is limited by the overheads of running the proof system at run time. The

original work targeted verifying reconfigurable cores on the XC6200 FPGA. Since only

a very small portion of user circuits were modified by partial reconfiguration, the over-

head of running the formal prover was acceptable. For modular reconfigurable designs

targeting more recent FPGAs, the overhead of proving a complex RM at run time is too

large to be practical.

Proof Carrying Hardware. Aiming to reduce the overhead of running the proof

system, the proof-carrying-hardware approach [24] proposes to offload the formal proof

task to the designer of the RMs. The idea is to record the steps of the formal verification

process offline and combine the steps as part of the configuration file of the RM. At

run time, the DRS simply checks the proof, which passes if and only if the RM is
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configured correctly. The idea was extended from the proof carrying code techniques

proven effective in validating the trustworthiness of downloaded software.

This approach saves the overhead of formal verification at run time. Although the idea

of the paper is interesting, the approach is described as a proof of concept and needs to

be strengthened. For example, the approach only supports combinational equivalence

checking, while the majority of hardware designs are sequential.

Pi-calculus. Formal verification can also be used at design time in addition to at

run time. Pi-calculus has been used in the modeling, analysis and verification of DRS

designs [77, 78]. The Pi-calculus is a process algebra originally designed for modeling

communicating systems. By restriction to a subset of the calculus, the authors propose

a tiny pi-calculus to formally model the “reconfiguration rules/directives” (i.e., when to

reconfigure what) of a DRS design [77]. Pi-calculus is able to model the start and end

of an RM’s execution, and the communication requirements between multiple RRs [78].

To verify the design, the designers prove that the formal model described by pi-calculus

has or does not have a set of required properties.

As described in Section 2.1, the formal specification may only capture a subset of de-

sired design behavior. In terms of the pi-calculus method, it assists in verifying the

reconfiguration rules that are explicitly modeled. However, the reconfiguration rules do

not support modeling a bitstream transfer by a user-defined reconfiguration controller.

Another limitation is that the authors assume that RMs are only deactivated after they

have finished (i.e., self-deletion), which is not true for preemptive run-time management

systems (e.g., [70]).

Verifying Streaming Hardware. Formal verification has been applied to verify DRS

designs targeting streaming applications [85]. The idea is to use symbolic simulation

techniques to verify the equivalence of an executable software specification of a design

and an optimized, partitioned, software/hardware system. In particular, the proposed

method compiles the specification and the optimized target design into an intermediate

representation for symbolic simulation. During simulation, symbolic inputs are driven to

both models and the responses are checked. The authors model partial reconfiguration

using Virtual-Multiplexing [54], which selects one active RM at a time. Furthermore, the

authors introduce a new language construct, the reconfigure_if conditional statement,

to the MaxJ language so as to explicitly capture the virtual multiplexer in the formal

specification.

Since the reconfiguration process is modeled by Virtual-Multiplexing, the formal specifi-

cation only captures the module swapping operation of DRS designs. It fails to capture

other aspects of DPR (e.g., bitstream traffic). Furthermore, this approach is limited by

the assumed architecture of the system, in which software invokes hardware modules

(static or run-time reconfigurable) via APIs and the software is blocked until the end

of hardware execution. Such a model restricts the style of the DRS design that can be

verified using the method.
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On-chip Debugging. As described in Section 2.1, on-chip debugging using vendor

tools such as ChipScope [95] is a time-consuming step for FPGA-based designs. Unfor-

tunately, due to the limitation of the clocking circuitry, ChipScope [95] can only be used

to monitor signals from the static region of a DRS design [83]. Xilinx has proposed a

workaround to resolve the problem [1], but the proposed solution requires expert knowl-

edge of the ChipScope tool, thereby introducing additional complications to the on-chip

debugging of DRS designs.

FPGA-in-the-Loop Simulation. The FPGA-in-the-Loop approach proposes to test

a DRS design on the target device while driving the stimuli from simulators such as

ModelSim [57] or Simulink [55]. To assist in debugging the reconfiguration process, this

approach visualizes the placement of RMs on the FPGA and updates the visualized

placement information upon reconfiguration [61].

Visualizing module placement could assist in debugging designs that allow module relo-

cation. In particular, a bug in placing/relocating the module could easily be identified

by visualizing the placement of RMs on the target device. However, for modular re-

configurable DRS designs, each RM can only be assigned to a single, fixed location.

Therefore, visualizing RM placement offers limited assistance in debugging the recon-

figuration process. Furthermore, since the visualization technique relies on parsing con-

figuration bitstreams in order to extract placement information, the infrastructure to

parse bitstreams needs to be modified for each FPGA family.

Self-checking Circuitry. A car cabin controller uses self-checking circuitry to test the

system functionality at run time [63]. In order to save system resources, the testbench

modules can be dynamically allocated to reconfigurable slots that are not occupied by

normal RMs. Alternatively, reconfigurable slots can be configured with three identical

copies of an RM so as to detect malfunctioning transistors in the FPGA device.

Limited by the capabilities of the checker and the checking method, self-checking cir-

cuitry can not thoroughly test all functionality of the target system at run time. For

example, since the system in [63] uses DPR to allocate testbench modules and triplicated

RMs, the reconfiguration machinery itself can not thereby be tested.

* * * * * * * * * * * *

This section reviews previous work on formal and run-time verification of DRS designs.

Formal verification has been used to verify that RMs meet their specification [81] [24] and

to verify that the high-level operations of a DRS design are correct [77] [85]. However,

no existing method verifies the low-level details of a DRS design. In particular, existing

methods only capture the module swapping operation in the formal specification and

fail to model other DPR-related activities. For example, no existing method formally

verifies that a bitstream is correctly transferred to the configuration port by the user-

defined reconfiguration controller, and that the desired RM is subsequently swapped in

accordingly.
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DRS designs can also be validated using field testing by ChipScope [95], customized tools

(e.g., [61]) or self-checking circuitry (e.g., [63]). However, existing methods for run-time

verification of DRS designs are still ad-hoc.

2.5 Summary

The architectural flexibility of DRS introduces challenges in functionally verifying such

systems. The challenges arise from both the user design and the physical layers that can

be identified for a DRS design. For the user design layer, DPR introduces new scenarios

that need to be covered in verification. The reconfiguration scenarios can be categorized

according to the phase of the partial reconfiguration process during which they occur,

i.e., BEFORE, DURING, or AFTER reconfiguration. These reconfiguration scenarios

need to be properly exercised during simulation in order to verify the correct operation of

the DRS during reconfiguration. DPR involves interactions between the user design layer

and the physical layer (i.e., inter-layer interactions), and it is challenging to accurately

model such inter-layer interactions without relying on the details of the FPGA fabric.

Furthermore, the modeling of the interactions should not change the user design lest a

variation of the user design is simulated.

Previous simulation-based approaches, either using high-level modeling or RTL simula-

tion, abstract away the details of the FPGA fabric but sacrifice simulation accuracy. In

theory, fabric-accurate simulation can achieve full accuracy but suffers from low verifica-

tion productivity. In reality, the simulation model of the FPGA fabric is not available.

It should be noted that DRS designs can also be verified using formal methods and field

testing. Previous formal methods only successfully capture the very high-level behavior

of DRS designs. Run-time verification approaches can visualize partial reconfiguration

activities, but they are still ad-hoc.

From a methodology perspective, it is desirable to provide DRS designers with guidelines

and examples of exercising reconfiguration scenarios and identifying DPR-related bugs.

However, the literature only focuses on presenting simulation/verification tools without

reporting on the verification effort or bugs identified during the development of DRS

designs.

We therefore conclude that there is a significant gap between the ability to design a DRS

and the ability to verify a DRS.



Chapter 3

Modeling Dynamic Partial

Reconfiguration

As discussed in Section 2.2.3, the fundamental challenge for functional verification of

DRS designs is the conflicting requirements of modeling accuracy and verification pro-

ductivity. For simulation-based verification, the designer needs to strike the right bal-

ance between the level of simulation accuracy and the level of detail about the fabric

being simulated. Furthermore, this balance is constrained by the desire for the sim-

ulated design to be implementation ready. Thus in this chapter, we derive a general

approach to modeling DPR and show that the proposed approach meets the above-

mentioned requirements. Following the Mainstream Objective of this thesis, we focus

on simulation-based functional verification, and since RTL simulation is the most com-

mon method for verifying hardware design functionality (see Section 2.1), we describe

the modeling methodology at the RTL level.

The core idea of our approach is to use a simulation-only layer to emulate the physical

fabric of FPGAs so as to achieve the desired balance between accuracy and physical

independence. Since the simulation-only layer does not change the user design, the

DUT is not modified during verification and is therefore implementation-ready. Section

3.1 illustrates the details of the physical layer, from which we extract 6 characteristic

features of DPR (see Section 3.1.2) which capture the inter-layer interactions. Sec-

tion 3.2 describes the simulation-only layer. By abstracting away the details of the

FPGA fabric, the simulation-only layer shields the simulated design from the physical

details of the fabric (Section 3.2.1). By modeling the characteristic features of DPR, the

simulation-only layer is able to accurately mimic the impact of the FPGA fabric on the

user design (Section 3.2.2). Section 3.3 analyzes the capabilities and limitations of using

the simulation-only layer and the last section (Section 3.4) summarizes this chapter.

3.1 The Physical Layer

As illustrated in Section 2.2, a typical DRS design has two conceptual layers (see Figure

3.1, which is the same as Figure 2.5) and the two layers interact with each other during

33
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reconfiguration. Therefore, in order to accurately simulate the inter-layer interactions, it

is essential to model the physical layer and to capture the inter-layer interactions during

simulation.

Configuration Port (ICAP) Configuration MemoryPhysical Layer

 Reconfigurable Regionbitstreams
User Design
application data Staticapplication logicStaticreconfiguration controller Isolation Reconfigurable Module ASync, Init

Reconfigurable Module BSync, Init
Figure 3.1: Conceptual diagram of a DRS design (Same as Figure 2.5)

3.1.1 The Configuration Mechanisms

As Xilinx is the only vendor to currently support partial reconfiguration in their design

tools and their FPGA devices1, we use Xilinx Virtex series of FPGA families as examples

to describe the physical layer of DRS designs.

Configuration Port. Partial reconfiguration is performed by transferring a bitstream

to the configuration port of the FPGA. The configuration port is the interface between

the user design layer and the physical layer. It can be internal, such as the Internal

Configuration Access Port (ICAP), which is typically instantiated as part of a user

design as if it were a sub-module of the user design hierarchy. It can also be an external

port such as SelectMap, which is driven by an external reconfiguration controller while

the DRS design is running. The user design writes bitstreams to and reads bitstreams

from the configuration port according to the interfacing protocol specified by the FPGA

document (e.g., [94, 100, 101, 104]).

Configuration Memory. The configuration memory is organized into frames, and

each configuration frame is indexed by a Frame Address (FA) including the Row Ad-

dress (RA), Column Address (CA) and Minor Address (MNA). A frame is the smallest

addressable storage unit in the configuration memory, a frame contains a number of

words and each configuration bit is indexed by the Bit Offset (BO) within the frame.

For Virtex-5 FPGAs (see Figure 3.2), as an example, the basic logic block illustrated in

Figure 2.6 is known as a Configurable Logic Block (CLB). The intersection of a given

1Although the Stratix V device supports partial reconfiguration, Altera is yet to incorporate partial
reconfiguration into its tool flow
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RA and CA contains an array of 20 * 1 CLBs, and their configuration settings are stored

in 36 contiguous frames, each of which contains 41 32-bit words. Thus, in order to locate

the configuration bit of a particular configuration setting, the designer needs to know

the RA, CA, MNA and BO of that configuration bit.

frame 0 frame 35frame 1bottom-halftop-half
word 0word 1word 40 configuration 

column frame nconfiguration row20*1 CLBs = 36 frames
1 frame = 41 words= 1132 bits

MNA
RA

CA Bit Offset� �
� �

// == maximum.ll ==Bit � 0x0001851f 259 Block=� Latch=� Net=rm_statistic[0].ll file(logic allocation file )
32'b0000_0000_0000_0001_1000_0101_0001_1111RA ( FA[20:15] ) = 6'b0_0001_1 = 3CA ( FA[14:7] ) = 8'b000_0101_0 = 10MNA ( FA[6:0] ) = 7'b001_1111 = 31BLOCKTYPE ( FA[23:21] ) = 3'b000 (CLB)

Frame Address (FA)
31      0631131

Bit Offset (BO) Signal Name

FPGA_FLOOR_PLANCLBs

Figure 3.2: Configuration memory of the Virtex-5 FPGA family, after [100]

Figure 3.2 also shows an example of an entry in the .ll file generated by the vendor

tool. A .ll file indicates the allocation (i.e., RA, CA, MNA, BO) of configuration

bits in the configuration memory. Although it does not contain allocation information

for all bits, it does include all configuration bits that control flip-flop register values

(i.e., P3 in Figure 2.6) and memory values (e.g., Block RAM or BRAM). In particular,

the rm_statistic[0] flip-flop is allocated to Frame Address (FA) 0x0001851f, from

which the designer can decompose the RA, CA and MNA (see the bit composition

of the frame address in the figure). The example also indicates that the flip-flop is

mapped to the 259th bit of the frame (indexing from 0). A .ll file also indicates

the allocation of memory cells such as BRAM and their corresponding frame address,

although different key words are used for BRAM entries (see the configuration guides,

e.g., [94, 100, 101, 104]).

Configuration Bitstream. Configuration bitstreams are data items of partial recon-

figuration and are also known as partial bitstreams for DRS designs. They are transferred

by the user design in the same way as normal data while they contain configuration set-

tings of the physical layer that can only be interpreted by the FPGA device. Table 3.1
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lists an example bitstream2 that indicates a write operation (see entries 3-5 in the table)

to the configuration memory. By overwriting the configuration frames to which the old

RM is mapped, the configuration settings are updated and the new RM is swapped in.

It should be noted that one extra pad frame is typically required by the FPGA. A bit-

stream starts with a SYNC word (entry 1 in the table) and ends with a DESYNC command

(entry 7 in the table).

Table 3.1: An example bitstream for partial reconfiguration

Entry Bitstream Explanation Actions Taken

1 0xAA995566 SYNC Word Start of bitstream

2 0x20000000 NOP –

3 0x30002001

0x0001851f

Type 1 Write FAR
FA = 0x0001851f

Write configuration data
starting from frame with
FA=0x0001851f (RA = 3;
CA = 10; MNA = 31)

4 0x30008001

0x00000001

Type 1 Write CMD
WCFG

5 0x30004000

0x500005ED

Type 2 Write FDRI
Size=1517

Pad frame: 41 words
Configuration data: 1476
words (36 frames)

6 ... Configuration data
& pad data
Words 0 - 1516

Configuration data contain
the logic settings of the
new RM

7 0x30008001

0x0000000D

Type 1 Write CMD
DESYNC

End of bitstream

Apart from configuring module logic, some DRS designs also save and restore module

state (i.e., flip-flop and memory values) via the configuration port (CP-based SSR). To

save the state data of user flip-flops, the user design needs to read back configuration data

through the configuration port. Using the logic allocation information specified in the

.ll file, the user design then filters out configuration bits (i.e., the INT0/INT1 bits) that

represent storage elements of user flip-flops (e.g., P3 of Figure 2.6). The readback and the

filtering operations of the user design can be performed by a reconfiguration controller

that is either on-chip or off-chip. Table 3.2 lists an example bitstream that reads the

frame containing the rm_statistic[0] flip-flop mentioned in Figure 3.23. After the

default SYNC word (0xAA995566), the bitstream contains a GCAPTURE command to copy

flip-flop values to the configuration memory. This is required because flip-flops are not

synchronized with their corresponding INT0/INT1 bits in the configuration memory until

such a command is issued. The following 6 words (see entries 3-5 in Table 3.2) indicate

the configuration frame to be read. Then the configuration port is switched to read

mode, during which the 83 words of configuration data are returned to the user design.

The example reads more than a frame because an additional pad frame and a pad word

are returned before the actual configuration data are returned. The bitstream ends with

a DESYNC command.

The restoration process reverses the state saving procedure. The saved or modified state

data is merged into the configuration data at the position specified by the .ll file, and

2To focus on partial reconfiguration, this example doesn’t include irrelevant sections.
3To focus on state saving, this example doesn’t include irrelevant sections.
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Table 3.2: An example bitstream for state saving

Entry Bitstream Explanation Actions Taken

1 0xAA995566 SYNC Word Start of bitstream

2 0x30008001

0x0000000C

Type 1 Write CMD
GCAPTURE

Copy the state bits from
the flip-flops to the
configuration memory

3 0x30002001

0x0001851f

Type 1 Write FAR
FA = 0x0001851f

Read configuration data
starting from frame with
FA=0x0001851f (RA = 3;
CA = 10; MNA = 31)

4 0x30008001

0x00000004

Type 1 Write CMD
RCFG

5 0x28006000

0x50000053

Type 2 Read FDRO
Size=83

Pad frame: 41 words
Pad word: 1 word
Configuration data: 41
words

6 ... Configuration data
& pad data
Words 0 - 82

Configuration data are
returned to the user design

7 0x30008001

0x0000000D

Type 1 Write CMD
DESYNC

End of bitstream

a GRESTORE command is used to copy state data to the flip-flops. However, as GRESTORE

performs a chip-wide restoration, a mask must be set up before using the GRESTORE so

that only the frames of interest are restored. Setting up the mask is performed by writing

a mask bitstream to the configuration port. Apart from the GRESTORE-based flow, flip-

flop values can als be restored using a a reset-based approach [80, 44]. The general

procedure for a reset-based approach is similar to the GRESTORE-based approach except

that the state data are merged with the SET/RESET bits of the configuration bitstream

instead of the INT0/INT1 bits. The values of the SET/RESET bits are copied to their

corresponding flip-flops when the reconfigured module is reset. Saving and restoring

BRAM cells is similar to saving and restoring flip-flops. However, since BRAM data of

the user design are stored directly in the configuration memory, it is not necessary to

issue the GCAPTURE/GRESTORE commands. Please refer to the configuration guides for

further details about mask bitstreams, reset-based restoration and saving and restoring

BRAM cells [94, 100, 101, 104].

3.1.2 The Characteristic Features of Reconfiguration

Although the details of FPGA families vary, we extract the characteristic features of

DPR that are common to ALL FPGA families. Since we focus on the functional ver-

ification of the user design layer of a DRS design, we only extract features that are

essential to exercise the reconfiguration scenarios described in Section 2.2.1, and to test

the reconfiguration machinery of a DRS design (see Figure 2.4 of Section 2.2.1).

• Module Swapping: From the user design’s perspective, DPR can be considered

as swapping modules at run time. Furthermore, since module swapping could be



38 CHAPTER 3. MODELING DYNAMIC PARTIAL RECONFIGURATION

delayed by, for example, traffic contention on a shared datapath, the reconfigura-

tion delay is dependent on the size of the bitstream as well as run-time circum-

stances. Therefore, switching modules instantaneously [54], or after a compile-time

defined delay [69], ignores the real timing of module swapping.

• Triggering Condition: On FPGAs, module swapping is triggered if and only

if all bytes of the bitstream are successfully written to the configuration port.

Without correctly modeling the tiggering condition, the simulation module swap-

ping would be independent of bitstream transfer and a simulated module could

be swapped even if the bitstream transfer were to fail. Simulating the triggering

condition using any other mechanism (e.g., the reconfiguration condition detector

component of [69]) therefore doesn’t correctly emulate what actually occurs.

• Bitstream Traffic: The process of transferring bitstreams, the interaction be-

tween bitstream transfers and other activities of the system cannot be verified

without simulating the bitstream traffic, which isn’t available until after the time-

consuming implementation step. A bug on the bitstream transfer datapath (e.g.,

FIFO overflow/underflow) may not therefore be detected in simulation.

• Bitstream Content: The configuration data of bitstreams contain bit-level logic

settings, data for state elements (i.e., flip-flops, memory cells) of the target RR,

and placement information of the module. Since such configuration data only

affect resource blocks in real FPGAs, traditional simulation methods cannot make

use of the contents of bitstreams and therefore cannot simulate the impact of

the configuration data on the user design. In other words, traditional simulation

cannot correlate the contents of the bitstreams with the logic or state of modules

that are being simulated.

• Spurious Outputs: On FPGAs, a module undergoing reconfiguration may pro-

duce spurious outputs to the static region. However, the simulated modules won’t

produce spurious outputs when being reconfigured and the isolation logic of the

DRS design cannot therefore be tested in simulation. Moreover, modeling such

spurious outputs as a constant such as the undefined “x” value in [69] lacks the

flexibility required to thoroughly test the isolation logic.

• Undefined Initial State: The initial states of RMs are undefined AFTER re-

configuration. However in simulation, if, for example, an RM is swapped out and

then swapped in again later, the internal signals of the RM are preserved by the

simulator as if the module had never been swapped out. The simulated RM would

continue to operate even if there is a bug in the initialization process of the user

design. The initialization logic of the DRS design cannot therefore be properly

tested.

3.2 The Simulation-only Layer

In order to achieve the desired balance between simulation accuracy and physical in-

dependence, we propose to substitute the FPGA fabric with a simulation-only layer
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in simulation-based functional verification of DRS designs. Figure 3.3 redraws Figure

3.1 with all the physically dependent blocks (darkly shaded boxes) replaced by their

corresponding simulation-only artifacts (open boxes). In particular, simulation-only bit-

streams (SimB, see Section 3.2.1) are used to replace configuration bitstreams so as to

model the bitstream traffic, the media of the inter-layer interactions of DRS designs.

The part of configuration memory to which each RR is mapped is substituted by an

Extended Portal, which models the characteristic features of DPR (see Section 3.2.2).

Without loss of generality, possible configuration ports, either internal or external to the

design, are represented by an ICAP artifact.

Configuration Port (ICAP artifact ) Extended Portal
 Reconfigurable Regionsimulation-only bitstream

Simulation-only Layer
User Design
application data Staticapplication logicStaticreconfiguration controller Isolation Reconfigurable Module ASync, InitReconfigurable Module BSync, Init

Figure 3.3: Using the simulation-only layer

Using a simulation-only layer, reconfiguration is simulated as follows: the user-defined

reconfiguration controller transfers a SimB instead of a real bitstream to the ICAP

artifact. While the SimB is being written, the Extended Portal injects errors to both

the static region and the RM. Errors injected to the static region model the spurious

outputs of the module undergoing reconfiguration and help to test the isolation logic

of the user design. Errors injected to the reconfigurable modules model the undefined

initial state of the RM and help to test the initialization mechanism of the design. After

the SimB has been completely written to the ICAP artifact, the Extended Portal checks

the signature of the SimB, extracts the numerical ID of the new RM, and drives module

swapping according to the extracted ID.

The more complex processes of sate saving and restoration, as can be achieved by read-

ing, writing and processing configuration bitstreams in real FPGAs, can also be emulated

using the simulation-only layer. For example, saving the state of a RM is simulated as

follows: the static module transfers a SimB instead of a real bitstream to the ICAP

artifact. By parsing the SimB, the ICAP artifact extracts the readback parameters, and

controls the Extended Portal. The Extended Portal probes the RM state (i.e., values

of RTL signals that represent state elements such as flip-flops and memory cells), and

returns the state data to the ICAP artifact. Finally, the ICAP artifact returns the

retrieved state data to the user design as a readback SimB. Restoring the state of a

RM also utilizes the artifacts and SimBs to mimic the behavior of the FPGA fabric.

However, a different SimB from the one for state saving is used, and the state data are

copied back to the RTL signals of the simulated RM.
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The simulation-only layer approach is, to some extent, analogous to the Bus Functional

Model (BFM) simulation, in which a BFM is used to emulate the behavior of a micro-

processor so as to test and verify peripheral logic attached to a microprocessor bus [96].

Although the BFM model is not a completely accurate representation of the micropro-

cessor, it is accurate enough to capture the interactions between the microprocessor and

the bus peripheral to be tested. Furthermore, the verification productivity achieved us-

ing BFM is significantly higher than that achieved simulating the netlist of a processor

since the BFM approach abstracts away the internal behaviors of a processor such as

pipelines. Similarly, the simulation-only layer emulates the FPGA device and captures

the inter-layer interactions required to exercise reconfiguration scenarios. Furthermore,

the simulation-only layer abstracts away the details of the FPGA fabric and significantly

improves the verification productivity compared with fabric-accurate simulation.

The concept of a simulation-only layer is also, to some extent, analogous to a virtual

FPGA [51]. The idea of a virtual FPGA was proposed as a means of creating a device-

independent FPGA fabric any design could be mapped to. By efficiently mapping the

virtual FPGA to each real FPGA type, the user design could be ported between devices

without remapping. Although the original idea suffered from significant performance

overheads, the concept of a fabric-independent FPGA device is here adopted to facilitate

simulation-based functional verification. In particular, we propose performing functional

verification of DRS designs using a generic FPGA model, namely the simulation-only

layer, which is independent of the target FPGA device. Referring to the Functional

Verification Objective of this thesis, we aim to assist designers in detecting functional

bugs. Since functional bugs are defined as bugs introduced to the design specification

and the captured design (e.g., RTL design, see Section 2.1), they should be exposed

regardless of the target FPGA the design is mapped to. The design should be tested for

implementation-dependent bugs on the target device. We will describe the capabilities

and limitations of this approach in Section 3.3.

3.2.1 Modeling the Configuration Mechanisms

The simulation-only layer models the behavior of the FPGA fabric at RTL level, or

at a higher level, and hides the details of the physical layer. In particular, we define

the organization of the configuration memory and the configuration bitstream, and mi-

grate concepts of the physical layer that cannot be effectively used during simulation to

equivalent or similar concepts that can be used during simulation.

Configuration Port. The simulated configuration port is an artifact that interfaces

the user design with the simulation-only layer. For DRS designs that perform inter-

nal reconfiguration, the simulated configuration port is instantiated as part of the user

design. In simulation, it interacts with the user-defined reconfiguration controller ac-

cording to the interfacing protocol specified by the device configuration guide (e.g.,

[94, 100, 101, 104]). However, the simulated configuration port takes a simulation-only

bitstream instead of a real bitstream as input, and extracts simulation-only information

(e.g., numerical IDs of modules) that can be processed by the rest of the simulation-only
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layer. To simulate configuration readback, the simulated configuration port returns a

readback simulation-only bitstream to the user design.

It should be noted that Figure 3.3 uses an ICAP artifact to represent possible configu-

ration ports. To simulate external reconfiguration, the simulated configuration port is

instantiated as part of a simulation testbench and parses SimBs during simulation. To

simulate DRS designs mapped to FPGAs from other vendors, the general concept of

using a simulated configuration port still applies.

Configuration Memory. We derive the organization of the configuration memory

of the simulation-only layer (see Figure 3.4) from the organization of the configuration

memory of real FPGAs (see Figure 3.2). Instead of being organized into rows and

columns like the FPGA fabric, the configuration memory of the simulation-only layer is

organized according to the affiliation of RMs to RRs. In the simulation-only layer, each

RR and RM is given a numerical ID (RRID & RMID). The example shown in Figure

3.4 has 3 RRs with RRIDs = {0,1,2} and RR0 has 2 RMs with RMID = {0,1}. Note

that the RMIDs commence at 0 for each RR. Each RR is composed of N frames where

N is a user-defined parameter specified by a parameter script (see Section 4.3). Within

one RR, a configuration frame is indexed by a minor address (MNA) and each frame

contains 4 words.

word 0word 1word 3
frame nDRS_DESIGN_TOP1 RR = N frames

signal
1 frame = 4 words= 128 bits

MNA

Bit Offset

� �

.sll file(logic allocation file for simulation )
32'b0000_0000_0000_0001_0000_0000_0000_0010RRid ( FA[31:24] ) = 8'b0000_0000 = 0RMid ( FA[23:16] ) = 8'b0000_0001 = 1MNA ( FA[15:0] ) = 15'b000_0000_0000_0010 = 2

Frame Address (FA)
31        063128

Bit Offset (BO)& Bit Width (BW) Signal Name// == maximum.sll ==0x00010002 36 32 statistic

RR0RM0RM1RR1  RM0  RM1  RM2  RM3 RR2  RM0 word 295 Bit WidthMSB LSB
Module BModule A frame 0 frame N-1frame 1

Figure 3.4: Configuration memory of the simulation-only layer

Instead of containing configuration settings that define the logic and routing of the user

design, the configuration frames of the simulation-only layer, i.e., the simulation-only

frames, store information that can be used in simulation. In particular, the WORD 0 of
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all frames of an RR form a sequence of 32-bit signatures assigned by the simulation-only

layer. The signature data can identify a unique RM in the user design and are expected

to be kept unchanged throughout a simulation run. WORDs 1-3 of a configuration

frame are used to store the value of RTL signals that represent the state elements

(i.e., flip-flops and memory cells) of the simulated module. If the simulation exercises a

GCAPTURE/GRESTORE operation, the values stored in the simulated configuration memory

are synchronized with the RTL signals of the simulated module. Such a synchronization

operation mimics the GCAPTURE/GRESTORE of real FPGAs (see Section 3.1.1) and can be

used to simulate state saving and restoration.

To map RTL signals to the configuration memory, the simulation-only layer treats the

simulation-only logic allocation file (.sll file) as being equivalent to the logic allocation

file (.ll file) generated by the FPGA vendor tools. On real FPGAs, the state of a multi-

bit register is flattened into individual flip-flops that are mapped to the configuration

memory bit-by-bit (see Section 3.1.1). However in the simulation-only layer, a multi-bit

register (typically represented by RTL signals in the HDL code) is stored contiguously.

Since signals are typically grouped in the RTL user design, storing the state bits contigu-

ously improves debugging productivity. Thus, in order to locate one user signal in the

configuration memory, the designer needs to know the Bit Width (BW) of the signal, in

addition to the RRID, RMID, MNA and Bit Offset (BO). Figure 3.4 provides an exam-

ple of the .sll file. The statistic register is located at Frame Address 0x00010002,

which is decomposed into RRID = 0, RMID = 1 and MNA = 2. The BO and BW fields

indicate that the statistic register starts at bit 36 and is 32 bits wide. Similarly, RTL

signals that correspond to memory cells (e.g., 2-D arrays in Verilog/VHDL) can also be

mapped to the configuration memory of the simulation-only layer using the .sll file.

By addressing RMs/RRs using numerical IDs, constructing configuration frames with

signatures and state data, and mapping RTL signals using .sll files, our approach mod-

els the configuration memory of the simulation-only layer using information extracted

from the RTL design and yet is physically independent. Note that it does not matter

how many words a simulation-only frame has, nor how many bits the module signature

or module state data should contain. This thesis defines 4 words per frame, 32 bits

per signature, and 3*32 bits per state value for our simulation-only layer. Although we

believe it is unnecessary to do so, a designer can choose a different set of parameters to

define a different configuration memory layout for the simulation-only layer.

Simulation-only Bitstream. As simulation cannot effectively make use of a real

bitstream (see the “Bitstream Content” item in Section 3.1.2), the simulation-only layer

substitutes a simulation-only bitstream (SimB) to model the bitstream traffic. The

SimB captures the essence of a real bitstream but its size is significantly reduced. Table

3.3 provides an example of a SimB that configures a new module. Similar to a real

bitstream, a SimB starts with a SYNC word (entry 1 in Table 3.3) and ends with a

DESYNC command (entry 7 in Table 3.3). However, a SimB differs from a real bitstream

in the Frame Address and the configuration data field.

Instead of containing the Frame Addresses of the configuration data to be written, as

found in a real bitstream, a SimB contains the RRID and RMID of the module to be
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Table 3.3: An example SimB for configuring a new module

Entry SimB Explanation Actions Taken

1 0xAA995566 SYNC Word Start the **DURING
Reconfiguration** phase

2 0x20000000 NOP –

3 0x30002001

0x01020000

Type 1 Write FAR
FA=0x01020000

Select the module id=0x02
to be the next active
module in reconfigurable
region id=0x01

4 0x30008001

0x00000001

Type 1 Write CMD
WCFG

5 0x30004000

0x50000010

Type 2 Write FDRI
Size=16

Pad frame: not required
Configuration data: 16
words (4 frames)

6 0x5650EEA7

0xF4649889

...
0xA9B759F9

0x4E438C83

SimB Frame 0 Word 0
SimB Frame 0 Word 1
...
SimB Frame 3 Word 2
SimB Frame 3 Word 3

Module signature; Module
state data; Enable/Disable
error injection

7 0x30008001

0x0000000D

Type 1 Write CMD
DESYNC

End the **DURING
Reconfiguration** phase

reconfigured. In the example SimB, 6 consecutive words (entries 3-5 in Table 3.3) request

that the current module in the RR with ID = 0x1 be replaced by the new module with ID

= 0x2. The example SimB also indicates that the target RR contains 4 simulation-only

layer frames, as explained next.

Instead of containing bit-level configuration settings for the module to be configured,

as found in a real bitstream, the configuration data section of a SimB contains fields

that are to be written to the configuration memory of the simulation-only layer (entry

6 in Table 3.3). In particular, WORD 0 is the module signature field and WORDs 1-3

store the values of state elements (i.e., flip-flops and memory cells) of the RM to be

configured. The configuration data section of a SimB also indicates the start and end

of error injection.

SimBs can also be used to simulate state saving and restoration. Table 3.4 provides an

example of a readback SimB that saves the state of the statistic register of Figure

3.4. Similar to the previous example, the readback SimB also starts with a SYNC word

and ends with a DESYNC command (entries 1 and 7 in Table 3.4). In addition, the Frame

Address of a real bitstream is replaced by the RRID and RMID of the target RM.

However, there are a couple of differences between the readback SimB in Table 3.4

and the partial SimB of Table 3.3. Firstly, the readback SimB has an extra GCAPTURE

command to copy the values of the RTL signal (i.e., the value of the statistic register)

to the configuration memory of the simulation-only layer. Secondly, since the statistic

register is mapped to the 2nd frame of the target RR (i.e., MNA=2, see the .sll file

entry of Figure 3.4), the example readback SimB only reads the 2nd frame instead of all

4 frames of the target RR. Thirdly, during state saving, the contents of the configuration

data section of the readback SimB (the 4 words of entry 6 of Table 3.4) are returned
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Table 3.4: An example SimB for state saving

Entry SimB Explanation Actions Taken

1 0xAA995566 SYNC Word Start the **DURING
Reconfiguration** phase

2 0x30008001

0x0000000C

Type 1 Write CMD
GCAPTURE

Copy the state bits from
HDL signals to the spy
memory

3 0x30002001

0x00010002

Type 1 Write FAR
FA = 0x00010002

Read configuration data
starting from frame with
FA=0x00010002 (RRid=0;
RMid=1; MNA=2)

4 0x30008001

0x00000004

Type 1 Write CMD
RCFG

5 0x28006000

0x50000004

Type 2 Read FDRO
Size=4

Pad frame: not required
Configuration data: 4
words (1 frame)

6 0xE31DAA1B

0x00D00030

0x0000000F

0x00000000

SimB Frame 2 Word 0
SimB Frame 2 Word 1
SimB Frame 2 Word 2
SimB Frame 2 Word 3

Configuration data are
returned to the user design

7 0x30008001

0x0000000D

Type 1 Write CMD
DESYNC

End the **DURING
Reconfiguration** phase

from instead of being written to the simulated configuration port. In particular, after

entries 1-5 are written, the ICAP artifact is switched to read mode and responds with

the 4 words of configuration data. WORDs 1-3 of the configuration data section contain

state data of the statistic register. After reading back the 4 words of entry 6, the

application logic of the user design can extract the value of the statistic register. At

the end of the readback, the ICAP artifact is switched back to write mode when the

DESYNC command is issued. We use this readback SimB as an example in a case study

in Section 5.1.1.

The restoration process reverses the state saving procedure. To restore the value of a

register, the user design merges the previously saved state data with the SimB at the

position specified by the .sll file. During simulation, a GRESTORE SimB (for GRESTORE-

based restoration method) or a module reset (for reset-based restoration method) copies

the state data to the simulated module. Since the .sll file also maps RTL signals that

correspond to memory cells to the simulation-only layer, saving and restoring memory

cells can be performed in a way similar to that of registers, except that the SimBs does

not include the GCAPTURE/GRESTORE commands.

3.2.2 Modeling Characteristic Features of Reconfiguration

In order to accurately simulate the interaction between the physical layer and the user

design, the simulation-only layer uses an Extended Portal to model the characteristic

features of DPR (i.e., module swapping, bitstream traffic, bitstream content, triggering

condition, spurious outputs and undefined initial RM state, see Section 3.1.2). The

term portal is adopted from ReChannel, which views a portal to be a special switch
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that interfaces the static region with a group of RMs [67]. In our work, the Extended

Portal of the the simulation-only layer extends the ReChannel portal concept to model

characteristic features of DPR as described in Section 3.1.2:

• Module Swapping and Triggering Condition: The Extended Portal connects

all RMs in parallel and, like most existing approaches (e.g., [54]), selects the active

RM via virtual multiplexers. However, in our simulation-only layer approach, the

selection of the active RM is triggered by the SimB and any run-time dependent

events that delay the bitstream transfer also delay the module swapping. There-

fore, the delay of module swapping is more accurately modeled instead of being

approximated by a constant value. Furthermore, since failing to transfer the SimB

correctly prevents the new RM from being swapped in, bugs in the bitstream

transfer logic can quickly be identified.

• Bitstream Traffic: Since we use a SimB insteal of real bitstreams, the bitstream

transfer datapath (i.e., the transfer, compression, decryption and arbitration of

bitstreams) is exercised in simulation. Furthermore, the length of a SimB is sig-

nificantly shorter than a real bitstream and can be adjusted to exercise various

scenarios of the bitstream transfer mechanism (e.g., FIFO full/empty, see the Fast

PCIe cast study in Section 5.4.1).

• Bitstream Content: The Extended Portal parses the content of a SimB and

performs simulation-only tasks accordingly. The configuration data of a SimB

contains the signature of the RM to be reconfigured. The signatures are checked

according to the RRID & RMID fields contained in the SimB. In particular, if

any bit of the signature data or the RRID/RMID fields of a SimB are corrupted

because of a bug in the design, the signature check fails and is reported during

simulation. Therefore, checking the signature verifies that a correct bitstream is

written to the configuration port.

Furthermore, the configuration data of a SimB also contain data for state elements

(i.e., user flip-flops, memory cells). Since the simulation-only layer correlates the

stored state data with the state of the simulated module, incorrect state data,

typically caused by bugs in the design, can propagate to RMs of the simulated user

design after state restoration, and can therefore be quickly identified in simulation.

• Spurious Outputs and Undefined Initial State: The Extended Portal has two

error injection mechanisms. These inject error values to interfacing signals of both

the static and the reconfigurable regions while the SimB is being written to the

ICAP artifact. The isolation and the initialization logic can thereby be exercised

and tested in simulation. In particular, failing to isolate the RR correctly can

be quickly identified as a consequence of the injected errors propagating to the

static region. Failing to initialize the newly configured module correctly can be

detected since the injected errors are not cleared. Compared with DCS, which only

drives undefined“x”values to the static region [69], our approach injects errors, for

testing purposes, to both the static and the reconfigurable regions. Furthermore,

in our approach, the start and end of error injection is also triggered by the SimB,

which more accurately models the timing of the error injection operation.
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By modeling the characteristic features of DPR, the simulation-only layer captures the

interaction between the user design and the FPGA fabric (e.g., the transfer of bitstream

data and the timing of reconfiguration events), and increases the modeling accuracy

compared with previous MUX-based modeling approaches.

3.3 Capabilities and Limitations

We describe the capabilities and limitations of the simulation-only layer according to

the DPR-related bugs it is capable of exposing and the DRS design styles it is able to

simulate.

Detecting DPR-Related Bugs. As the simulation-only layer abstracts away the

details of the FPGA fabric, it can be regarded as a fabric-independent FPGA device,

and simulation can be thought of as functionally verifying the user design layer of a

DRS on such a fabric-independent FPGA. Therefore, simulation using the simulation-

only layer aims to assist designers in detecting fabric-independent bugs of a DRS design.

These bugs include, but are not limited to,

• System integration bugs related to the sequencing or timing of reconfiguration

events, such as, deadlock due to the unavailability of a module undergoing recon-

figuration, illegal reconfiguration requests to reconfigure a module still undergoing

reconfiguration (e.g., BUG-Example.XDRS.3 in Section 5.1), ...

• Software bugs in controlling partial reconfiguration, such as, setting an incorrect

bitstream transfer size, passing an invalid bitstream storage buffer pointer (e.g.,

BUG-Example.XDRS.6 in Section 5.1.1), memory/cache coherence problem of bit-

stream storage buffers (e.g., BUG-Example.XDRS.2 in Section 5.1) ...

• Bugs in synchronization of the static region and RMs before reconfiguration, such

as, failing to block a reconfiguration request until the RM is idle (e.g., BUG-

Example.XDRS.5 in Section 5.1) ...

• Bugs in the bitstream transfer logic, such as, cycle mismatch (e.g., BUG-Example.

AUTO.2 in Section 5.3), FIFO overflow, errors in driving the ICAP signals, ...

• Bugs in isolating the region undergoing reconfiguration, such as, isolating the

reconfigurable region too early or too late (e.g., BUG-Example.XDRS.4 in Section

5.1), ..., and

• Bugs in initializing the newly configured module, such as, resetting the new RM

while the reconfiguration is still ongoing (e.g., BUG-Example.AUTO.4 in Section

5.3), failing to feed the RM pipelines with correct data (e.g., BUG-Example.FT.2

in Section 5.2), ...

However, the simulation-only layer is not exactly the same as the FPGA fabric. Table 3.5

lists the differences between a Virtex-5 FPGA, as an example of a target device, and our
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Table 3.5: Differences between the Virtex-5 FPGA fabric and the simulation-only layer

Virtex-5 FPGA Simulation-only
Layer

Configuration
memory

*Frame Address is composed
of RA, CA and MNA

*A frame has 41 words
*Frame organization is not
open

*Frame Address is composed
of RRID, RMID and MNA

*A frame has 4 words
*Word 0: signature data
*Words 1-3: state data

Bitstream *Normal Frame Address
*Pad words and frames
*Size is determined by the
resources used

*Modified Frame Address
*No pad word or frame
*Reduced size that is
determined by
design-/test-specific needs
(e.g., the amount of state
data)

Logic
allocation

*State bits are sparsely
distributed in a frame

*State bits are grouped and
stored contiguously

*Has a bit-width field

Fabric-dependent bugs--------------------------False-positive (FP)False-negative (FN)
Simulation-only Layer Fabric-independent bugsVirtex-5 FPGA

Figure 3.5: Fabric-independent and fabric-dependent bugs

simulation-only layer, representing a fabric-independent FPGA. For example, the size of

a real bitstream is determined by the resources used whereas the size of a SimB can be

adjusted for design-/test- specific needs. In particular, during simulation, the size of a

SimB can be adjusted to increase verification coverage (e.g., see Section 5.4.1), to exercise

corner cases of a design (e.g., see BUG-Example.FT.3), to increase/decrease the period

when errors are being injected, and to store more or fewer state data of simulated RMs.

The mismatches between the two can lead to bugs that remain undetected using the

simulation-only layer (i.e., False Negative bugs) and bugs that are incorrectly reported

using the simulation-only layer (i.e., False Positive bugs). These bugs are referred to as

fabric-dependent bugs, and fabric-dependent bugs exposed by using the simulation-only

layer can only be used as a reference to identify a real bug in the implemented design.

For example,

• Since the simulation-only layer interprets and checks the module signatures of

SimBs, simulation can assist in identifying bugs such as transferring an incorrect

bitstream. Since the simulation-only layer correlates SimB contents with the state

of simulated RMs, simulation also assists in identifying bugs such as accessing an



48 CHAPTER 3. MODELING DYNAMIC PARTIAL RECONFIGURATION

incorrect state bit in a bitstream. However, since the format of a SimB is signifi-

cantly different from that of a real bitstream, in general, bugs in the configuration

data of a real bitstream may not be exposed using a SimB. For example, flipping

a bit in a real bitstream can result in the wrong logic being configured whereas

flipping a SimB bit may result in an incorrect value being restored to an RTL

signal.

• Since the simulation does not use pad words/frames in the SimB, the simulation-

only layer cannot expose bugs related to pad words/frames (e.g., using an incorrect

number of pad words/frames, see BUG-Example.XDRS.7 in Section 5.1.1).

• Since the SimB uses RRID/RMID to replace placement information of the simu-

lated RM, a SimB cannot expose bugs related to module placement (e.g., rellocat-

ing an RM to a position that overlaps another RM).

• Since each RM is viewed as a single entity in the simulation-only layer, our ap-

proach only supports simulating modular reconfiguration. The simulation-only

layer cannot be used to simulate fine-grained reconfiguration, which directly mod-

ifies individual configuration bits instead of an entire RM. For example, writing a

SimB to the simulated configuration port cannot change an arbitrary AND gate

of the user design to an OR gate, which could be achieved on the target FPGA

using fine-grained reconfiguration.

As described in Section 2.1, design bugs can also be introduced in the implementation

stage. Since the simulation-only layer does not contain any implementation-related infor-

mation, it does not and does not aim to provide assistance in verifying implementation-

related bugs, such as:

• Timing violation errors in the placed and routed design, and

• Possible short or open circuits, if any, caused by partial reconfiguration [11].

Referring to the Functional Verification Objective (see Section 1.1), this thesis aims to

assist designers in detecting functional bugs, which are, by definition, not related to

the FPGA fabric. Therefore, although the simulation-only layer can only be used as a

reference to indicate fabric-dependent bugs and cannot expose implementation-related

bugs, it still fulfills the Functional Verification Objective of the thesis.

Simulating Various DRS Design Styles. The simulation-only layer can be used

to simulate and verify modular reconfigurable DRS designs. In particular, RMs that are

mapped to the same RR are virtually multiplexed according to the SimBs written to the

simulated configuration port. Since modules are swapped as atomic entities, RMs/RRs

can be selected using numerical IDs contained in a SimB. For testing purposes, errors

are injected to both static and reconfigurable regions during reconfiguration to mimic

the spurious RM outputs and undefined RM state. For modular reconfigurable DRS

designs, since the user design does not interact with the configuration memory, bitstream

contents and logic allocation information, the mismatches in Table 3.5 are not, in general,
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exposed. The simulation-only layer is therefore able to accurately model the modular

reconfiguration process. The simulation-only layer can also be used to simulate and

verify more flexible DRS design styles.

• State saving and restoration are simulated by mapping RTL signals to simulation-

only layer frames and merging RTL signal values to SimBs. Using the simulation-

only layer, the simulated user design saves and restores module state by reading

and writing SimBs. However, the allocation of state bits is different between the

simulation-only layer and the target FPGA.

• The simulation-only layer only maps RTL signals of RMs to simulation-only frames.

To simulate state saving and restoration of flip-flops/memory cells of a static mod-

ule, the designer has to change the static module to be a reconfigurable region for

simulation purposes. As long as the modified system does not perform reconfigura-

tion, it is functionally equivalent to the original one. The designers can then create

.sll files to map RTL signals of the newly created RM, which is originally a static

module, into simulation-only frames. However, the design has to be modified for

simulation purposes, which incurs additional overheads.

• To simulate DRS designs that perform module relocation, the simulated user de-

sign relocates a simulated RM by updating the RRID/RMID fields of a SimB.

In particular, the simulated user design reads a readback SimB from the ICAP

artifact, updates the RRID/RMID fields, and writes the updated SimB to the

ICAP artifact. The simulated RM instantiated in the target RR is then activated

accordingly, as if it were relocated from the original location. However, the sim-

ulated module relocation process does not accurately model module placement

information.

• To simulate the process of updating LUTs for fine-grained reconfigurable designs,

the designer can model the content of a LUT as a memory cell and map the mem-

ory cell to the simulation-only frame using the .sll file. During simulation, the

simulated user design updates the LUT by reconfiguring a SimB that changes the

memory cell of the LUT. However, the configuration bits of a simulated LUT may

not match those of real FPGAs, and the simulation therefore does not accurately

represent what is implemented.

• Since the simulation-only layer mimics the behavior of off-the-shelf FPGAs, it

cannot be used to simulate coarse-grained reconfiguration that targets customized

reconfigurable architectures.

• The simulation-only layer can be used to simulate DRS designs that perform ex-

ternal reconfiguration, of either a modular or a non-modular nature. In particular,

both the external reconfiguration controller and the ICAP artifact can be instan-

tiated in the simulation testbench. DPR can be modeled by transferring SimBs

in a similar manner to that used for internally reconfigured DRS designs. Since

the reconfiguration controller is not part of the FPGA-based user design, it can

be modeled in a behavioral style.
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Since the simulation-only layer abstracts away the physically dependent information

of DRS designs, it does not model the FPGA fabric at the level of detail required to

accurately simulate more flexible DRS design styles such as module relocation and fine-

grained reconfiguration. However, it can still be used to detect fabric-independent bugs

of non-modular DRS designs. Referring to the Mainstream Objective (see Section 1.1),

this thesis focuses on DRS design styles supported and recommended by vendor tools,

i.e., modular reconfiguration. Therefore, the simulation-only layer is not able to and

does not aim to provide complete support to the simulation-based verification of module

relocation or fine-grained reconfiguration.

3.4 Summary

This chapter has proposed a general modeling methodology to facilitate simulation-based

functional verification of DRS designs. Our approach introduces a simulation-only layer

to emulate the behavior of the FPGA fabric and assist in verifying the correctness of

the user design. Figure 3.6 redraws Figure 2.7 and adds a third, dashed line indicat-

ing simulation-based functional verification using the simulation-only layer. Compared

with fabric-accurate simulation (e.g., [56]), the simulation-only layer abstracts away the

physical layer of a DRS design and therefore enhances the verification productivity. Com-

pared with traditional MUX-based approaches (e.g., [54, 69]), the simulation-only layer

models characteristic features of DPR and the simulation accuracy has been improved

significantly.

High-level modelinge.g. C/C++/SystemCRTL simulatione.g. Verilog/VHDLTiming simulationi.e., simulating the design netlistwith delay annotationFabric-accurate simulation
+

+

+
x

x
MUX [52]DCS [67]x

 + Static designsx DRS designsUsing the Simulation-only layerHigh-level modeling  e.g. [65]
Verification Productivity

Simulation Accuracy
Figure 3.6: Tradeoff between simulation accuracy and verification productivity (using
the simulation-only layer approach)

The simulation-only layer itself can be viewed as a fabric-independent FPGA device

and using the simulation-only layer assists designers in detecting fabric-independent

functional bugs of modular reconfigurable DRS designs. Our approach fulfills the Func-

tional Verification Objective and the Mainstream Objective of this thesis. Furthermore,

we are able to provide some assistance in verifying DRS designs that perform module

relocation and fine-grained reconfiguration. Unfortunately, since there are mismatches
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between the simulation-only layer and the target FPGA device, fabric-dependent bugs

could be missed by simulation and can only be tested on the target FPGA.

Even if the simulation-only layer is not completely accurate, it can still be valuable to

simulate a DRS design using the simulation-only layer. As described in Section 2.1, for

verifying static designs, it is essential to thoroughly simulate a design so as to detect as

many bugs as possible before field testing. Similarly, for DRS designs, simulation does

not aim to replace on-chip debugging. Following the Tools and Methodologies Objective

of this thesis (see Section 1.1), our simulation-only layer assists in identifying fabric-

independent bugs in the early stage of the design cycle, and designers can thereby leave

the fabric-dependent part of the design to be tested on the target FPGA.

Although we have focused our discussion at RTL level in this chapter, the proposed

simulation-only layer can also be applied to high-level modeling. High-level modeling

can ignore characteristic features that are related to RTL signals (e.g., the mapping

between state data contained in a SimB and the value of RTL signals) and focus just

on features that are essential to high-level modeling (e.g., module swapping, bitstream

traffic). These ideas are presented in Chapter 4 which discusses the application of the

simulation-only layer concept to high-level modeling and RTL simulation.



Chapter 4

ReSim-based Simulation

This chapter describes two possible ways of implementing the simulation-only layer (see

Figure 4.1, which is the same as Figure 3.3). The simulation-only layer can be used to

model and simulate DRS designs at various levels of abstraction (see Figure 4.2). For

high-level modeling, SystemC [40] is the de-facto modeling language. Our work extends

a previous open source SystemC library, ReChannel [67] with concepts of the simulation-

only layer, and we refer to this library as Extended ReChannel (see Section 4.1). We

created a ReSim library from scratch for RTL simulation of DRS designs (see Section

4.2). The ReSim library is implemented in a Hardware Verification Language (HVL),

SystemVerilog [36], which integrates better with RTL designs compared to SystemC.

Configuration Port (ICAP artifact ) Extended Portal
 Reconfigurable Regionsimulation-only bitstream

Simulation-only Layer
User Design
application data Staticapplication logicStaticreconfiguration controller Isolation Reconfigurable Module ASync, InitReconfigurable Module BSync, Init

Figure 4.1: Using the simulation-only layer (Same as Figure 3.3)

Using ReSim and Extended ReChannel, the designer needs to create a Tcl script de-

scribing DPR-related parameters in addition to his/her user design files (see Section

4.3). DPR-related parameters include signals that cross the boundary of static and re-

configurable regions, the affiliation of RMs to RRs and the target FPGA family (see

the example in Figure 4.2). ReSim then automatically generates the source code for

artifacts (e.g., SimB files as indicated by small open boxes in Figure 4.2) based on this

Tcl script. The generated artifacts can be directly used with the Extended ReChannel

and the ReSim libraries. Alternatively, the designer can edit the generated artifacts for

design-/test-specific needs, such as error injection or state restoration.

52
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Parameter  Description Script (Tcl)=======================ReSim::create_portmap "my_if" "clk"ReSim::add_port "my_if" "rst_n" inReSim::add_port "my_if" "data" out 32�ReSim::create_region "my_region" "my_if" ...ReSim::add_module "my_region" "Maximum"ReSim::add_module "my_region" "Swap"...ReSim::create_solyr "my_sim_only_layer" VIRTEX4

Simulation-only Layer
RTL design(VHDL/Verilog)High-level model (SystemC)

ReSim-generated artifacts(e.g., SimBs)
User DesignLayer

Extended ReChannel ReSim Physical Layer(FPGA device)
User DesignLayer

LUTDFFConfiguration Memory
Implementation
Simulation

Figure 4.2: Simulating a DRS at various levels of abstraction

The ReSim-based design flow is fully compatible with existing and mainstream EDA

tools. High-level models with the Extended ReChannel can be compiled and run on any

machine with a C++ compiler such as Visual Studio. The ReSim library, on the other

hand, uses an open source SystemVerilog class library known as the Open Verification

Methodology (OVM) [27], and can be simulated with existing HDL simulators such as

ModelSim. The verified RTL design can be synthesized and implemented using standard

FPGA vendor tools such as PlanAhead.

4.1 High-level Modeling

By offering 1000x speedup compared with cycle-accurate RTL simulation, high-level

modeling approaches assist designers in exploring design options, evaluating system per-

formance, and verifying hardware architecture and embedded software [9]. By per-

forming early system integration, the designer can detect system-wide bugs before the

detailed RTL design is available. This can significantly reduce the number of design

iterations for the project.

4.1.1 Behavioral Level Modeling

High-level modeling can be further classified as being performed at behavioral level or

at transaction level. The behavioral level model of DRS only assists in verifying the

very abstract operations of the application and hides all the details of reconfiguration

(see Figure 4.31). To focus on proof-of-concept designs, behavioral modeling only needs

to capture the module swapping operations of partial reconfiguration. In particular, the

static region communicates with the RM through an rc_portal, a MUX-like class of

1Similar to Figure 3.3, the application logic is lightly shaded, reconfiguration machinery is moderately
shaded, and simulation-only artifacts are indicated by open boxes.
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the ReChannel library, and it is acceptable to use a compile-time defined reconfiguration

delay. Furthermore, in order to increase development productivity, there is no clear

boundary between the user design and the simulation-only artifacts (illustrated by half-

open half-shaded blocks). For example, both the user-defined reconfiguration controller

and the configuration port of the FPGA could be modeled with a single rc_control

class of the ReChannel library [67].rm.read()rm.write() RC_MODULE(A)
RC_MODULE(B)rc.unload(A)rc.activate(B)

portal.switch()
rc_reconfigurable
rc_reconfigurablerc_portalApplication

A.unload()B.activate()

A.read()A.write()B.read()B.write()
user design connectionssimulation-only connections

rc_control
Figure 4.3: Behavioral modeling using ReChannel, after [67]

Upon receiving a request to reconfigure a region, the static region reconfigures the RM

via two function calls (i.e., rc.unload(A) & rc.activate(B)) to the rc_control class,

whereas the bitstream traffic is not explicitly modeled. Internal to the ReChannel li-

brary, the rc_control class switches the the rc_portal and selects the new RM after

a compile-time defined reconfiguration delay.

Despite making only limited contributions to detecting DPR-related bugs, behavioral

level modeling is useful for design space exploration to see whether it is worthwhile

adopting dynamic reconfiguration as a strategy and for evaluating the available recon-

figuration options BEFORE, DURING and AFTER reconfiguration as early as possible.

These include, for example, whether the system should wait for the current RM to finish

processing, kill the current RM, or save the current RM state BEFORE reconfiguration.

After the desired options have been chosen, the behavioral model can be considered to

be an executable, non-ambiguous specification of the DRS design.

4.1.2 Transaction Level Modeling

Transaction-level Modeling (TLM) aims to verify system integration between hardware

modules and hardware/software [59]. It requires clearly defined module execution and

communication flows and therefore must model the distinction between the user design

and the simulation-only layer. While the original ReChannel library models module

swapping, we have extended ReChannel with new classes and data structures to model

the characteristic features of DPR (see Section 3.2.2) such as bitstream traffic and trig-

gering condition. However, since TLM modeling abstracts away the signal level details of

individual modules, our extensions do not include signal-level reconfiguration activities

such as spurious RM outputs and undefined initial RM state.
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By incorporating bitstream traffic and the triggering condition, TLM models could be

used in the following example scenarios:

• For design space exploration or performance evaluation purposes, the bitstream

traffic should be simulated to decide whether to use a dedicated or a shared data-

path for bitstream transfer.

• System-wide integration bugs related to a sequence of reconfiguration events can be

detected in the TLM model. For example, deadlocks caused by circular waiting of

multiple swapped out modules can be detected by accurately modeling the timing

and triggering of module swapping. As another example, illegal reconfiguration

requests to reconfigure a module still undergoing reconfiguration can be detected

by more accurately modeling the reconfiguration delay.

• In order to test and debug any embedded software that could be in control of the

reconfiguration process, the TLM model should be functionally equivalent to the

implemented design from the programmer’s point of view. The designer therefore

needs to simulate the bitstream traffic byte-by-byte if the software buffers and

transfers bitstream data byte by byte. Software bugs such as transferring an

incorrect amount of bitstream data could be detected in simulation.

Figure 4.4 illustrates TLM modeling of DRS designs, which can be viewed as the TLM

representation of Figure 4.1. Components of the simulation-only layer are implemented

by extending the ReChannel library. Since we reused most of the source code from

ReChannel, the workload of our extension was trivial. To facilitate the modeling of

bitstream traffic, we created an rc_icap_wrp class. The rc_icap_wrp class has two

member functions, write_cdata() and read_cdata(), which are to be called by the

user-defined reconfiguration controller to write and read back SimBs. We have also

derived an rc_portal_controller class from the built-in rc_control class to more

accurately model the triggering condition of module swapping. In particular, the re-

configure() member function of the rc_portal_controller class is not called until

all bytes of the SimB have been successfully written to the rc_icap_wrp class.

Using our extensions to ReChannel, the designer models both static and reconfigurable

modules in the user design layer. It should be noted that the designer should explicitly

model each and every building block of the system so as to verify the design intent.

In other words, all user-defined modules in Figure 4.4 (lightly and moderately shaded

blocks) are modeled according to the design intent described by the design specification.

For example, instead of using the built-in rc_control class, the user-defined reconfigu-

ration controller is explicitly modeled as a real entity in the static region.

By explicitly separating the user design and the simulation-only layer, the designer can

focus on the verification of the execution flow of modules and the inter-module commu-

nication. Upon receiving a request to reconfigure a region, the static design deactivates

the current module (rm.deactivate()), and transfers the SimB, word by word to the

rc_icap_wrp class (icap.write_cdata(SimB)). Internal to the extended ReChannel

library, the rc_icap_wrp class calls the rc_portal_controller, which unloads the cur-

rent RM and loads the new RM after the successful transfer of all SimB data. Finally,
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 class rc_icap_wrp

 class reconfigurable _region
icap.write_cdata(SimB)SimB=icap.read_cdata() rc_portal_controllerrc_portal Reconfigurable Module ASync, InitReconfigurable Module BSync, Init

Staticapplication logicStaticreconfiguration controller Isolation rm.deactivate() // Sync.rm.activate()   // Init.
// Reconfiguration Port// --------------------------class rc_icap_wrp : public sc_module {�void write_cdata(unsigned int cdata){�unsigned int rrid = ((m_reg_FAR>>24) & 0xff);unsigned int rmid = ((m_reg_FAR>>16) & 0xff);portal_port[rrid]->reconfigure(rmid);�  }unsigned int read_cdata(){�};�} portal_port[rrid]->reconfigure (rmid);

// Portal Controller// --------------------------class rc_portal_controller: public rc_control {�void reconfigure(unsigned int rmid){�rc_control::unload(*active_module);rc_control::load(*new_module);�  }�}
void reconfigure(unsigned int rmid){

After all bytes of the SimB have been written ,the ICAP port calls the portal _controller of the target RR to perform module swapping user design connectionssimulation-only connections
Figure 4.4: TLM modeling using Extended ReChannel

the static design initializes the new RM (rm.activate()). Such execution and com-

munication flow are the same as in the implemented DRS, except that reconfiguration

events are modeled by function calls instead of signals transitions.

4.2 RTL Simulation

In RTL simulation, the designer refines and maps the verified execution and communi-

cation flows of the TLM model to a signal-level RTL design. In addition to modeling

bitstream traffic, module swapping and the triggering condition, RTL simulation also

needs to capture DPR features such as Bitstream Content, Spurious Outputs and Un-

defined Initial State as illustrated in Section 3.2.2. In particular,

• Simulating the bitstream traffic can assist in identifying bugs in the bitstream

transfer datapath (e.g., cycle-mismatch, FIFO overflow/underflow, errors in driv-

ing the ICAP signals, etc ...)

• Simulating the module swapping and its triggering condition can assist in identify-

ing bugs related to the timing and sequence of reconfiguration events (e.g., failing

to finish partial reconfiguration before resetting the RM)

• Modeling the spurious RM outputs can assist in identifying bugs in isolating the

region undergoing reconfiguration (e.g., failing to isolate the RR and isolating the

RR too early or too late)
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• Modeling the undefined initial RM state can assist in identifying bugs in initializing

the newly configured RM (e.g., failing to feed pipelines of the RM with known data,

failing to setup the new RM with the correct initial state)

• Modeling the bitstream content can assist in identifying bugs in the configuration

data (e.g., transferring an incorrect bitstream, extracting incorrect state data from

the bitstream)

Figure 4.5 illustrates RTL simulation of DRS designs using the ReSim library, which can

be viewed as the RTL representation of Figure 4.1. We implemented the simulation-only

layer using a HVL, SystemVerilog, which more seamlessly integrates with RTL designs

than SystemC-based ReChannel does. Our ReSim library adopts the Open Verification

Methodology (OVM) [27], and we applied the transaction-based communication and the

reusability guidelines of OVM to the implementation of the ReSim library.

portal_ifstate_iferror_if class rsv _regionicap_if module icap _wrp
 class rsv_configuration_port

phase selector module selector spy memory Configuration Port
 module reconfigurable _region Reconfigurable Region

 class rsv_portal_controller class rsv_error_injector class rsv_state_spyvi
Simulation-only Bitstream

Class-basedModule-based Reconfigurable Module BSync, Init
Staticapplication logicStaticreconfiguration controller Isolation Reconfigurable Module ASync, Init

 class rsv_icap_virtex class rsv_sbt_parservi tlm_fifo// Reconfiguration Port// --------------------------class rsv_reconfiguration _port extends ovm_component  rsv_icap_virtex ci;  rsv_sbt_parser cc;�endclassclass rsv_sbt_parser extends ovm_component �virtual task run();    // Parse the SimB written to the configuration    // port and create rsv _simop_trans accordingly�logic[7:0] rrid = m_reg_FAR[31:24];logic[7:0] rmid = m_reg_FAR[23:16];    rsv_simop_trans tr = new(�);    portal_port[rrid].put(tr);endtaskendclass      portal _port[rrid].put(tr);

// Reconfigurable Regions// --------------------------class rsv_region extends ovm_component   rsv_portal_controller pc ;  rsv_error_injector ei;  rsv_state_spy ss;�virtual task run();    portal_port.get(tr);case (tr.op)      // Perform simulation -only tasks      // (e.g. module swapping )�endcaseendtaskendclass
      portal _port.get(tr); 

pass simop transactionsvia tlm_fifos user design connectionssimulation-only connections
Figure 4.5: ReSim-based RTL simulation

According to the modeling guidelines of OVM, artifacts of ReSim communicate with

each other via transactions, i.e., collections of attributes similar to the struct data

aggregation mechanism of the C programming language. For example, the transaction

that reconfigures a new module has an operation attribute set to “write module” and a

data attribute set to the numerical ID of the new module. Transactions are produced and

consumed by artifacts running in parallel. In particular, a producer of transactions is
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analogous to a function caller in SystemC-based Extended ReChannel, and a transaction

consumer to a function callee. Using the notations for OVM transactions (see Figure

4.5), the initiator of a transaction channel is depicted with a symbol whereas the target

is depicted with a symbol. The arrows indicate the directions of the transaction data

flow and the symbol indicates a standalone thread running in a component.

According to the reusability principles of OVM, the simulation-only layer of ReSim is

separated into a module-based part and a class-based part, which are connected via

SystemVerilog Interfaces (shown as clouds and the symbols). The module-based

part instantiates the artifacts as part of the user design and interacts with the user

design via RTL signals. In particular, the icap_wrp module is instantiated in the user

design hierarchy as if it were a real configuration port, and it groups the IO signals

of the ICAP port into an icap_if interface. The reconfigurable_region module

instantiates the user-defined reconfigurable modules, a MUX-like module_selector, a

switch-box like phase_selector module and a spy_memory module. Similar to the

Virtual Multiplexer in [54], the module_selector interleaves all IO signals of RMs

connected in parallel and selects one active module. Similar to the task modeler and

the task selector in [69], the phase_selector connects the static region with RMs in

normal operation and connects error sources (e.g., undefined “x” values) to the user

design during reconfiguration. The spy_memory module implements the configuration

memory and the simulation-only frames as described by Section 3.2.1

The class-based part controls the operation of the module-based part. It implements

the functionality of the Extended Portal and mimics the characteristic features of DPR

(see Section 3.2.2). In particular, to facilitate the modeling of bitstream traffic, the

rsv_icap_virtex class interacts with the user-defined reconfiguration controller via

the icap_if interface and the rsv_sbt_parser class parses SimBs. To model mod-

ule swapping and its triggering condition, the rsv_portal_controller class does not

select a new RM (i.e., does not switch the module_selector) until a SimB is writ-

ten to the ICAP artifact, and does not connect the newly selected RM (i.e., does not

switch the phase_selector) until all bytes of the SimB has been successfully writ-

ten to the ICAP artifact. To model spurious module outputs and undefined module

state, an rsv_error_injector class drives error sources to both the static region and

the RMs. Last but not least, to correlate bitstream content with simulated RMs, the

rsv_state_spy class checks module signatures and performs state saving and restora-

tion of simulated modules. By modeling characteristic features of DPR, ReSim increases

the simulation accuracy compared with previous work in [54] and [69].

Although the module- and class-based implementation of ReSim is more complex than

the implementation of the Extended ReChannel, applying the OVM library provides

two significant benefits. Firstly, using the object-oriented techniques of SystemVerilog

and OVM, the class-based part can be flexibly overridden and reused for design- and

test-specific needs. For example, ReSim can be ported to a different FPGA family by

deriving a new class overriding the existing rsv_configuration_port class. As another

example, the default behavior of the rsv_error_injector class is to drive undefined

“x” values as error sources. The default errors can be overridden with other error values

such as logic“1”, logic“0”, random value, last known value, and even design-/test-specific

error sequences.
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Secondly, by separating the implementation into module- and class-based parts, ReSim

is able to model the simulation-only layer without affecting the user design. Since the

module-based part of artifacts (i.e., the icap_wrp module and the reconfigurable_re-

gion module) are instantiated as part of the user design, user-defined modules (lightly

and moderately shaded blocks in Figure 4.4) can be constructed and connected just as

intended by the design specification. Furthermore, in order to use SimB as a trigger

for module swapping, the simulation-only layer needs to connect the ICAP artifact

with multiple reconfigurable regions. In Extended ReChannel, such connections are

implemented by assigning pointers. In particular, pointers of the rc_icap_wrp class are

assigned with instances of reconfigurable regions, which does not affect SystemC models

of the user design. However, at RTL level, if the simulation-only layer is described by

traditional HDL languages, the ICAP artifact and the reconfigurable regions would only

have module-based parts and could only be connected via RTL signals, which would

require undesirable modifications to the user design. Using the SystemVerilog language

and the OVM library, such connection is implemented in the class-based part of the

simulation-only layer. In particular, the class-based parts of the ICAP artifact and the

reconfigurable regions are connected via tlm_fifos, which do not affect the module-

based user design components (See Figure 4.5).

Since ReSim captures the characteristic features of DPR, the designer is able to model

and verify the cycle-accurate description of the user design. Furthermore, since ReSim-

based simulation does not require changing the design for simulation purposes, the sim-

ulated design is implementation ready and can be mapped to the target device without

changing the design source code.

4.3 Parameter Script

In order to reuse the Extended ReChannel and ReSim libraries for various DRS design

styles, designers need to parameterize the library with design-specific information. For

example, for both high-level modeling and ReSim-based RTL simulation, the libraries

need to know the topology (i.e., the affiliation of RMs and RRs) of the user design so

as to correctly assign numerical IDs to each RM and RR and to parameterize SimBs

with the RRID/RMID of target modules. For ReSim-based RTL simulation, the mod-

ule_selector needs to be parameterized with the interfacing signals crossing the RR

boundary so as to correctly interleave these signals. Optionally, designers may also wish

to extend the ReSim library for design- or test-specific needs (e.g., user-defined error

sources). In order to hide the details of the library implementation and to improve flex-

ibility, ReSim provides a set of Tcl APIs to help designers integrate the simulation-only

layer into their design-specific simulation environment.

Figure 4.6 illustrates an example of a parameter script. By calling APIs in a Tcl script,

the user describes the interfacing signals crossing the RR boundary (Line 3-6), the

affiliation of RMs and RRs (Line 8-10), and the FPGA family used by the design (Line

12). ReSim generates the parameterized artifacts that can then be correctly instantiated

in the design hierarchy.
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Step 3. Factory Override (optional)// Override the default Error Injector// --------------------------import ovm_pkg::*; import ReSim_pkg::*; initial begin�rsv_error_injector.override(my_ei);end

# parameter_script.tcl# =================================1.  namespace import ReSim::*2.3.  rsv_create_portmap "my_if" "clk"4.  rsv_add_port "my_if" "rst_n" in5.  rsv_add_port "my_if" "data" out 326.  �7. 8.  rsv_create_region "my_region" "my_if" 64 "" "my_ei"9.  rsv_add_module "my_region" "maximum"10. rsv_add_module "my_region" "reverse"11. 12. rsv_create_solyr "my_sim_only_layer" VIRTEX413. rsv_add_region "my_sim_only_layer" "my_region"14. rsv_gen_solyr "my_sim_only_layer"15. 16. namespace forget ReSim::*
"my_region""my_if"

"my_sim_only_layer" "my_ei"
// User-defined Error Sources// --------------------------class my_ei extends rsv_error_injector#(virtual interface my_if ) �virtual task inject_to_static_region();    vi.reconfigurable _region_output_0 <= $urandom();�endtask�endclass     vi.reconfigurable _region_output_0 <= $urandom();my_ifmy_ei

Generate a design -specificerror injector class
Parameterize the error injector with a group of IO signals
Step 2. Derive a user -defined class (optional)

Figure 4.6: An example of a parameter script

For high-level modeling using Extended ReChannel, the designer needs to instantiate

the parameterized configuration port (i.e., the rc_icap_wrp class) in the user design

and load the generated SimBs into the simulation environment. Because of the variety

of coding-styles for ReChannel-based modeling, we are only able to generate templates

for the reconfigurable_region class. The designer needs to modify these templates

and instantiate the reconfigurable regions in the user design.

For ReSim-based RTL simulation, the generated artifacts are ready to be used directly.

The designer needs to instantiate the configuration port (i.e., the icap_wrp module) and

one or more reconfigurable_region modules (e.g., the my_region module defined in

Line 8 of Figure 4.6) as part of the user design. The designer also needs to instantiate

the top-level of all class-based artifacts (e.g., the my_sim_only_layer class in Line 12

of Figure 4.6), and load the generated SimBs into the simulation environment.

As an option, the designer can then edit the generated artifacts for design-/test-specific

needs. There are two typical usage scenarios that require modifying the generated

artifacts for ReSim-based RTL simulation. The example (see Step 2 in Figure 4.6)

illustrates changing the default “x” injection to a user-defined error injector that drives

random values to the static region. Such extension is implemented by redefining the

virtual functions in the derived classes (see Figure 4.6). Using the factory mechanism

provided by the OVM library [27], the default error injector can be easily overridden

with the derived my_ei class. Furthermore, the Tcl script automatically generates code

(see Step 3 in Figure 4.6) that performs the factory override operation. Designers can

thus focus on defining the virtual functions in their derived classes without bothering

about how to integrate the derived classes. In contrast, the error injection used by [69]

only support a constant “x” error value.
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The other usage scenario involves simulating a DRS design that saves and restores

module state. In particular, the parameter script generates a template logic allocation

file for simulation (.sll file). The .sll file is used to map HDL signals of the user design

to the spy_memory module, which implements the simulation-only frames as described in

Section 3.2.1. The generated .sll file is empty by default. For DRS designs that saves

and restores module state via the configuration port, the designer needs to modify the

generated .sll file and explicitly specify the names of RTL signals and the simulation-

only frame addresses the signals are mapped to (see Figure 3.4 for an example).

4.4 Capabilities and Limitations

The Extended ReChannel and ReSim libraries are two implementations of the simulation-

only layer. Therefore, they have the same capabilities and limitations described in

Section 3.3. In particular, the two libraries can only assist designers in detecting fabric-

independent bugs and fabric-dependent bugs can only be identified on the target FPGA.

Limited by the complexity of implementation, ReSim has not yet implemented all func-

tionality of the simulation-only layer described in Section 3.3. In particular, the ReSim

library only supports

• ModelSim/QuestaSim 6.5g (thoroughly tested) or above (in theory),

• Virtex 4,5,6 FPGAs,

• The basic operations of ICAP: 32-bit ICAP, configuration write, configuration

readback (including readback busy), basic ICAP registers (i.e., CRC, CMD, FAR,

FDRI, FDRO, IDCODE) and basic ICAP commands (NULL, WCFG, RCFG,

RCRC, GRESTORE, GCAPTURE, DESYNC), and

• Saving and restoring flip-flop/register values via the configuration port.

• State restoration by modifying the state bit (i.e. INT0/INT1 bit) of a bitstream.

ReSim does not yet support,

• Other HDL simulators (because ReSim uses ModelSim/QuestaSim built-in com-

mands)

• Xilinx 7 series FPGAs or Altera FPGAs

• Advanced operations of ICAP: abort sequence, status register readback, etc

• Saving and restoring BRAM values via the configuration port.

• State restoration by modifying the SET/RESET bit of a bitstream.

It should be noted that these are only limitations imposed by the current implementation

of the library.
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4.5 Summary

Table 4.1 compares the characteristic features of DPR with the proposed simulation-only

layer and two possible implementations (i.e., Extended ReChannel, ReSim).

Table 4.1: Summary of Extended ReChannel and ReSim

Characteristic features of

DRS designs

Simulation-only Layer Extended

ReChannel

ReSim

Module Swapping and Trig-

gering Condition

Virtual Multiplexing & use of

SimBs to trigger the multiplexing

Yes Yes

Bitstream Traffic SimB Yes Yes

Bitstream Content Check module signature.

Update module state.

Read/write the spy memory.

N/A Yes

Spurious Outputs and Unde-

fined Initial State

Inject errors to both the static re-

gion and reconfigurable modules

N/A Yes

To facilitate high-level modeling of DRS designs, Extended ReChannel captures the

“module swapping and triggering condition” and the “bitstream traffic” features while

abstracting away the impact of the “bitstream content” and the “spurious outputs and

undefined initial state” features of DRS designs. A high-level model of a DRS design can

assist in design space exploration, detecting system-wide integration bugs and validating

embedded software that controls the reconfiguration process.

To facilitate the verification of an implementation-ready DRS design, the ReSim library

covers all characteristic features of DPR and therefore supports cycle-accurate RTL sim-

ulation of partial reconfiguration. ReSim-based RTL simulation can assist in detecting

device-independent functional bugs of an integrated DRS while part of it is being re-

configured. Furthermore, ReSim does not require changing the design for simulation

purposes and thus verifies the design intent.

To simplify the use of the Extended ReChannel and ReSim libraries, we have created

a set of Tcl-based APIs. By describing DPR-related parameters (e.g., the affiliation of

RMs and RRs) of a design, the Tcl APIs can automatically generate simulation-only

artifacts (e.g., SimBs) to be integrated into a design-specific simulation environment.

The generated artifacts can also be flexibly extended for design-/test-specific needs.

The ReSim library has been released as an open source tool under the BSD license, and is

available from the project website at http://code.google.com/p/resim-simulating

-partial-reconfiguration. The project website also includes the following documen-

tation:

• The ReSim library: The library source code and three DRS design and simula-

tion/verification examples.

• User Guide [29]: The user guide contains a step-by-step guide on using/extending

the library, runing examples, Tcl APIs, and explains the code structure of the

library.



4.5. SUMMARY 63

• Case Studies [28]: The case study report contains design and verification experience

of using the ReSim library.



Chapter 5

Case Studies

We demonstrate the value of ReSim and ReSim-based functional verification via a num-

ber of case studies. The first is a generic DRS computing platform, through which we

aim to illustrate the process and results of ReSim-based verification on an in-house,

processor-based DRS design. The second, fault-tolerant application uses DPR to re-

cover from circuit faults introduced by radiation, and we aim to demonstrate verifying

an in-house, non-processor based DRS system. Using a third-party design, a video-based

driver assistance system [18], as our third case study, we then study the use of ReSim to

perform functional verification of cutting-edge, complex, real world DRS applications.

Finally, we present the application of ReSim to vendor reference designs.

Overall, we aim to demonstrate that ReSim is flexible enough to simulate various DRS

design styles. It should be noted that, unless explicitly described, all bugs detected in

our case studies were real bugs exposed during the project development. Furthermore,

unless explicitly described, all bugs revealed design flaws in the user designs instead of

in the simulation-only layer or in any simulation testbench. Therefore, our case studies

can be used as examples to guide future designers in verifying their DRS designs.

5.1 Case Study I: In-house DRS Computing Platform

The Design Under Test (DUT) of our first case study is a generic DRS computing plat-

form known as XDRS (see Figure 5.1). This platform is similar to existing generic slot-

based DRS platforms such as the Erlangen Slot Machine [13], the VAPRES streaming ar-

chitecture [41] and the Sonic video processing system [76]. Using a platform-based design

methodology, a designer can map various hardware tasks to pre-defined reconfigurable

regions and thereby customize the platform for various applications [73]. After thor-

oughly verifying the platform, the verification effort of applications customized/derived

from the platform can be significantly reduced [68]. This section aims to use XDRS as

a representative system to study the functional verification of generic DRS computing

platforms. In particular, we applied top-down modeling to verify system integration and

to test system software, used coverage-driven verification to test hardware peripherals

attached to the processor bus, and used the platform-based verification method to test

64
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a second DRS application mapped to XDRS. We demonstrate that ReSim can be seam-

lessly integrated into the verification of the DRS computing platform and of the DRS

applications mapped to the platform.

The XDRS computing platform has a control-centric processor and a computation-

centric accelerator. The xps_xdrs accelerator module has 3 dynamically reconfigurable

regions (i.e., RRs) and a Producer/Consumer module that interfaces the RRs with the

rest of the system via the PLB bus. The in-house designed, bus-based reconfiguration

controller, xps_icapi, is similar to customized controllers such as [17] [34], and the Xil-

inx xps_hwicap IP core [93]. Apart from configuring module logic, XDRS also supports

saving and restoring module state via the configuration port in a way similar to [80, 44].

The case study runs a demo streaming application in which the RRs are reconfigured

with simple computational cores (e.g., a Maximum module, a Reverse module) and are

chained with the Producer/Consumer module to form a processing loop.

The primary focus of this case study is to verify that the reconfiguration machinery

and its software driver (moderately shaded parts of Figure 5.1) are correct and are

correctly integrated with the rest of the system hardware and software. In particular,

the in-house designed reconfiguration controller xps_icapi transfers bitstreams from

the DDR2 memory to the ICAP according to the parameters (e.g., bitstream address,

length, etc) set by the software. The xps_xdrs accelerator uses a SyncMgr module to

synchronize the RMs in the processing loop before and after reconfiguration, and uses

an Isolation module to avoid the propagation of erroneous signals from the region

undergoing reconfiguration.

xps_xdrsxps_icapi
DDR2 Memory

ICAP xps_intc...
microprocessor bus :PLBv46PPC440microprocessor

streaming applicationxps_xdrs driverxps_icapi driverReSimVirtex-5 Software
Producer/ConsumerReconfigurable Region 2 Reconfigurable Region 1 Reconfigurable Region 0

Bus master/slave attachment
SyncMgrIsolation

Figure 5.1: The XDRS demonstrator

Figure 5.2 illustrates the progress of designing and verifying the XDRS system in terms

of Lines of Code (LOC) changed and bugs detected per week1. The LOC numbers were

reported by a version control tool and included design source such as HDL, scripts,

software (*.c, *.h), constraint files, development log files and project files. It should be

noted that since we used the Embedded Development Kit (EDK) framework [96], some

1One Week = 35 hours full-time work by a designer with 3 years of FPGA design experience
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Figure 5.2: Development progress of the XDRS system

of the design source files were generated by the tool and also contributed to the LOC

numbers. As a result, the LOC numbers should be thought of as reference data that

indicate the relative development effort. The bugs recorded are all DPR-related bugs,

which include hardware bugs in the reconfiguration machinery (either found at TLM

level or RTL level) and software bugs in controlling partial reconfiguration.

• By the end of Week 1, the designer had finished setting up the workspace. The

relatively high LOC numbers were contributed to by code generated by vendor

tools and IP provided by the vendor. The designer had created a testbench to

simulate the “hello world” software program as a sanity check and had not yet

started working on the xps_icapi and xps_xdrs modules

• We applied ReSim to well-established static design verification methodologies, both

FPGA-based and ASIC-based, to verify XDRS. In particular, we used a top-down

modeling methodology [68] to verify XDRS at three abstraction levels, namely,

behavioral level (Week 2), TLM level (Week 3-5) and RTL level (Week 6-9). At

transaction-level, HW/SW co-simulation [68] was used to debug system software

and the integration of software and hardware. At RTL level, we applied coverage-

driven verification [66] to thoroughly test the XDRS platform.

• In the last 2 weeks, the design was implemented and tested on an ML507 board

with a Virtex 5 FX70T FPGA and no more bugs were detected. The LOC were

contributed to by changes to the design for optimization purposes, and implemen-

tation related files (e.g., constraint files). Regression tests were performed to verify

changes to the design.
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Transaction Level Modeling. Using extended ReChannel, the designer performed

TLM modeling in Weeks 3-5 and verified the system integration of the XDRS plat-

form. In particular, the designer created SystemC models for both the xps_icapi and

xps_xdrsmodules, and built a virtual platform for the whole XDRS system. The virtual

platform was co-simulated with both the hardware modules and the target streaming

application software.

Since the virtual platform was implemented before the RTL design was ready, TLM

modeling assisted in detecting software bugs and software/hardware integration bugs

at a very early stage, which significantly reduced the overall project time-line. Figure

5.3 is a screen shot of the co-simulation environment. The upper left window is the

source code debugger for embedded software (C), the bottom window is the source

code for the virtual platform (SystemC) and the upper right corner is the standard

output of the virtual platform. Co-simulation allows designers to move back and forth

between software and hardware to, for example, view software variables while tracing

the hardware model.

Figure 5.3: A Screen-shot of the co-simulation environment for the XDRS system

TLM modeling assisted in identifying and fixing 16 DPR-related bugs in the system

(see Figure 5.2). Some DPR bugs captured in the TLM model revealed potential de-

sign defects in the system hardware (e.g., BUG-Example.XDRS.1, see page 68). For

some DPR-related bugs, the source of error was the software running on the micropro-

cessor (e.g., BUG-Example.XDRS.2). For DPR bugs such as BUG-Example.XDRS.3,

the bugs were caused by both system software and hardware. These bugs could be

more difficult to trace when simulating the reconfiguration process at the more detailed

RTL level. Furthermore, DPR-related bugs such as BUG-Example.XDRS.2 and BUG-

Example.XDRS.3 were detected since the Extended ReChannel accurately models the

bitstream traffic and the triggering condition of module swapping in the TLM model.
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Therefore, it was found to be highly desirable to have a simulation environment to test

the integrated SW/HW system, including when it is being reconfigured.

BUG-Example.XDRS.1: The xps_icapi module uses an ICAPI_DONE flag
to indicate the end of bitstream transfer. Such a flag should be set to 1
at power up but was incorrectly initialized to 0. This bug was detected in
the TLM model of the system, but it revealed a potential bug that could
also exist in the RTL design.

BUG-Example.XDRS.2: To accelerate bitstream transfer, the system soft-
ware loads bitstream data from a slow flash memory and buffers the
bistreams in a fast DDR2 memory. However, the software failed to flush
the bitstream data from the processor cache to the DDR2 memory and the
xps_icapi module transferred incorrect bitstream data from the DDR2
memory during reconfiguration. The bug was easily identified since un-
flushed SimB data was transferred to the simulated ICAP port but the
new RM was not swapped in during simulation, and would not have been
identified without modeling bitstream traffic.

BUG-Example.XDRS.3: The SyncMgrmistakenly requested a second recon-
figuration before the first one had finished (i.e., an illegal reconfiguration
sequence). The bug was detected because the delay associated with the
first reconfiguration was accurately modeled by transferring the SimB us-
ing Extended ReChannel. The designer fixed the bug by modifying the
hardware to report such illegal reconfiguration requests and by adding a
reconfiguration_in_progress flag to the software driver.

TLM modeling offered reasonable simulation throughput while running the target soft-

ware application on the virtual platform, and Extended ReChannel-based simulation

assisted in detecting system integration bugs. However, the TLM model of XDRS con-

tains 2000 LOC (SystemC), which is a significant overhead that can also introduce bugs.

In this case study, we detected 7 bugs in the TLM model (not shown in Figure 5.2) that

were introduced by the SystemC code and that were subsequently identified as false

positive bugs.

Running Simulation. From Week 6 to Week 9, the verified virtual platform was

manually refined to RTL. Since the demo streaming application does not exercise all

possible scenarios of the XDRS platform, we applied coverage-driven verification to sys-

tematically test the platform. Since the microprocessor is a hard core on the FPGA, we

focused on the verification of the xps_icapi and xps_xdrs modules. Since the XDRS

system was created using the EDK development framework, the software-accessible regis-

ters and the bus interface logic are standard components and the designer could therefore

focus on the testing of the core logic of the XDRS system (Week 6-8). In Week 9, the

designer used the EDK framework to generate the software-accessible registers and bus

interface logic for the xps_icapi and xps_xdrs modules. Although the generated logic

accounts for a relatively high LOC count, it can be expected to be correct. The designer

connected the generated logic with the core logic verified by Week 8, and fixed a few

bugs in the interconnection of these modules.
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We created a separate testbench (see Figure 5.4) to systematically test the core logic of

the XDRS platform. The core logic of the XDRS platform has the same architecture as

the original XDRS system but does not include any software-accessible registers or the

bus interface. In particular, the reconfiguration machinery (moderately shaded blocks

in Figure 5.4) is composed of the core logic of the xps_icapi module, i.e., the ICAP-I

reconfiguration controller [52], the SyncMgr module and the Isolation module. The

application logic is composed of the core logic of the xps_xdrs module, which contains

the Producer/Consumer module and the RRs. BEFORE reconfiguration, as listed in

the specification (see Figure 5.4), reconfiguration requests are blocked (not acknowl-

edged) until the RM becomes idle. DURING reconfiguration, the Isolation module

drives default values to the static region and isolates the RR undergoing reconfiguration.

AFTER reconfiguration, the newly configured module is reset to IDLE by the SyncMgr

module.

 Reconfigurable Region 0,2 Reconfigurable Region 1
Reconfiguration Controller: ICAPI Producer & ConsumerICAP

Memory Interface
Isolation

application databitstream reqn, ackn, rstnOff-chip Memory
 XDRS Specification ========================  BEFORE Reconfiguration (Synchronization)- use reqn/ackn signals to handshake- do not acknowledge until RM is IDLE  DURING Reconfiguration (Isolation)- use an isolation module to drive        default values to the static region  AFTER Reconfiguration (Initialization)- reset the module to IDLE Maximum/ReverseSync, Init

Run-time Manager: SyncMgr

Figure 5.4: The core logic of the XDRS demonstrator

The use of ReSim enables the designer to debug the cycle-accurate behavior of the

XDRS system while it is performing partial reconfiguration. Figure 5.5 is a waveform

obtained by simulating the core logic of the XDRS system using ModelSim 6.5g. Here,

an old Maximum module in Reconfigurable Region 1 of the XDRS system is reconfigured

to a new Reverse module. The figure links the events on the waveform with the block

diagram of the core logic of the XDRS system.

• @t1: SyncMgr starts the reconfiguration and unloads the current module by as-

serting the request (the xctrl/req_n signal). As the Maximum module is busy,

it blocks the SyncMgr and doesn’t acknowledge (the xctrl/ack_n signal) until a

few cycles later. Simulating these handshake signals assists the verification of the

synchronization mechanism of the design.

• @t2: The first word of the SimB (0xAA995566) is transferred from the mem-

ory interface (the mem/data_o signal) to the ICAP port (the icap/cdata signal),

thereby marking the start of the “DURING reconfiguration” phase.

• Triggering module swapping @t3: After parsing the header section of the

SimB, the new Reverse module is selected by the module_selector. Although

such a selection is performed instantaneously, the new module is not connected to
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ICAP-I
4 51 3 7 82 6 Reconfigurable Region 0,2  Reconfigurable Region 1Producer & ConsumerICAP artifact

Memory Interface Isolationapplication data
bitstream

Off-chip Memory MaximumSync, InitReverseSync, Initreqn, ackn--> empty, data<-- rd_en rstnSyncMgr
Figure 5.5: Waveform example for partial reconfiguration

the static part until all configuration data of the SimB are written to the ICAP

artifact. Thus the delay of such swapping is determined by the bitstream traffic.

• Mimicking spurious outputs @t4: When the configuration data section of

the SimB is being written to the ICAP, a spurious error source is connected to

the static region so as to test the robustness of the isolation module. The error

source drives undefined “x” values to all RR outputs (e.g., the rr1/rd_en signal).

Note that the 3 versions of IO signals (the rr1, rm/max_io & rm/rev_io signal

groups) represent signals of the static side, the Maximum and the Reverse modules

respectively.

• Mimicking undefined initial state @t5: Apart from the “x” injection to the

static side, the Extended Portal also injects a sequence of user-defined errors

to the Reverse module so as to mimic its undefined initial state. In particu-

lar, the Extended Portal starts the error injection sequence by de-asserting the

rev_io/empty signal. The Reverse module responds to the empty signal by read-

ing random data (0xbfd505bd on the rev_io/data signal) into its internal register

rev_inter/indata.

• Modeling bitstream traffic @t6: The Producer/Consumer module requests

memory access. The Memory-Interface therefore pauses the reconfiguration until
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the requested data are written to memory (see the long delay on the icap signal

group @t6).

• @t7: The DESYNC command is written to the ICAP thereby ending the “DURING

reconfiguration”phase. Until the next SYNC word, all subsequent signal transitions

on the ICAP interface are ignored.

• @t8: The SyncMgr module asserts the reset signal (the xctrl/rst_n signal) to

the RM, which cleans all errors (i.e., the random data in the rev_inter/indata

register) injected to the Reverse module.

By accurately simulating the synchronization, isolation and initialization mechanisms

of the XDRS system BEFORE, DURING and AFTER reconfiguration, we detected

dozens of cycle-mismatch bugs in our design. For example, the isolation bug, BUG-

Example.XDRS.4, was easily identified since ReSim models the spurious outputs of

RMs during reconfiguration. Although such “x” injection is similar to [69], ReSim allows

cycle-accurate simulation of the transition from DURING to AFTER reconfiguration,

which is also essential to detect this type of bug.

BUG-Example.XDRS.4: The Isolation module, which disconnects the
RM DURING reconfiguration, resumed such connection one cycle too
early AFTER reconfiguration. The bug was identified because the unde-
fined “x” values injected by ReSim propagated to the static part in the
mismatched cycle.

Coverage Analysis. In order to thoroughly test the core logic of XDRS, we applied

coverage analysis to the RTL simulation. According to the specification (see Figure 5.4),

we created a test plan, which described the list of scenarios and coverage items that were

to be tested (see Figure 5.6 for an extract of the test plan). The test plan includes both

code coverage items and functional coverage items. Code coverage items (e.g., item 5.1

Code_Coverage) are automatically tracked by the simulator. In particular, the simulator

automatically reports which lines were not exercised over all simulation runs.

Functional coverage items are modeled using SystemVerilog coverage groups (e.g., items

7.2 RM_Transition& 6.8 Recon_Req), coverage directives (e.g., item 5.4 Cancel_Static)

and assertions (e.g., item 6.6 Blocked_until_Idle). For example, the item Recon_Req

is not considered to be covered until reconfiguration is requested in each legal state of

the RM. The corresponding cvg_recon_req coverage group is modeled by sampling the

FSM state when reconfiguration is requested (@negedge reqn), and is deemed covered

when the sampled FSM state touches all five possibilities (Rd1, Rd2, Wr, ReTry and IDLE).

As an example of using assertions, the item Blocked_until_Idle verifies that the FSM

must be in the IDLE state when the reconfiguration is acknowledged. The corresponding

assert_blocked assertion is checked throughout simulation, and is considered covered

if it passes.

The use of ReSim assists the designer in modeling DPR-specific coverage items. For

example, the item RM_Transition requires all legal transitions between any two RMs to



72 CHAPTER 5. CASE STUDIESXDRS Test Plan Description Coverage Item(s) Type5 Isolation5.1 Code_Coverage Code Coverage of isolation /xdrs/isol_0 Code5.4 Cancel_Static Communication attempts from thestatic region are cancelled cov_cancel_static Directive6 Computational_Cores6.6 Blocked_until_Idle Request of reconfiguration isblocked until RM is IDLE assert_blocked Assertion6.8 Recon_Req Request of reconfiguration occursin all RM states cvg_recon_req CoverPoint7 Partial_Recon7.2 RM_Transition Transition from each module toeach other module cvg_rm_transition CoverPoint Examples of functional coverage items =============================================cov_cancel_static : cover property ( ~reconfn && static_start_communication );assert_blocked : assert property ( (~ackn) |-> (fsm_state == IDLE) );covergroup cvg_recon_req @(negedge reqn);coverpoint fsm_state = {Rd1,Rd2,Wr,ReTry,IDLE};endgroupcovergroup cvg_rm_transition @(current_module_id);coverpoint current_module_id = { [0:1] => [0:1] };endgroup
Figure 5.6: Extract of test plan and selected coverage items

be exercised. The corresponding cvg_rm_transition coverage group creates four bins

for the 4 possible transitions, and is tracked by sampling the RM IDs extracted from

the SimB.

Figure 5.7 illustrates the progress of coverage-driven verification in terms of Lines of Code

(LOC) changed, coverage, and bugs detected per day2 in the reconfiguration machinery.

Generally speaking, the four plots are related to each other.
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Figure 5.7: Coverage-driven verification progress with the XDRS system

• The changes in the design RTL and the simulation testbench (TB) indicate the

development workload attributed to the core logic of XDRS.

2One Day = 7 hours full-time work by a designer with 3 years of FPGA design experience
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• Since Code Coverage items are automatically generated from the design source,

they increased with increases in the amount of RTL design source code. Although

Functional Coverage items also increased with design complexity, they were only

widely adopted after Day 8 in this project.

• The total coverage dropped as new coverage items were added (e.g., Days 2 & 5)

and increased as more tests were created (e.g., Days 4 & 11). However, the trend

for the total coverage is not that easy to predict. On Day 8, for example, although

the number of coverage items increased significantly, a few more tests were added

to cover the newly added coverage items as well as previously uncovered items.

Therefore, the coverage increased.

• The bug discovery rate was relatively high at the beginning of the verification (Days

1-5) and decreased as the design began to mature (Days 6-10). We randomized

the test stimuli to exercise complex scenarios in the final development phase (Days

11-15), and achieved 100% coverage of the test plan items.

Coverage analysis assisted in detecting 2 corner case bugs in Days 9 and 12. For example,

in order to cover the Recon_Req item (see Figure 5.6), we randomized the time at

which reconfiguration was requested and detected BUG-Example.XDRS.5. This bug

was only exposed when reconfiguration was requested in the same cycle that the RM

left the IDLE state, and was very likely to be left undetected without analyzing the

missed coverage item Recon_Req. Furthermore, since the Blocked_until_Idle assertion

failed in simulation, we were able to quickly localize the source of the failure instead of

randomly tracing signals in the waveform. The use of assertions therefore simplified the

debugging process.

BUG-Example.XDRS.5: If a reconfiguration request arrived precisely when
the RM had just started processing the next input sample, the
RM failed to block the reconfiguration request, which violated the
Blocked_until_Idle item in the test plan. The bug was detected since
the Blocked_until_Idle assertion failed.

Code coverage was widely used in the early stages of the project and assisted in ensuring a

reasonable level of confidence without extra development overhead. Functional coverage

items assisted in detecting two critical bugs at the cost of manually modeling the items.

In particular, the development workload for modeling functional coverage items involved

100 LOC for modeling coverage groups and directives and 200 LOC for assertions which

assisted in debugging the design in addition to indicating coverage. The regression time

for running all tests and generating the coverage report was 5 minutes on a Windows

XP, Intel 2.53G Dual Core machine.

5.1.1 Targeting a Second Application

To demonstrate the benefit of applying the platform-based design methodology to the

design and verification of the XDRS system, we mapped a second DRS application to

XDRS. This second application demonstrated the use of ReSim to verify a DRS design
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that saves and restores module state in addition to reconfiguring its logic. The second

application periodically reconfigures one slot of the xps_xdrs accelerator with either an

Adder core or a Maximum core as two alternative RMs. Apart from computation, each

core maintains a statistic register, the value of which is copied across configuration

periods, and the saving and restoration of the statistic register is performed via the

ICAP. We updated the embedded software to support state saving and restoration.

Since the RTL design of the XDRS platform was already available, we skipped high-

level modeling and used RTL simulation to test and debug the new application mapped

to the platform.

Figure 5.8 shows two waveform segments obtained by simulating the design using Mod-

elSim 6.5g. Here, an old Maximum core is reconfigured to a new Adder core, and the

value of the statistic register is copied from the old core to the new core. Figure

5.8-(a) illustrates saving the maximum/statistic register by reading back a SimB via

the ICAP artifact. The figure contains a screen shot of the simulation waveform and

the printout messages (i.e., messages start with OVM_INFO). To improve the readability,

Figure 5.8-(a) does not include signals of the Adder core, which are all injected with

undefined “x” values. Similarly, Figure 5.8-(b) illustrates restoring the saved value to

the newly configured Adder module.

In order to simulate state saving and restoration, the designers need to manually map

RTL signals to simulation-only frames by modifying .sll files (see Section 4.3). It

should be noted that the statistic registers of the maximum and the adder modules

are treated as different signals and are mapped to two different configuration frame

addresses both on the target FPGA and in the simulation-only layer. In particular,

the maximum/statistic register starts from bit 36 of frame 0x00010002, and spans 32

bits (see the .sll file entry at the bottom of Figure 5.8-(a)), and the adder/statistic

register is mapped to bit 63-32 of frame 0x00000001 (see Figure 5.8-(b)). The saving

and restoration of the statistic register proceeds as follow:

• Modeling bitstream traffic @t1: A readback SimB (see the icap/cdata sig-

nal) with a GCAPTURE command (i.e., 0x0000000c) is written to the ICAP ar-

tifact requesting for the frame containing the maximum/statistic register. By

the time the GCAPTURE command is written to the ICAP artifact, the value of

the maximum/statistic register is 0xf00d0003. Figure 5.8-(a) illustrates mapping

0xf00d0003 to bits 67-36, which spans two consecutive words (i.e., WORD1 and

WORD2) of the simulation-only frame.

• Modeling bitstream content @t2: The ICAP artifact is switched to read mode

and returns a SimB (see the icap/cdata_rb signal) that contains the retrieved

state data. In particular, the signature word, WORD1, WORD2 and WORD3

are returned on four consecutive cycles. The waveform only shows part of the

readback SimB; please refer to Table 3.4 in Section 3.2.1 for the full SimB.

• @t3: After reconfiguration, the Maximum core is reconfigured with the Adder core

and the initial value of the adder/statistic register is 0xc0010000.

• Modeling bitstream traffic @t4: A restoration SimB containing the saved value

(i.e., 0xf00d0003) is written to the ICAP artifact (see the icap/cdata signal).



5.1. CASE STUDY I: IN-HOUSE DRS COMPUTING PLATFORM 75# OVM_INFO @ 192045.116ns:: GCAPTURE# OVM_INFO @ 192125.000ns::Read_ICAP, mna=0x0002, offt=0x0, cdata= 0xe31daa1b# OVM_INFO @ 192135.000ns::Read_ICAP, mna=0x0002, offt=0x1, cdata= 0x00d00030# OVM_INFO @ 192145.000ns::Read_ICAP, mna=0x0002, offt=0x2, cdata= 0x0000000f# OVM_INFO @ 192155.000ns::Read_ICAP, mna=0x0002, offt=0x3, cdata= 0x00000000
1 2// == maximum.sll ==0x00_01_0002 36 32 statistic 0xf00d003

0x????????f 0x00d003?63  WORD1  3295  WORD2  64 ? = Don't care
31  statistic  067               36 Signature0x????????Simulation-only frameFA=0x00_01_0002

(a) Read back a SimB to save the maximum/statistic register   # OVM_INFO @ 259855.000ns::Write_ICAP, mna=0x0001, offt=0x0, cdata=0xd467e13f   # OVM_INFO @ 259865.000ns::Write_ICAP, mna=0x0001, offt=0x1, cdata=0xf00d0003   # OVM_INFO @ 259875.000ns::Write_ICAP, mna=0x0001, offt=0x2, cdata=0x00000000   # OVM_INFO @ 259885.000ns::Write_ICAP, mna=0x0001, offt=0x3, cdata=0x00000000   # OVM_INFO @ 259925.116ns::GRESTORE
4 53 // == adder.sll ==0x00_00_0001 32 32 statistic 0xf00d003

0x????????? 0xf00d00363  WORD1  3295  WORD2  64 ? = Don't care
31  statistic  063               32 Signature0x????????Simulation-only frameFA=0x00_00_0001

(b) Write a SimB to restore the adder/statistic register

Figure 5.8: Waveform example for state saving and restoration

Since the adder/statistic register is mapped to bits 63-32, it only spans one

word (i.e., WORD1) of the simulation-only frame.

• Modeling bitstream content @t5: A GRESTORE command (i.e., 0x0000000a)

is sent to the ICAP artifact (see the icap/cdata signal) and the desired value is

restored to the adder/statistic register in the following cycle.

We detected 5 software bugs (e.g., BUG-Example.XDRS.6, see page 76) while simulating

the periodic application. The simulated design was subsequently tested on an ML507

board with a Virtex-5 FX70T FPGA and we detected one fabric-dependent bug (i.e.,

BUG-Example.XDRS.7). Since ReSim failed to mimic the exact behavior of the target

device, a limitation discussed in Section 3.3, BUG-Example.XDRS.7 was missed by

ReSim-based simulation. By inserting probing logic using ChipScope [95], we were able

to identify this bug on the target FPGA. However, as the probing logic was only able to

visualize a limited number of signals for a limited period of time, we used 5 iterations

to trace the cause of one bug. Each iteration involved inserting new probing logic and
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re-implementing the design, and took 59 minutes to complete on the same machine used

for RTL simulation. Debugging the design using ChipScope was therefore found to be

quite time consuming.

BUG-Example.XDRS.6: The restoration routine of the software driver uses
a pointer as an argument and the pointer is expected to point to the logic
allocation information of the signal to be restored. However, the appli-
cation software program passed an incorrect pointer to the restoration
routine. The bug was detected as a consequence of incorrect values being
restored to the simulated statistic register.

BUG-Example.XDRS.7: The number of pad words returned from ICAP
was not the same as the designer had expected. The software attempted
to extract state bits from the wrong bit positions and the extracted data
were therefore incorrect.

Although the first streaming application did not save and restore module state, the state

saving and restoration capability of XDRS was thoroughly verified via the coverage-

driven verification process of the platform. The verification effort for this second, peri-

odic application was therefore reduced due to the platform-based design methodology.

5.2 Case Study II: In-house Fault-Tolerant Application

The second case study involves the design of signal processing circuits to be used in

space-based applications (e.g., Synthetic Aperture Radar, SAR) [16]. To improve the

tolerance of radiation-induced errors such as Single Event Upsets (SEU), Triple Modular

Redundancy (TMR) has been used to protect the signal processing circuits and a module

suffering from permanent SEUs is dynamically reconfigured with a correct copy. DPR

has been used in such fault-tolerant applications such as [63, 35, 16] and this case study

aims to apply ReSim and coverage analysis to verifying the DPR activities in fault-

tolerant applications. We also compared the results of coverage-driven verification with

ad-hoc on-chip debugging.

Comparing the system architecture between this case study and the XDRS platform

(see Section 5.1), one significant difference is that the DUT of this case study does not

contain microprocessors, buses or software. As illustrated by Figure 5.9, the DUT is

composed of two computing nodes (i.e., nodes 0 & 1) and a reconfiguration controller

node (RC-node, i.e., node 2). Each computing node contains three identical copies of

specific signal processing circuits, either Finite Impulse Response (FIR) filters or Block

Adaptive Quantizers (BAQ), and are checked by a voter [16]. The RC-node reconfigures

a module that is suffering from a permanent SEU error by transferring a bitstream

from off-chip flash memory to the ICAP port. The computing nodes and the RC-node

are connected via a self-timed ring network, so that nodes can execute at independent

clock frequencies. Nodes exchange information (e.g., requests and acknowledgments of

reconfiguration) by sending and receiving messages using Network Interfaces (NI).



5.2. CASE STUDY II: IN-HOUSE FAULT-TOLERANT APPLICATION 77

         RC Node : Node 2   Computing Node : Node 0
   Computing Node : Node 1

 RR1,2 RR0FIR
Voter-NIVoter Off-chip Flash RR4,5 RR3BAQ
Voter-NIVoter ICAP-IICAPRC-NI bitstreamMessage: RReqRAckRDone

 Ring Network Specification ========================  BEFORE Reconfiguration (Synchronization)- reconfigure a faulty module immediately- send reconfiguration request via the network  DURING Reconfiguration (Isolation)- use a voter to isolate the RR  AFTER Reconfiguration (Initialization)- feed module pipelines with input data or          voted values from its sibling modules

Flash Controller

Figure 5.9: The hardware architecture of the fault-tolerant DRS

This case study does not aim to explain in detail the robustness of this design with

respect to SEUs since our primary interest is in the functional verification of the re-

configuration machinery (moderately shaded parts of Figure 5.9). In particular, if a

voter detects that one copy of the FIR filters or BAQs is permanently affected by an

SEU, the voter initiates a reconfiguration request message (i.e., RReq) over the network.

Upon receiving the request, the RC-node replies with an acknowledgment message (i.e.,

RAck) indicating the start of reconfiguration and sends a done message (i.e., RDone)

at the end of bitstream transfer. DURING reconfiguration, the module undergoing re-

configuration may produce spurious outputs, which are ignored by the voter. Thus, the

voter works as an isolation module during reconfiguration and is therefore considered to

be a component of the reconfiguration machinery. After reconfiguration, the execution

state of the newly reconfigured module is recovered by feeding the pipelines of the newly

configured module with correct values either from the input data stream or from the

checked feedback of its sibling modules [16].

Figure 5.10 illustrates part of the test plan for the voter, which describes the scenarios

that need to be covered to test the voter. For example, as described above, the voter

initiates reconfiguration requests and isolates the RM undergoing reconfiguration. These

two operations are specified by coverage items 4.7 and 4.8 respectively in the test plan.

The two items are further linked to assertions and coverage directives in the design

source code.

Figure 5.11 illustrates the progress of coverage-driven verification in terms of Lines

of Code (LOC) changed, coverage, and bugs detected per day in the reconfiguration

machinery. In particular, the figure does not take into account the statistics from the

application logic (i.e., the FIR and the BAQ modules) or from proven IP (i.e., the flash

controller IP provided by the vendor and the ICAP-I IP verified in the first case study,

see Section 5.1). Similar to the coverage-driven verification of the XDRS core logic (see

Section 5.1), the total coverage of the fault-tolerant DRS also dropped as new design



78 CHAPTER 5. CASE STUDIESTitle Description Link Type4 Voter4.1 Code_Coverage Code coverage of the voter .../node_0/voter_0.../node_1/voter_0 Code4.2 Majority_Voter_Op The Majority Voter does not detecterror; detect one error; detectmultiple errors; assert_mv_no_errorassert_mv_one_error_*assert_mv_more_error Assertion4.3 Voter_PermErr The Voter detects permanenterror and starts recon. assert_vtr_errcnt_*_sat Assertion4.4 Voter_TranErr The Voter detects transient errorand does not start recon. cov_vtr_errcnt_*_non_sat Directive4.6 Voter_OngoingErr The Voter detects ongoing errorduring recon. assert_vtr_oge_* Assertion4.7 Voter_Isolate_Err The Voter isolates errors frommodule undergoing recon. assert_isol_at_reconassert_isol_at_feeding Assertion4.8 Voter_NI_Recon The Voter starts recon. andends by (1) Ack-Done (2) … cov_ni_recon_done... Directive
Figure 5.10: Extract of the test plan section for the voter

features were added (e.g., Days 2-4 and Day 8) and increased as more tests were created

(e.g., Days 5-6 and Days 9-12).
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Figure 5.11: Simulation-based verification of the fault-tolerant DRS

• In order to compare simulation with on-chip debugging, we deliberately separated

the development into two streams. At the beginning of the verification (Days

1-6), designer A worked on the two computing nodes (i.e., nodes 0 & 1) using

simulation-based verification while designer B designed and tested the RC-node

(i.e., node 2) using on-chip debugging. Since on-chip debugging does not collect

coverage data, Days 1-6 of Figure 5.11 only track the progress of simulation-based

verification, which detected 10 bugs during the period. On the other hand, using

on-chip debugging, designer B identified 4 bugs (not shown in the figure) in the

RC-node.

• On Day 7, the FPGA-proven RC-node was integrated with the computing nodes.

From designer A’s perspective, the RC-node was viewed as an IP, and 1 bug was

captured in integrating the IP with the rest of the design. Designer A continued
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testing the integrated design using simulation, and created tests to cover scenarios

that had not yet been tested in the integrated system. In particular, ReSim-based

simulation was applied starting from Day 9, when the design was stable and mature

enough.

• The coverage reached 100% on Day 133, after which the designer started optimizing

the design. For each change made, regression tests were applied to the design and

we detected 1 more bug during the optimization stage.

On-Chip Debugging. Comparing the on-chip debugging stream with the simula-

tion stream, the progress of both designers was found to be similar. Using ChipScope

[95], designer B tested the RC-node on the target FPGA without using any simulation

techniques. Since the reconfiguration controller (i.e., the ICAP-I module) was reused

from the first case study (see Figure 5.4 in Section 5.1) and the flash controller is an IP

provided by the vendor, the workload of designer B involved integrating the two IPs and

creating the network interface (i.e., the RC-NI module). In the same period, designer A

designed and tested the two computing nodes using simulation. Since the signal process-

ing circuits had already been created and verified beforehand, the workload of designer

A involved creating a voter and a network interface (i.e., the Voter-NI module).

The simulation testbench created by designer A was substantially reused later in the

project. In particular, using the OVM framework [27], designer A created a library

of stimuli patterns (e.g., transient or permanent SEU sequences), trackable coverage

items and assertions. This library was later extended to exercise corner cases and sce-

narios of the reconfiguration process. However, designer B spent the majority of time

tracing errors using ChipScope. For example, designer B accidentally introduced BUG-

Example.FT.1 and thought it was a bug in the logic, it turned out to be a typo in the

clocking circuitry, and it took 5 hours to trace the bug. Such a bug would have been

identified very quickly in simulation.

BUG-Example.FT.1: The designer accidentally created a level-sensitive
clock instead of an edge-sensitive one, as desired.

ReSim-based Simulation. Since testing individual modules such as the network

interface and the voter do not require modeling any characteristic features of DPR,

designer A used traditional simulation techniques to test the computing nodes in Days

1-6 and the integrated design in Days 7-8. We applied ReSim-based simulation to test

the reconfiguration process of the integrated design from Day 9 and detected 7 more

bugs. By analyzing the causes of the bugs, we determined that 4 out of the 7 bugs could

have been detected by prior simulation methods such as Virtual Multiplexing [54] or

DCS [69]. In particular, since the RC-node was already FPGA-proven, and bitstreams

are transferred over a dedicated datapath, reconfiguration could be modeled with a

constant delay. However, 3 bugs could only have been identified using ReSim, and we

describe two of these bugs (i.e., BUG-Example.FT.2, BUG-Example.FT.3) in detail.

3The coverage at Day 12 was 99.95%
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BUG-Example.FT.2: After reconfiguration, the system failed to feed enough
data to flush the internal pipeline of the FIR filter. Thus the unde-
fined initial values of the pipeline were not properly cleared. This bug
was exposed since the undefined initial values injected to the pipeline
registers of the simulated FIR filter propagated to the static region af-
ter reconfiguration, and the undefined values were detected by an as-

sert_isolate_at_feeding assertion as described by item 4.7 in the test
plan (see Figure 5.10).

BUG-Example.FT.3: Typically, reconfiguration is slower than transferring
a message between two nodes. The expected operation of the RC-node is
therefore: start reconfiguration; transfer an RAck message to a computing
node; end reconfiguration; transfer an RDone message to a computing
node. However, when the bitstream is very small and when the computing
node is executing with a very slow clock, reconfiguration can finish before
the RAck message is transferred. Under such a circumstance, the RC-
node did not correctly send the RDone message.

Coverage analysis assisted in detecting a number of corner case bugs. For example, we

randomized the SimB size so as to exercise the design with various SimBs and random-

ized the operating frequencies of nodes so as to cover various clock frequency-related

coverage items. We were able to identify a corner case bug in the RC-node (i.e., BUG-

Example.FT.3), which had already been tested on the target FPGA. The bug is only

exposed when the system reconfigures a very small RM whose bitstream is short. Unfor-

tunately, such a scenario was not tested on the FPGA, and it is difficult to test since the

size of a real bitstream cannot easily be adjusted for test purposes. Therefore, although

on-chip debugging represents real world conditions, it can sometimes only validate a

limited number of the possible execution scenarios for a design. Previous simulation

methods (e.g., [74]) tend to annotate the reconfiguration delay according to the size of

a real bitstream, which may also limit the possible scenarios that can be exercised using

them. In order to create a robust design, it is highly desirable to identify and exercise all

corner cases of the system. Since a SimB is not dependent on the FPGA fabric, the size

of a SimB can easily be adjusted for test purposes. ReSim-based simulation is therefore

better able to exercise some of the corner cases of a design.

In this case study, we used both code coverage and functional coverage throughout

the verification process. Furthermore, we used constrained random stimuli generation

techniques to assist in covering corner cases of the design. As illustrated by Figure

5.11, the last version of the design contains 304 code coverage items and 114 functional

coverage items. The regression time for running all tests and generating the coverage

report was 8 minutes on a Windows XP, Intel 2.53G Dual Core machine.

5.3 Case Study III: Third-Party Video-Processing Appli-

cation

The third case study involved the design and verification of a cutting-edge, dynamically

reconfigurable driver assistance demonstrator from the AutoVision project [18]. A more
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recent design of the project uses an Optical Flow algorithm to determine the speed and

distance of moving objects (e.g., cars) on the road so as to identify potentially dangerous

driving conditions [4]. As illustrated in Figure 5.12, the demonstrator uses two video

processing engines to accelerate the Optical Flow algorithm. In particular, each input

video frame is first processed by a Census Image Engine (CIE) to generate a feature

image. The CIE engine is then reconfigured with a Matching Engine (ME) to compare

two consecutive feature images and compute the motion vectors. Finally, the embedded

software running on an on-chip PowerPC processor outputs the video frames that are

annotated with motion vectors.

Engine_0
IcapCTRLplb_v46_2 bitstream

xps_uart DCR-regsxps_intc DCR-regsDCR-regs plb_v46_0
ICAPvideo data video data DCR-regs
Isolation plb_v46_1PowerPC@Virtex5video_out_module video_in_module

Off-chip DDR2 Memory Controller LIS-IPIF
 Reconfigurable Region

Figure 5.12: The hardware architecture of the Optical Flow Demonstrator

DPR
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Video Output (N)
Video Input (N+1)

Video Output (N-1)DPR
PowerPC (N-1)CIE(N) ME(N)DPRCIE(N-1) ME(N-1)DPR Time

Video InputSoftware(Main)EnginesVideo Output
PowerPC (N+1)Software(ISR) DPR CIE(N+1) ME(N+1)DPR

Figure 5.13: The processing flow of the Optical Flow Demonstrator

Instead of building the design from scratch, as was done for the first and the second

case studies, this case study aimed to study the application of an IP-reuse methodology

to the design and verification of DRS designs. In particular, both the hardware and

the software of the Optical Flow Demonstrator were slightly modified from the original

design, but could be viewed as a re-integration of the original design modules. Compared

with the original design, the re-integrated design (see Figure 5.12) connects the IcapCTRL

controller to the PLB bus instead of the NPI interface of the memory controller. The

processing flow of the re-integrated design was pipelined to better exploit parallelism

in the system (see Figure 5.13). In particular, the PowerPC processor draws motion

vectors for the previous frame while the engines are processing the current frame. The

start, end and reconfiguration of the video processing engines are controlled by Interrupt

Service Routines (ISR) that are independent of the main software functions.
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The primary focus of this case study was the verification of the reconfiguration ma-

chinery (moderately shaded parts of Figure 5.12). In particular, the DUT instantiates

a reconfiguration controller (IcapCTRL) that transfers bitstreams from off-chip memory

to the ICAP port. To avoid the propagation of erroneous signals from the region un-

dergoing reconfiguration, an Isolation module was used to isolate the engines during

reconfiguration. Furthermore, the DCR registers were moved from inside the engines to

the outside so as to avoid breaking the DCR daisy chain during reconfiguration. Since

the DUT is an integration of various proven IP blocks from the original design, we fo-

cused on the verification of system integration. In particular, we aimed to verify that

the modified reconfiguration machinery (i.e., the PLB-based IcapCTRL) and its software

driver (i.e., the interrupt-driven reconfiguration of the pipelined processing flow) were

correct and were correctly integrated with the rest of the system hardware and software.

Since individual hardware and software building blocks were already FPGA-proven, we

didn’t create high-level models of the system, but rather used RTL simulation directly.

Figure 5.14 illustrates the progress of development in terms of Lines of Code (LOC)

changed and bugs detected per week.
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Figure 5.14: Development progress of the Optical Flow Demonstrator

• By the end of Week 3, the designer finished assembling the modified Optical Flow

Demonstrator (see Figures 5.12 and 5.13) as well as an initial testbench. Since de-

sign files of the Optical Flow Demonstrator were initially added to version control,

the reported LOC number is very high. However, most design files were reused

from previous projects, and the designer’s workload involved re-integrating legacy

components and simulating sanity checks such as a “hello world” program and a

“camera to VGA display” application.

• The real verification work began in Week 4. In order to compare ReSim-based

simulation with Virtual Multiplexing, we deliberately used Virtual Multiplexing
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to simulate the system at the beginning of the case study. While only being able

to identify 1 DPR-related bug, Virtual Multiplexing was helpful in detecting most

of the bugs in the static design. In particular, between Week 6 and Week 9, the

designer fixed 3 extremely costly bugs in the static region and Virtual Multiplexing-

based simulation passed. Apart from bug fixes, the design itself was stable during

this period. The LOC numbers were contributed to by changes to the testbench

aimed at improving the simulation throughput and at reducing debug turnaround

time.

• In the last 2 weeks, the designer used ReSim to simulate DPR and detected 2

software bugs and 6 DPR bugs in the system. The simulation passed at Week 11,

after which no more bugs were detected.

Virtual Multiplexing. Using the virtual multiplexing method, as reported in [54],

we inserted a multiplexer to switch the currently active engine with the selection being

performed by writing to a software-accessible engine_signature register. Therefore,

both the hardware and software of the system had to be modified during simulation to

insert and use the multiplexer. Virtual Multiplexing was able to detect 1 bug in the

reconfiguration machinery in Week 5.

Although Virtual Multiplexing was able to mimic the intra-frame reconfiguration of

the DUT, in simulation, DPR was triggered by software instead of by transferring a

bitstream to the configuration port. Therefore, the software and hardware tested in

simulation did not match what was actually implemented, and we even detected a false

positive bug (i.e., BUG-Example.AUTO.1) in the engine_signature register in Week

44. Furthermore, since the IcapCTRL module was instantiated in the design but was

not used in simulation, Virtual Multiplexing was unable to detect bugs in the bitstream

transfer datapath (e.g., BUG-Example.AUTO.2, see page 84). Last but not least, since

multiplexing the simulated engines did not generate erroneous signals, as implemented

designs might do, the isolation mechanism (i.e., the Isolation module) was not tested

in simulation. Using Virtual Multiplexing to simulate DPR therefore only provided

limited assistance in debugging DPR of the AutoVision system.

BUG-Example.AUTO.1: The CIE/ME was not reset correctly. This was
because the engine_signature register was not correctly initialized and
no engine was selected to be active. Since the engine_signature register
only exists in Virtual Multiplexing-based simulation, this bug was a false
alarm. Since ReSim does not change the user design, this bug would NOT
have been introduced with ReSim-based simulation.

ReSim-based Simulation. After the static aspects of the design had matured,

we used ReSim-based simulation to test the reconfiguration machinery of the system

(Weeks 10-11). Compared with Virtual-Multiplexing, ReSim-based simulation more

accurately models partial reconfiguration and more thoroughly tests the Optical Flow

Demonstrator. In particular,

4Since BUG-Example.AUTO.1 was a false positive DPR bug, it is not counted in Figure 5.14
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• Since ReSim uses a SimB to replace real bitstreams, the bitstream transfer data-

path (e.g., the RTL code of the IcapCTRL) was verified in simulation. The recon-

figuration delay was determined by bitstream transfer time instead of being zero

or a constant. A bug in the bitstream transfer datapath would have prevented the

new engine from being swapped in simulation.

• Although ReSim connected all engines in parallel, like Virtual Multiplexing, the

selection of engines was triggered by the SimB. Therefore, ReSim did not use the

indirect mechanism of an engine_signature register, and the software driver that

controlled the reconfiguration process did not have to be changed for simulation

purposes.

• Since errors were injected into the static region when the SimB was being written

to the ICAP, the isolation logic and the software driver that controlled such logic

was verified in simulation. If, for example, the designer failed to move the DCR

registers out of the engines, the DCR daisy chain would break as a consequence of

the injected errors propagating to the DCR bus of the static region.

ReSim-based simulation assisted in detecting 6 DPR-related bugs in the system (e.g.,

BUG-Example.AUTO.2, BUG-Example.AUTO.3 and BUG-Example.AUTO.4).

BUG-Example.AUTO.2: The IcapCTRL module was used in point-to-point
mode in the original system, and it failed to work with the shared PLB bus
in the modified Optical Flow Demonstrator. Since ReSim modeled bit-
stream traffic, this bug was readily detected by ReSim-based simulation.
This bug was introduced by changing the way the IP was integrated.

BUG-Example.AUTO.3: After changing a parameter of the IcapCTRL mod-
ule, the software driver was not updated accordingly and the SimB was
not successfully transferred. This bug was detected when a new engine
was not swapped in due to the bug in the bitstream transfer process. The
bug was introduced by a mismatch between hardware and software.

BUG-Example.AUTO.4: The system software failed to wait until the com-
pletion of bitstream transfer before resetting the engines. This bug was in-
troduced when the design was modified to use a different clocking scheme
that slowed down the bitstream transfer and the software was not up-
dated to slow down the reset operations accordingly. Since ReSim more
accurately modeled the timing of reconfiguration events, this bug could
ONLY be detected by ReSim-based simulation.

Although individual engines and their software drivers were already FPGA-proven from

the original design, bugs were introduced through mismatches between module param-

eters (e.g., BUG-Example.AUTO.2) and software/hardware parameters (e.g., BUG-

Example.AUTO.3). Apart from detecting bugs introduced by modifying the original

design, we were able to identify 3 potential bugs in parts of the system that were the

same as the original one. For example, BUG-Example.AUTO.4 was not exposed before

because the original design used a faster configuration clock. This bug was identified

because ReSim did not activate the newly configured module until all words of the SimB
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were successfully written to the ICAP. Therefore, the use of SimBs more accurately mod-

eled the timing associated with partial reconfiguration, and ReSim-based simulation was

effective in testing the integrated Optical Flow Demonstrator.

We ran the simulations using ModelSim 6.5g on a Windows XP, Intel 2.53GHz Dual Core

machine. Figure 5.15 is a screen shot of one frame of a sample video. The simulated

design identifies the moving car and draws motion vectors accordingly. The movement

of the matched pixels is represented by various colors. In particular, red and yellow

dots indicate slow moving and distant objects whereas green and blue dots indicate fast

moving and close objects.

Figure 5.15: One frame of the input and the processed video (sensitivity parameter ε

=20)

Table 5.1: Time to simulate one video frame

Simulated

Time (ms)

Elapsed Time

(min)

Census Image Engine 1.1 6

Matching Engine 1.4 4.5

PowerPC Interrupt Handler 0.5 0.5

Dynamic Partial Reconfiguration < 0.1 negligible

Overall 3.0 11

The simulation performance of the testbench is summarized in Table 5.1. In the pipelined

processing flow, the video engines are the bottleneck of the system throughput (see

Figure 5.13). The time required to process one frame is determined by the video engines

and is therefore the sum of the execution time of CIE (1.1 ms), ME (1.4 ms), 2 DPR

intervals (<0.1 ms) and 3 ISR intervals (0.5 ms). Overall, it took 11 minutes to simulate

the processing of one frame. The Elapsed Time of each execution stage increases with

the Simulated Time and also increases if the simulated design has more signal activity.

For example, since the CIE engine has more signal toggling activity, the Elapsed Time

to simulate 1.1 ms of CIE operations (6 min) is longer than the time to simulate 1.4 ms

of ME operations (4.5 min). Since all bugs identified in this study were detected within

the first 2-4 frames, the debug turnaround time for simulation was therefore at most 44
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minutes per iteration. It should be noted that since the length of a SimB (4K words)

was significantly smaller than that of the real bitstream (129K words), the Elapsed Time

for simulating DPR could be ignored.

The original AutoVision project tested and debugged the integrated Optical Flow Demon-

strator using ChipScope [4]. For this case study and our host machine, the implemen-

tation and bitstream generation iteration took 52 minutes, and, as described in Section

2.1, the debug turnaround time for on-chip debugging would therefore have been at least

that much time per iteration, which is longer than the longest debug turnaround time

for simulation (i.e., 44 minutes as described above). Furthermore, it could be anticipated

that complex bugs such as BUG-Example.AUTO.4 would require several iterations to

trace using ChipScope, and would therefore have been extremely time consuming.

5.4 Case Study IV & V: Vendor Reference Designs

These case studies demonstrate the use of ReSim to verify two vendor reference designs.

In the first case study, a fast PCIe configuration reference design applies partial reconfig-

uration to meet the tight PCIe startup timing requirement [83]. In the second case study,

a processor dynamically reconfigures its peripheral modules for various math tasks [93].

Both reference designs target an ML605 board with a Virtex 6 LX240T FPGA.

Since the reference designs had already been proven, it is not surprising that we were not

able to detect bugs using ReSim-based simulation. However, simulating proven designs

from the vendor demonstrates the robustness and the flexibility of ReSim. Furthermore,

we use these reference designs to assess the additional workload required to apply ReSim

to designs that were not initially prepared for ReSim-based simulation.

5.4.1 Case Study IV: Fast PCIe Reference Design

Figure 5.16 illustrates the block diagram of the Fast PCIe configuration (FPCIe) refer-

ence design [83]. At startup, the reference design loads a light-weight PCIe endpoint logic

block within the required time. The rest of the FPGA is then dynamically reconfigured

with the core application logic (i.e., the Bus Master DMA module) via the established

PCIe link. To further save resource utilization of the design, we used a 64-entry FIFO

to buffer the bitstream instead of a 1024-entry one. We compare the original simulation

testbench with ReSim-based simulation. In particular:

• The original testbench provided with the design also used a dummy bitstream to

verify the bitstream datapath. However, the contents of this dummy bitstream

were meaningless and were therefore discarded, after being written to the ICAP,

without triggering the swapping of the core application logic. As a result, the sim-

ulated application logic operated whether or not the dummy bitstream was loaded

correctly, and potential bugs on the bitstream datapath could not be detected.

ReSim modeled the triggering condition more accurately by swapping in the Bus

Master DMA module according to the SimB.
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ICAPbitstream data
application data

PR LoaderSwitcher
 Reconfigurable Region : User ApplicationBus Master DMAPCIe endpoint

Figure 5.16: Fast PCIe configuration reference design, after [83]

• Moreover, ReSim supported the error injection required to test the isolation and

initialization mechanisms of the design. The Switcher isolated the RR from the

static part, so that DURING reconfiguration, the spurious outputs of the appli-

cation logic did not affect the PCIe endpoint. The robustness of the Switcher

as an isolation module was tested against the errors injected to it. Furthermore,

ReSim injected errors to the core application logic so as to mimic its undefined ini-

tial state and to check whether the PR Loader correctly reset the core application

logic AFTER reconfiguration.

Figure 5.17 illustrates a screenshot of ReSim-based simulation.

321
Figure 5.17: Simulating the FPCIe reference design

@t1: The testbench sends a SimB over the PCIe link. When the SimB is being trans-

ferred, errors are injected to the Bus Master DMA module (see the bmd signal

group).

@t2: At the end of bitstream transfer, the Bus Master DMA module is swapped in. At

the same time, the pr_loader module enables the RM.
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@t3: After reconfiguration, the Bus Master DMA module starts operating. Subse-

quent PCIe transactions are thus routed to the application logic instead of to the

pr_loader module.

Apart from performing cycle-accurate simulation on the reference designs, we tuned

the SimB to analyze the coverage of the Fast PCIe reference design. In particular, we

adjusted the size of the SimB to exercise various scenarios of the bitstream datapath

(see Table 5.2).

Table 5.2: The effect of SimB size on verification coverage

Test ID SimB

Size (B)

Individual

Coverage (%)

Accumulated

Coverage (%)

CPU

Time (s)

1 32 56.7 56.7 253

2 48 68.62 68.85 251

3 80 69.01 69.64 257

4 144 69.01 69.64 264

5 272 69.01 69.64 310

To exercise the FIFO FULL scenario, we increased the SimB size from 48 to 80 bytes,

which is beyond the 64-byte FIFO capacity, and the coverage increased accordingly. The

table also assists in selecting an optimal test set for regression. Considering Test 3, the

individual coverage using 80 bytes of SimB was less than the accumulated coverage for

Tests 1, 2 and 3. This increase in coverage was contributed by the shorter tests, which

exercised scenarios that were missed by the longer test. Therefore, Tests 1, 2 and 3 form

an optimal set of “golden” tests which contribute the highest accumulated coverage with

the least simulation time.

The development workload for integrating ReSim with the released testbench [83] in-

cluded 150 LOC (Tcl) describing parameters for generating the artifacts and 10 LOC

(Verilog) to instantiate the generated artifacts. We also changed 110 LOC (Verilog) in

the original testbench to send SimBs instead of the original dummy bitstream to the

FPCIe design. This case study only used code coverage and there was no extra work-

load for applying coverage-driven verification. Compared to the complexity of the design

(3500 LOC excluding code generated by CoreGen), the overheads of using ReSim and

performing code coverage analysis were trivial.

5.4.2 Case Study V: Reconfigurable Peripheral Reference Design

Figure 5.18 illustrates the block diagram of the Reconfigurable Peripheral reference de-

sign [93]. The design instantiates the bus-based xps_hwicap IP core as a reconfiguration

controller in order to swap peripheral modules (e.g., the xps_math module) attached to

the bus. By modeling the bitstream traffic, ReSim-based simulation tests the hardware

logic and the software driver of the xps_hwicap IP core, and verifies that the core is

correctly integrated with the rest of the system.
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xps_hwicapDDR2 Memory ICAP xps_uartTo host PC
microprocessor bus :PLBv46Microblaze demo applicationxps_math driverxps_hwicap driver Software

new module: maximumRM0: adderRM1: maximum
 Reconfigurable Region : xps_math

Figure 5.18: Reconfigurable Processor Peripheral reference design, after [93]

In order to simulate the system, we changed the reference design slightly. Since the

original reference design did not provide source code for the math cores, we designed

our own simple math cores (i.e., a maximum module and an adder module, which were

similar to those used in Section 5.1.1). Since we did not have a simulation model for the

provided SD card, we were not able to simulate the process of copying bitstreams from

the SD card to the DDR2 memory. We therefore assumed that the copy was performed

correctly and directly loaded SimBs to the DDR2 memory using ModelSim commands.

It should be noted that the above changes were required since the original reference

design was not provided in a simulatable form, and were not requirements of the ReSim

library. To integrate ReSim with the simulation environment, the designer created 50

LOC (Tcl) describing parameters for generating the artifacts and 10 LOC (Verilog) to

instantiate the generated artifacts.

Although the design was proven, we were able to expose a potential isolation bug in

the system (i.e., BUG-Example.UG744.1). This isolation bug was not exposed in the

reference design because RMs were not accessed during reconfiguration. To expose this

bug, we deliberately modified the reference design so that the software attempted to

access the RM during reconfiguration. In particular, instead of using the software to

copy the bitstream data byte-by-byte to the xps_hwicap module, we added a Direct

Memory Access (DMA) module to the system to perform bitstream transfer. Using the

DMA module, the software was relieved from performing bitstream transfer and was

thereby able to read software-accessible registers of the RM undergoing reconfiguration.

It should be noted that we deliberately introduced the above-mentioned changes so as

to expose the isolation bug. Figure 5.19 illustrates a simulation run that exposes the

isolation bug.

BUG-Example.UG744.1: The Reconfigurable Peripheral reference design
did not isolate the RR undergoing reconfiguration. Spurious outputs could
therefore propagate from the RR to the static part of the system

• BEFORE Reconfiguration @t1: The value of the rm1/statistic register is

0xf00d003.

• DURING Reconfiguration @t2: The DMA starts transferring a SimB (see the

icap/cdata signal) to the xps_hwicap module. As a result, RM1 is swapped out
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31 2
Figure 5.19: A potential isolation bug in the reference design

immediately and RM0 is not swapped in until the end of SimB transfer. Errors

have been injected to the output signals of both RM0 and RM1 so as to mimic

the spurious outputs of the RR during reconfiguration.

• DURING Reconfiguration @t3: The software attempts to access the rm0/sta-

tistic register. However, since reconfiguration is still in progress, the new module,

RM0, has not yet been swapped in. As a result, an undefined “x” value is returned

to the processor via the PLB bus (see the sl_rddbus signal in the upper right part

of the figure).

This bug was easily identified because the undefined “x” values injected by ReSim prop-

agated to the registers of the microprocessor. Furthermore, ReSim accurately simulates

the timing of reconfiguration events (i.e., bitstream transfer, start and end of error in-

jection) and activities of the static design (i.e., reading registers), which are all essential

to detect this bug.

Using the slightly modified reference design, we were also able to expose the bug on the

target FPGA. The upper left half of Figure 5.19 illustrates the standard output of the

software. The software printed the value of the statistic register BEFORE, DURING

and AFTER reconfiguration. In particular, the value of the statistic register was

undefined and kept changing DURING reconfiguration. Exposing this bug on the FPGA

demonstrates that ReSim-based simulation can accurately reveal DPR-related bugs in

DRS designs.
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5.5 Summary

Our case studies demonstrate that ReSim can be applied to a range of DRS design

styles. In particular, we demonstrated the use of ReSim with in-house designs (i.e.,

the XDRS platform and the fault-tolerant DRS), a third-party design (i.e., AutoVision)

and reference designs; with hardware-only designs (i.e., the FPCIe reference design and

the fault-tolerant DRS) and with microprocessor-based HW/SW designs; with demo

applications (i.e., streaming and periodic applications) and with real-world applications

(i.e., a fault-tolerant application and a video processing application); a design that saves

and restores module state via the configuration port (i.e., the periodic application on

XDRS); with designs that use customized reconfiguration controllers (i.e., xps_icapi,

IcapCtrl) and vendor IP (i.e., the xps_hwicap core); as well as with designs that were

mapped to Virtex-5 (i.e., XDRS, fault-tolerant DRS, AutoVision) and to Virtex-6 (i.e.,

the two reference designs).

Our case studies also demonstrate that ReSim can be seamlessly integrated with well-

established verification methodologies and extend such methodologies to DRS designs.

For complex DRS designs such as the XDRS platform and the Optical Flow Demon-

strator, it is not possible, in general, to distinguish a software bug from a hardware bug

when the system is not working (e.g., BUG-Example.XDRS.3, BUG-Example.AUTO.4).

HW/SW co-simulation has the advantage of allowing the designer to cross-debug vari-

ables and functions of the software and signals of the RTL hardware (see Sections 5.1

and 5.3). By creating a virtual platform, co-simulation can be performed at transac-

tion level, which is fast enough to run the target software application (see Section 5.1).

Since ReSim and/or Extended ReChannel-based simulation can accurately simulate the

reconfiguration process, the designer can debug the software that controls the start and

end of reconfiguration as if the software were running on a target FPGA.

Coverage analysis helps to track the progress of verification and to identify corner cases

(see Sections 5.1, 5.2 and 5.4.1). Code coverage assisted in ensuring a reasonable level of

confidence in a design without extra development overhead. Functional coverage further

quantifies the verification progress at the cost of manually modeling coverage items. In

particular, simulation artifacts such as SimBs can be used in the modeling of coverage

items (see Section 5.1). Coverage analysis is typically combined with constrained random

stimuli generation techniques to maximize the possibility of exercising corner cases and

to improve coverage. In the verification process, the size of SimBs can be used as a

random variable so as to exercise a range of execution scenarios of the system (see

Sections 5.2 and 5.4.1).

We used ReSim-based simulation in the context of platform-based design (see Section

5.1.1) and IP-reuse methodology (see Section 5.3). For the in-house designed XDRS

platform, although the first streaming application did not save and restore module state,

the state saving and restoring capability of XDRS was thoroughly verified in the ReSim-

based verification of the platform. As a result, the verification effort of the second

periodic application was reduced due to the use of a platform-based design methodology.

The verification progress of the AutoVision system indicated that IP integration could

be much more difficult than a designer might expect, even when the individual modules
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and software functions are FPGA-proven and reused. ReSim enabled the simulation of

an integrated DRS design, and in doing so detected system integration bugs and bugs

that were missed by Virtual Multiplexing.

Table 5.3 summarizes the case studies. We summarize these case studies in terms

of the development workload, simulation overhead and bugs detected. The bugs in

the table were all exposed in verifying the designs, i.e., we did not deliberately in-

troduce any bug to a design. In particular, the table does not include the isolation

bug (i.e., BUG-Example.UG744.1) that was deliberately introduced to the Processor

Peripheral reference design. The table also does not include false positive bugs (i.e.,

BUG-Example.AUTO.1, and the 7 false positive bugs in the TLM model of the XDRS

platform) identified in the case study. It should be noted that for the fault-tolerant

DRS case study, we used ChipScope at the beginning of the project in order to com-

pare ChipScope-based debugging with ReSim (see Section 5.2). We analyzed the bugs

detected by ChipScope and found that all 4 bugs could easily have been detected via

ReSim-based simulation.

Table 5.3: Summary of case studies

Case Study Complexity of the

reconfiguration

machinery (LOC)

Parameter

Script

(LOC)

Simulation

Overhead

(%)

DPR-related

Bugs

(ReSim/Others)

XDRS

(Streaming Application)

1300 (Verilog, exclud-

ing EDK code)

+ 1150(C)

50 (Tcl) 8.3 34/0

XDRS

(Periodic Application)

1300 (Verilog, exclud-

ing EDK code)

+ 1750(C)

50 (Tcl) 6.8 5/1

Fault-tolerant DRS 2150 (Verilog, exclud-

ing ICAP-I & Flash

controller)

60 (Tcl) 20.9 18/4

AutoVision 1250 (VHDL)

+ 400(C)

80 (Tcl) 1.7 7/0

Fast PCIe Configuration

(XAPP883)

3500 (Verilog, exclud-

ing CoreGen code)

150 (Tcl) 0.3 –

Processor Peripheral

(UG744)

2400 (VHDL)

+ 3200(C)

50 (Tcl) 0.7 –

Development Workload. The extra development workload for using ReSim in-

volved creating the parameter scripts outlined in Figure 4.2, which ranged from 50-150

LOC (Tcl) for these case studies. Since we planned for simulation-based verification at

the very beginning of the two in-house case studies, the workload of building the simula-

tion environment and applying ReSim-based simulation was more predictable. However,

in the AutoVision case study (see Section 5.3), we spent significant effort in setting up

a baseline simulation environment. For the two reference designs (see Section 5.4), the

workload to build a simulation environment or applying ReSim to an existing simulation

environment was not significant compared with the complexity of the designs. Generally
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speaking, the workload of using ReSim is trivial compared to the effort spent creating a

DRS design and a testbench.

Admittedly, simulation involves overheads to develop testbenches, create high-level ref-

erence models (see Section 5.1) and model functional coverage items (see Sections 5.1

and 5.2). Referring to the Tools and Methodologies Objective of this thesis (see Section

1.1), a designer needs to trade-off between various methodologies and apply them to

specific DRS design projects. It should be noted these overheads are not introduced

by ReSim. As described by the Tools and Methodologies Objective of this thesis (see

Section 1.1), ReSim aims to bridge the gap between verifying DRS designs and verifying

traditional static designs; it does not aim to reduce the effort of functional verification

itself.

Simulation Overhead. For each case study, we used the ModelSim profiling tool to

evaluate the simulation overhead of ReSim. We found that 0.3–20.9% of simulation time

was spent in ReSim (including both in generated artifacts and in library components).

The simulation overhead of ReSim is proportional to the number of signals crossing the

RR boundary since all boundary signals are multiplexed as opposed to being connected

to the static part directly. The overhead is also proportional to the frequency of recon-

figuration in a specific simulation run since each reconfiguration involves costs to swap

modules and inject errors, and a scenario-dependent delay to transfer the SimB. Overall,

the simulation overhead was lower for more complex designs (e.g., AutoVision, FPCIe,

etc) and was higher for simpler designs (e.g., the fault-tolerant DRS).

Bugs Detected. From the development progress and the bugs detected from vari-

ous case studies, we notice that the reconfiguration process could be much more difficult

to verify than a designer might expect. Correctly verifying the RMs and the static

region is essential but does not guarantee the correct transition from one configura-

tion to another. Table 5.4 lists all example bugs described in this Chapter (includ-

ing false positive bug(s) and deliberately introduced bug(s)). Apart from citing the

Bug ID, we add to each bug a Tag indicating the key words associated with each bug

so as to remind readers of the details of these bugs. Bugs could be introduced im-

mediately BEFORE (e.g., BUG-Example.XDRS.2, BUG-Example.XDRS.5, ...), DUR-

ING (e.g., BUG-Example.XDRS.4, BUG-Example.AUTO.2, ...) and AFTER (e.g.,

BUG-Example.FT.2, BUG-Example.AUTO.4, ...) reconfiguration. Bugs could be in-

troduced to hardware, software (e.g., BUG-Example.XDRS.2, BUG-Example.XDRS.6,

BUG-Example.AUTO.3) and a mixture of hardware and software (e.g., BUG-Exam-

ple.XDRS.3, BUG-Example.AUTO.4). Even if individual modules and software func-

tions were FPGA-proven and reused, bugs could still be introduced due to mismatches

between module parameters (e.g., BUG-Example.AUTO.2), inconsistencies between soft-

ware and hardware (e.g., BUG-Example.AUTO.3) and using proven IP in a different

scenario (e.g., BUG-Example.FT.3, BUG-Example.AUTO.4). Therefore, it is highly de-

sirable to test and debug an integrated DRS design including the process of reconfiguring

the design with a range of configuration bitstream sizes that could be expected at run

time.
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Table 5.4: Summary of example bugs described in Chapter 5

Bug ID Bug Tag Section ... Detected by ...

BUG-Example.XDRS.1 ICAPI DONE 5.1 Extended ReChannel

BUG-Example.XDRS.2 Flush Cache 5.1 Extended ReChannel

BUG-Example.XDRS.3 Multiple Recon 5.1 Extended ReChannel

BUG-Example.XDRS.4 Isolation Mismatch 5.1 ReSim

BUG-Example.XDRS.5 Block Until Idle 5.1 ReSim

BUG-Example.XDRS.6 Restoration Pointer 5.1.1 ReSim

BUG-Example.XDRS.7 Wrong Pad Word 5.1.1 On-chip Debugging

BUG-Example.FT.1 Level Clock 5.2 On-chip Debugging

Could have been de-

tected by ReSim

BUG-Example.FT.2 Feed Pipeline 5.2 ReSim

BUG-Example.FT.3 Too Quick Recon 5.2 ReSim

BUG-Example.AUTO.1 Sig Reg 5.3 Virtual Multiplexing

BUG-Example.AUTO.2 IcapCtrl PLB 5.3 ReSim

BUG-Example.AUTO.3 Driver Update 5.3 ReSim

BUG-Example.AUTO.4 Engine Reset 5.3 ReSim

BUG-Example.UG744.1 Bus Isolation 5.4.2 ReSim

On-chip Debugging

Bugs that can ONLY be detected by ReSim/Extended ReChannel-based simulation are

marked in bold in the “Detected by ...” column in Table 5.4 (see detailed descriptions of

each bug in relevant Sections). Other bugs could also be detected with previous methods

such as Virtual Multiplexing [54] and DCS [69]. For example, BUG-Example.XDRS.1

and BUG-Example.XDRS.5 could be detected by simulating the static part of the design

in a module-level testbench using conventional simulation techniques, because exposing

the two bugs did not require modeling any characteristic feature of DPR. However,

since ReSim enables simulating an integrated DRS design before, during and after re-

configuration, it significantly reduces the system integration effort. As another example,

BUG-Example.UG744.1 could also be detected by DCS, because it also supports inject-

ing errors to the static region while the RM is being reconfigured [69]. However, since

ReSim models characteristic features of DPR, it is able to detect more bugs missed by

previous methods (see Section 5.3). Furthermore, since ReSim does not require chang-

ing the design for simulation purposes, it does not introduce false positive bugs (e.g.,

BUG-Example.AUTO.1).

For a complete list of all DPR-related bugs detected in the case studies, please refer to

Appendix A.

Our case studies indicate that it is non-trivial to insert probe logic and to debug

the implemented DRS design using ChipScope (see, BUG-Example.XDRS.7, BUG-

Example.FT.1). For the AutoVision case study, even the shortest debug turnaround
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time for on-chip debugging is longer than the longest debug turnaround time for ReSim-

based simulation (see Section 5.3). Furthermore, on-chip debugging does not collect

coverage and can only validate a limited number of scenarios for the implemented de-

sign (see BUG-Example.FT.3). Even when a module is FPGA-proven, a bug can still be

introduced during system integration (see BUG-Example.AUTO.2). However, on-chip

debugging is completely accurate and can detect fabric-dependent bugs (e.g., BUG-

Example.XDRS.7), which cannot be detected by ReSim-based simulation (see Section

3.3). Referring to the Tools and Methodologies Objective of this thesis (see Section 1.1),

we do not advocate eliminating on-chip debugging. Nevertheless, we believe that it is

highly desirable to perform simulation to identify and fix as many fabric-independent

bugs as possible in the early stage of the design cycle, and leave the fabric-dependent

part of the design to be tested on the target FPGA.



Chapter 6

Conclusions

This chapter concludes the thesis. The chapter starts with concluding remarks on the

contributions of this thesis (see Section 6.1). We describe our contributions according

to the thesis objectives described in Section 1.1. Section 6.2 describes the future work.

With regard to the limitations of the simulation-only layer (see Section 3.3), we illustrate

two possible directions to resolve the challenges of eliminating fabric-dependent bugs in

DRS designs. We also discuss the possible future trend to verifying DRS designs at

run-time.

6.1 Concluding Remarks

Due to the exponential increase in hardware design costs and risks, the electronics indus-

try has begun shifting towards the use of reconfigurable devices such as FPGAs as main-

stream computing platforms. Compared with customized ASIC designs, FPGA-based

hardware/software systems can be flexibly programmed in the field and are therefore

more amenable to upgrades and bug fixes over the product life-cycle. Dynamic Partial

Reconfiguration further extends the flexibility of FPGAs by allowing hardware logic to

be partially reprogrammed while the rest of a design continues to operate. However,

such flexibility introduces significant new challenges to ensuring the functional correct-

ness of DRS designs. The objective of this thesis was to develop a methodology and

tools to assist designers in verifying DRS designs while part of their design is undergoing

reconfiguration.

For simulation-based functional verification, the primary challenge in verifying DRS

arises from the conflicting requirements of simulation accuracy and verification produc-

tivity. In particular, in order to exercise and verify reconfiguration scenarios of the user

design, the simulation environment needs to model the FPGA fabric so as to accurately

simulate the inter-layer interactions between the user design and the physical layers.

However, for the sake of productivity, simulation and verification of the user design

should abstract away the details of the FPGA fabric to which the design is mapped.

For effective simulation-based functional verification of hardware designs, either static

96
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Figure 6.1: Tradeoff between simulation accuracy and verification productivity (using
ReSim and Extended ReChannel)

or DRS, designers therefore need to find a balance between accuracy and productivity

(see Figure 6.1, similar to Figure 3.6).

For static designs (the solid line in the figure), cycle-accurate RTL simulation is at the

middle of the spectrum, and is both cycle-accurate and physically independent. Com-

pared with the simulation of static designs, designers have to sacrifice either accuracy or

productivity in simulating DRS designs (the dashed line in the figure). Fabric-accurate

simulation can be viewed as a cycle-accurate simulation of the FPGA device together

with the configuration-bit representation of the user design. Although its simulation

accuracy is comparable to traditional RTL simulation, fabric-accurate simulation suffers

from low verification productivity and, more importantly, the simulation model of the

FPGA fabric is not openly available to DRS designers. Without being dependent on

the fabric, previous high-level modeling (e.g., ReChannel [67]) or RTL simulation (e.g.,

MUX-based method [54], DCS [69]) approaches achieve the desired level of productivity

while sacrificing accuracy in simulating the reconfiguration process.

This thesis balances the conflicting requirements of simulation accuracy and verification

productivity by introducing a simulation-only layer. The simulation-only layer can be

viewed as a fabric-independent FPGA device that mimics the impact of the FPGA fabric

on the user design. We abstracted away the details of the FPGA fabric by extracting and

modeling 6 characteristic features of DPR, namely, module swapping, triggering condi-

tion, bitstream traffic, bitstream content, spurious outputs and undefined initial state.

Using the simulation-only layer, simulation can be thought of as functionally verifying

the user design layer of a DRS on a fabric-independent FPGA. Simulation using the

simulation-only layer is therefore able to assist designers in detecting fabric-independent

bugs of a DRS design, thereby fulfilling the Functional Verification Objective of the

thesis.

From a CAD tool perspective, we have proposed an Extended ReChannel library for the

high-level modeling of DRS designs, and a ReSim library to support RTL simulation of

DRS designs. The two libraries are two possible implementations, at different levels of
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abstraction, of the simulation-only layer concept. Using a library-based approach, our

method does not require designers to change their design for simulation purposes and the

simulated designs are therefore implementation-ready. The libraries provide Tcl APIs to

help designers in generating parameterizable source code for the simulation-only layer.

From a methodology perspective, we have demonstrated the use of ReSim with well-

established verification methodologies such as top-down modeling and coverage-driven

verification. The case studies demonstrated that ReSim-based simulation assisted in

detecting bugs that would have been missed using previous methods. Although not being

able to expose fabric-dependent bugs, ReSim-based simulation helps designers to reduce

their reliance on costly on-chip debugging. The overall effort of functionally verifying

DRS designs has therefore been significantly reduced. We have thereby achieved the

Tools and Methodologies Objective of the thesis. Since the ReSim and the Extended

ReChannel libraries can be used with the mainstream DRS design flow, we have also

been able to achieve the Mainstream Objective of the thesis.

By mimicking the FPGA fabric using a simulation-only layer, ReSim significantly im-

proves simulation accuracy over previous RTL level approaches with negligible produc-

tivity penalties (i.e., development and simulation overheads), and significantly improves

simulation productivity compared with fabric-accurate simulation (see Figure 6.1). Us-

ing similar concepts, Extended ReChannel also improves the accuracy of high-level mod-

eling without sacrificing much productivity. ReSim has been released as an open source

tool under the BSD license, and is available via http://code.google.com/p/resim-

simulating-partial-reconfiguration .

6.2 Future Work

The simulation-only layer proposed in this thesis can offer limited assistance in detecting

fabric-dependent bugs. It is also not straightforward to apply our approach to verify

module relocation or fine-grained reconfiguration (see Section 3.3). Since module re-

location and fine-grained reconfiguration improve the design flexibility compared with

the modular reconfiguration flow proposed by FPGA vendors, it would be desirable to

support simulation-based functional verification of non-modular DRS designs as well.

We propose two possible directions to resolve such a verification gap but leave both

directions as future work.

One direction is to further improve the simulation accuracy of the simulation-only layer

by capturing more details of the FPGA fabric (e.g., placement information, configuration

bits). For example, instead of simulating the entire FPGA fabric, it is possible to

simulate a small portion of the design (e.g., the LUTs that are fine-grained reconfigured)

in a fabric-accurate manner, which can significantly improve the simulation accuracy for

fine-grained reconfigurable designs. On the other hand, to simulate module relocation, it

is possible to keep track of module placement information in the simulation-only layer, so

as to ensure modules do not overlap with each other. The more accurate the simulation-

only layer is, the less mismatches exist between the simulation-only layer and the target

FPGA, and the fewer false positive and negative bugs are introduced. However, in order

to maintain verification productivity, the simulation-only layer cannot include all details
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of the FPGA fabric. The modeling should focus on the inter-layer interactions between

the physical layer and the user design instead of on activities within the physical layer.

On the other hand, it should be noted that with the increased number and variety of

inter-layer interactions, it is more and more difficult to simulate a DRS design without

being dependent on the physical layer. The mismatches between the simulation-only

layer and the target FPGA fabric could cause more false positive bugs and false negative

bugs to be reported by simulation. For these DRS designs, it is inevitable to rely on

on-chip debugging to identify and fix fabric-dependent bugs. Therefore, the other way

to resolve the verification gap is to improve the verifiability of a DRS design by reducing

the degree of inter-layer interactions within a DRS design. In particular, it is desirable

that:

• The designer keeps the fabric-dependent part to a minimum or to avoid using

fabric-dependent features in the design. This can also improve the portability of

the design while reducing verification difficulty.

• The designer separates the fabric-dependent and fabric-independent parts so as to

localize potentially unidentified bugs to the fabric-dependent part of the design.

By carefully partitioning the design, the designers can maximize the number of

fabric-independent bugs that could be exposed using the simulation-only layer

and field testing can focus on debugging the fabric-dependent part, which requires

less effort than debugging the entire design.

• For DRS designs that perform module relocation or fine-grained reconfiguration, it

is desirable that designers reuse existing proven design tools and IP that support

non-modular reconfiguration so as to avoid creating fabric-dependent components

from scratch.

The simulation-only layer can also be extended to non-simulation-based verification such

as formal verification. As described in Section 2.2.3, the designer needs to capture the

intended interaction between the user design and the FPGA fabric in a formal spec-

ification, and use a formal verification tool to verify that a design meets its formal

specification. Ideally, the formal specification needs to capture the inter-layer interac-

tions without modeling the details of the FPGA fabric. It would be possible to model

the inter-layer interactions using artifacts that are similar to the simulation-only layer,

except that the artifacts should be implemented such that they can be easily used by

formal verification tools. However, the general concepts of the simulation-only layer still

apply.

As described in Section 4.4, the current implementation of the library also imposes some

limitations. However, since ReSim applies object-oriented techniques and provides Tcl

APIs, users can extend the library for their specific test purposes. Furthermore, since

the library is released as an open source tool, users can, if they wish, modify the library

to address the implementation-related limitations. Last but not least, we aim to address

the implementation-related limitations of ReSim in future releases of the library.

Looking ahead, dynamic reconfiguration has changed the way engineers design hardware

and will also change the way hardware is verified. As described in Section 2.4, since a
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DRS can be designed to be open-ended, it requires the capability to verify its correct

reconfiguration and execution at run time. Despite limited research being done, run-

time verification is a long term trend for future DRS designs. Compared with design-

time verification, run-time verification of open-ended DRS designs introduces two main

challenges:

• Hardware modules/tasks sourced externally to the system may not have been

thoroughly verified. Functional bugs could exist in the module itself or can be

introduced when integrating the module with the rest of the system. Even for

thoroughly verified modules, the reconfiguration process can introduce bugs to the

system. For example, configuration bits can be corrupted either externally or inter-

nally to the design. If the Frame Address bits have been corrupted, reconfiguration

could incorrectly change the static user logic.

• Apart from checking bugs that are unintentionally introduced to the design, the

system also needs to identify malicious hardware tasks that could damage the

system. Therefore, run-time verification needs to verify the credibility of the source

of configuration bitstreams and reconfiguration requests. Unauthorized hardware

tasks should not be allowed to run. The verification problem then morphs into a

security problem.

Furthermore, even for traditional static designs, there is a growing need to perform

run-time verification so as to detect and mitigate configuration bit errors introduced

by radiation or device aging. FPGA-based systems use configuration scrubbing and/or

partial reconfiguration to fix run-time configuration errors [92] [16]. In such case, the

verification problem morphs into a fault-tolerance problem.

Since it is not practical to run simulation at system run time, the proposed simulation-

only layer approach cannot be used for run-time verification. Furthermore, since run-

time verification directly tests hardware tasks on the target FPGA, it is not necessary to

provide designers with a simplified simulation model of the FPGA device and run-time

verification should therefore be 100% accurate. However, run-time verification suffers

from low visibility and controllability. Furthermore, the system may not be able to afford

many resources to perform the verification. Existing run-time verification techniques

(e.g., run-time equivalence checking [81], proof carrying hardware [24], FPGA-in-the-

loop simulation [61] and self-checking circuitry [63], see Section2.4) do not systematically

or thoroughly verify DRS designs and significant effort is needed to address these issues.



Appendix A

Bugs Detected in Case Studies

This appendix describes DPR-related bugs that were detected in the case studies de-

scribed in Chapter 5 (see Table 5.3). Our discussion does not include any bug that was

deliberately introduced to the case studies (e.g., BUG-Example.UG744.1 bug). We also

do not include false positive bugs (i.e., BUG-Example.AUTO.1, and the 7 false positive

bugs in the TLM model of the XDRS platform) identified in the case study. We describe

each bug in the following format

• Bug ID @ Time detected (as described in the corresponding case study)

– Synopsis: A brief description of the cause of the bug

– Description: A more detailed explanation of the cause of the bug

– Method: The method we used to detect the bug. If Extended ReChannel or

ReSim is the only method to detect the bug, we also explain the reason why

the bug cannot be detected using previous methods.

– Alternative Method(s): By analyzing the cause of the bug, we determine

alternative simulation-based methods, such as ReChannel [67], Virtual Mul-

tiplexing [54] and DCS [69], which could be used to detect the bug. It should

be noted that all of these bugs can, in general, be detected by on-chip debug-

ging at the cost of significantly greater debugging time. We therefore do not

explicitly list on-chip debugging as an alternative method.

By comparing Extended ReChannel and ReSim with previous simulation-based ap-

proaches, we aim to demonstrate that the proposed simulation-only layer approach is

effective in assisting designers in identifying DPR-related bugs. The bugs described here

can also be used as a reference for future designers to understand the potential sources

of DPR-related bugs.

A.1 Case Study I: In-house DRS Computing Platform

For the XDRS case study (see Section 5.1), simulation-based approaches detected 34

DPR-related bugs in the streaming application and 5 DPR-related bugs in the periodic

101
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application. We detected 1 fabric-dependent bug in the periodic application using Chip-

Scope. We describe the bugs according to the time at which they were detected during

the project development (see Figure 5.2).

Weeks 3-5: TLM modeling using Extended ReChannel.

• BUG.XDRS.TLM.1 @ Week 3

– Synopsis: Address map mismatch in SW/HW

– Description: The status register of the xps_icapi module was mapped to

offset 0x4 in software and to offset 0x0 in hardware.

– Method: Extended ReChannel

– Alternative Method(s): ReChannel

• BUG.XDRS.TLM.2 (Same as BUG-Example.XDRS.1) @ Week 3

– Synopsis: Incorrect reset value for the ICAPI_DONE flag

– Description: The xps_icapi module uses an ICAPI_DONE flag to indicate the

end of bitstream transfer. Such a flag should be set to 1 at power up but

was incorrectly initialized to 0. This bug was detected in the TLM model of

the system, but it revealed a potential bug that could also exist in the RTL

design.

– Method: Extended ReChannel

– Alternative Method(s): ReChannel

• BUG.XDRS.TLM.3 @ Week 3

– Synopsis: Software reset register

– Description: HW/SW co-simulation indicated that a software reset register

had to be added to the xps_icapi module.

– Method: Extended ReChannel

– Alternative Method(s): ReChannel

• BUG.XDRS.TLM.4 @ Week 3

– Synopsis: Incorrect PLB connection

– Description: The master PLB interface of the xps_icapi module was incor-

rectly left unconnected.

– Method: Extended ReChannel

– Alternative Method(s): ReChannel

• BUG.XDRS.SW.1 @ Week 3

– Synopsis: A bug in an if condition
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– Description: A logic error in polling the status of the xps_icapi module.

while ( I cap i GetSta tus ( ) == ICAPI IS BUSY ) { . . . }

/∗ WAS. I cap i Ge tS ta tu s ( ) !=ICAPI IS BUSY ∗/

– Method: Extended ReChannel

– Alternative Method(s): ReChannel

• BUG.XDRS.SW.2 @ Week 3

– Synopsis: A bug in an assertion

– Description: A logic error in the software driver that checks the IDCODE.

Xil AssertNonvoid ( IcapiReadIdCode ( ) == FPGA IDCODE) ;

/∗ WAS. Xi l Asser tNonvoid ( IcapiReadIdCode () != FPGA IDCODE) ; ∗/

– Method: Extended ReChannel. Since ReSim supports configuration read-

back, software can read and check the IDCODE of the simulation-only layer

in the same way as reading the IDCODE of the target FPGA. The above soft-

ware code can therefore be tested in ReSim-based simulation

– Alternative Method(s): None

• BUG.XDRS.SW.3 @ Week 4

– Synopsis: A bug in setting a control register

– Description: The software driver didn’t correctly set the start bit of the

ctrl_reg register and the bitstream transfer didn’t start.

void I c ap i S e tC f gS ta r t ( ) {

. . .

c t r l r e g |= 0x1 ;

/∗ WAS. c t r l r e g &= 0x1 ∗/

– Method: Extended ReChannel. The bug was detected because bitstream

transfer was not started in simulation. Since Extended ReChannel explicitly

models bitstream traffic, the start and end of the bitstream traffic can be

simulated and verified.

– Alternative Method(s): None

• BUG.XDRS.TLM.5 @ Week 4

– Synopsis: Transferring the same bitstream twice.

– Description: The software starts reconfiguration by writing the start bit of

the control register of the xps_icapi module. However, it incorrectly set the

start bit twice. Although this bug was caused by software, we modified the

hardware to ignore the second start.

– Method: Extended ReChannel

– Alternative Method(s): ReChannel

• BUG.XDRS.TLM.6 @ Week 4
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– Synopsis: Fail to enable interrupts before reconfiguration

– Description: The software needs to enable interrupts before reconfiguration.

Following the previous bug, ignoring multiple starts in the xps_icapi module

also incorrectly ignored the operation that enabled interrupts.

– Method: Extended ReChannel

– Alternative Method(s): ReChannel

• BUG.XDRS.SW.4 @ Week 4

– Synopsis: Typo in asserting function argument

– Description: An assertion of the software driver checked a wrong argument.

void Icapi SetCbHandler ( IcapiCbHandler t FuncPtr , void∗ CbRef ) {

Xi l Asser tVo id ( FuncPtr != NULL) ;

/∗ WAS. Xi l Asser tVoid (CbRef != NULL) ; ∗/

– Method: Extended ReChannel

– Alternative Method(s): ReChannel

• BUG.XDRS.SW.5 @ Week 4

– Synopsis: Fail to disable interrupts after reconfiguration

– Description: Failed to disable interrupts of the xps_icapi module in the

software driver. As a result, the interrupts were incorrectly asserted twice.

void I c ap i In t e r rup tHand l e r ( ){

. . .

I c a p i S e t I n t rD i s a b l e ( ) ; /∗ WAS. no such c a l l ∗/

DrvPtr−>CbHandler (DrvPtr−>CbRef , I cap i GetSta tus ( ) ) ;

– Method: Extended ReChannel

– Alternative Method(s): ReChannel

• BUG.XDRS.SW.6 (Same as BUG-Example.XDRS.2) @ Week 4

– Synopsis: Fail to flush cache

– Description: To accelerate bitstream transfer, the system software loads bit-

stream data from a slow flash memory and buffers the bitstreams in a fast

DDR2 memory. However, the software failed to flush the bitstream data from

the processor cache to the DDR2 memory and the xps_icapi module trans-

ferred incorrect bitstreams from the DDR2 memory during reconfiguration.

– Method: Extended ReChannel. The bug was easily identified since un-flushed

SimB data was transferred to the simulated ICAP port but the new RM was

not swapped in during simulation, and would not have been identified without

modeling bitstream traffic.

– Alternative Method(s): None

• BUG.XDRS.SW.7 @ Week 4

– Synopsis: Bug in setting bitstream transfer size
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– Description: The transfer size register of the xps_icapi module uses size in

WORDs while software incorrectly set size in BYTEs.

void I cap i DoCon f i gu ra t i on In t r ( ) {

. . .

DrvPtr−>Bu f f e rS i z e=NumWords

/∗ WAS. DrvPtr−>Bu f f e rS i z e=NumWord∗4 ∗/

– Method: Extended ReChannel. Since Extended ReChannel models bitstream

traffic, this bug was easily identified. In particular, since the xps_icapi

module incorrectly attempted to transfer more data than required, it accessed

un-defined memory space and the simulation failed.

– Alternative Method(s): None

• BUG.XDRS.TLM.7 @ Week 5

– Synopsis: Tuning register definitions.

– Description: HW/SW co-simulation indicated that the xps_icapi module

should use one ACK field in the status register for all three reconfigurable

regions instead of using three.

– Method: Extended ReChannel

– Alternative Method(s): ReChannel

• BUG.XDRS.TLM.8 (Same as BUG-Example.XDRS.3) @ Week 5

– Synopsis: Illegal reconfiguration sequence

– Description: The SyncMgr mistakenly requested a second reconfiguration be-

fore the first one had finished (i.e., an illegal reconfiguration sequence). The

designer fixed the bug by modifying the hardware to report such illegal re-

configuration requests and by adding a reconfiguration_in_progress flag

to the software driver.

– Method: Extended ReChannel. The bug was detected because the delay as-

sociated with the first reconfiguration was accurately modeled by transferring

the SimB using Extended ReChannel.

– Alternative Method(s): None

• BUG.XDRS.SW.8 @ Week 5

– Synopsis: RM is not reset after reconfiguration

– Description: A software reset function should be called by the interrupt ser-

vice routine as a user-defined call-back function at the end of reconfiguration.

However, the software reset function was not correctly called.

– Method: Extended ReChannel. In the TLM model, RMs need to be activated

by the software writing to a software reset register of the SyncMgr module.

Since the software reset function was not correctly called, the software reset

register was not written and the RMs were not activated.

– Alternative Method(s): ReChannel
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Weeks 6-8: Coverage-driven Verification using ReSim.

• BUG.XDRS.RTL.1 @ Week 6

– Synopsis: Cycle mismatch in asserting the write enable signal of the ICAP.

– Description: Should assign the wr_en signal from state_c not state_n .

– Method: ReSim. Since ReSim modeled bitstream traffic, this bug was readily

detected by ReSim-based simulation.

– Alternative Method(s): None

• BUG.XDRS.RTL.2 @ Week 6

– Synopsis: Incorrect bitstream size.

– Description: The ICAP-I module loaded one more word of bitstream data

than needed.

– Method: ReSim. Since ReSim modeled bitstream traffic, this bug was readily

detected by ReSim-based simulation.

– Alternative Method(s): None

• BUG.XDRS.RTL.3 @ Week 6

– Synopsis: Active-high vs. active-low enable signals.

– Description: The chip select signal of the ICAP port is active-low but was

incorrectly asserted high during reconfiguration.

– Method: ReSim. Since ReSim modeled bitstream traffic, this bug was readily

detected by ReSim-based simulation.

– Alternative Method(s): None

• BUG.XDRS.RTL.4 @ Week 6

– Synopsis: Fail to reverse the order of ICAP signals.

– Description: The ICAP signals on Virtex-5, Virtex-6 and Virtex-7 have been

bit-reversed. The designer failed to reverse the bit order of the ICAP-I recon-

figuration controller, which was previously designed for Virtex-4 FPGAs.

– Method: ReSim. Since ReSim modeled bitstream traffic, this bug was readily

detected by ReSim-based simulation.

– Alternative Method(s): None

• BUG.XDRS.RTL.5 @ Week 6

– Synopsis: Active-high vs. active-low reset signals

– Description: The control signal of the Isolation module is active-low but

was incorrectly assigned with an active-high source. As a result, RMs were

incorrectly isolated when the system was not reconfiguring.

– Method: ReSim.
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– Alternative Method(s): Virtual Multiplexing, DCS

• BUG.XDRS.RTL.6 @ Week 6

– Synopsis: A bug in connecting the Isolation module.

– Description: Incorrectly connected an non-isolated signal to the static region

and left the isolated signal unused.

– Method: ReSim. The bug was identified because the undefined “x” values

injected by ReSim propagated to the static region.

– Alternative Method(s): DCS

• BUG.XDRS.RTL.7 @ Week 6

– Synopsis: Bug in driving the chip select signal of ICAP

– Description: The ICAP-I module should assert the chip select signal of ICAP

when reading from and writing to the ICAP. However, the chip select was

not asserted for configuration readback.

assign c f g c en = ˜( ( s t a t e c == WRCFG) | | ( s t a t e c == RDCFG) ) ;

/∗ WAS. as s i gn c f g c en = ˜(( s t a t e c == WRCFG) ) ; ∗/

– Method: ReSim. Since ReSim modeled bitstream traffic, this bug was readily

detected by ReSim-based simulation.

– Alternative Method(s): None

• BUG.XDRS.RTL.8 @ Week 6

– Synopsis: Typo

– Description: Incorrectly asserted a write flag for a read operation of the

ICAP-I module.

. . . begin ma se l e c t = 1 ’ b1 ; ma rnw = 1 ’ b1 ; end

/∗ WAS. . . . beg in ma se l ec t = 1 ’ b1 ; ma rnw = 1 ’ b0 ; end ∗/

– Method: ReSim. Since ReSim modeled bitstream traffic, this bug was readily

detected by ReSim-based simulation.

– Alternative Method(s): None

• BUG.XDRS.RTL.9 @ Week 6

– Synopsis: Bug in requesting bus access.

– Description: The ICAP-I module should request bus access for each word of

the readback SimB. The system incorrectly asserted the request signal high

throughout the configuration readback and only one word of the readback

SimB was returned.

– Method: ReSim. Since ReSim modeled bitstream traffic, this bug was readily

detected by ReSim-based simulation.

– Alternative Method(s): None
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• BUG.XDRS.RTL.10 @ Week 6

– Synopsis: Bug in updating the bsize & baddr registers in the ICAP-Imodule.

– Description: For configuration readback, both registers should be updated

during the last cycle of the WRMEM state of the FSM.

end else i f ( . . . ( ( s t a t e c == WRMEM)&&(xbm ack == 1 ’ b1 ) ) ) begin

/∗WAS. (( s t a t e c == WRMEM)) ∗/

baddr <= baddr + 32 ’ h1 ;

b s i z e <= bs i z e − 32 ’ h1 ;

– Method: ReSim. Since ReSim modeled bitstream traffic, this bug was readily

detected by ReSim-based simulation.

– Alternative Method(s): None

• BUG.XDRS.RTL.11 @ Week 6

– Synopsis: Cycle mismatch in reading back configuration data

– Description: The ICAP-I module incorrectly missed the cycle when the read-

back bitstream/SimB data was returned from the ICAP.

– Method: ReSim. Since ReSim modeled bitstream traffic, this bug was readily

detected by ReSim-based simulation.

– Alternative Method(s): None

• BUG.XDRS.RTL.12 @ Week 6

– Synopsis: Monitoring incorrect signal

– Description: Fail to keep track of pipeline status.

– The pipeline_sync module is used to block reconfiguration requests until

the pipelines of the RMs are drawn. However, the module failed to track

the correct number of valid data in the pipelines and incorrectly asserted the

pipeline_empty flag.

– Method: ReSim.

– Alternative Method(s): Virtual Multiplexing, DCS

• BUG.XDRS.RTL.13 @ Week 6

– Synopsis: Bug in resetting the RM

– Description: The enable input signal of a reconfigurable filter was incorrectly

asserted when resetting the RM.

l p f i rTF #( . . . ) f i r (

. . .

. en ( f i r n d & rs tn ) , /∗ WAS. . en ( f i r n d ) ∗/

– Method: ReSim.

– Alternative Method(s): Virtual Multiplexing, DCS

• BUG.XDRS.RTL.14 (Same as BUG-Example.XDRS.4) @ Week 7
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– Synopsis: Cycle mismatch in isolation.

– Description: The Isolation module, which disconnects the RM DURING

reconfiguration, resumed such connection one cycle too early AFTER recon-

figuration.

– Method: ReSim. The bug was identified because the undefined “x” values

injected by ReSim propagated to the static part in the mismatched cycle.

Although such “x” injection is similar to [69], ReSim allows cycle-accurate

simulation of the transition from DURING to AFTER reconfiguration, which

is also essential to detect this type of bug.

– Alternative Method(s): None

• BUG.XDRS.RTL.15 (Same as BUG-Example.XDRS.5) @ Week 8

– Synopsis: Fail to block a reconfiguration request.

– Description: If a reconfiguration request arrived precisely when the RM had

just started processing the next input sample, the RM failed to block the

reconfiguration request, which violated the Blocked_until_Idle item in the

test plan. The bug was detected since the Blocked_until_Idle assertion

failed.

– Method: ReSim.

– Alternative Method(s): Virtual Multiplexing, DCS

Week 9: Integrating the XDRS core logic with the bus interfacing logic.

• BUG.XDRS.RTL.16 @ Week 9

– Synopsis: Active-high vs. active-low reset signals

– Description: The SyncMgr module uses an active-low reset whereas the PLB

bus uses an active-high reset. The designer failed to invert the reset signal

when connecting the core logic of XDRS with the PLB bus.

– Method: ReSim.

– Alternative Method(s): Virtual Multiplexing, DCS

• BUG.XDRS.RTL.17 @ Week 9

– Synopsis: Bug in the bus interface logic

– Description: In the bus interface logic of the xps_icapi module, the data

signal may be acknowledged either before or after the command signal. The

FSM of the bus interface logic failed to wait for the acknowledgments from

both the data and the command signals before entering the next state.

– Method: ReSim. Since ReSim modeled bitstream traffic, this bug was readily

detected by ReSim-based simulation.

– Alternative Method(s): None
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• BUG.XDRS.SW.9 @ Week 9

– Synopsis: Fail to update software

– Description: The m_sync register of the SyncMgr module had been added

with a clk_en field which did not exist in the TLM model. However, the

software that was verified in TLM modeling was not correctly updated. This

bug was caused by a mismatch between the RTL and TLM models.

– Method: ReSim.

– Alternative Method(s): Virtual Multiplexing, DCS

Weeks 12: Targeting a Second Application

• BUG.XDRS.SSR.1 @ Week 12

– Synopsis: Incorrect bitstream/SimB header type.

– Description: The software generated a bitstream/SimB with an incorrect

bitstream header type. In particular, a type 2 header was incorrectly used

with a type 1 data packet.

– Method: ReSim. The incorrect bitstream header type was detected by the

ICAP artifact, which printed an error message. Since the SimB has a similar

structure as a real bitstream, some bugs in the bitstream itself can still be

detected by ReSim.

– Alternative Method(s): None.

• BUG.XDRS.SSR.2 @ Week 12

– Synopsis: Uninitialized software variable.

– Description: The IcapiGcapture() software function is used to assemble a

GCAPTURE bitstream/SimB packet at run time and to send the packet to the

ICAP. However, the size of the packet was incorrectly left uninitialized. At

run time, the uninitialized packet size caused the software to generate an

incorrect GCAPTURE packet.

– Method: ReSim. Since ReSim also uses a GCAPTURE command to synchro-

nize storage elements of simulated RMs with the state data stored in the

simulation-only layer, a bug in assembling the GCAPTURE packet (like this

bug) can readily be exposed during simulation.

– Alternative Method(s): None.

• BUG.XDRS.SSR.3 (Same as BUG-Example.XDRS.6) @ Week 12

– Synopsis: Invalid software pointer.

– Description: The restoration routine of the software driver uses a pointer

as an argument and the pointer is expected to point to the logic allocation

information of the signal to be restored. However, the application software

program passed an incorrect pointer to the restoration routine.
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switch (Math GetId(&MathDrv ) ) {

case MATH ADDER ID: r e s u l t l l p t r = &mca r e s u l t l l ; break ;

/∗ WAS. case MATH ADDER ID: r e s u l t l l p t r = &mcm re su l t l l ; ∗/

– Method: ReSim. The bug was detected as a consequence of incorrect values

being restored to the simulated statistic register.

– Alternative Method(s): None.

• BUG.XDRS.SSR.4 @ Week 12

– Synopsis: Missing a break statement in a case statement.

– Description: After fixing BUG.XDRS.SSR.3, the value of the simulated sta-

tistic register was still incorrect. The case statement shown above missed a

break statement and the assignment to the restoration pointer was incorrectly

overwritten.

– Method: ReSim. The bug was detected as a consequence of incorrect values

being restored to the simulated statistic register.

– Alternative Method(s): None.

• BUG.XDRS.SSR.5 @ Week 12

– Synopsis: Incorrect logic allocation information specified by software.

– Description: To save and restore module state, the software needs to extract

the state bits from bitstreams/SimBs according to the logic allocation infor-

mation specified in the .ll/.sll file. However, due to a cut-and-paste error,

the periodic application incorrectly specified the logic allocation of one bit of

the statistic register.

– Method: ReSim. The bug was detected as a consequence of incorrect values

being restored to the simulated statistic register.

– Alternative Method(s): None.

• BUG.XDRS.SSR.6 (Same as BUG-Example.XDRS.7) @ Week 12

– Synopsis: Incorrect number of pad words.

– Description: The number of pad words returned from ICAP was not the same

as the designer had expected. The software attempted to extract state bits

from the wrong bit positions and the extracted data were therefore incorrect.

– Method: On-chip debugging. Since ReSim failed to mimic the exact behavior

of the target device, BUG.XDRS.SSR.6 was missed by ReSim-based simula-

tion.

– Alternative Method(s): None.
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A.2 Case Study II: In-house Fault-Tolerant Application

As described in Section 5.2, ReSim-based simulation detected 18 DPR-related bugs in

the fault-tolerant DRS case study. We also used ChipScope at the beginning of the

project (see Section 5.2) to test the reconfiguration controller node of the network, and

we detected 4 bugs. We describe the bugs according to the time at which they were

detected during the project development (see Figure 5.11).

Days 1-6: Module-level testing of the Voter-NI module.

• BUG.FT.VOTER.1 @ Day 2

– Synopsis: Cycle-mismatch in the network interface

– Description: The ready_to_receive_flit signal should be cleared by the

flit_valid signal, and should not be asserted until receiving the next flit.

However, the handshake between the two signals were designed incorrectly.

This bug was detected by an assertion.

– Method: Module-level testing using conventional RTL simulation.

– Alternative Method(s): Virtual Multiplexing, DCS, ReSim

• BUG.FT.VOTER.2 @ Day 3

– Synopsis: Glitch from the majority voter.

– Description: The coding-style of voter was not good and the voter outputs

had glitches.

– Method: Module-level testing using conventional RTL simulation.

– Alternative Method(s): Virtual Multiplexing, DCS, ReSim

• BUG.FT.VOTER.3 @ Day 3

– Synopsis: Fail to isolate module undergoing reconfiguration.

– Description: During reconfiguration, the majority voter is also used to isolate

spurious outputs from the RM. However, the coding-style of the voter was

not good and the X values were not cleared. MUST use the case equality

statement of Verilog to stop X propagation.

assign s i g =(( s i g 0===s i g 1 ) | | ( s i g 0===s i g 2 ) ) ? s i g 0 : s i g 1 ;

/∗ WAS. ( . . . == . . . ) , which produces X when e i t h e r s i g n a l i s X ∗/

– Method: Module-level testing using conventional RTL simulation.

– Alternative Method(s): Virtual Multiplexing, DCS, ReSim

• BUG.FT.VOTER.4 @ Day 5

– Synopsis: Counter bug.
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– Description: The sender counter of the network interface should count from

0 to 6, each of which corresponds to one bit in the flit to be sent. But the

counter didn’t stop until it reached 255.

– Method: Module-level testing using conventional RTL simulation.

– Alternative Method(s): Virtual Multiplexing, DCS, ReSim

• BUG.FT.VOTER.5 @ Day 5

– Synopsis: Counter bug.

– Description: Due to the way the receiver FSM was designed, the receiver

counter should count to 7 instead of 6. The incorrect counter value caused

the receiver to miss the last bit on the network link. Since the FSMs in the

receiver and the sender were different, the receiver counter was not the same

as the sender counter and the sender counter could be reused directly.

– Method: Module-level testing using conventional RTL simulation.

– Alternative Method(s): Virtual Multiplexing, DCS, ReSim

• BUG.FT.VOTER.6 @ Day 5

– Synopsis: Fail to update a connection.

– Description: Failed to connect the filt_received signal after the design had

been slightly modified.

– Method: Module-level testing using conventional RTL simulation.

– Alternative Method(s): Virtual Multiplexing, DCS, ReSim

• BUG.FT.VOTER.7 @ Day 6

– Synopsis: Multiple signal drivers

– Description: The comms_alarm signal was driven by two sources.

– Method: Module-level testing using conventional RTL simulation.

– Alternative Method(s): Virtual Multiplexing, DCS, ReSim

• BUG.FT.VOTER.8 @ Day 6

– Synopsis: Bitwidth bug for a signal

– Description: The perm_errors_one_hot signal should be declared as THREE-

bit wide but was incorrectly designed as a one bit signal.

– Method: Module-level testing using conventional RTL simulation.

– Alternative Method(s): Virtual Multiplexing, DCS, ReSim

• BUG.FT.VOTER.9 @ Day 6

– Synopsis: Decoding bug
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– Description: The receiver received a RReq (RRID=0x0) message, but de-

coded the RRID section of the message as a TOKEN message. This bug was

detected by randomizing the RRID field of the messages in simulation. The

bug was fixed by modifying the coding scheme of network messages. See

BUG.FT.RN.7 below.

– Method: Module-level testing using conventional RTL simulation.

– Alternative Method(s): Virtual Multiplexing, DCS, ReSim

• BUG.FT.VOTER.10 @ Day 6

– Synopsis: Time-out on the network link

– Description: If the current network node was in the BYPASS FSM state, it

blocked the upstream nodes and the upstream node failed to wait for enough

time before it asserted a time-out flag.

– Method: Module-level testing using conventional RTL simulation.

– Alternative Method(s): Virtual Multiplexing, DCS, ReSim

Days 1-6: Module-level testing of the RC-NI module.

• BUG.FT.RC.1 @ Day 3

– Synopsis: Flash initialization bug

– Description: The flash controller was not correctly initialized and the RC-NI

failed to read bitstreams.

– Method: Module-level testing using ChipScope.

– Alternative Method(s): ReSim

• BUG.FT.RC.2 (Same as BUG-Example.FT.1) @ Day 5

– Synopsis: Typo

– Description: The designer accidentally created a level-sensitive clock instead

of an edge-sensitive one, as desired.

– Method: Module-level testing using ChipScope.

– Alternative Method(s): Virtual Multiplexing, DCS, ReSim

• BUG.FT.RC.3 @ Day 5

– Synopsis: Counter bug

– Description: This bug was exactly the same as BUG.FT.VOTER.5, but it was

introduced by a different designer and was identified using on-chip debugging

instead of using simulation.

– Method: Module-level testing using ChipScope.

– Alternative Method(s): Virtual Multiplexing, DCS, ReSim
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• BUG.FT.RC.4 @ Day 6

– Synopsis: Initial TOKEN message bug

– Description: The power up status for all nodes was set to BYPASS and there

was no node initiating the TOKEN message.

– Method: Module-level testing using ChipScope.

– Alternative Method(s): Virtual Multiplexing, DCS, ReSim

Days 7-15: Integrating the Voter-NI, RC-NI and the TMRed circuits.

• BUG.FT.RN.1 @ Day 7

– Synopsis: Coding scheme mismatch

– Description: Mismatch between the coding schemes when integrating modules

created by two designers.

– Method: Integrated testing using conventional RTL simulation.

– Alternative Method(s): Virtual Multiplexing, DCS, ReSim

• BUG.FT.RN.2 @ Day 9

– Synopsis: Connectivity bug

– Description: Failed to connect clock/reset to the BAQ node.

– Method: ReSim

– Alternative Method(s): Virtual Multiplexing, DCS

• BUG.FT.RN.3 @ Day 9

– Synopsis: Incorrect bitstream Look-up Table.

– Description: The RC-node had an incorrect bitstream Look-up Table. As a

result, the bitstream/SimB for the BAQ module was transferred to the ICAP

when it was the FIR node that requested reconfiguration.

– Method: ReSim. Since ReSim modeled bitstream traffic and triggered recon-

figuration by SimBs, transferring an incorrect bitstream caused an incorrect

module being swapped in and the SEU was not corrected in simulation.

– Alternative Method(s): None

• BUG.FT.RN.4 @ Day 9

– Synopsis: Fail to clear the error counter

– Description: Failed to clear the error counters (i.e., the errcnt_0,1,2 signals)

after the SEU had been recovered.

– Method: ReSim

– Alternative Method(s): Virtual Multiplexing, DCS
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• BUG.FT.RN.5 (Same as BUG-Example.FT.2) @ Day 9

– Synopsis: Fail to feed the pipeline correctly

– Description: After reconfiguration, the system failed to feed enough data to

flush the internal pipeline of the FIR filter. Thus the undefined initial values

of the pipeline were not properly cleared.

– Method: ReSim. This bug was exposed since the undefined initial values

injected to the pipeline registers of the simulated FIR filter propagated to the

static region after reconfiguration, and the undefined values were detected by

an assert_isolate_at_feeding assertion as described by item 4.7 in the

test plan (see Figure 5.10).

– Alternative Method(s): None

• BUG.FT.RN.6 @ Day 12

– Synopsis: Bug in the more_than_one_error signal

– Description: The more_than_one_error signal is used to indicate multiple

event upsets in the system. It is calculated by examining individual bits of the

err_onehot signal. However, the logic function was not correctly designed.

assign more than one error <= ( er r onehot [ 0 ] && er r onehot [ 1 ] )

| | ( e r r onehot [ 0 ] && er r onehot [ 2 ] )

| | ( e r r onehot [ 1 ] && er r onehot [ 2 ] ) ;

/∗ WAS. as s i gn . . . <= ( err oneho t [ 0 ] && err oneho t [ 1 ] ) ; ∗/

– Method: ReSim

– Alternative Method(s): Virtual Multiplexing, DCS

• BUG.FT.RN.7 @ Day 12

– Synopsis: Decoding bug

– Description: Following BUG.FT.VOTER.9, the coding scheme bug still hadn’t

been fixed. In particular, the RRID field of the RReq messages were incor-

rectly interpreted as another message by the receiver. The bug was fixed by

adding to the receiving FSM an RRID_FLAG, which explicitly distinguished

the RRID field of a RReq message from other messages.

– Method: ReSim

– Alternative Method(s): Virtual Multiplexing, DCS

• BUG.FT.RN.8 (Same as BUG-Example.FT.3) @ Day 13

– Synopsis: Bug when reconfiguration was faster than message transfer

– Description: Typically, reconfiguration is slower than transferring a message

between two nodes. The expected operation of the RC-node is therefore:

start reconfiguration; transfer an RAck message to a computing node; end

reconfiguration; transfer an RDone message to a computing node. However,

when the bitstream is very small and when the computing node is executing

with a very slow clock, reconfiguration can finish before the RAck message is

transferred. Under such a circumstance, the RC-node did not correctly send

the RDone message.
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– Method: ReSim. In ReSim-based simulation, the size of a bitstream (i.e.,

the size of a SimB) can be adjusted for test purposes. This bug was exposed

since the designer randomized the SimB size and the clock frequencies of

the computing nodes. Unfortunately, such a scenario was not tested on the

FPGA, and it is difficult to test since the size of a real bitstream cannot easily

be adjusted for test purposes.

– Alternative Method(s): None

A.3 Case Study III: Third-Party Video-Processing Appli-

cation

As described in Section 5.3, we detected 6 DPR-related bugs in the AutoVision case

study. We describe the bugs according to the time at which they were detected during

the project development (see Figure 5.14). Our discussion does not include the BUG-

Example.AUTO.1 bug, which is a false positive bug.

Weeks 10-11: Virtual Multiplexing-based simulation of the Optical Flow

Demonstrator

• BUG.AUTO.1 @ Week 5

– Synopsis: Coding style bug in the Isolation module

– Description: When the design was not performing DPR, the Isolation mod-

ule failed to connect all outputs from the CIE/ME engines to the static re-

gion. In particular, since the engines were changed from the point-to-point

PLB mode to the shared PLB mode, new output signals were added to the

engines. The Isolation module failed to connect new engine outputs to the

static region.

– Method: Virtual Multiplexing.

– Alternative Method(s): DCS, ReSim

Weeks 10-11: ReSim-based simulation of the Optical Flow Demonstrator

• BUG.AUTO.2 @ Week 10

– Synopsis: Coding style bug in the Isolation module

– Description: To describe combinational logic using VHDL, all input signals

of a block MUST be in the sensitivity list. However, the designer failed to

put all inputs in the sensitivity list of the Isolation module. Although such

a bug can automatically be fixed by the synthesis tool, it is still desirable to

fix the bug manually.
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– Method: ReSim. Since ReSim modeled spurious outputs of RMs, the Isola-

tion module was exercised in simulation and the bug was exposed because

the errors injected by ReSim were not correctly isolated.

– Alternative Method(s): DCS

• BUG.AUTO.3 @ Week 10

– Synopsis: Connection error between the IcapCTRL module and its bus inter-

face module, the lisipif_master module.

– Description: The IcapCTRL module has been changed from a point-to-point

connection structure to a shared bus-based structure. The BE signal of the

lisipif_master interface should be hardwired to 0xFF.

– Method: ReSim. Since ReSim modeled bitstream traffic, this bug was readily

detected by ReSim-based simulation.

– Alternative Method(s): None

• BUG.AUTO.4 (Same as BUG-Example.AUTO.2) @ Week 10

– Synopsis: Connection error on the PLB bus

– Description: The IcapCTRL module was used in point-to-point mode in the

original system, and it failed to work with the shared PLB bus in the modified

Optical Flow Demonstrator. This bug was introduced by changing the way

the IP was integrated.

– Method: ReSim. Since ReSim modeled bitstream traffic, this bug was readily

detected by ReSim-based simulation.

– Alternative Method(s): None

• BUG.AUTO.5 (Same as BUG-Example.AUTO.3) @ Week 10

– Synopsis: Fail to update software driver

– Description: After changing a parameter of the IcapCTRL module, the soft-

ware driver was not updated accordingly and the SimB was not successfully

transferred. The bug was introduced by a mismatch between hardware and

software.

– Method: ReSim. This bug was detected when a new engine was not swapped

in due to the bug in the bitstream transfer process.

– Alternative Method(s): None

• BUG.AUTO.6 (Same as BUG-Example.AUTO.4) @ Week 11

– Synopsis: Engine reset bug

– Description: The system software failed to wait until the completion of bit-

stream transfer before resetting the engines. This bug was introduced when

the design was modified to use a different clocking scheme that slowed down

the bitstream transfer and the software was not updated to slow down the

reset operations accordingly.
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– Method: ReSim. Since ReSim more accurately modeled the timing of recon-

figuration events, this bug could ONLY be detected by ReSim-based simula-

tion.

– Alternative Method(s): None

• BUG.AUTO.7 @ Week 11

– Synopsis: Null pointer bug

– Description: After reconfiguring the ME, the software interrupt handler needs

to clear the feature list of the previous frame before starting the ME. However,

the software failed to check the feature pointer before clearing the list,

/∗ WAS. Didn ’ t check the DrvPtr−>FeatureOutPtr po in t e r ∗/

i f ( (unsigned char ∗ ) ( DrvPtr−>FeatureOutPtr )!=NULL) {

Mvec ClearFeatureList ( ( u32 ) ( DrvPtr−>FeatureOutPtr ) ) ;

– Method: ReSim.

– Alternative Method(s): Virtual Multiplexing, DCS

A.4 Case Study IV & V: Vendor Reference Designs

As described in Section 5.4, we were not able to detect any bug in the vendor reference

designs. We were only able to expose a potential bug (i.e., BUG-Example.UG744.1) by

deliberately modifying the Processor Peripheral reference design (see Section 5.4.2).
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