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Abstract 
Simulation is widely used in the decision making processes associated with supply 
chain management. In this paper, we present an extension of the simulation based 
optimization framework which has been previously proposed for analyzing supply 
chains. The extension consists of the iterative construction of a surrogate model based 
on systematically accumulated simulation results to capture the causal relation between 
the key decision variables and supply chain performance. The decision variables can 
then be optimized using the surrogate model in place of individual simulation runs to 
economize on the overall computational effort. The extended framework is illustrated 
using a small example and then applied to optimize the inventory levels in a three stage 
supply chain. 
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1. Introduction 
Monte Carlo simulation is one of the most important tools for analyzing supply chains 
in the presence of uncertainties. Compared to analytical techniques, simulation provides 
the flexibility to accommodate arbitrary stochastic elements, and generally allows 
modelling of all of the complexities and dynamics of real world supply chains without 
undue simplifying assumptions. However, as a descriptive method, simulation can only 
be used to perform optimization through “what if” case studies involving the 
comparison of several cases or scenarios. 
The “what if” case approach is particularly ineffective in optimizing continuous 
decision variables (for example, inventory levels of each entity in a chain). Thus having 
a method to perform optimization efficiently in continuous decision spaces is of 
importance.  Even for scenario analysis, such a method is a necessary because inventory 
optimization generally appears as a sub-problem within each scenario. For instance, 
consider the problem of determining the best network design from several network 
candidates.  One performance criterion for assessing the quality of a design is to 
evaluate the material hold-up under this particular design. To accomplish this, an 
inventory level optimization problem must be solved. 
Optimization in continuous decision space can be carried out through simulation based 
optimization (Fu, 2002). Under this framework, an optimization module is coupled with 
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a simulation model. The optimizer searches the decision space systematically using the 
simulation model as function evaluation. While this basic framework is well understood, 
simulation based optimization is not yet widely used in supply chain analysis practice 
mainly because of its extremely high computational requirements. Typically the 
optimization search process is slow and inefficient due to the presence of statistically 
and numerically caused noise in the simulation output as well as the fact that each 
simulation run itself takes significant execution time. 
This paper presents an extension to the concept of simulation based optimization by 
introducing a surrogate model for use in optimizing continuous supply chain decision 
variables, with the aim of mitigating the computational burden of existing methods. 
Section 2 describes the proposed framework; section 3 validates the framework and 
applies it to a case study and conclusions are drawn in section 4.  

2. Simulation Based Optimization Framework 
An overview of the proposed extended simulation based optimization framework is 
shown in Figure 1. Unlike classical response surface methodologies which build local 
surfaces, the surrogate model fits a single surface for the whole domain. Essentially, this 
framework iteratively builds a series of temporary surrogate models (or meta-models)  
by graduately increasing the number of  sampling points in the decision space, and uses 
these temporary models to guide  the incremental sampling. The iterative refinement 
process is terminated when a suitable stopping criterion is met. The surrogate models 
are constructed with LSSVM (least square support vector machine). The incremental 
sampling is carried out using DACE (design and analysis of computer experiment) so as 
to balance exploration of the decision space against the exploitation of the already 
extracted model information. A domain reduction technique is also incorporated in each 
step to reduce the complexity of the surrogate models. 

Simulation Domain reduction Build LSSVM 

DACE model Incremental sampling Stop condition

Surrogate model

LHS  

Decision optimization 

Figure 1. Simulation based optimization framework 

2.1 Sampling  
The initial sampling is performed with the Latin hypercube sampling (LHS) technique. 
LHS disperses the sampling points as evenly as possible in the whole domain, thus 
providing a good basis for building the first temporary surrogate model when there is no 
prior knowledge of where the good solutions are located. 

2.2 Domain reduction  
The number of points that must be sampled and the complexity of the surrogate model 
are roughly proportional to the size of the domain. Domain reduction can significantly 



decrease the overall computational burden by cutting off the regions where good 
solutions are unlikely to exist. This is achieved by comparing the average performance 
of different regions through fitting a regression tree to the simulation results. 

2.3 Model Construction 
One of the crucial decisions in the proposed framework is to use LSSVM (Van Gestel et 
al., 2002) to construct the surrogate models. LSSVM has two important features: it is 
capable to efficiently extract functional relations from noisy data based on structure risk 
minimization (Vapnik, 1999) as well as to capture complex relations embedded in data 
because LSSVM corresponds to fitting a linear regression with an infinite number of 
basis functions. The actual fitting procedure consists of the solution of a hierarchical 
optimization problem involving three levels of parameters in the LSSVM model. The 
optimization is performed under the Bayesian evidence framework, which establishes 
analytical relations between data and parameters of each level.  

2.4 DACE model and incremental sampling 
With a temporary surrogate model, the noise in simulation data is essentially removed 
because the LSSVM model gives a deterministic performance prediction at each point 
in the decision space, where the prediction approximates the expected performance 
value of the corresponding point. With this observation, the DACE model (Sacks et al., 
1989), originally developed for deterministic computer experiments, is introduced to 
perform an experimental design. Two design criteria are considered: maximizing 
Bayesian information and maximizing expected improvement (Sasena et al., 2002). By 
combining the two criteria together, the incremental sampling is controlled such that 
both global and local sampling are considered with emphasis being gradually shifted 
form global exploration to local exploitation. 

2.5 Stopping criteria 
Several criteria are implemented to control the termination of the loop in Figure 1. The 
two most important criteria are absolute expected improvement and relative 
improvement. These criteria will stop surrogate model building once they detect that 
further improvement drops below a prescribed value. In addition, total simulation time 
and total number of sampled points are also used as stopping criteria. 

3. Case Studies 

3.1 Framework validation  
We first validate the surrogate model framework before applying it to supply chain 
analysis. The purpose of the validation is to show that the surrogate model is able to 
capture the underlying input and output relations over the decision space of interest by 
only observing the performance values at sampled points. For this purpose, we choose 
the ‘bra’ function (Dixon and Szegö, 1978) to return the performance values in place of 
the simulation; thus the input and output relation of the data is known. If the framework 
is effective, then the surrogate model it generates should adequately represent the 
structure of the ‘bra’ test function. That is, the surrogate model should indicate the 
neighbourhoods in which the optimal solutions are located. 



Figure 2 shows the contour profile of the ‘bra’ function, which has three local 
minimums in the domain of interest. For each sampling point x, a performance value 
bra(x)+N(0,900) is returned, i.e., random noise following a normal distribution N(0,900) 
is superimposed on the ‘bra’ function. The scaling is such as to cause the average noise 
to signal ratio to be as high as 0.3.  Figure 3 shows the contour profile of the resulting 
surrogate model. Note that the initial LHS uses 20 points and the final model uses 29 
sampling points where each point incurs one simulation run. It is noteworthy that, even 
with relatively high level of noise presented in the data, the underlying structure of ‘bra’ 
function is still captured with the three local minimums clearly identified. Although the 
location of the minima points of the surrogate do not agree exactly with those of the test 
function, the results are absolutely acceptable since these minimum points do 
correspond to good solutions (the optimal objective function value is no larger than 10 
of the true optimum 0.4) of the  original function (Figure 2). Computational efficiency, 
the major strength of our proposed framework, is also manifested by this simple 
example. For purpose of comparison, we have applied the well-known algorithm SPSA 
(Spall, 1998), which computes gradient directly from simulation results and search 
along the steepest decent direction, to the test function. The results obtained show that 
even with smaller noise level, N(0,100), and a local optimum  as the initial point, 500 
steps of search (where each step incurs two simulation runs) with the search yields an 
objective function value 30  larger than the true optimum. Further increasing the search 
to 5000 steps does not improve the solution quality. 

             
Figure 2. Contour of ‘bra’ function             Figure 3. Contour of the surrogate model 

for ‘bra’ function 

3.2 Optimising inventory levels for a supply chain  
The proposed simulation based optimization framework is next applied to a three stage 
supply chain. The network structure is represented in Figure 4. Product 1 and product 2 
are produced in the node production 1, and then shipped to the node production 2 where 
further processing is carried out. The finished goods from the node production 2 are 
transported to warehouses to meet customer demands. Warehouse 1 only stores product 
1 and warehouse 2 only stores product 2. 
The transportation times between nodes are random. The operation of each production 
node is modelled as a simple queuing process consisting of a single machine whose 
service times follow exponential distributions. Note that there is no additional 



implication for the optimization if other more complex methods like MILP are used in 
the simulation to model the production. The customer demands are random both in 
terms of the interarrival intervals and quantities. The unmet demands are fully 
backlogged by warehouses. The supply chain operates under a base stock policy. 
Further, we assume that the chain operates under a pure “pull” mechanism, thus neither 
demand forecasting nor production planning are employed in this case study. The 
objective of the optimization is to minimize the backlogging costs at warehouses and 
the holding costs at all nodes by setting the ten base stock levels (each production node 
has inventories for raw materials and products). 
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Figure 4. The supply chain network structure 

The two products have quite different characteristics. Demand quantities for both 
products have the same triangular distribution Tri(4,8,6), but the demand arrival 
intervals for product 1 follow a Gamma distribution Gamma(12,3), while that for 
product 2 follows a Gamma(4,3). Table 1 shows the holding costs and backlogging 
costs at the different locations of the supply chain. Note that  hi1 i=1, 2 are the holding 
costs of raw materials at node production i, hi2 i=1,2 are the holding costs of products at 
node production i, hwj j=1,2 are the holding costs at warehouse j, and bwj j=1,2 are the 
backlogging costs at warehouse j. Both products are produced in batch mode with a 
fixed batch size of  4. Table 2 lists the average processing time considered, where tij i=1, 
2, j=1, 2 represent average processing time of product i at production node j. Further, 
two production queuing modes are considered—mode 1 is simply first in first out 
(FIFO), while mode 2 gives priority to product 1, i.e. always produce product 1 if both 
products have demands in the queue.  
Table 3 shows some of the computational results. The subscripts in the headings follow 
the conventions introduced in table 1; CIMJ, I=1,2,, J=1,2 is the combination of  
average processing time in table 2 with the two production modes; e.g. C1M1 indicates 
the production time of case 1 under the FIFO mode. Comparison of production mode 
1with production mode 2 shows that production mode 1 incurs a higher cost; the 
intuitive reason is that FIFO leads to the expensive and fast moving product 1 having to 
undergo longer production lead time by waiting in the queue for machine time. The 
results also reveal that the average processing time has significant effect on the total 
cost. This is manifested by the much higher cost of case 1 which has longer processing 
time for product 2.  Again, comparison with SPSA indicates that the surrogate 
framework is much more efficient: 1000 simulation runs of SPSA fail to find solutions 
with costs below 1000 for C1M1 and C1M2, while the surrogate framework on average 
incurs 600 simulation runs to get the results shown in table 3; although SPSA locates 



solutions for C2M1 and C2M2 with qualities equivalent to the surrogate framework, 
SPSA needs 700 simulation runs on average for both cases, while the surrogate 
approach only uses 350 runs for C2M1 and 500 runs for C2M2 respectively. 
 
Table 1. Holding costs and backlogging costs 

 h11 h12 h21 h22 hw1 hw2 bw1 bw2 
Product 1 3 3 6 6 9 -- 60 -- 
Product 2 1 1 2 2 -- 3 -- 20 

  
Table 2. Average processing time 

 t11 t12 t21 t22 
Case 1 1 1 2.2 2.2 
Case 2 1 1 2 2 

 
Table 3. Base stock policy 

  I11 I12 I21 I22 Iw1 Iw2 cost 
Prod 1 11.8 21.5 5.5 46.5 19.5 -- C1M1 
Prod 2 26.4 77.6 25.4 75.3 -- 73.8 

722 

Prod 1 23.6 22.1 2.5 11.7 9.0 -- C1M2 Prod 2 1.3 40.7 60.9 75.6 -- 98.7 603 

Prod 1 0 22.2 5.3 14.0 7.5 -- C2M1 Prod 2 0 18.1 24.5 51.3 -- 44.8 378 

Prod 1 0 8.3 0 0 16.2 -- C2M2 Prod 2 27.6 55.1 5.2 10.5 -- 66.3 282 

4. Conclusions 
An extension to the simulation based optimization framework is proposed for 
optimizing supply chains under uncertainty. This framework employs a surrogate model 
to extract structure information from noisy simulation results; the supply chain 
decisions can then be efficiently optimized using this surrogate model. This framework 
is shown to correctly capture the gross structural features of a test function superposed 
with large random noise and to use simulation runs parsimoniously. Application to 
optimize the base stocks for a three stage supply chain further demonstrates the power 
of the method .  
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