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Abstract—Estimation of tissue stiffness is an important means
of noninvasive cancer detection. Existing elasticity reconstruction
methods usually depend on a dense displacement field (inferred
from ultrasound or MR images) and known external forces. Many
imaging modalities, however, cannot provide details within an
organ and therefore cannot provide such a displacement field.
Furthermore, force exertion and measurement can be difficult for
some internal organs, making boundary forces another missing
parameter. We propose a general method for estimating elasticity
and boundary forces automatically using an iterative optimization
framework, given the desired (target) output surface. During the
optimization, the input model is deformed by the simulator, and
an objective function based on the distance between the deformed
surface and the target surface is minimized numerically. The op-
timization framework does not depend on a particular simulation
method and is therefore suitable for different physical models.
We show a positive correlation between clinical prostate cancer
stage (a clinical measure of severity) and the recovered elasticity
of the organ. Since the surface correspondence is established,
our method also provides a non-rigid image registration, where
the quality of the deformation fields is guaranteed, as they are
computed using a physics-based simulation.

Index Terms—Elasticity reconstruction, Physically-based sim-
ulation, Non-rigid image registration.

I. INTRODUCTION

M
ATERIAL property estimation has been an important

topic in noninvasive cancer diagnosis, since cancerous

tissues tend to be stiffer than normal tissues. Traditional

physical examination methods, such as palpation, are limited

to detecting lesions close to the skin, and reproducible mea-

surements are hard to achieve. With the advance of medical

imaging technologies, it becomes possible to quantitatively

study the material properties using noninvasive procedures.

Computer vision methods in combination with force or

pressure sensing devices have been proposed to find material

properties of tissues [1], [2]. These methods require a con-

trolled environment in order to capture the video and force

(pressure), and therefore the experiments are usually done

ex vivo. Kauer et al. [1] combined the video and pressure

capturing components into a single device to simplify the
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measurement process, so that it can be performed in vivo

during a surgical intervention. However, the device still needs

to be in direct contact with the tissue, and only a small portion

of the tissue can be measured due to the size of the device.

Elasticity reconstruction, or elastography, is a noninvasive

method for acquiring strain or stiffness images using known

external forces and a known displacement field [3], [4]. The

reconstruction is usually formulated as an inverse problem of

a physically-based simulation of elastic bodies, and a popular

choice of the simulator is based on a linear elasticity model

solved with the finite element method (FEM) [5], where

the domain of the image is subdivided into tetrahedrons or

hexahedrons called elements, with vertices known as nodes.

Boundary conditions (displacement vectors or forces) on some

of the nodes must be given to drive the simulation. Under this

framework, nodal displacement vectors need to be computed

based on a pair of images, and the force exertion mechanism

needs to be controlled so that external forces can be measured.

Otherwise, without measured forces, only relative elasticity

values can be recovered. Ultrasound elastography [6], for

example, compares two ultrasound images, one taken at the

rest pose, and the other taken when a known force is applied.

The displacement vector for each pixel can be estimated using

cross-correlation analysis [3], [7] or dynamic programming

[8] to maximize the similarity of echo amplitude and dis-

placement continuity. Alternatively, in dynamic elastography

(for example, magnetic resonance elastography (MRE) and

vibro-elastography), an MRI or ultrasound machine in tune

with an applied mechanical vibration (shear wave) or focused

ultrasound beams is used to find the displacement field [4],

[9], [10]. With known external forces and displacement field,

the elasticity can be computed by solving a least-squares

problem [11], [12], [13], if the algebraic equations resulting

from the physical model is linear. A real-time performance has

been reported using this direct method with a simplified 2D

domain that assumes homogeneous material within a region

[13]. Another type of method uses iterative optimization to

minimize the error in the displacement field generated by

the simulator [14], [15], [16]. Although slower than directly

solving the inverse problem, this type of method does not

assume linearity of the underlying physical model. A different

kind of elastography [17], [18], [19] maximizes image simi-

larity without requiring the displacement field or boundary

conditions to be known, but the method relies on salient

features within the object (such as the breast), which may
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not be present in CT images of organs such as the prostate.

A phantom study applied the method to the prostate [18],

but the model and boundary conditions are greatly simplified,

and their method has not been applied to real patient data.

A Bayesian framework has also been proposed to solve the

elastography problem without requiring known boundary con-

ditions [20]. That method, however, depends on assumptions

about probability distribution functions and extensive sampling

in a very high dimensional parameter space (elasticity and

boundary conditions), which significantly limits the number

of boundary nodes. While these methods are instrumental in

their respective fields of interest, they are less well suited for

a more general, multi-organ case where the image intensity

may be almost constant within an organ, such as the prostate,

and the lack of image details within the object makes it im-

possible to rely on pixel-wise correspondence. Moreover, the

force exertion or vibration actuation mechanism can become

complicated when the target tissues are deep inside the body.

For example, for an elastography of the prostate, an actuator

or a pressure sensor is sometimes inserted into the urethra or

the rectum [21], [9], [22].

Elasticity parameters are also essential in cardiac function

estimation, where sequential data assimilation [23], [24] has

been applied to estimate simulation parameters and displace-

ments simultaneously for dynamic mechanical systems. The

parameters and observations of displacements (states) at each

time step are modeled with a probability distribution, and a

filtering procedure is applied over some time to estimate the

states. Due to the computational complexity of the method,

the number of estimated parameters has been very limited

in work on cardiac function estimation [23]. On the other

hand, our parameter space includes external forces as well

as the Young’s modulus, and the displacement field cannot be

acquired directly from some common imaging modality like

CT.

We propose an entirely passive analysis of a pair of images

that only uses information about the boundaries of correspond-

ing internal objects. We assume the images have already been

segmented, that is, the organ boundaries have been found.

Since we do not assume a good correspondence for pixels

inside an object, the resolution of the resulting elastogram

is limited to the object boundaries. Namely, we assume that

the elasticity is fixed within each object whose boundary can

be identified. Natural movements inside the body provide the

deformation of the organs, and we do not need an additional

force exertion or vibration actuating mechanism. We minimize

the distance between the deformed reference surface and the

target surface and optimize for the elasticities and boundary

forces. Currently, as a simplification, we consider only Young’s

modulus (which measures the stiffness or elasticity of the

material). It is the simplest parameter to work with, and it

is also important in noninvasive cancer detection techniques.

The general optimization framework extends naturally to the

inclusion of other parameters such as Poisson’s ratio (which

measures compressibility of the material), and in fact is

suitable for a variety of physical models. In our experiments,

the images are obtained from a prostate radiotherapy, where

there is one reference (planning) CT image and multiple target

(daily) images for each patient, and the Young’s moduli of

the prostate recovered from the pairs of images are averaged.

Our initial investigation involving 10 patient data sets shows

that the recovered elasticity values positively correlate with

the clinical tumor stages, which demonstrates its potential as

a means of cancer stage assessment complementary to exist-

ing elastography methods. Furthermore, compared broadly to

other work on simulation parameter estimation, our method

does not require the inclusion of forces as part of the input

and can therefore avoid the process of measuring the external

forces (at the cost of only providing relative force information

in our results).

Our method also produces an image registration [25], [26]

(pixel-wise correspondence between images) since the distance

between the pair of surfaces (segmentations) is minimized. The

FEM has been applied to image registration, given that the

images are segmented [27], [28], [29], [30], [31], [32], [33].

Material properties, however, are not trivial to find from the

images, and most authors use ex vivo experimental results to

set up the materials. Moreover, due to the patient-to-patient

differences, these material properties sometimes need hand

adjustments. Alterovitz et al. [34] incorporated an optimization

of Young’s modulus and Poisson’s ratio into an FEM-based

registration, but the method has only been implemented for

coarse 2D meshes. As a non-rigid image registration method,

ours improves over previous simulation-based methods by

providing an automatic means of finding the parameters that

are missing in the images. Our current implementation uses

both standard linear and nonlinear material models, but the

optimization framework should be applicable to tissues with

more advanced and complex physical models.

We explain the elastic model and the optimization scheme

in Section II, followed in Section III by experimental results

using two synthetic scenes and 10 sets of real CT images to

demonstrate the feasibility of our method. We conclude with

a summary and discussion of future work.

II. METHOD

The idea of the algorithm is to optimize a function based

on the separation between corresponding organ boundaries.

In each iteration, the objective function is computed by first

simulating and deforming the surface using the current set of

parameters, and then computing surface distances. We consider

only the elasticity value (Young’s modulus), with Poisson’s

ratios being chosen according to previous work on simulation-

based medical image registration [31].

The inputs to the correspondence problem are two seg-

mented images: a fixed image with segmentation Sf and

a moving image with segmentation Sm. The bones are al-

ready aligned using a rigid registration method described in

[35]. Each segmentation is represented as a set of closed

triangulated surfaces, one for each segmented object. We

construct a tetrahedralization of the moving volume such

that each face of Sm is a face in the tetrahedralization,

so that Sm is characterized entirely by its set of nodes.

Our optimization framework is built on a physically-based

simulator that generates deformation fields with n unknown
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Figure 1: Flow chart of the optimization loop; the deformation field generated by the simulator is used in the objective function

to update the parameters, which are fed back into the simulator, and so on.

parameters x = [x1, · · · , xn]
T

, and a numerical optimizer

to minimize an objective function Φ(x) : Rn → R defined

by the deformation and surface matching metrics. During

the optimization process, the physical model is refined in

terms of more accurate parameters and converges to a model

describing the deformation needed for the particular surface

matching problem. Here we use the linear FEM to illustrate

the optimization scheme, although the framework can also

be incorporated with a nonlinear FEM. A flow chart of our

algorithm is shown in Fig. 1 and will be explained in detail

in this section.

A. Linear Elasticity Model and Finite Element Modeling

In the optimization loop, the displacement field u =
[u, v, w]

T
is always generated by a physically-based sim-

ulation, where the FEM is used to solve the constitutive

equations of the linear elasticity model. Assuming isotropic

linear elasticity, we can write σ = Dε, where σ is the stress

vector induced by the surface forces, ε is the strain vector

defined by the spatial derivatives of the displacement u, and

D is a matrix defined by the material properties (assuming

an isotropic material, the properties are Young’s modulus E
and Poisson’s ratio ν). To solve the equations numerically, we

approximate the derivatives of the deformation with the FEM,

where the domain is subdivided into a finite set of elements,

and each element consists of several nodes. Fig. 4a shows the

finite element model used in one of our experiments, where

four-node tetrahedral elements are used. The deformation field

uel for any point p within an element is approximated with a

piecewise linear function ûel(p) =
∑4

j=1 u
el
j N

el
j (p), where

uel
j is the deformation of the j-th node of the element, and

Nel
j (p) is the linear shape function that has value one at node

j and is zero at all other nodes and outside of the element.

After combining the approximated piecewise linear equation

for each element, the resulting linear system is

Ku = F, (1)

where K is called the stiffness matrix, which depends on

the material properties (Young’s modulus and Poisson’s ratio)

and the geometry of the elements; F is a vector of external

forces. For a 3D domain with Nn nodes, K is a 3Nn × 3Nn

matrix. Notice that since both K and F are unknown, they

can be scaled by the same factor without changing the output

deformation field. Therefore, unless we know the exact values

of the forces, only the relative values of the material properties

can be recovered.

To make the nodes deform, some boundary conditions need

to be enforced, either by assigning displacement values or by

assigning forces to some nodes. If all the surface nodes, includ-

ing boundaries between two materials, are assigned displace-

ment values, then the simulation is essentially an interpolation

of the displacement field from surface matching results. This

means that the elasticity values only affect internal nodes,

for which we do not know the target positions. Therefore

the elasticity cannot be recovered. Instead, we only assign

boundary conditions to a part of the surface nodes, and other

surface nodes without boundary conditions will be affected

by the relative elasticities. For example, in a simulation of

the male pelvis area, the bladder and the rectum are usually

the organs that drive the deformation of the prostate, while

the pelvic bone is considered static. An intuitive choice is to

apply boundary conditions on boundary nodes of the bladder,

the rectum, and the pelvic bone, and set all other entries in

the force vector to zero (no external forces), as proposed in

[31].

B. Sensitivity Study

Since our method is based on the assumption that the de-

formed surface depends on both the elasticity and the external

forces, we first conduct an experiment of forward simulations

using different parameter values to see how sensitive the

surface is to these parameters. The synthetic scene consists

of two concentric spheres that form two regions, one inside

the inner sphere, and the other between the two spheres, as

shown in Fig. 2.

We fix the elasticity of the outer region and alter the elas-

ticity of the inner sphere, as only the ratio of the two elasticity

values matters. A force with a specified magnitude pointing

towards the center of the spheres is applied on each node of

the outer surface, and no external forces are applied on the

inner surface. Several simulations using different elasticities

of the inner region and force magnitudes were performed, and

the plots of the sphere radius versus the elasticity value and

versus force magnitude are shown in Fig. 3.
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(a) (b) (c)

(d) (e) (f)

Figure 3: The plots of the radius of the inner sphere (in cm) after deformation: (a) inner radius versus elasticity value (in kPa) of

the inner region; (b) inner radius versus magnitude of forces (in N) acting on the outer surface; (c) inner radius (z-coordinate)

versus elasticity and force magnitude with isocontours of inner radius on xy-plane; (d) outer radius versus elasticity; (e) outer

radius versus magnitude of forces; (f) outer radius (z-coordinate) versus elasticity and force magnitude with isocontours of

outer radius on xy-plane. The radii before deformation are 3 cm and 3.75 cm for two spheres, respectively, and the elasticity

for the outer region is 10 kPa. The Poisson’s ratios are fixed to 0.40 and 0.35 for the two regions, respectively.

Figure 2: A sliced view of the synthetic scene, which consists

of two concentric spheres; the inner (red) and outer (green)

regions have different stiffness values (blue triangles represent

outer surface, which is considered part of the green region).

Notice that in these plots, the slope is much higher when

the elasticity is low for each curve, which indicates that the

shapes of both spheres are much more sensitive to the elasticity

when the elasticity value is lower. These results suggest that

our ability to recover the parameters is limited by how stiff the

object is. When an object has a very high stiffness, its shape

becomes insensitive to the parameters. In this case, the shape

can still be recovered, but the resulting parameters may not

be accurate. Notice that the problem of solving for elasticity

and for boundary forces is ill-posed with a single object. For

example, drawing horizontal lines at some inner radius value

in the plots in Fig. 3 would give multiple combinations of

elasticity and external forces. However, when both the inner

and outer surfaces are taken into account, the problem becomes

well-posed: in the two-dimensional space formed by elasticity

value and force magnitude, there is one curve that implies

some radius of the inner sphere (an isocontour on the xy-plane

in Fig. 3c) and another curve that results in some radius of the

outer sphere (an isocontour on the xy-plane in Fig. 3f). The

solution is at one of the intersections of the two curves, and

we can eliminate unwanted solutions by limiting the range

of elasticity and force magnitude according to experimental

results on the specific materials.

C. Distance-Based Objective Function

The parameters needed in the simulator are x = [E;F],
where E consists of the material properties (in our case, the

Young’s moduli), and F is the vector of external forces on
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boundary nodes. The objective function to be minimized is

defined as the difference between the segmentations in the

moving and target images,

Φ(x) =
1

2

∑

vl∈Sm

‖d (vl + ul(x),Sf )‖
2
. (2)

Here u(x) is the deformation field computed by the simulator

with parameters x, interpreted as a displacement vector for

each surface node vl in the tetrahedralization. The notation

d(v,S) denotes the shortest distance vector from the surface

S to the node v, and the sum is taken over all nodes of the

moving surface.

The gradient of the objective function, which is needed in

the iterative optimization, is given by the chain rule,

∇Φ(x) =
∑

vl∈Sm

[

∂ul

∂x

] [

∂d (vl + ul,Sf )

∂ul

]

d (vl + ul,Sf )

=
∑

vl∈Sm

JT
u JT

d d (vl + ul,Sf ) , (3)

where Ju =
[

∂ui

∂xj

]

is the Jacobian matrix of u(x) with respect

to the parameters, and Jd =
[

∂di

∂uj

]

is the Jacobian matrix of d

with respect to the deformation vector. Here we use the bracket

[·] to represent a matrix and the curly braces {·} to denote a

vector. Each column of Jd, namely
{

∂d(vl+ul,Sf )
∂uj

}

, is the

derivative of d (vl + ul,Sf ) with respect to the j-th spatial

coordinate (j = 1, 2, 3). The derivatives of u with respect to

the material properties are computed by differentiating both

sides of (1),
[

∂K

∂Ej

]

u+K

{

∂u

∂Ej

}

= 0, (4)

Therefore we have
{

∂u
∂Ej

}

= −K−1
[

∂K
∂Ej

]

u. The Jacobian

matrix can then be computed by solving for each column of

Ju. The derivatives with respect to the boundary forces are

computed in the same manner; by taking derivatives of both

sides of (1), we have
[

∂K
∂Fj

]

u + K
{

∂u
∂Fj

}

= ej , where ej

is the j-th coordinate vector. On the right hand side, only the

j-th entry is nonzero since dFi

dFj
= 0 when i 6= j. And since

K is independent of Fj , ∂K
∂Fj

= 0. Therefore we can solve for

each column of the Jacobian with the equation K
{

∂u
∂Fj

}

=

ej . In practice, d (vl + ul(x),Sf ) can be looked up in the

precomputed vector distance map of the fixed organ, Sf , and

the derivatives ∂d/∂uj can be approximated with a centered

finite difference operator applied on the map. Fig. 4b shows

one of the distance maps used in our experiments. Notice that

the physical model can be different, as long as the derivatives

∂ui/∂xj can be computed.

In our experiments, however, we observed that the mag-

nitudes of gradients with respect to the material properties,

‖∂Φ/∂E‖, are about 1000 times smaller than that with respect

to the forces, ‖∂Φ/∂F‖, which caused the material properties

to converge very slowly. To obtain a faster convergence of E,

we embed the optimization of the forces into the objective

function evaluation at each E value. That is, every time Φ(E)

(a) (b)

Figure 4: Input to our algorithm: (a) a sliced view of the

tetrahedral model of the moving image (light-blue triangles

represent surfaces, not FEM regions; bladder and rectum are

hollow); (b) a slice of the distance map of the prostate surface

in the reference image.

is evaluated, a full optimization of F is performed with the

fixed value of E.

D. Numerical Optimization

We use a line search scheme for optimization: in each

iteration k, we find a descent direction pk, find an optimal

step size α in that direction with a line search algorithm,

and then update the parameters with xk+1 = xk + αpk. The

descent direction can be computed by using Newton’s method

to solve the equation ∇Φ = 0: pk = −B−1
k ∇Φ(xk), where

B is the Hessian matrix,
[

∂2Φ
∂xi∂xj

]

. A modified Newton’s

method has been used in elasticity reconstruction [15], but the

Hessian matrices can only be approximated and are usually ill-

conditioned. Alternatively, we can use a Quasi-Newton method

such as the BFGS formula to avoid computing the Hessian

[36].

Quasi-Newton methods can reduce the computation yet still

retain a super-linear convergence rate. A line search enforcing

the curvature condition (sTk yk > 0) needs to be performed to

keep the approximate Hessian positive definite. In our case, the

number of parameters can be in the thousands, and therefore

we adopt a limited-memory quasi-Newton method known as

the L-BFGS method [36].

E. Initial Guess of Parameters

A good initial guess can prevent the optimizer from getting

stuck in a local minimum. Our initial guess for the forces is

based on the distance field of the target surface: each node

requiring a boundary condition is moved according to the

distance field to compute a Dirichlet boundary condition. A

forward simulation is performed using the set of boundary

conditions and the initial guess of elasticities, and the output

deformation is used, via (1), to compute the corresponding

forces, which become the initial guess for the forces.

In the case of medical image registration, the initial guess

of the elasticity is chosen based on knowledge of the simu-

lated organs. Our example images involve two materials: the

prostate and the surrounding tissue. There have been ex vivo

experiments on the prostate using different elasticity models.
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Figure 5: Plot of Φ and E (in kPa) with several sample values

for finding an initial guess of elasticity value in a synthetic

multi-organ scene. The plot suggests that the best initial guess

is 50 kPa.

Krouskop et al. [37] reported an elastic modulus of 40-80 kPa

for normal prostate tissue, 28-52 kPa for BPH tissue, and 80-

260 kPa for cancerous tissue when receiving 4% compression.

They also reported 10-30 kPa for breast fat tissue. Based on

these numbers for fat tissue, we chose an elasticity value of

10 kPa for the tissue surrounding the prostate. This value is

fixed, in our calculations, since only the ratio of the elasticity

values matters.

The initial guess of elasticity for the prostate is chosen by a

parameter search: we perform force optimizations with several

elasticity values between 30 kPa and 200 kPa and choose the

elasticity with the lowest objective function value after the

force optimization. An example result of the parameter search

is shown in Fig. 5, where the target surfaces are generated

by artificially deforming a set of organ boundaries, so that

we know the true elasticity value. The plot shows that the

parameter search successfully located the global minimum in

the synthetic case with multiple organs. In our experiments

using synthetic and real organ boundaries of the male pelvis

area, we have observed similar curves with a single minimum.

If more than one local minimum is observed, an optimization

can be performed using each of these values as the initial

guess. To reduce the computation time, we use a lower-

resolution mesh for the parameter search, and the resulting

optimal forces are used as the initial guess when using a

higher-resolution mesh for elasticity optimization.

III. EXPERIMENTS

We used the male pelvis area as the test scene. To build

the reference surfaces, we obtained segmentations of a 3D

CT image of the male pelvis area, including the surfaces of

the bladder, prostate, rectum, and bones. A tetrahedral finite

element mesh is constructed from a set of reference surfaces,

as shown in Fig. 4a. The corresponding target surfaces are

used to compute the distance map, as shown in Fig. 4b. In the

tetrahedral mesh, the bladder and the rectum are made hollow

to reflect the actual structure, and the bones are fixed during

the simulations. Since the prostate is the main organ of interest,

we apply forces only on the boundaries of the bladder and the

rectum to reduce the uncertainty on the prostate, which will

be moved by surrounding tissues. The setting also reflects the

fact that the bladder and the rectum are the organs that have

larger deformations due to different amount of fluid and gas,

and the prostate is usually deformed by their movement.

During the iterative optimization, the objective function

is evaluated over the surfaces of the bladder, rectum, and

prostate. The Poisson’s ratios are fixed (0.40 for the prostate

and 0.35 for surrounding tissues, chosen based on literature

in image registration [29], [38], [31]), and we optimize for

the elasticity values because of its importance in noninvasive

cancer detection. Since only the relative values of material

properties can be recovered, we fix the Young’s modulus of the

surrounding tissues (the region outside all organs and bones)

to 10 kPa and optimize that of the prostate.

We tested our algorithm on two types of surface data.

First, we tested the accuracy of the optimization scheme using

synthetic target surfaces generated by forward simulations,

so that we know the true elasticity values. We then applied

the technique to prostate cancer stage assessment based on

multiple segmented target images of the same patient to show

applicability to real data. Since the distances between reference

and target surfaces are minimized, we also compare the visual

result (the warped image) with that of an image-based image

registration method.

The reference and target organ surfaces are obtained from

real 3D CT images of the male pelvis area using the software

MxAnatomy (Morphormics, Durham, NC), and the bones are

segmented using ITK-SNAP [39]. Given the moving surfaces

in the form of triangle meshes, the tetrahedral model for the

entire domain is built with the software TetGen [40], and the

library ITK [41] is used to compute the vector distance maps of

the target surface. The FEM simulator uses the linear algebra

library PETSc [42].

Mesh generation: The image segmentation was done with

an early semi-automatic version of software MxAnatomy. For

the prostate, the user typically needed to specify 15-20 initial

boundary points on five image slices, and it usually took 20

minutes to segment the three main organs (prostate, bladder,

and rectum) in a CT image. The semi-automatic segmentation

of bones (ITK-SNAP) requires some initial pixels (specified

with a few spheres) that are roughly in line with the bones,

and the algorithm iteratively grows or shrinks from these initial

pixels until an optimal binary image of the bone is achieved. It

usually takes 15 minutes for the segmentation of bones. Once

the surface meshes are generated, the tetrahedralization takes

a few seconds using the software TetGen.

A. Synthetic Scene with Multiple Organs

To test how well our algorithm recovers elasticity values, we

use synthetic target surfaces generated with known elasticity

and boundary conditions. The target surfaces are generated

by a forward simulation with Dirichlet boundary conditions

acquired from a real pair of segmented images applied to

the bladder and rectum surfaces. The moving surfaces and
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Figure 6: The moving surfaces and ground-truth boundary

conditions in the two synthetic multi-organ scenes: the arrows

shows Dirichlet boundary conditions applied to surfaces of

bladder and rectum; the scaling of arrows are according to the

magnitude of displacements.

boundary conditions in the two synthetic scenes are shown in

Fig. 6, where the boundary conditions are shown with scaled

3D arrows. The elasticity value of the prostate is controlled,

and we can therefore compare the value recovered by our

method to the ground truth. We tested our algorithm with three

elasticity values, and the results are shown in Table I. The op-

timization process is terminated when ‖∂Φ/∂E‖ < 10−7 ‖E‖
and ‖∂Φ/∂F‖ < 10−4 ‖F‖, or when the optimizer cannot find

a direction in the parameter space that reduces the value of

the objective function. The relative error is less than 12% in

the cases where the elasticity values do not exceed 150 kPa,

which corresponds to an elasticity ratio of 15 between the

prostate and the surrounding tissue. Notice that according to

the literature [37], the ratio is already beyond the range for

normal tissues and is within the range for cancerous tissues.

Therefore we expect to see worse accuracy in the case of stiffer

cancerous tissues.

Effect of inaccurate Poisson’s ratios: In order to show

the effect of selecting different Poisson’s ratios, we repeat the

experiments using synthetic target surfaces generated with five

different Poisson’s ratios for the prostate (0.3, 0.35, 0.4, 0.45,

and 0.49), while the assumed value is fixed to 0.4 during the

optimization process. (Most previous work on image registra-

tion or elastography assumes values between 0.3 and 0.49).

As shown in Fig. 7, the relative errors in recovered elasticity

increase with larger deviation of the Poisson’s ratio, and the

effect is especially prominent in the cases with lower elasticity

values (soft) and low Poisson’s Ratios (compressible). We

observe errors of 45–60% with an elasticity of 50 kPa and a

Poisson’s ratio of 0.3. The errors are generally below 13.3% in

cases with Poisson’s ratios of 0.40–0.45 and can be as high as

20% for a ratio of 0.49 (nearly incompressible). These results

show that our method is robust to inaccurate Poisson’s ratios

in most cases.

B. Noninvasive Assessment of Prostate Cancer Stage

To show the effectiveness of our method applied to prostate

cancer assessment, we repeated the experiments on the multi-

organ settings, but with both the deformed and target surfaces

taken from segmented 3D CT images of the male pelvis area.

We consider 10 patient data sets (a total of 112 target images)
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Figure 8: Histogram of distances between the pairs of cor-

responding reference and target prostate meshes used in our

experiments on segmented CT images.

taken throughout courses of radiotherapy for prostate cancer.

Each patient data set consists of a set of reference surfaces

(bladder, prostate, rectum, and bones), which is from the CT

image (reference image) taken before the radiotherapy, and

multiple sets of target surfaces, each of them representing the

internal structures in one daily CT image during the therapy.

The reference image is taken about a week before the first

treatment, and treatment (target) images are typically taken

twice a week. For each patient data set, we repeated the

process of deforming the reference surfaces toward a set of

target surfaces with our method, so that one elasticity value

of the prostate is recovered for each daily image. Fig. 8 shows

the histogram of surface-surface distance between pairs of

reference and target prostate surfaces used in the experiments.

The surface-surface distance is defined as the maximum of

node-surface distance,

max
vl∈Sm

d(vl,Sf ), (5)

where Sm is the reference (moving) prostate surface, and Sf is

the target surface. The average surface distance for the prostate

among the 112 pairs of images is 0.41 cm, which is less than

10% of the diameter of a typical prostate (around 4–5 cm).

The convergence graphs (plots of Φ and ‖∇Φ‖ versus

iteration number) and for boundary forces and for the material

property from a typical image pair are shown in Fig. 9 (conver-

gence graphs for other experiments are similar). Note that the

optimization of forces was done in batches (in each evaluation

of Φ(E)), and the convergence graph for force optimization

is the result of concatenating the steps for optimizing F. With

our current code, each iteration for the force optimizer takes

about 19 seconds for a mesh with 34,705 tetrahedral elements

and 6,119 nodes on a Xeon X3440 CPU, and the total number

of iterations is around 1,700 (the total time is about nine

hours), which means that our current implementation is only

suitable for off-line processes. Note that we have not utilized

any parallelism in the FEM computation. In the future, we

plan to explore faster implementations of the FEM, such as

those utilizing a many-core processor and reduced-dimension
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Table I: Error in recovered modulus of elasticity in two synthetic multi-organ scenes; note that the error becomes much larger

for elasticity values greater than 150 kPa.

True Elasticity (kPa) 50 100 150 200 250 300 350

Scene Recovered Value 49 101.18 158.79 141.57 136.65 204.45 176
1 Relative Error -2% +1.2% +5.9% -29.2% -45.3% -31.9% -49.7%

Scene Recovered Value 51.33 102.90 167.5 225.0 222.91 275.0 277.97
2 Relative Error +2.7% +2.9% +11.7% +12.5% -10.8% -8.3% -20.6%
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Figure 7: Plots of relative errors in recovered elasticity vs. different Poisson’s ratios for the prostate (0.3, 0.35, 0.4, 0.45, and

0.49) used for generating the synthetic surface data; each plot shows the result from one test scene, and each curve represents a

true elasticity value (50, 100, and 150 kPa) used in the synthetic case. During the optimization process, the assumed Poisson’s

ratio is always fixed to 0.4.

Figure 9: Convergence graphs (plot of Φ and ‖∇Φ‖ versus iteration number) for a pair of CT image data: (left) convergence

of the external forces; (right) convergence of the elasticity.

models.

Each of the 10 patient data sets tested include 6 to 17 sets

of target surfaces (daily images), namely 112 target images

in total, and the recovered elasticity values of the prostate for

each patient are shown in Table II. Notice that the recovered

values from all image pairs are within the range suggested

in the literature [37], and the result shows consistency within

each patient.

The aim of this study is to assess the relation between

the recovered elasticity value and the cancer stage of each

patient, under the assumption that prostates with more ad-

vanced tumors have higher stiffness. A common cancer staging

system is the TNM (Tumor, lymph Nodes, Metastasis) system,

where the clinical T-stage describes the size and extent of the

primary tumor [43]. The definitions of T-stages are shown in

Table III. We focus on the T-stage because of its relevance

Table II: Average and standard deviation of elasticity values

for the prostate recovered from the patient data sets; the last

column is the clinical cancer staging for the tumor for each

patient.

Number of Average Young’s Std. Clinical
Targets Modulus (kPa) Deviation T-Stage

Patient 1 8 48.60 2.41 T1

Patient 2 6 53.99 10.28 T3

Patient 3 7 71.97 4.35 T3

Patient 4 6 60.81 1.25 T2

Patient 5 16 38.06 13.91 T1

Patient 6 16 45.42 10.26 T1

Patient 7 17 40.67 16.34 T2

Patient 8 15 52.40 7.72 T2

Patient 9 9 51.47 7.50 T1

Patient 10 12 56.19 7.95 T2
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Table III: Definition of clinical T-stages for prostate cancer

Stage Definition

TX Primary tumor cannot be assessed
T0 No evidence of primary tumor
T1 Clinically inapparent tumor neither palpable nor visible by imaging
T2 Tumor confined within prostate
T3 Tumor extends through the prostate capsule
T4 Tumor is fixed or invades structures other than seminal vesicles
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Figure 10: Box plot of average recovered elasticity value and

cancer T stage for each patient data set shown in Table II.

to the stiffness of the prostate. The clinical T-stages for the

patients are shown in the last column of Table II. In order to

analyze the data statistically, we treat the average recovered

elasticities and tumor stages as two random variables and use

numbers 1, 2, and 3 to represent T-stages T1, T2, and T3,

respectively (T0 and T4 are not present in our data sets),

and we test if the recovered elasticity values and the T-

stages are positively correlated. The resulting Pearson (linear)

correlation coefficient is 0.662, and the p-value for the two-

sided correlation test is 0.037, which indicates a significant

positive correlation between the recovered elasticity values and

the T-stages, based on a p-value threshold of 0.05. Since the

tumor stage values are discrete and might be nonlinear with

respect to the elasticity, a rank correlation coefficient, such as

the Spearman’s rank correlation ρ, may be more suited for the

test. From the samples we have Spearman’s ρ = 0.701 and an

estimated p-value of 0.024, which shows again a significant

positive correlation. The box plot of the elasticity values and

cancer stages is shown in Fig. 10.

C. Study: Inhomogeneous Materials

We assume a constant material property within an organ due

to the limitation of the image modality, where the intensity is

almost constant within the prostate, so that it is impossible

to segment the tumor. The elasticity values recovered by our

method are therefore “average” values in some sense, and a

Figure 11: A sliced view of the tetrahedral mesh with a tumor

(yellow) embedded in the prostate (red); the mesh is used to

generate the synthetic target surface, while the prostate is still

considered homogeneous in the optimization process.

Table IV: The recovered elasticity values for the prostate as

a homogeneous material, when the organ contains a synthetic

tumor of different sizes and a normal tissue; elasticity values

are set to 100 kPa for the tumor and 50 kPa for normal prostate

tissue.

tumor size / prostate size (%)
10% 25% 50% 75%

Scene 1 51.24 54.98 62.15 63.44

Scene 2 53.55 56.90 69.62 70

higher recovered elasticity indicates either a stiffer tumor or

a larger tumor. Since the clinical T-stage for prostate cancer

depends on the extent of the tumor, we conducted a study to

show the correlation between the tumor size and the recov-

ered elasticity value. Based on the settings in the synthetic

multi-organ experiments in Section III-A, we embedded an

additional tumor inside the prostate for generating synthetic

target surfaces, as shown in Fig. 11. The elasticity values for

the tumor and the normal prostate tissues are set to 100 and 50

kPa, respectively. Notice that in the elasticity recovery process,

we do not know the extent of the tumor due to the imaging

limitation, and we only recover one value for the prostate.

Table IV shows the recovered elasticity values with different

tumor sizes relative to the entire prostate. The results show

increasing elasticity values with increasing tumor sizes in both

scenes. Even though we assume homogeneous materials, the

recovered values can still be used as an indicator of the extent

of the tumor and are therefore correlated to cancer stages.

D. Application: Registration of Segmented CT Images

Since the distance between the fixed and moving surfaces

is minimized during the optimization process, we also have

an image registration as a result of optimizing for forces and

elasticities. In our experiments, the final average value of the

objective function is 0.09, corresponding to an RMS error of

0.01 cm, and a maximum of 0.22 cm, which are within the

image resolution, 0.1×0.1×0.3 cm. The deformed images of

a typical image pair before and after registration are shown in

Fig. 13, with the segmentations of the reference image (red)
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(a)

(b)

Figure 13: Registration results for a pair of test images: (a) axial and sagittal views of the moving image, and a 4x4 checkerboard

comparison with the planning image, before registration; (b) the two views of the registered image, along with a checkerboard

comparison with the planning image; superimposed by segmentations of the reference image, shown in red, and the segmentation

of the prostate in the daily image, shown in blue; notice that the image deforms towards the red contours.

Figure 12: Close-up view of the surfaces before (left) and after

(right) deformation; the transparent white surface shown is the

target surface of the prostate. Notice how the prostate surface

move towards the white surface. Bladder and rectum surfaces

are those with external forces applied.

and the prostate in the moving image (blue) superimposed on

the image. Notice how the prostate in the images moves from

the blue contour to the red contour. Fig. 12 shows a 3D close-

up view of the deforming surfaces from another image pair,

where the surfaces of the bladder and the rectum are those with

external forces applied, and the target surface of the prostate

is shown in white.

We also compared our registration results with a popular

image-based approach, the Demons method [44], by looking at

some landmarks inside the prostate. In most cases, the image

intensity is almost constant inside an organ, but five of the

patient data sets (a total of 32 image pairs) we experimented

on have three “seeds” implanted in the prostate for location

tracking during each treatment fraction, resulting in bright

spots that can be observed in the CT image. The distance

between the target and the deformed landmark positions from

the two methods are shown in Table V, and the two-tail t-

tests for paired samples (distances) show that our method

produces statistically significantly better results in three out

of five patient data sets (with a p-value threshold of 0.05).

For regions with nearly uniform intensity, the deformation

computed by the Demons method is entirely governed by

the registration regularization terms, which do not need to

be physically meaningful for the image-based method. Our

method enforces physically-based constraints and results in

errors within the diameter of the spot. Notice that for the

Demons method, we replaced the voxel values inside the

prostate with the average intensity within the organ, since the

intensity and gradient information from the landmarks could

also be utilized in the image-based registration, giving it an

additional advantage, while our method is based purely on the

physics-based simulation and does not take advantage of the

landmarks.
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Table V: Average error in landmark positions (distance in cm) inside the prostate, computed with the Demons method and our

method; t-tests show that our method performs statistically significantly better in three of the five data sets.

# Target Demons Our Method Paired t-test
Images Avg. (cm) Std. dev. Avg. (cm) Std. dev. p-value

Patient 1 8 0.27 0.17 0.26 0.18 0.07

Patient 2 6 0.21 0.11 0.16 0.11 0.03

Patient 3 7 0.18 0.06 0.10 0.04 1.5e-4

Patient 4 6 0.17 0.07 0.13 0.03 0.02

Patient 5 5 0.21 0.15 0.20 0.08 0.86

Table VI: Error in recovered nonlinear modulus of elasticity

in two synthetic multi-organ scenes.

True Elasticity (kPa) 50 100 150 200

Scene Recovered Value 50.18 105.64 159 174
1 Relative Error +0.35% +5.6% +6% -13%

Scene Recovered Value 45 105 141.5 197
2 Relative Error -10% +5% -5.67% -1.5%

E. Extension: Nonlinear FEM

To demonstrate that our optimization framework can also

be applicable to nonlinear models, we incorporated a geo-

metrically nonlinear FEM and the neo-Hookean model with

the elasticity optimization scheme. The linearized equilibrium

formulation of the nonlinear FEM is

K(un) ·∆u = f ext − f int, (6)

where f ext and f int are the external and internal force vectors,

K(un) is the stiffness matrix that depends on the current

displacement vector un, and ∆u is used to update the vector

un in a Newton iteration (un+1 = un + ∆u). The Jacobian

matrix Ju =
[

∂ui

∂Ej

]

(derivative of displacements u with re-

spect to the elasticity parameter Ej) for the elasticity optimizer

is approximated using the finite difference method due to the

complexity of differentiating the internal forces with respect

to the elasticity. Notice that we have not implemented force

optimization for the nonlinear model, and boundary conditions

given by a surface matching is always used in the simulation.

1) Synthetic scene with multiple organs: We used the same

multi-organ scenes in Section III-A and deformed them using

the nonlinear FEM to generate the synthetic target surfaces.

That is, the nonlinear FEM is used in both generating synthetic

cases and in the optimization scheme. The resulting recovered

elasticity values are shown in Table VI. The errors are within

13% for the range we tested (50-200 kPa).

Effect of inaccurate elasticity values for surrounding

tissues: The elasticity value for tissue surrounding the prostate

is fixed to 10 kPa in our experiments. While only the ratio

between two elasticity values can be recovered with a linear

model without knowing true force values (as discussed in

Section II-A), the surrounding tissue elasticity could have a

different effect on nonlinear models. However, with the small

amount of displacement we have observed, we expect the

surrounding tissue elasticity to have a similar effect as in the

linear model. For example, if the true elasticity values for

the prostate and surrounding tissue are 100 kPa and 20 kPa,

respectively, we expect to recover the value 50 kPa for the

prostate since the surrounding tissue elasticity is fixed to 10

Table VII: Error in recovered nonlinear modulus of elasticity

in two synthetic multi-organ scenes where the elasticity of

surrounding tissue is doubled (20 kPa) when generating the

synthetic data. The surrounding tissue elasticity is still set

to 10 kPa in the optimization process, and we expect to see

recovered values for the prostate to be half of the true values.

Elasticity for Surroundings 20 kPa

Elasticity for Prostate (kPa) 50 100 150 200

Expected Value for Prostate 25 50 75 100

Scene Recovered Value 28.05 50.17 72.98 106.17
1 Relative Error +12.2% +0.34% -2.7% +6.17%

Scene Recovered Value 25 45 76.52 108.16
2 Relative Error 0% -10% +2.02% +8.16%

kPa in the optimization. Table VII shows the results using the

nonlinear FEM where the true elasticity is twice the value used

in the optimization process. The recovered elasticities for the

prostate are very close to what we expect, with relative errors

below 13%.

2) Assessment of prostate cancer stage: We repeated the

experiments in Section III-B using the nonlinear FEM. The

recovered elasticity values for the 10 patient data sets are

shown in Table VIII, and the box plot of average recovered

elasticity and clinical T-stage is shown in Fig. 14. The Pearson

(linear) correlation coefficient for recovered elasticity values

and T-stages is 0.704 with a p-value of 0.023, and the

Spearman’s rank correlation ρ is 0.636 with a p-value of 0.048,

which again shows a significant positive correlation between

the stiffness value and the cancer stage for this group of

patients. However, the recovered values are less consistent than

those from the linear FEM implementation. We conjecture that

the implementation using nonlinear FEM is more sensitive to

the material properties and boundary conditions, and therefore

the recovered values vary more than those using the linear

FEM.

IV. CONCLUSION AND FUTURE WORK

We have presented a novel physically-based method for

simultaneously estimating the 3D deformation of soft bodies

and determining the unknown material properties and bound-

ary conditions. Previous elastography methods are limited by

imaging modalities and force measurement schemes, and we

overcome these limitations by utilizing the surface information

extracted from 3D images. Although the resolution of the

resulting elastogram is limited to the object boundaries, we

showed that the recovered value reflects the distribution of

materials within the object, and the recovered elasticity values
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Table VIII: Average and standard deviation of elasticity values

for the prostate recovered from the patient data sets using

nonlinear FEM; the last column is the clinical cancer staging

for the tumor for each patient.

Average Young’s Std. Clinical
Modulus (kPa) Deviation T-Stage

Patient 1 47.29 3.25 T1

Patient 2 69.28 8.09 T3

Patient 3 78.91 4.81 T3

Patient 4 63.62 2.92 T2

Patient 5 47.45 16.62 T1

Patient 6 59.85 18.37 T1

Patient 7 62.73 18.34 T2

Patient 8 60.23 11.93 T2

Patient 9 69.74 11.46 T1

Patient 10 69.25 17.64 T2
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Figure 14: Box plot of average recovered nonlinear elasticity

value and cancer T stage for each patient data set shown in

Table VIII.

have a significant positive correlation with clinical prostate

cancer staging in small-scale experiments. Therefore, our

method has the potential to become a means of noninvasive

cancer detection.

As a non-rigid image registration method, ours automati-

cally determines the patient-specific material properties during

the registration. The resulting deformation field is enforced to

be physically plausible, since it is computed by the 3D FEM

simulator with appropriate contact constraints among organs.

The observed error on the boundary is within the resolution of

the segmented images, and the error on the internal bright spots

as landmarks in the prostate is comparable to the diameter of

the spots.

The optimization framework for joint estimation of both

3D deformation and material parameters is generalizable. It is

not limited to elasticity reconstruction and could be used for

more sophisticated physiological models than the basic linear

and nonlinear elasticity models we chose for simplicity in our

current implementation. As an image registration technique,

our method is reliable in terms of the registration error; as a

parameter estimation method, our system can save an enor-

mous amount of efforts adjusting the simulation parameters

manually by automatically extracting patient-specific tissue

properties. Furthermore, since only the 3D surfaces are used in

our algorithm, applications other than medical image analysis

could also adopt the method.

Our current implementation assumes that the Poisson’s

ratio can be treated as known, which is also the case in

most elastography studies, since the Young’s modulus has

more clinical significance in cancer detection. However, it has

been reported that the Poisson’s ratio plays a more important

role than the elasticity in modeling deformation of breasts

[38], where the optimal Poisson’s ratio also depends on the

boundary conditions — lower values could improve the results

when volume changes need to be modeled. Therefore, a study

of how different Poisson’s ratios affect elastography results

could be a topic for future investigation.

In the near future, we plan to accelerate performance of

the iterative scheme by many-core computing and model

reduction. The resulting implementation can then be applied

to more complicated physical and geometric models, such

as situations with complex material property distributions,

surface sliding, and large deformations. We would also like

to explore the possibility of clinical trials of our method to

noninvasive cancer staging based on the stiffness value. Virtual

surgery and material engineering are some example application

domains that would benefit from an automatic estimation of

material properties and they can also directly benefit from this

framework, worthy of further exploration.
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