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Abstract

Quantitative analysis of software systems is being recognized as an important issue
in the software development process. Performance analysis can help to address
quantitative system analysis from the early stages of the software development life
cycle, e.g, to compare design alternatives or to identify system bottlenecks. Early
identification of performance problems is desirable as the cost of design change
increases with the later phases of the software development cycle.

This thesis addresses the problem of performance analysis of software systems
described at a high level of detail. We adopt a model-based approach: starting from
a software model, we derive a performance model which is then evaluated. This kind
of approach has the advantage of being applicable since the early software develop-
ment phases; in contrast, a measurement-based approach consisting on identifying
problems by direct measurements on a running system can not.

We consider software descriptions as a set of annotated Unified Modeling Lan-
guage (UML) diagrams. UML is a widely used notation for describing and specifying
software artifacts, and recently it is being also considered for performance evalua-
tion purposes. We define the performance model as a process-oriented simulation
model. Simulation is a powerful modeling technique which can represent general
and unconstrained system models, so that the software model can be more accu-
rately represented. An algorithm for translating UML software specifications into
simulation models is described. The proposed technique defines a set of annotation
of UML specifications to add quantitative, performance-oriented informations. The
profile is based on the UML profile for Schedulability, Performance and Time spec-
ification. The system is described in term of Use Case, Activity and Deployment
diagrams. Use Case diagrams correspond to workloads applied to the system. Ac-
tivity diagrams provide a high-level description of the computation steps performed
by the system, and Deployment diagrams describe the physical resources on which
the computations take place. A process-oriented simulation model can then be au-
tomatically derived from the annotated specification. Execution of the simulation
program provides performance results that can be directly interpreted at the UML
software specification level. The described algorithm has been implemented in a pro-
totype tool called UML-Ψ (UML Performance SImulator), which is demonstrated
on a case study to show the validity of the approach. The UML-Ψ tool is written
in C++ and is based on a general-purpose process-oriented simulation library. It



parses annotated UML models, automatically builds the corresponding simulation
model and executes it. Performance results are inserted into the original UML model
as tagged values, in order to give feedback to the user.



Sommario

L’analisi quantitativa di sistemi software viene riconosciuta come un aspetto im-
portante nel processo di sviluppo del software. L’analisi quantitativa può aiutare a
valutarne le prestazioni a partire dai primi passi del ciclo di sviluppo, ad esempio
consentendo di confrontare differenti alternative o individuare colli di bottiglia nel
sistema. L’individuazione precoce di problemi legati a scarse prestazioni è desider-
abile, poiché il costo di cambiare il disegno del software cresce col progredire delle
fasi di sviluppo.

Questa tesi affronta il problema dell’analisi delle prestazioni di sistemi software
descritti ad alto livello. Viene adottato un approccio basato su modelli: a partire da
un modello del sistema software, viene descritto un modello di prestazione che è poi
valutato. Un approccio di questo tipo ha il vantaggio di poter essere applicato fin
dalle prime fasi del ciclo di sviluppo del software; al contrario, non possono essere ap-
plicati durante le fasi iniziali gli approcci basati sulle misurazioni, perché consistono
nell’identificare problemi tramite misura diretta su un sistema in esecuzione.

Vengono considerate descrizioni di sistemi software espresse come un insieme di
diagrammi UML annotati. UML è una notazione ampiamente utilizzata per la de-
scrizione e la specifica di artefatti software, e recentemente è stata considerata anche
nella valutazione di prestazioni. Definiremo un modello di prestazioni in termini di
un modello di simulazione orientato a processi. La simulazione è una tecnica molto
espressiva con la quale è possibile rappresentare modelli generali e senza vincoli, tali
da poter rappresentare più accuratamente il modello del software. Verrà descritto un
algoritmo per la traduzione di specifiche UML annotate nel modello di simulazione.
La tecnica proposta definisce un insieme di annotazioni di specifiche UML per ag-
giungere informazioni quantitative orientate alle prestazioni. Il profilo è basato sul
“ UML profile for Schedulability, Performance and Time Specification”. Il sistema
viene descritto in termini di diagrammi di caso d’uso, di attività e di deployment.
I diagrammi di caso d’uso corrispondono ai carichi di lavoro applicati al sistema.
I diagrammi di attività forniscono una descrizione ad alto livello dei passi di com-
putazione effettuati dal sistema, e i diagrammi di deployment descrivono le risorse
fisiche su cui le computazioni avvengono. A partire dalle specifiche annotate viene
derivato un modello di simulazione orientato a processi. L’esecuzione del programma
di simulazione fornisce risultati di prestazioni che possono essere direttamente inter-
pretati a livello di specifica UML. L’algoritmo proposto è stato implementato in un



prototipo chiamato UML-Ψ(UML Performance SImulator), che verrà applicato ad
un caso di studio per mostrare la validità dell’approccio. UML-Ψ è scritto in C++
ed è basato su una libreria di simulazione generica orientata a processi. UML-Ψ
legge modelli UML annotati, costruisce automaticamente il corrispondente modello
di simulazione e lo esegue. Le misure di prestazione sono inserite nel modello UML
originale come tagged values, allo scopo di fornire un riscontro all’utente.
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1
Introduction

Developing a complex software system is a challenging task, requiring resources in
term of time and manpower to be accomplished. It is therefore very important that
the system, once built, satisfies its functional and non functional requirements.

In recent years it has been recognized that the software development processes
should be supported by a suitable mechanism for early assessment of software per-
formance. Early identification of unsatisfactory performance of Software Architec-
ture (SA) can greatly reduce the cost of design change [91, 92]. The reason is that
correcting a design flaw is more expensive the later the change is applied during the
software development process. This is particularly true if a waterfall-style model [93]
of software development is employed, as any change requires the development pro-
cess to start back from the beginning. However, this is still a relevant issue whenever
a different software development process is used.

Both quantitative and qualitative analysis can be performed at the software
architectural design level. Qualitative analysis deals with functional properties of the
software system such as deadlock-freedom or security. Qualitative analysis is carried
out by measurement or by modeling the software system to derive quantitative
figures of merit, such as, for example, the execution profile of the software, memory
utilization or network utilization.

It should be noted that software performance modeling is challenging for different
reasons. First, it is difficult to derive meaningful performance measures from a static
analysis of the code. The reason is that software performances heavily depend
on the hardware platform on which the software executes, and also on the usage
pattern the software is subject to. Moreover, software performance modeling can
not be performed on one component at a time, as critical issues may arise only when
different components interact.

We focus on models of software systems at the SA level. Many performance
models have been proposed in the literature; these models include Queuing Net-
work [57] and their various extensions (as Layered Queuing Network, which have
been specifically developed to model client-server communication patterns in dis-
tributed systems [38, 86, 103]), Stochastic Petri Nets [69] and Stochastic Process
Algebra [50]. At the moment there is no clear consensus on which model should be
preferred in practice. The general understanding is that different models are suit-
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able for different architectural styles and/or application domains. It is interesting
to observe that most of the software performance evaluation approaches proposed
so far are based on analytical models. This is motivated by the fact that these mod-
els are well studied and understood. Also, these models can sometimes be solved
analytically, providing performance results which are both exact and optionally can
be expressed parametrically with respect to one or more variables. This, however,
comes at a price.

Analytical models which can be solved exactly can be derived only by imposing
some limitations on the SA from which they are derived. For example, Queuing Net-
work (QN) models have a so-called product-form solution, which can be efficiently
computed, only for special classes of networks. These produce-form models are con-
strained both on their topology and on the distributions of jobs interarrival and
service times, which are often assumed to be exponentially distributed [28]. Hence,
the hypothetical software system from which they are derived is constrained to being
modeled only under the exponential distributions assumption. Even when solvable
analytical models can be derived, their size can grow exponentially with the size of
the corresponding SA, making the performances model impossible to handle [7].

Analytical performance models can be structurally very different from the SA
from which they are derived. This makes it very difficult to report performance
results from the performance model to the original SA. This is very limiting, as soft-
ware performance evaluation is supposed to provide the modeler with an immediate
feedback about possible performance problems.

There exist partial solutions to these problems. Approximate numerical tech-
niques are available in many cases where product-form solutions do not exist [28].
Unfortunately, those techniques themselves are subject to constraints in order to be
applied. They do not provide closed form solutions, which would be very useful in
order to study figures of merit as a function of some unknown parameter. Finally,
many approximate techniques do not provide any error estimation on their results,
meaning that it is impossible to quantify whether the computed values are good
approximations of the exact results or not.

We address these limitations by developing a simulation model of SA. Simu-
lation is a powerful modeling technique that allows general system models, that
is simulation models can represent arbitrarily complex real-world situations, which
can be too complex or even impossible to represent by analytical models. Exam-
ples of complex systems are computer systems with asynchronous communications,
fork and join and simultaneous resource possessions, for which analytical models of-
ten become difficult to analyze. We propose an approach for software performance
analysis based on simulation to take advantage of this modeling technique.

Once the performance model has been chosen, one more problem remains: it is
necessary to choose a notation to use for describing software systems. Existing ap-
proaches can be divided in two categories: the first deal with creating special-purpose
notations for expressing both architectural features and performance informations;
the second deals with building performance models from already existing design



5

formalisms.
Examples in the first category (special-purpose notations for both architectural

and performance-oriented models) include the SPE approach by Smith, and Smith
and Williams [91, 92, 102]. SPE is a comprehensive approach integrating perfor-
mance analysis into the software development process. The software execution model
is represented by Execution Graphs, while the system model is based on QN and
represents the physical resources on which the software executes.

Examples in the second category (performance models derived by software spec-
ification notations already in use) include SDL [21] and LOTOS [29]. SDL is used
for the specification of real-time systems; LOTOS is the CCITT recommended pro-
tocol specification language. Both have been used for deriving various kinds of
performance models (see [79] for references).

The problem with all those approaches is that both domain-specific and com-
pletely new notations are unlikely to gain wide acceptance among the software en-
gineering community. In recent years, the Unified Modeling Language [74, 87, 88] is
emerging as a de facto standard for the high-level specification of software systems
and business processes, with particular emphasis of Object-oriented features. UML
is based on a graphical notation for specifying software artifacts; the notation is
quite rich, including different kind of diagrams which can be used to model different
point of views of the system. An introduction to UML will be given in Chapter 2.

It comes at no surprise that the software performance community is looking with
great interest toward using UML as the preferred software specification language.
Unfortunately, this choice has some drawbacks. The main problem is that UML
is not a formal language. It lacks any formal semantics, and is only intuitively
specified [85]; this makes reasoning on UML specifications troublesome. Efforts are
ongoing to provide a precise specification of at least some subset of UML [81].

However, the fact that UML is informally specified does not mean that it has
no semantics at all. It is still possible to reason on UML specifications by taking
into account their intuitive (and widely agreed on) meaning. We propose a mapping
between annotated UML specifications into process-oriented simulation models. The
mapping will be described in detail in Part II, and is consistent with the intuitive
semantics of the UML diagrams considered. Moreover, the UML profile we define
in Chapter 5 enforces an additional, informally specified semantics of UML use
case, activity and deployment diagrams corresponding to that of the performance
model generated from them. This is exactly what a UML profile is supposed to be
used for [74]. We are then considering UML specifications representing a dynamic
behavior described more precisely by their corresponding simulation models.

We consider quantitative evaluation of the performances of SA at the design
level based on simulation models. We use SA specifications expressed in terms of
UML [74] diagrams. We propose to annotate the UML diagrams using a subset of
annotations defined in the UML Profile for Schedulability, Performance and Time
Specification [75] (hereafter referred as UML performance profile). We define a sim-
ulation model of an UML software architecture specification introducing an almost
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one-to-one correspondence between behaviors expressed in the UML model and the
entities or processes in the simulation model.

The advantage of the proposed approach is twofold. First, this correspondence
between the system and the model helps the feedback process to report performance
results obtained by simulation back into the original SA. Second, this allow to define
a simple translation algorithm from the SA to the simulation performance model
that can be fully automated.

1.1 Software Performance Evaluation

Performance analysis of software systems can be carried out by measurement or by
modeling techniques. Direct measurement of an actual implementation provides an
accurate assessment of the performance of a software system. This is relatively easy
to do, but requires to build a system implementation before the measurement can
take place. Implementing a complex system is usually a time-consuming, error-prone
and expensive task; mastering this complexity is the goal of all the software devel-
opment processes which have been proposed in the literature. We focus on software
system at the SA design level. When SA exhibits performance-related problems, it
is unlikely that such problems will be fixed once the architecture has been deployed,
given the high costs associated with changing the design. Hence it is useful or even
necessary to evaluate early performance measures at the architectural design level,
by developing and evaluating a model of SA. Performance model evaluation can is
obtained by analytical, simulative or hybrid techniques.

Most of the research in the area of Software Performance Engineering (SPE) is
based on developing analytical models of SA [9, 15]. However, such models can
usually be built only by imposing some structural restrictions on the original sys-
tem model, depending on the specific modeling formalism which has been chosen;
the reason is that analytical models have often a limited expressiveness. While it
is sometimes possible to simplify the model of the system in order to make it an-
alytically tractable, there are many cases in which the significant aspects of the
system can not be effectively represented into the performance model. Examples
are concurrency, simultaneous resource possession and fork and join systems.

For these reasons we propose a software performance evaluation approach based
on simulation models. Simulation models can be arbitrarily detailed, in that, infor-
mally, they impose no restrictions on what they can model. The analyst has the
maximum degree of freedom in selecting the aspects of the real system, that is the
SA in our context, to model, and at which level of detail. This freedom comes at
some cost: the drawback of simulation is that very complex models may require a
lot of time and computational resources in order to be executed. The results also
require sophisticated statistical techniques in order to be correctly understood [55].
While it is true that any given system can be represented at an arbitrarily high level
of detail by a simulation model, the analyst often ignores the exact inner working of
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the system being simulated. This is certainly the case with SA, since they are defined
at a high level of abstraction, and many details are postponed until the implementa-
tion phase. However, while the software architect may ignore the inner details of the
system being designed, he could have some more or less detailed knowledge of part
of the architecture (for example if some pieces are taken from an existing, already
implemented system). Whenever additional informations are available, they should
be used to obtain better and more realistic performance measures.

In order to easily apply SPE techniques it is convenient to refer to a common
notation for software specification. Many notations are design-oriented and do not
provide built-in facilities to express informations necessary to derive a performance
model. Two main approaches have been employed to overcome this limitation. The
first is the introduction of performance-oriented formalisms applied as informations
specifically added to software models [91]. The second is the extension of modeling
languages with additional notations [22, 52, 67]. While both approaches produced
encouraging results, they are not widespread since they require software engineers
to learn new and non-standard modeling formalisms and notations.

After its adoption in 1997 as an official Object Management Group (OMG) stan-
dard, UML gained wide acceptance among software engineers thanks to its flexibility
and ease of use. UML is a language for specifying, visualizing, constructing, and doc-
umenting software and non-software systems. It is particularly useful for, although
not limited to, designing Object-Oriented systems. UML provides users with a vi-
sual modeling notation to develop and exchange models, and it defines extensibility
and specialization mechanisms. It supports specifications which are independent
from the particular programming language and development process. Moreover,
it supports higher-level development concepts such as components, collaborations,
frameworks and patterns.

Given its wide acceptance, many software engineers are already acquainted with
at least the basics of the UML notation. For this reason several recent SPE ap-
proaches consider UML as a starting notation on which existing and new perfor-
mance evaluation techniques can be applied. This can be done because UML pro-
vides extension mechanisms to add new concepts and notations for those situations
which are not covered by the core language, and to specialize the concepts, notation,
and constraints for particular application domains.

We consider the performance-oriented modeling process illustrated in Fig. 1.1.
The starting point is a description of the SA. We consider a description as a set
of UML diagrams annotated with quantitative informations in order to derive a
simulation-based performance model. The model is obtained using a suitable Mod-
eling Algorithm and then implemented in a simulation program, which is eventually
executed. Simulation results are a set of performance measures that can be used to
provide a feedback at the original SA design level. The feedback should pinpoint
performance problems on the SA, and possibly provide suggestions to the software
designer about how the problem can be solved. The modeling cycle shown in Fig. 1.1
can be iterated until a SA with satisfactory performance is developed.



8 1. Introduction

Diagrams
UML

Scenarios

Architecture
Software

Model

Feedback

Impl.
Model

Modeling Algorithm

Performance

Performance
Measures

Model
Evaluation

Evaluation Tool
Performance

Implementation
Program

Model

Figure 1.1: Phases of the modeling and performance evaluation process

1.2 Previous work

Several approaches have been proposed on deriving performance models from archi-
tectural specifications. Since recent approaches (including our proposal) use UML
as the notation for describing SA, we now briefly review some relevant works dealing
with performance evaluation of UML SA. As we will see shortly, most of them pro-
pose the derivation of analytical performance models, while simulation models have
been only recently considered in this field. Detailed considerations about analytical
performance models for SA are outside the scope of this work. The interested reader
is referred to [9, 15] for additional references and a thorough discussion covering a
wider spectrum of approaches. More informations can also be found in [53].

Approaches deriving analytic models

King and Pooley [56] propose a method for deriving performance models based
on Generalized Stochastic Petri Nets (GSPN) [69] from UML collaboration and
statechart diagrams. They propose to use a combination of UML diagrams – state
diagrams embedded into collaboration diagrams – to better express the global state
of a system.

In [79], Pooley and King describe how the various kinds of UML diagrams can be
used for performance evaluation purposes. Namely, they identify Actors in Use Case
diagrams with workloads applied to the system. Implementation diagrams (Deploy-
ment diagrams) are mapped on a queuing network model, representing the compu-
tational resources (service centers in the QN) and communication links (queues in
the QN). Sequence diagrams can be used as traces to drive a simulation program.
Finally, they suggest modeling of UML State diagrams using Markovian models.
To demonstrate their approach, a queuing network model is derived from a UML
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description of an ATM system. The approach adds textual notations to UML dia-
grams to include useful information for performance evaluation (e.g., time labels in
sequence diagrams). Such annotations are used to produce more complete models of
software systems. It should be noted that their approach, in general, can be applied
regardless of the particular performance model derived.

In [23], Bernardi et al. derive a GSPN model from UML state and sequence dia-
grams. They define two levels of modeling: a class level and an instance level. The
class level is represented by state diagrams, and is used to describe the behavior of
single entities of a system. The instance level uses sequence diagrams to show pat-
terns of interaction among objects (instances of classes). The GSPN model is then
created merging together the information provided by the two kinds of diagrams.

Cortellessa and Mirandola [33] present an approach for translating UML se-
quence diagrams, use case diagrams and deployment diagrams into performance
model based on Extended Queuing Network (EQN) [59], using an intermediate
transformation into Execution Graphs [91]. System performance evaluation is pre-
sented as an incremental process integrated in the software development life cycle,
by using information of different kinds of UML diagrams from the early stages of the
development process. The level of detail of the model is extended as the software
development proceeds. This allows incremental building of a performance model of
the system, which can be used to improve or modify the SA. The UML diagrams are
annotated with quantitative informations, which are necessary to set the parame-
ters of the model. Actors are annotated with the frequency they may appear in the
system. Associations between actors and use cases are annotated with the proba-
bilities that each actor executes each use case. Sequence diagrams are annotated
with timing informations attached to events, and messages sent among objects are
tagged with their sizes. Deployment diagrams represent various kinds of resources,
and are annotated with suitable parameters such as bandwidth for network links,
or speed of computational resources. Finally the three types of UML diagrams (use
case, sequence and deployment diagrams) are used together to build a EQN model.

In [43], Gomaa and Menascé use UML diagrams to represent the interconnection
pattern of a distributed software architecture. class diagrams are used to illustrate
the static view of a system, while collaboration diagrams show the dynamic behavior.
collaboration diagrams are extended with new elements showing interconnections
and communication ports, and are added with performance annotations written in
Extensible Markup Language (XML). Such annotations refer to routing probability
between objects, average message processing time, average message size and average
arrival rate of requests. Then they derive a performance model based on QN.

Gu and Petriu [45] and Petriu and Shen [77] derive performance models based
on Layered Queuing Network (LQN) models [86] from a description of SA. They
use UML activity diagrams, annotated as defined in the UML Performance Profile.
Diagrams and annotations are saved in XML files in the XML Metadata Interchange
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(XMI) format [76] and then translated in LQN models through Extensible Stylesheet
Language Transformation (XSLT) [104].

Lindemann et al. [63] develop an algorithm for deriving performance models
based on Generalized Semi-Markov Processes from UML state and activity diagrams.
These diagrams are annotated with exponentially distributed or deterministic delays
applied to events, and timed events trigger a state transition. Annotations are based
on an extension the UML Performance Profile.

Kähkipuro [54] proposes a framework on UML notation for describing perfor-
mance models of component-based distributed systems. The performance model
is based on Augmented Queuing Network (AQN). The approach works as follows.
UML diagrams are first converted into a textual notation called Performance Model-
ing Language (PML). Then the PML performance model is translated into an AQN,
which is then solved with approximate techniques. The results obtained from the
AQN model are subsequently propagated to the PML model and finally to the soft-
ware architectural model. The entire SA performance evaluation cycle is represented
in Fig. 1.2.

UML Representation

PML Representation

AQN Representation AQN Results

PML Results

UML Results

Figure 1.2: The modeling process proposed by Kähkipuro [54]

The PERformance Modelling for Atm Based Applications and SErvices (PER-
MABASE) project [98] deals with the automatic generation of performance models
from software systems specified in UML. The software system is described in term
of the following specifications:

• Workload specification: a description of the workloads driving the system;

• Application specification: a description of the behavior of the software system;

• Execution environment specification: this includes the description of physical
environment, including processors, network links and other resources;

• System scenario specification: the specification of a particular system instance,
describing the configuration of the system (which components are presents and
how they are connected).
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UML is used to specify the workloads, the application behavior and the execution
environment. The descriptions above are translated into a Composite Model Data
Structure (CMDS) which can be checked for inconsistencies and refined if necessary.
The CMDS is then translated into a performance model, whose execution provides
feedback which is reported back into the CMDS. The cycle is represented in Fig. 1.3.

Workload 
Specification

Application 
Specification

Execution Environment 
Specification

System Scenario
Specification

CMDS

Transformations

Performance 
Model

Feedback

Figure 1.3: The PERMABASE modeling and performance evaluation process [98]

Hoeben [51] describes how UML diagrams can be used for performance evalua-
tion. The approach uses UML class and component diagrams to represent informa-
tions used for modeling the system dynamics. Sequence and collaboration diagrams
are used to model the behavior of the system, and deployment diagrams represent
processors and network connections in the system. The performance model derived
from the combination of the diagrams is based on QN.

Approaches deriving simulation models

There currently are only a few works which derive simulation-based performance
models from software systems. They are briefly described in this section.

Arief and Speirs [3, 4, 5, 6] develop an automatic tool for deriving simulation
models from UML class and sequence diagrams. Their approach (see Fig. 1.4)
consists on transforming the UML diagrams into a simulation model described as
an XML document. The XML notation used to describe the simulation model has
been called SimML (Simulation Modeling Language). This model is then translated
into a simulation program, which can be executed and provides performance results.
What makes this approach particularly interesting is that the simulation model
is decoupled from its implementation. This makes it possible to implement the
simulation model using different languages. The authors developed two different
back-ends for translating the SimML model into simulation programs written in
C++Sim [66] and JavaSim [65].

De Miguel et al. [36] introduce UML extensions for the representation and auto-
matic evaluation of temporal requirements and resource usage, particularly targeted
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Figure 1.4: The modeling process proposed by Arief and Speirs [6]

at real-time systems. Their proposed performance evaluation sequence is depicted
in Fig. 1.5.
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Figure 1.5: The modeling process proposed by De Miguel et al. [36]

Step 1 deals with the construction of the architectural model of the system to
be analyzed; this is done by a UML CASE tool. UML elements are annotated with
stereotypes, tagged values and stereotyped constraints in order to provide parame-
ters to the simulation step. An XMI representation of the UML model is exported
and used in the next phases. Step 2 deals with the configuration of the simulation;
given that the UML model might contain different alternative scenarios and alterna-
tive behavioral specifications for the same elements, during this phase it is possible
to choose which scenarios and which behaviors to execute. Step 3 deals with the
configuration of the simulation parameters, such as the statistics to collect, which
filters to apply to simulation results, and the length of the simulation period. Step
4 is the generation of the OPNET simulation model, which is executed during step
5. Simulation results are finally displayed using OPNET facilities, and may pro-
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vide hints to reconfigure the UML architecture or used as criteria for architecture
selection.

Hennig et al. [47, 49] describe a UML-based simulation framework for early
performance assessment of software/hardware systems described as UML Sequence
and Deployment diagrams. The framework follows the design-evaluation-feedback
cycle depicted in Fig. 1.6.

UML Model

XML experiment
description

Simulator

OMNet++
Core

SPE
Extension

Statistics

Network
Topology

Users and
System 
Behavior

Pre-Modelled
components

Result
(feedback)

Converter

Figure 1.6: The performance simulation cycle proposed by Hennig et al. [49]

The simulation cycle starts from a collection of UML diagrams, from which a
subset (the gray boxes in the picture) is extracted and compiled into an XML docu-
ment describing the simulation experiment. The UML diagrams which are extracted
are Deployment diagrams, used to describe the physical environment on which the
software system executes, and Collaboration diagrams used to model the workload
applied to the system and the internal behavior of the application being modeled.
The converter module generates code for the network and behavior components of
the simulator. The simulator itself is based on the discrete event simulation package
OMNet++ [96]. It contains core modules and specific SPE extensions (scheduler,
workflow execution engine) as well as pre-modelled components. The statistics of
performance observations collected during the execution of the simulator can be fed
back into the original UML model as tagged values. The same approach is used
in [48] for the automatic generation of small components emulating the behavior of
real one.
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1.3 Contribution and outline of this thesis

This work deals with automatic generation of simulation performance models from
high-level UML descriptions of SA. To the best of our knowledge, this is one of the
few approaches considering UML diagrams annotated with (a subset of) the UML
Performance Profile [75]; the other we are aware of is a work by Petriu and Shen [77]
in which the authors describe a graph-grammar derivation of performance models
based on LQN specifications from annotated UML models. The reason why the
UML Performance Profile has not been widely considered yet is probably that it
has been released only very recently; we expect many other approaches along this
direction in the future.

Motivating the use of UML We have already seen the advantages of using UML
as a notation for description of software systems. It is widely used and accepted in
the Software Engineering community, provides a set of diagrams allowing users to
represent a system from different point of views and at different level of details, and
there are many tools able to create and manipulate UML models. The drawback of
the approach is that UML is only informally defined, so that software modelers may
use different diagrams for the same purpose, or use the same notation with different
implicit meaning. While addressing this limitation is outside the scope of this work
(among others, the Precise UML group [81] is specifically working on this issue),
the performance-oriented UML profile we will define in Chapter 5 actually enforces
an (operational) semantics of UML in terms of the derived performance model.
Intuitively, we define the dynamic behavior of a set of annotated UML diagrams in
terms of the behavior of the implementation of the automatically derived simulation
model.

Motivating the use of simulation model We chose to derive a simulation
performance model for different reasons, which have in part already been introduced
in the previous discussion.

The main reason is that simulation models allow for unconstrained representa-
tions of software models. This means that the performance model captures, and is
able to analyze, all behaviors of the software under study. This is not always easy
to do with analytical models. For example, in QN models it is difficult to handle
situations arising from finite capacity of queues (and subsequent blocking behav-
ior); only approximate techniques can be used in some cases, and simulation is the
only approach in general [14]. Other difficulties arise when analyzing simultaneous
resource possession, fork and join systems, synchronous vs asynchronous communi-
cations, and many queuing disciplines (especially with complex priorities between
requests).

A direct consequence of using simulation is that deriving the performance model
from the software specification is very easy, as we will see in detail in Chapter 6.
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We define an almost one-to-one mapping between UML elements and simulation
processes. The result is that the structure of the simulation model is very similar
to the structure of the software model; this can be seen by the class diagram of
the UML-Ψ tool described in Chapter 9. Direct translation of software model into
performance model not only makes the modeling process easier and less error-prone,
but allows an easier interpretation of the performance results back at the SA level.
This is very important, as it is obvious that all indices computed by the performance
model must be reported back at the design level, where the software modeler can
decide whether the proposed SA fulfills its performance goals. This step, labeled as
feedback in the schema of Fig. 1.1, p. 8, is not trivial when the performance model
has been obtained by applying a complex transformation to the software model.
Reversing this transformation may be feasible only in special circumstances, meaning
that the software architect discovers a performance problem but is unable to identify
the specific component (or set of components) responsible for that misbehavior.

Motivating the use of process-oriented simulation As we will see in Chap-
ter 3, there are different types of simulation models. The relevant ones for this
application are event-oriented and process-oriented simulation models. In event-
oriented simulations the user must specify the different types of events which may
happen, an event being defined as an instantaneous action taking no (simulation)
time to execute, and causing a change in the system’s status. In a process-oriented
simulation, the user defines a set of simulation processes, each containing a set of
actions to be performed. Some of these actions may require some (simulated) time
to execute, while others may be instantaneous. We decided to implement the soft-
ware performance model as a process-oriented simulation. In general, event-oriented
simulations are preferred when the number of event types to be modeled is relatively
low [17]. In contrast, the performance model derived from SA can be more easily
described as a set of interacting processes, each one with an internal behavior which
can be procedurally described. Process-oriented simulations are well suited for this
purpose.

Contribution The contribution of this work is threefold. First we define a
process-oriented simulation model for evaluating performances of SA at early de-
velopment stage. Then, we propose a UML profile, based on the UML Performance
Profile, providing facilities for

• Associating performance-oriented, quantitative annotations to UML elements;

• Specifying parameters to be used for the execution of the simulation perfor-
mance model;

• Providing feedback to the software architect about the performance results
found by running the simulation.
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Finally, we show an actual software performance evaluation tool called called UML-
Ψ (UML Performance SImulator). UML-Ψ automatically derives a simulation model
from annotated UML specifications, executes the model and provides results at the
SA design level.

This thesis is divided in four main parts:

• In Part I we introduce the problem of software performance evaluation at
the architectural level. In Chapter 2 we given an introduction to the UML
notation, and in Chapter 3 we introduce the basic concepts of discrete-event
simulation modeling.

• In Part II we describe the structure of the simulation model and the profile
for annotating UML elements. Chapter 4 introduces the performance model
which will be used to represent the dynamic behavior of software systems.
In Chapter 5 we show how concepts from the performance domain are im-
plemented into UML models by means of an UML profile. In Chapter 6 we
describe the simulation model in detail, including detailing the behavior of all
simulation processes involved. The performance evaluation technique will be
extended in Chapter 7 to an integrated UML-based performance and mobility
modeling approach.

• Part III is devoted to describe implementation details of libcppsim, a general-
purpose C++ process-oriented simulation library, and UML-Ψ, a prototype
performance evaluation tool built to implement the proposed performance
evaluation approach. The libcppsim library is described in Chapter 8, and
the UML-Ψ tool is described in Chapter 9. We present in Chapter 10 a case
study in which the proposed performance evaluation approach is applied to
the architecture of a naval communication system.

• The final part presents the conclusions and future works.



2
Introduction to UML

This thesis assumes that the reader is familiar with UML. This chapter provides
an overview of UML, with a particular emphasis on the parts of UML which are
relevant for the proposed performance modeling algorithm. More informations can
be found in [74, 87].

UML is a semi formal language developed by the OMG [73] for specifying, vi-
sualizing and documenting software artifacts; it can also be applied to non-software
systems, such as business precesses. UML is widely used in the software engi-
neering community to describe systems developed according to the object-oriented
paradigm.

UML is a graphical notation which allows the user to describe an artifact using
a suitable combination of diagrams, chosen among the available ones. UML defines
several kind of diagrams:

• Use Case diagram;

• Class diagram;

• Behavior diagrams: Statechart diagram, Activity diagram;

• Interaction diagrams: Sequence diagram, Collaboration diagram;

• Implementation diagrams: Component diagram, Deployment diagram

The above diagrams can be partitioned in three categories:

• Static diagrams are used to model the logical or physical structure of the
system. They include Class diagram, Component diagram and Deployment
diagram.

• Dynamic diagrams are used to describe the behavior of the system. They
include Use Case diagram, Statechart diagram, Activity diagram, Sequence
diagram, Collaboration diagram.

• Model Management diagrams are used to group other model elements, and
include Component diagram.
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It should be observed that UML deliberately lacks a formal semantics, as it has
not been developed to be a visual programming language. From one side this has
the benefit that users can use and combine UML elements with few restrictions.
Unfortunately this makes any formal reasoning on UML models an extremely diffi-
cult task. It is impossible to derive the correct meaning of a particular combination
of diagrams, as the UML semantics is only informally specified. The Precise UML
(PUML) group [81] is currently investigating the problems associated with the semi-
formal specification of UML, and how they can be solved.

2.1 Use Case diagram

Use case diagrams describe at a high level the interaction between the system and
actors requiring service. An actor is any entity (both physical or logical) which
may interact with the system. Actors are graphically represented as “stick people”;
they can interact with the system in possibly different ways, each being a different
use case. Each use case represents one or more scenarios. A use case is graphically
represented as an oval connected to an actor. This connection may represent the
fact that the actor generates or takes part to the use case.

UML defines different kind of relations between use cases:

extend An extend relationship between use cases is shown by a dashed arrow with
an open arrow-head from the use case providing the extension to the base
use case. The arrow is labeled with the keyword ≪ extend ≫. An extend
relationship from use case A to use case B indicates that B may be augmented
by the additional behaviors specified by A. The user may indicate explicitly
the extension points inside the use case B.

Case A
Use <<extend>> Case B

Extension
point(s)

include An include relationship between use cases is shown by a dashed arrow with
an open arrow-head from the base use case to the included use case. The arrow
is labeled with the keyword ≪ include≫. An include relationship from use
case A to use case B indicates that A will also contain the behavior specified
by B.

<<include>>
Case A

Use
Case B
Use

Generalization A generalization between use cases is shown by a generalization
arrow, that is, a solid line with a closed, hollow arrow head pointing at the
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parent use case. A generalization from use case A to use case B indicates that
A is a specialization of B.

U. Case
Base

U. Case
Extended

2.2 Class diagram

A class diagram represents the static structure of a system. It includes the static
model elements such as classes, interfaces, objects and their relationships, connected
as a graph to each other. A class is the description of a set of objects with similar
structure, behavior, and relationships. A class has a name identifying it, a set of
operations and a set of attributes. An operation is a service that an instance of
the class may be requested to perform. It has a name and a list of arguments. An
attribute is a piece of information describing part of the state of objects of that class.
Both operations and attributes can have different visibility, denoted by prepending
the symbol ’+’ (for public visibility), ’#’ (for protected visibility), ’-’ (for private
visibility) and ’˜’ (for package visibility). An object is a specific instance of a class;
an object is characterized by specific values for the attributes of the corresponding
class.

Different kinds of relations can be defined between classes or objects:

Association An association indicates that two classes or objects are related. There
are some additional notations available for the association:

Multiplicity Indicates how many instances a class can have in the associa-
tion. It can be indicated as a number (exact multiplicity), an asterisk
(unbounded multiplicity) or an interval m..n;

Class BClass A 3..*1

Aggregation Denotes that one class is a collection of several;

Class BClass A

Composition Denotes that one class is a part of the other class;

Class BClass A

Dependency Denotes that one class depends on the other.

Class BClass A
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Generalization Denotes the relationship between a more general element A and a
more specific element B. B inherits the properties (attributes and operations)
of its supertype A; optionally, it may have some additional attributes and
operations, or redefine the meaning of operations of its supertype.

Extended Class Base Class

2.3 Interaction diagrams

Interaction diagrams are used to describe the dynamic interaction of objects; an
interaction is an exchange of messages or stimuli.

2.3.1 Sequence diagram

A UML sequence diagram can be used to specify the internal behavior of a use
case in term of interactions between objects. An interaction is displayed as a set
of partially ordered messages, each message being a communication between sender
and receiver. Objects taking part to the interaction are displayed horizontally. Each
object has an associated lifeline, which visually denotes when each interaction takes
place in time. Time advances downward on the sequence diagram. It is possible
to indicate different events along each lifeline. Periods of activity of each objects
are denoted with rectangles; synchronous/asynchronous interactions are shown as
arrowed lines going from the sender’s lifeline to the receiver’s one. Different types
of arrowheads denote if the communication is synchronous or asynchronous.

The user may label the messages with a sequence number in order to show the
order in which the interactions happen. Moreover, each message may be labeled
with a condition which must hold in order for the communication to occur, and the
number of times it should be sent.

Object creation and destruction can be displayed in UML sequence diagrams by
means of special creation and destruction messages respectively. Object creation
instantiates a new object, whose lifeline starts from the position of the creation
message. Object destruction causes an existing object to be destroyed; this is re-
flected in the diagram by terminating the object’s lifeline at the destruction message
arrowhead.

2.3.2 Collaboration diagram

A UML collaboration diagram is used to display the interactions between objects,
in a similar way as a sequence diagram. However, collaboration diagrams put more
emphasis on the structure of the interaction (relation between components), while
sequence diagrams put more emphasis on the flow of time. In collaboration diagrams
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Recursive Call
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Call

Return Object C«create»
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Figure 2.1: A UML Sequence diagram

the flowing of time is not shown explicitly as in sequence diagrams. A collaboration
diagram is a graph whose nodes are objects, and edges show which node interact to
which other. Messages can be indicated with additional arrows along the edges of
the graph, in much the same way as in sequence diagrams. The partial ordering of
messages can be deduced from their sequence numbers.

:Object A

:Object B :Object C

1: First Message

2: Second Message

3: Third Message

:Object D

4: Fourth Message

Figure 2.2: A UML Collaboration diagram



22 2. Introduction to UML

2.4 State diagram

State diagrams show how the internal state of an object evolves during the time. It
is directed graph which represents a state machine, whose nodes represent all the
possible states of the objects, and the edges represent the transitions between states.
A state diagram, thus, shows how objects evolve from their initial state toward a
final state. Each state may contain another state diagram, which allows to specify
its behavior at a deeper level of detail.

Transitions may be triggered both by external or internal events. An example of
an internal event is the completion of an internal activity. An example of external
event is the reception of an interrupt signal from other parts of the system.

A state may have an optional name, and an internal transitions compartment
containing a list of internal transitions or activities which are performed while the
object is in that state. Actions have an optional label identifying the condition
under which the action is performed. Several labels are predefined and have special
meaning:

entry Identifies the first action which should be executed upon entering the state;

exit Identifies the last action which should be executed immediately before exiting
the state;

do This label identifies an “ongoing activity”, that is, an activity which is continu-
ously executed as long as the object is in this state;

include This label identifies a submachine invocation.

Figure 2.3: A UML State diagram
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2.5 Activity diagram

An activity diagram is a special case of a state diagram in which most of the states
are subactivity states or action states (states corresponding to the execution of an
action). Moreover, transitions in an activity diagram are generally triggered by
completion of the actions or subactivities in the source states. An activity diagram
specifies the behavior of a use case, a package, or the implementation of an operation.

Activity diagrams are an evolution of flow charts, from which they inherit the
ability to show execution flows depending on internal processing (as opposed to
external events). State diagrams are preferred in situations where external, asyn-
chronous events occur.

Activity diagrams include the possibility to represent concurrent execution of
multiple computations through fork/join nodes. A fork node denotes the point where
the computation splits in concurrent execution threads, each evolving independently
from the others. A join node denotes a point where different execution threads
synchronize.

Figure 2.4: A UML Activity diagram

2.6 Deployment diagram

Deployment diagrams show the configuration of run-time processing elements and
the software components, processes, and objects that execute on them. Software
component instances represent run-time manifestations of software code units. Com-
ponents that do not exist as run-time entities (because they have been compiled
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away) do not appear on these diagrams, but should be shown on component dia-
grams.

A deployment diagram is a graph of nodes connected by communication associ-
ations. Nodes may contain component instances: this indicates that the component
runs or executes on the node. Components may contain instances of classifiers, which
indicates that the instance resides on the component. Components are connected to
other components by dashed-arrow dependencies (possibly through interfaces). This
indicates that one component uses the services of another component. A stereotype
may be used to indicate the precise dependency, if needed. The deployment type
diagram may also be used to show which components may reside on which nodes, by
using dashed arrows with the stereotype≪deploy≫ from the component symbol to
the node symbol or by graphically nesting the component symbol within the node
symbol.

Node 1 Node 2

Node 3

Network

Figure 2.5: A UML Deployment diagram

2.7 Extension Mechanisms

UML provides some built-in functionalities for extending its metamodel. Such exten-
sion mechanisms can be used to add specific informations to existing UML elements,
or to define new types of metamodel elements based on existing ones. The constraint
on all extensions defined using the extension mechanism is that extensions must not
contradict or conflict the standard semantics. Thus, extensions must be strictly
additive to the standard UML semantics. The extension mechanisms are a means
for refining the standard semantics of UML, but do not support arbitrary semantic
extension [74]. UML extension mechanisms include Stereotypes and Tagged Values.

Stereotypes

Stereotypes are the main UML extension mechanism. They are used to define sub-
classes of existing metamodel elements. Such new metamodel elements have the
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same structure as the original one, but may have additional constraints from the
base metamodel class, or it may require tagged values (see below) to be included to
the elements with that stereotype.

A stereotype is graphically represented as a textual label enclosed in double
quotes (eg ≪ abstract ≫). The label is associated to the model element to be
stereotyped.

Tagged Values

Tag definitions specify new kinds of properties that may be attached to model ele-
ments. The actual properties of individual model elements are specified using Tagged
Values. These may either be simple datatype values or references to other model
elements. Tagged values may be used to represent properties such as code gener-
ation information or quantitative informations for performance evaluation purpose
(as seen in more detail in the next part).

UML Profiles

A profile is a stereotyped package that contains model elements that have been cus-
tomized for a specific domain or purpose by extending the metamodel using stereo-
types, tagged definitions, and constraints. A profile may specify model libraries on
which it depends and the metamodel subset that it extends.

Examples of UML profiles include the UML profile for Schedulability, Perfor-
mance and Time specification [75].
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3
Simulation

3.1 Introduction to Simulation

A model is defined as an abstract representation of a real system. A model can
be used to investigate the effects of proposed system changes, without modifying
the real system. Also, a model can be used to study systems in the early design
stage, before they are even built. Thus, system modeling can be used to study an
existing system under various scenarios without modifying it, or for planning the
construction of a new system which does not exist yet. System models are developed
in order to evaluate some functional or non-functional properties of the system.
Functional properties include throughput, mean execution time, reliability and so
on. Non-functional properties include deadlock-freedom, usability, responsiveness
and others.

Different kind of system models have been considered in the literature: analyt-
ical, simulation-based and mixed. Analytical modeling involves building a system
description using some formal, mathematical notation. Closed-form solutions for
some class of models have been studied extensively. Usually analytical models must
satisfy some constraints in order to be solved exactly. In general cases, approximate
numerical solutions can be computed.

A simulation is the imitation of the operation of a real-world process or system
over time [17]. This is done by developing a simulation model of the system. The
model is based on a set of assumptions on the real system behavior, and on the
workload driving the system. A correct and validated simulation model in fact
can substitute the real system as long as the underlying assumptions are met. A
simulation model cannot be “solved”, as for analytical models. Instead, a simulation
model can be implemented as a simulation program, which is then executed. The
output of the simulation program includes values for the parameters of interests
which are being measured from the model.
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3.2 Advantages and Disadvantages of Simulation

Simulation is a very general modeling technique, in that it is possible to develop
a simulation model without making restrictive assumptions which are necessary to
develop analytically solvable models. For example, product-form queuing network
models only allows a limited set of scheduling policies for service centers, and only
some kinds of random distributions are allowed to model the interarrival time of
users or the service time. Simulation models, on the other hand, can reproduce the
behavior of real system at an arbitrary level of detail, provided that enough details
from the system are known.

Simulation models can be implemented using a number of existing simulation
languages, libraries and tools [16, 17], many of which provides libraries of pre-
modelled components. Also, extensive data-collection functions are often provided.
This simplifies the simulation program development and reduces the possibility of
introducing error while implementing the simulation model. Graphical interfaces
allow modelers to actually “see” the evolution over time of the simulated system.

However, there are some disadvantages which should be considered when choos-
ing between simulation and analytical modeling. Simulation results may be difficult
to interpret, given that the output of simulation programs are usually streams of
random variables. Special skills are required to analyze the simulation output with
correct statistical techniques.

Moreover, given that simulation results are raw numbers, it is not possible to
get results depending on one or more parameters. For example, it is not possible to
obtain the mean response time of a system as a function of the number of concurrent
users, unless a separate simulation is performed increasing each time the number of
system users.

Finally, simulation modeling and analysis can be time consuming and thus ex-
pensive, especially for complex models.

On the positive side, some of the problems above do not constitute serious issues.
Many simulation software vendors developed advanced output analysis functions in
their packages, so users can expect to get meaningful results without detailed mathe-
matical knowledge. Simulations can be performed faster as the current generation of
hardware evolves. Moreover, parallel and distributed simulation techniques [40] al-
low simulation models to be executed concurrently on different processors, obtaining
significant speedup in some cases.

To conclude, recall that closed-form analytical models can not be developed for
many real-world systems which are commonly encountered. Such systems can only
be simulated.
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3.3 Types of Systems

We define the state of a system as the collection of variables describing the system
at any given time. The state of the system should defined according to the goal
of the modeling process; in this way it is possible not to consider all the system
details which are not relevant to the model, which therefore is greatly simplified. An
event is defined as an instantaneous change of the system state. Events are usually
classified as endogenous, which denote those events occurring within the system, and
exogenous, which are activities and events of the surrounding environment which
alter the state of the system.

Systems may have discrete or continuous state space, and events may occur at
discrete points in time or continuously. An example of discrete state variable is the
number of customers waiting for service in a bank. An example of continuous state
variable is the temperature of a room. Note that there may be both continuous
and discrete variables in the same system state. Continuous-time systems are those
in which the state variables change continuously over the time. An example of a
continuous system is the transfer of heat on a medium. The state variables in this
case are the temperatures measured on every point of the medium. The temperatures
change continuously according to the general heat transfer model. On the other
hand, a discrete-time system is one in which the state changes only at discrete point
in time. A bank is an example of such system, as the number of customers waiting
service changes only when a new customer enters the bank, or a customer completes
service.

3.4 Discrete-Event Simulation

Discrete-event simulation is used to model systems in which the state variables
change only at specific points in time, called events. Each event is labeled with its
simulation time of occurrence, which is denoted as timestamp. Simulation events are
kept in a data structure called Future Event List (FEL) or Sequencing Set (SQS) in
the Simula [35] language. The FEL supports the following operations:

• Schedule (insert) a new event at time t;

• Unschedule (remove) an arbitrary event;

• Extract the event with smaller timestamp.

Executing the model is done by executing all the events in the FEL in nondecreasing
timestamp order. In this way the simulation time advances by jumping to the value
of the events timestamps as they are extracted from the FEL.

Discrete-event simulation models can be implemented according to an event-
oriented or process-oriented paradigm. It should be observed that these paradigms
(which can also be used together on the same simulation implementation) are in
fact equivalent, in the sense that each one reduces to the other.
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Event Orientation

Event-oriented simulation models are defined in the following way. The modeler
defines the set of all events which may happen on the model. Events can perform
any combination of the following operations:

• Update the state of the simulated system;

• Cancel one or more of already scheduled events;

• Schedule one or more new events.

Process Orientation

A process-oriented simulation model is represented as a collection of concurrently
executing simulation processes, each one with its own thread of control. A simulation
process is made of two parts: a set of local variables, and a sequence of actions to
execute.

As a practical example, we consider now the way simulation processes are handled
in the Simula language [35]. Simula has been the first object-oriented program-
ming language, and also one of the first general-purposes programming languages
with built-in simulation facilities. These same features can be found in most cur-
rently available process-oriented simulation tools. The simulation library described
in Part III provides many of the functionalities of Simula using the C++ program-
ming language.

Actions performed by simulation processes are grouped together into active
phases, separated by periods of inactivity. Active phases are “instantaneous”, in the
sense that they take no simulation time to execute (of course they will take some
wall-clock time to complete). A simulation process is suspended upon execution of
a deactivation statement (which is language dependent). Deactivation statements
terminate the current active phase, and cause control to leave the process. When
it is later resumed, the process starts another active phase by continuing execution
from the point it was stopped. The typical deactivation statement is the one which
suspends execution of the current simulation process until some specific event oc-
curs; in the simplest form, a procedure like hold(t) suspends the execution of the
currently executing simulation process for t simulation time units (see Fig. 3.1).

Simulation processes can be implemented using Operating System (OS) threads,
if available. A group OS thread operates on the same process memory space, each
thread being independently scheduled from the others. All the threads of the same
process share a common memory space. Simulation processes execute the actions in
their active phases, and then pass control to some other simulation process. Note
however that the context switching time can be non-negligible, especially for complex
simulations involving hundreds or even thousands of simulation processes.

Another way to implement simulation processes efficiently is to use the coroutine
programming construct. This approach has the advantage of being potentially more
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Figure 3.1: Execution of a process-oriented simulation model. In (a), active phases
take wall-clock time to execute; only one process is in its active phase at any time.
In (b) active phases take no simulation time to execute. Between active phases, each
simulation process is deactivated.

efficient, as there is no context switch overhead caused by the OS. More details will
be given in Section 8.2.

The Sequencing Seq

The Sequencing Set is a data structure which implements a Future Event List. The
SQS is an ordered list of event notices; an event notice contains a timestamp and a
reference to the simulation process to activate. Each simulation process maintains
a copy of its status before being suspended, so it can be resumed from the exact
point where it stopped. The structure of a SQS is depicted in Fig. 3.2.

Note that multiple processes may be linked to the same event notice. This is
because multiple processes may be activated at exactly the same time. The SQS data
structure supports exactly all the functionalities of the Future Event List described
above.

The SQS can be implemented using different data structures. Most languages
and libraries (including Simula) implement SQS as a doubly-linked list. Insert-
ing and removing an event notice or a process from the list requires O(n) time, n
being the length of the SQS. Accessing the element with lower timestamp can be
accomplished in O(1) time. More efficient implementations have been proposed in
the literature. Balanced search trees (such as B-Trees [20]) reduce the complexity of
inserting and removing event notices to O(log(n)); the computational complexity of
finding the event notice with smallest timestamp is O(log(n)) as well. More sophis-
ticated data structures, such as Calendar Queues [30] perform the same operations
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Figure 3.2: Sequencing Set structure

in O(1) expected time. It should be noted that in practice the relative performances
of the aforementioned data structures may be different than what expected from
their computational complexity. In particular, simulation programs handling small
event lists (on the order of 10-20 event notices) perform better with the simple
doubly-linked list implementation [30].

The simulation engine works according to the following simple pseudocode:

procedure Simulation_Engine;

var

   s : SQS;

   p : process;

begin

   while ( not( s.empty ) ) do begin

      p := s.first( );

      p.resume( );

   end;

end;    

Basically, the scheduler fetches the first event notice from the SQS and executes the
associated process. If more than one process is associated to the same event notice,
then one of those is selected according to some ordering criteria. When the SQS is
empty, the simulation stops.

Scheduling primitives

We illustrate now the simulation primitives that will be used in Part II for describing
the simulation model. These primitives are based on those provided by the Simula
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language.

activate P The activate statement is used to insert a process P in the SQS. Without
any parameter, P is inserted in front of the SQS. Optionally, it is possible to
specify the simulated time when the P will be activated, or whether P should
be activated immediately before or after another process Q.

hold(dt) Suspends the execution of the current process for a simulated time dt. The
process is removed from the SQS and reinserted with timestamp increased by
dt.

passivate Suspends the execution of the current process indefinitely, until another
process reactivates it. The process is simply removed from the SQS.

cancel(P ) Removes process P from the SQS. P needs to be activated explicitly by
another process to resume execution.

P .idle() Returns true if the simulation process P is currently idle, ie, it is not
present in the SQS. Returns false otherwise.

A simulation process may be in one of four different states during its execution
(see Fig. 3.3). The states are:

Passive A simulation process is passive if it is not in the SQS, ie, if it has no
associated event notice. A passive process gains control only when another
process explicitly activates it.

Active An active simulation process is the one currently executing. Only one pro-
cess can be in the active state at any time.

Suspended A suspended process has an associated event notice, but it is not cur-
rently executing. If it is not removed from the SQS, it will be resumed at the
simulation time specified in its event notice.

Terminated A terminated simulation process finished its execution, and thus can-
not be reactivated again.

A terminated (but still allocated) process can still be used, as it is possible to call
its methods or access its attributes.

A newly created simulation process is in the passive state, as it has not yet been
inserted into the SQS. When a process Y explicitly activates a passive process X,
then X become suspended: X is associated with some event notice and thus is in
the SQS. When a suspended process becomes the head of the SQS and is selected
by the scheduler to execute, it enters the active phase. An active process may leave
its active phase in three ways:
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Figure 3.3: State transitions for a simulation process

• It executes an hold(t) operation, which reschedules it to be activated in the
future;

• It executes the passivate() operation, which renders the process passive.

• It terminates.

Finally, a suspended process X may become passive if another process Y removes
it from the SQS.

3.5 Steps in a simulation study

The steps which made a simulation study are depicted in Fig. 3.4, taken from [17].

Problem formulation The starting point is problem formulation. It is very
important that the problem is well-stated and understood both by the parts involved
in the simulation study.

Setting objectives and project plan . During this step the questions that
must be answered by the simulation study are defined. According to the nature
of both the questions and the problem to be studied, it should be checked whether
simulation is the appropriate tool to use. If it is, the plan should include an estimate
of the costs, and the number of people involved in the simulation study.

Model conceptualization During this phase a model of the system under study
is developed. The model will usually depend on the goal of the simulation study. The
model complexity should not exceed the minimum complexity required to satisfy the
goals of the simulation study.
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Figure 3.4: Steps of a simulation modeling study (from [17])

Data collection This phase requires simulation modelers to collect the data which
will be used to drive the simulation program. Depending on the problem, this
may require collecting traces from a running system, or finding distributions and
parameters for generating synthetic workloads.

Model translation During this step the simulation model is translated into a
simulation program. This can be done using a general-purpose programming lan-
guage augmented with a simulation library, or using special-purposes simulation
languages or environments. Simulation-specific tools usually provide a graphical
user interfaces using which the modeler can build the simulation program by di-
rect visual manipulation of graphical entities. Graphical interfaces are also used to
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display the evolution of the simulation program as it executes.

Verified? A simulation program is verified if it contains no errors.

Validated? A simulation model is validated if it is an accurate representation of
the real system, i.e. it can be substituted to the real system, with respect to the
goals of the simulation study.

Experimental design During this step it is necessary to determine parameters
such as the length of simulation runs, the number of replication of each run to
execute and the length of the initialization period.

Production runs and analysis Production runs are used to estimate the pa-
rameters of interest of the simulation study.

More runs? Once production runs have been analyzed, additional runs may be
needed. In this step it is necessary to decide what design those additional runs
should follow.

Documentation and reporting At the end of simulation executions, it is neces-
sary to document the whole modeling process. Documentation includes the simula-
tion program documentation and the progress report. The progress report describes
the decisions which have been taken and the work which has been done during the
various phases. Of course, the result of all the analysis should be provided.
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Specifications

4.1 General Principles

Traditional software development processes [93] do not take into account perfor-
mance considerations about the software system being produced. The possible out-
come is that performance problems arise only when the system has been at least
partially implemented. This results in waste of time and resources, as fixing perfor-
mance problems requires the system to be re-engineered, so the development process
must start back from some earlier phase.

The starting point of many software development processes is the production
of a high-level description of the system to be built. Such software models can
be produced relatively fast using standard design tools. Also, software models are
usually available since the early development phases. The question arises whether it
is feasible to use a software model to estimate the performances of the real system,
once such a real system is built.

The answer to this question is not trivial, but has already been answered posi-
tively [9, 91, 92]. Giving an extremely accurate performance estimation is, however,
very difficult in general, for a number of reasons:

• The software model is, by definition, an abstract and simplified representation
of a real system. Software models deliberately lack details. Starting from an
incomplete model it is rarely possible to derive an accurate simulation model
of the real system.

• Correct identification of parameters for the performance model can be difficult.
These parameters include execution times of procedures, size distribution of
packets sent to communication networks, network delays, and many others.
Parameters can be easily estimated if a running system already exists, so that
they can be directly measured; unfortunately, such a running system is seldom
available.
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• The performance model must be driven by a set of external workloads. Iden-
tifying these workloads during early design stages can be difficult, since little
or no information is available. Again, if there is a similar system already in
use, measurements on it can provide useful informations about the workload.
However, not only a running system may not be available, but characterizing
the workload is particularly difficult in many situations as the actual pattern
of requests may be completely different from what expected.

For these reasons, we propose an approach which is not intended to predict
the actual performances of software systems with complete accuracy. Instead, we
want to provide the software developer a tool to explore and compare different
design alternatives during early development steps. The proposed approach derives
a simulation model from a UML specification of a software system. The simulation
model is implemented as a simulation program and executed. Performance results
are then fed back into the UML model.

Keeping the intrinsic limitations of the approach in mind, the issues described
above can be answered as follows:

• Lack of details in the software model can certainly be an issue. However,
this is a limitation of every approach deriving performance models from SA
descriptions. In fact, the simulation model we develop is as accurate as the
software model from which the performance model is derived. This means that
it is clearly impossible to represent something which is not described in the SA
model; thus it is responsibility of the software modeler to find a compromise
between the level of detail of the architectural description, the knowledge
available on the system, and the accuracy of the performance results desired.
If performance modeling is carried out during the whole software development
cycle, then more details can be entered later, when they become available.

• Parameters from the simulation model can be obtained in different ways. The
system modeler may use part of the design from another system, for which
parameters can be measured or accurately estimated. If no accurate estimation
is available, an educate guess should be enough in order to get at least some
insights.

• As the problem of workload characterization is concerned, SA performance
studies are often used to predict the behavior of the system under varying
workloads, as the exact arrival pattern of requests is often unknown. At early
design stages it is useful to experiment with different workloads in order to
understand the potential limitations of the system under development.
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4.2 Overview of the approach

We consider the performance modeling cycle is depicted in Fig. 4.1, which is based
on the general cycle depicted in Fig. 1.1, p. 8.

Figure 4.1: Performance modeling cycle

The first step requires the identification of the performance goals which the
system should satisfy. This is put before all the other steps, as the SA will likely be
structured and implemented according to its desired performances.

The next step is to develop a system model in UML; at the same time, UML
diagrams are to be annotated with quantitative, performance-oriented informations
which will be used to evaluate the software model. The software model can be
visually drawn using a UML CASE tool. Annotations are inserted as stereotypes
and tagged values, according to a subset of the annotations defined in the UML
Performance Profile [75]. Details about which UML diagrams to use and what kind
of informations can be specified will be given later in this chapter.

Our approach produces a simulation-based performance model of the SA. Once
the UML SA is defined and annotated, the user must specifies both the model and
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simulation parameters. Model parameters are required if the software architect in-
serted unbounded variables in the annotations. In this case, some of the informations
needed to execute the simulation program are undefined, and must be instantiated
at model implementation time. Simulation parameters are those parameters defin-
ing the termination criteria of the simulation program, such as the maximum length
of the simulation, the confidence interval for the computed statistics and the interval
relative width.

The next step is the derivation of the simulation program from the annotated
UML diagrams. This step is done automatically by UML-Ψ, a prototype perfor-
mance evaluation tool we built to demonstrate the proposed approach. UML-Ψ
parses an XMI [76] representation of the annotated UML model, and builds a
process-oriented, discrete simulation program for that model based on a general-
purpose, C++ simulation library. The implementation details of UML-Ψ will be
given in Part III.

The simulation program is finally executed, and the computed performance re-
sults are used to provide feedback at the SA design level. In particular, performance
results are associated to the UML elements they refer as new tagged values. Sim-
ulation results provide feedback to the software developer, which is then able to
check whether the SA developed so far satisfies the performance requirements, given
the set of parameters used to perform the simulation. If performance requirements
are not met, then the modeling process can be repeated, possibly changing the SA
and/or the parameters used for the simulation. The software architect could also
decide that the performance goals can not be reached. In this case, performance
goals should be restated and the process restarted from the beginning.

In order to apply our proposed approach, the software modeler only needs to learn
the notation used for specifying quantitative, performance-oriented informations to
UML diagrams. The steps of generating the performance model from the software
specification, implementing and executing the model, and reporting the results back
at the SA level are done automatically and transparently by a prototype tool we
describe in Part III. Thus, no specific knowledge is requested to the user about
simulation modeling or output data analysis. In Fig. 4.1 we show who is responsible
for each step by using swimlanes. Thus, the user (software modeler) is responsible
for defining the performance goals, defining and annotating the UML diagrams and
defining the parameters. The UML-Ψ tool automatically derives the simulation
program, executes it and computes the results.

Note that each time the cycle is iterated, the performance model is computed
from scratch, even if only small modifications are done on the software model. Build-
ing the simulation model in an incremental fashion, that is, reusing part of previously
obtained models and changing only what is needed to accomodate the changes in
the software model, could certainly be done with some effort. At the moment, we
decided not to do so as the model generation step is performed in time linear with
the number of UML elements in the software model. The additional complexity
of incremental simulation model generation does not seem to justify the possible
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Figure 4.2: Mapping UML elements into simulation processes

improvements in the speed of the UML-Ψ tool.
We given a high-level overview of the simulation model in Section 4.3; we will

describe all the different kind of processes and their interactions. In Section 4.4 we
describe in detail the performance model. The mapping from performance domain
concepts to the UML notation will be given in Chapter 5, and the tagged value
types used to annotate the diagrams will be explained in Section 5.5.

4.3 Overview of the Performance Model

The simulation model has a structure which is very similar to that of the software
model. In Fig. 4.2 we show how UML elements are mapped to simulation model
elements. Simulation processes can be divided in three families, corresponding to
processes representing workloads, resources and activities respectively. UML actors
are translated into workloads; nodes of the deployment diagrams correspond to
processes modeling resources, and action states in activity diagrams are translated
into processes representing the actions. UML annotations are used as parameters
for the simulation model.

In Table 4.1 we list all the processes types which can be used in the simulation
model. The table shows the process names in the left column, and the list of other
processes with which it can interact. A more detailed description of the behavior of
each process will be given in Chapter 6 using a Pascal-like notation.

An informal description of each process is given as follows:

OpenWorkload This process performs an endless loop generating an infinite stream
of processes of type OpenWorkloadUser. After each process is created, it pauses
for a random amount of simulated time to simulate the interarrival time be-
tween requests.

OpenWorkloadUser Represents a request arriving to the software system. It triggers
the activation of one of the use cases associated to the actor representing the
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Process Name Interacts with
OpenWorkload OpenWorkloadUser

OpenWorkloadUser CompositeAction

ClosedWorkload ClosedWorkloadUser

ClosedWorkloadUser CompositeAction

SimpleAction Any Action, ActiveResource

CompositeAction Any Action
ForkAction Any Action
JoinAction Any Action
AcquireAction Any Action, PassiveResource

ReleaseAction Any Action, PassiveResource

ActiveResource SimpleAction

PassiveResource AcquireAction, ReleaseAction

Table 4.1: The different kinds of simulation processes used to define the process-
oriented simulation model

workload, and then terminates. The use case is modeled as a CompositeAction

process.

ClosedWorkload This process creates a fixed population of system requests, repre-
sented by processes of class ClosedWorkloadUser. All the requests are activated,
and the ClosedWorkload terminates.

ClosedWorkloadUser Represents a request of service to the software system. The
request belongs to a finite set of requests generated from the same closed
workload. This process behaves like a OpenWorkloadUser, except that after
the activated use case terminates, it waits a random amount of time and then
activates another use case.

SimpleAction Represents a computation performed on the system. The computation
may be repeated a number of time, and may request service from an active
resource. It interacts first with the associated active resource, and then with
one of the successor actions.

CompositeAction Models a composite computation, made of a number of
sub-computations. Its behavior consists on activating the first (root) substep.

ForkAction Represents the start of a parallel execution of two concurrent computa-
tions. Its actions consists on activating all the successor actions.

JoinAction Represents the end of a parallel computation. This process waits for all
the predecessor actions to complete, and then activates one of its successors.

SimAcquireAction Represents an action requiring a passive resource. It interacts
with the passive resource before activating one of the successor actions.
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Figure 4.3: Collaboration diagram showing an example of simulation model instance

SimReleaseAction Represents an action releasing a passive resource. It interacts with
the passive resource before activating one of the successor actions.

ActiveResource This process represents an active resource. It waits for requests,
satisfying them according to its scheduling policy.

PassiveResource This process represents a passive resource. It waits for requests,
checking wether they can be satisfied; thus, it interacts with processes of class
simAcquireAction and SimReleaseAction.

We show in Fig. 4.3 a UML collaboration diagram describing an example on
how the simulation model is instantiated. Nodes in the collaboration diagram are
instances of simulation processes. The messages (arrows) show the order in which
processes are activated.

The first simulation processes to start are those associated with workloads. They
will periodically create and activate other processes representing workload users,
which in turn select and activate one use case. The composite action process associ-
ated to the use case will cause the first action of the associated activity diagram to
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be executed. At this point, actions will be activated in the correct order according
to their successor relationship. In the case of fork nodes, they cause all successor
actions to start simultaneously. Each action may require service from an active
resource, or may require some tokens from a passive resource. In either case, the
process representing the resource is activated to request service; it will then pass
control back to the requesting step by activating it when service is completed.

All the different kind of simulation processes and their exact behavior will be
explained in Chapter 6.

4.4 The Performance Model

An UML representation of the performance model we propose is given in Fig. 4.4.
The structure of similar to the one described in [75]; however, there are some differ-
ences which will be analyzed in Sec. 4.6.

Figure 4.4: Structure of the simulation performance model

The model is explained as follows. We suppose that the software system is driven
by a set of external workloads. Each workload is a stream of of users requesting
service to the system. Users may be either physical people interacting with the
system (e.g., users accessing a e-commerce site) or other kinds of requests or stimuli
(e.g., sensors readouts triggering some system activity). In the following, we will
use the terms “requests” or “users” interchangeably. Workloads may be either open
or closed, depending if the request population is unlimited or fixed.
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Each workload is connected to a set of scenarios. A scenario is a sequence of
computational steps or activities with a given starting and ending point. Conceptu-
ally, a scenario is defined in [75] as a response path whose endpoints are externally
visible.

Scenario steps are computational activities requiring service from resources. We
distinguish between two kinds of requests: those for active resources (e.g., proces-
sors), and those for some amount of a passive resource (e.g., memory). Actions are
connected with a predecessor-successor relationship; each action may have multi-
ple predecessors and/or multiple successors, and may be repeated any number of
time. Also, actions have a hierarchical structure in that a composite action may be
represented, at a deeper level of detail, as a set of sub-actions.

As already introduced, the simulation model may include two kinds of resources.
Active resources are modeled as servers, having a given processing rate and schedul-
ing policy; active resources include processors and network links. Passive resources
can be seized and released in fixed amounts by actions. Each passive resource exists
a limited quantity. Actions may request and release an arbitrary amount of resource.
If the requested amount is not available, the request action is suspended until it can
be satisfied.

4.4.1 Performance Context

The simulation performance model is represented by an instance of class
PerformanceContext, which acts as a container for the other model components.
A performance model is made of a set of workloads driving scenarios, and a set
of available resources. It is necessary to specify at least one workload and one
scenario, as performance modeling would be pointless without any of them.

Associations

workloads The set of workloads driving the system.

scenarios The set of scenarios which can executed by users.

resources The set of available active and passive resources.

Attributes

parameters The list of definitions for variables used as values int simulation
parameters. In general, the modeler may specify annotations
using undefined variables. When the simulation model is exe-
cuted, these free variables are instantiated with values specified
in this attribute.
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simulation duration The maximum duration of the simulation. The simulation
program stops when it reaches the (simulated) time specified
in this attribute.

confidence width The desired relative width of the confidence intervals for the
computed performance results. Results are computed as con-
fidence intervals (at 90% confidence level, by default); this at-
tribute specifies the relative width of those intervals at which
the simulation stops.

4.4.2 Workload

Workloads are modeled as instances of the Workload class. A workload is a stream
of requests arriving to the system. We model two kind of workloads (see Fig. 4.5). If
the number of requests is unlimited, it is called an open workload and is represented
by class OpenWorkload. If the population of requests is fixed, that is there is a fixed
number of requests each returning to the system once completed, then the workload
is called a closed workload and is represented by class ClosedWorkload. The users of
a closed workload behaves in the following way: they request service to the system,
and when the service is completed they wait for some time (called think time) before
starting another interaction.

Infinite stream of requests Completed requests
leave the system

System

(a)

rejoin the pool
Completed requests

Fixed pool of requests

System

(b)

Figure 4.5: Schematic representation of open 4.5(a) and closed 4.5(b) workloads

Upon arriving to the system, all the requests activate a scenario, which is modeled
as a composite action. A workload may be associated to multiple scenarios; each
scenario is given a probability to be chosen. Workload-generated users randomly
choose which scenario to execute according to these probabilities.

Associations

association The link from a workload to the set of scenarios it can activate.
Each workload can be associated to multiple scenarios; every
time a new request is generated, it will choose and activate one
of them, randomly chosen.
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4.4.3 Association

This class represents a link between a workload and a scenario which can be activated
by that workload.

Attributes

probability The probability given to this association to be chosen by a re-
quest. If the workload is associated with only one scenario, then
this value is ignored. If the workload is associated with mul-
tiple scenarios (via multiple associations), then each workload
request will choose the scenario to execute according to the
probability specified in the association. The constraint that
the sum of all the probabilities of associations from the same
workload must be 1.0 must hold.

Associations

workload The workload originating requests.

compositeAction The scenario (set of actions) the workload may execute if this
association is chosen.

4.4.4 OpenWorkload

This class denotes a workload made of an infinite stream of requests arriving to the
system.

Attributes

occurrence The occurrence pattern of workload users. This is generally ex-
pressed as a random variable of given distribution; the modeler
specifies both the name of the distribution and its parameters.

4.4.5 ClosedWorkload

This class denotes a workload made of an a fixed number of requests circulating
through system. After a request is serviced, it spends a given amount of time (think
time) outside the system, before starting another interaction.

Attributes

population The total number of requests for this workload.

extDelay The external delay (think time) between successive requests
from the same workload user.



50 4. Simulation modeling of UML

4.4.6 ActionBase

This class represents a request for a resource. The request may be repeated many
times, with an interval between repetitions. The average response time, which is
one of the simulation results, is the average interval between the time the action
starts and the time it finishes. Response time includes the time spent waiting for
the resource to become available, and any other delay the action incurred. Actions
may have a set of successors, that are other actions which may be activated after
the current one finishes.

Attributes

repetitions The number of times this action has to be repeated.

interval The interval between repetitions. This is ignored unless
repetitions is greater than one.

responseTime The computed average response time of this action, measured
as the average delay between the time the action starts and the
last repetition finishes.

Associations

successors The list of outgoing transitions from this action.

4.4.7 Transition

A transition associates a source action with a target action. The meaning of a
transition is the following: when the last repetition of the source action terminates,
the target action is immediately started. When a simple action or a composite action
has multiple outgoing transitions, then the execution path can follow one of multiple
routes. In this case, one transition is randomly selected according to its probability,
and execution continues with the target action of the selected transition. Multiple
outgoing transitions are treated differently when they originate from a fork action;
in this case, all the target actions are started at the same time, representing the fact
that the computation split in multiple concurrent execution paths.

Attributes

probability The probability to select the transition. This attribute is ig-
nored if the source action is a ForkAction, or if the source action
has only one outgoing transition.
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Associations

source The action from which this transition originates.

target The action to which this transition leads.

4.4.8 CompositeAction

A composite action is a container for a set of actions. It is used to model situations
in which a behavior can be decomposed in simpler actions. One of the subactions
is designated as the root step, which is the first action invoked when executing the
composite action. The behavior of a composite action is the execution of its sub
steps.

Associations

steps The set of sub-actions making this composite action.

root The initial action executed.

4.4.9 SimpleAction

This represents a processing step, which is modeled as a request for service from an
active resource.

Attributes

demand The service demand for this action, expressed as a random vari-
able. If this action is associated with a host (processor), then
service is requested to that host. If this action is not associ-
ated with any host, then the service is simulated by making
the action wait for an amount of time equal to the value of this
attribute.

delay An inserted delay within this action, which does not correspond
to any service request. It may be used to model user interac-
tion.

Associations

host The active resource on which this action is executed, that is,
the host from which service will be requested. If missing, the
action is assumed to be executed on a dedicated processor with
processing rate of 1. There is one of such dedicated processors
for each action in the UML model.
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4.4.10 JoinAction, ForkAction

Fork and join actions are used to model concurrent execution of multiple threads. A
fork action takes no time, and causes immediate activation of all successor actions,
that are, all target actions of the outgoing transitions. A join action takes no time
as well, and waits for all predecessor actions to terminate before activating the
successor step.

4.4.11 Resource

This class represents an active or passive resource which is available in the system.

Attributes

utilization The computed utilization of this resource. This value is com-
puted by the simulation program in different ways, depending
whether the resource is active or passive. The exact definition
of utilization is given below.

4.4.12 Active Resource

Active resources represent processors executing jobs. Each job has a service demand
expressed in seconds of processing time for the reference processor; the reference
processor is a processor which requires 1 second of simulation time to satisfy a
service demand of 1 second.

The utilization of an active resource is computed as follows. For any (simulated)
time t ≥ 0, let B(t) be defined as follows:

B(t) =

{

1 if the resource is busy at time t
0 otherwise

Then, the utilization over the simulated time interval [0, T ] of length T is defined
as:

U(T ) =
1

T

∫ T

0

B(t)dt

If the system is stationary, then the mean utilization U is defined as:

U = lim
T→∞

U(T ) = lim
T→∞

1

T

∫ T

0

B(t)dt

Attributes

responseTime The computed average response time of the resource. The re-
sponse time is defined as the difference between the time ser-
vice completes and the time the request for service is made.
Response time include queuing and context-switch delays.
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schedPolicy The scheduling policy for this resource. It defines how the
resource is shared among multiple, concurrent requests. Sup-
ported values for this attribute are: “FIFO” (First-in-First-
out), “LIFO” (Last-in-First-out), “PS” (Processor Sharing).

rate The processing rate of this resource. This denotes the speed of
this processor with respect to a reference processor. The refer-
ence processor requires 1 second of simulated time to satisfy a
service demand of 1 second. An arbitrary processor will require
1/rate seconds of simulated time to satisfy a service demand of
1 second.

ctxSwTime The time needed to perform a context switch. This has not
effect if the scheduling policy of this processor has been set to
Processor Sharing (“PS”).

4.4.13 Passive Resource

A passive resource is a resource which needs to be acquired during the execution of
an operation. Examples of passive resources include memory or energy. A passive
resource consists of a finite number of items (or tokens), which can be acquired and
released. Each passive resource has a maximum capacity, which is the maximum
number of tokens it can hold. Requests can be made for an arbitrary number of
tokens, not exceeding the total resource capacity. Once a request is granted, the
number of available tokens is lowered accordingly. Requests are served in strict
FIFO queue. The first request of the queue is examined; if it can be satisfied with
the residual number of tokens then it can proceed. Otherwise, it remains in the
queue at its current position. The request will be satisfied as soon as enough tokens
are released into the resource.

The utilization of a passive resource is defined in the following way. Let us
suppose that the resource has a maximum capacity of N > 0 tokens. For every
t ≥ 0 we define A(t) as the number of tokens which are available at time t. A
request for 0 ≤ K ≤ N tokens at time s ≥ 0 works in the following way:

• If K ≤ A(s) then we set A(s) := A(s) −K and the request succeeds, ie, the
requesting action completes.

• If K > A(s), then the request is put on hold in a FIFO queue.

Every time some tokens are released, the first request from the queue is examined.
If it can be satisfied, the resource is granted (and A(t) is updated accordingly) and
the request terminates.

Note that the maximum number of tokens is always N , which means that if more
tokens are released than those acquired (which is allowed), then the excess is lost.
The utilization U(T ) over the simulated time interval [0, T ] of length T is defined as
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U(T ) = 1− 1

NT

∫ T

0

A(t)dt

If the system is stationary, then the mean steady-state utilization is defined as

U = lim
T→∞

U(T ) = 1− lim
T→∞

1

NT

∫ T

0

A(t)dt

Attributes

capacity The initial and maximum number of available instances (to-
kens) of this resource. This must be a positive integer. The
number of instances of the resource will be always guaranteed
to be in the range [0..capacity ].

accessTime The access time of the resource. This is the time needed to
physically obtain the resource, once it is granted. Releasing a
resource takes no time.

4.4.14 ResActionBase

This class represents actions requesting or releasing a passive resource. The user
specifies the amount to request/release, and on which resource the action is being
executed.

Attributes

quantity The amount of resource to acquire or release.

Associations

resource The resource to acquire or release.

4.4.15 AcquireAction

This class models a request for acquiring some instances of a passive resource.

Attributes

quantity (inherited from ResActionBase). The amount of resource to
acquire. Setting this value higher than the resource’s capac-
ity results in this action to block forever, as enough resource
will never be available. If the requested quantity is less than
or equal to the current available number of tokens, then the



4.5. Simulation Results 55

request is satisfied, the available resource counter is updated
and the step proceeds. If the request is for more than what
currently available, the request is put on a FIFO queue.

4.4.16 ReleaseAction

This class models the release of tokens of a passive resource.

Attributes

quantity (inherited from ResActionBase). The amount of resource to re-
lease. Actions may release an arbitrary quantity, which will
be added to the resource available tokens, constrained by the
maximum resource capacity. Releasing a resource causes the
following behavior. If there are no requests waiting for the re-
source, then the action terminates. If there are requests waiting
in the queue, then the first request is taken (in FIFO order).
If it can be satisfied with the currently available resource, then
it is reactivated. If the request can not be satisfied, it is put
again in front of the queue. Note that if the request in front
of the queue can not be satisfied, it blocks all the remaining
requests.

4.5 Simulation Results

The computed simulation results are the following:

• Utilization of resources;

• Throughput of resources;

• Mean execution times of actions and use cases.

Resource utilization and throughput are stored in the PAutilization and PAthrough-
put tags respectively. Mean execution times of use cases is stored in the PArespTime
tag (a use case is seen by the simulator as a composite action, whose body is the
associated activity graph); details will be given in Chapter 5.

At the moment the type of simulation results which can be computed are hard-
coded into the simulation prototype tool, and users cannot currently define new
measures of interest. Definition of a suitable notation to allow the software modeler
to define different types of performance parameters are outside the scope of this
work, and are subject of ongoing research.
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Figure 4.6: The performance model from [75], p. 8–4

4.6 Differences with the UML Performance Pro-

file

We highlight now the differences between the performance model described above
and the one proposed in the UML Performance Profile [75], which is reported in
Fig. 4.6. We concentrate on the structural differences between that and the model
we describe on Fig. 4.4, p. 46.

Modeling steps As can be seen, the main difference lies in the model of the
processing steps is represented. The UML Profile defines a PScenario class from
which a PStep class is derived, thus every step is a scenario. This is done to represent
the fact that, at a deeper level of detail, a step could be modeled as a whole scenario,
that is, a sequence of multiple sub-steps. However, making PStep inherit from
PScenario would mean that every step is a scenario, which is not true in general.

We choose a different structure to model the hierarchy of actions, and keep
atomic steps (actions) and scenarios (composite actions) as separate entities. We
apply the Composite Pattern [41] to reflect the hierarchical nature of the processing
steps. The root class of all actions is, in our case, ActionBase. This class contains the
common features among all king of actions. From this class we derive, among others,
atomic actions (SimpleAction class), and composite actions (CompositeAction class).
The latter, in turn, is associated with a set of objects derived from ActionBase, which
means that the content of a composite action can include both simple actions and
other composite actions.
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A1 A2

A3

Figure 4.7: Actions A1 and A2 may have transitions with different probabilities to
A3

This choice makes the construction of the simulation model easier, because each
different kind of action ( SimpleAction, CompositeAction, ForkAction and so on) is
modeled as different simulation process types. Each process has its specific behavior.

Associating probabilities to transitions There is another difference between
our proposal and the UML Performance Profile, namely the way we model nonde-
terminism in activity diagrams. Observe that in Fig. 4.6 there is a PAprob attribute
associated with processing steps. This represents the fact that when a step has
multiple successors, the thread of control may evolve nondeterministically by choos-
ing one of them according to its probability. We model exactly the same situation,
except that we associate the probability with action transitions, rather than with
action themselves. The reason is the following. It is possible that one action has
multiple predecessors. Each of those predecessors may choose to execute that action
with different probability; however, this cannot be modeled with the UML Profile
performance model, as the probability is associated with the action, and not with
transitions.

Fig. 4.7 illustrates the problem. According to the UML Performance Profile,
it is not clear whether actions A1 and A2 can evolve to action A3 with different
probabilities. Our approach makes it clear to allow multiple predecessor actions to
evolve toward the same action with different probabilities.

Modeling workloads Finally, we use use case diagrams to model workloads and
their association with scenarios, whereas the UML Performance Profile uses the first
stimulus of a scenario, the stimulus being stereotyped as a workload. We decided to
make the interaction explicit by using use case diagrams (as proposed also in [33])
for different reasons. First, software architects often include use case diagrams in
their software models, and they are usually one of the first diagrams developed;
hence, it seems reasonable to make use of them. Second, the semantics of use case
diagrams, although only informally specified by the UML standard [74], can be
naturally extended to represent workloads.
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5
Mapping Performance Model

Elements to UML

We now illustrate how the performance domain concepts previously described can
implemented in UML models. We define a UML profile which allows the software
modeler to specify performance-related informations in UML diagrams.

The UML Performance Profile describes two different set of diagrams which can
be used for performance evaluation purposes. These two different approaches are
called collaboration-based and activity-based approach, and are based respectively
on collaboration and on activity diagrams. The activity-based approach has the
advantages of allowing easier modeling of hierarchical scenarios. Also, activity di-
agrams are usually more readable and more easy to understand than collaboration
diagrams. For these reasons our approach is based on activity diagrams.

The proposed UML profile is based on a set of stereotypes and tagged values. For
each stereotype we specify which UML element(s) it applies to; also, the list of the
tagged values it provides will be shown. Each tagged value will then be described
in detail.

Basically, annotated UML diagrams can be considered a high-level graphical
simulation language. They not only describe the structure of the software model,
but also describe the structure of the simulation model as there is an almost one-to-
one mapping between UML elements and simulation processes. Such mapping will
be described in detail in Chapter 6.

5.1 The Performance Context

A performance context is modeled as a UML model. Tagged values are used to
specify simulation parameters and the file used to load definitions.

Stereotype Base Class Tagged Values
≪PAContext≫ Model paramFileName

simDuration
confRelWidth

Tag definitions:
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Tag Type Multiplicity Domain Attribute Name
paramFileName String [0..1] PerformanceContext::parameters
simDuration Real [0..1] PerformanceContext::simulation duration
confRelWidth Real [0..1] PerformanceContext::confidence width

In addition to the above tag definitions, the Performance Context allows users
to specify a PAprob tag associated to Associations in use case diagrams (see 4.4.3)
and Transitions in activity diagrams (see 4.4.7).

Tag Type Multiplicity Domain Attribute Name
PAprob Real 1 Association::probability
PAprob Real 1 Transition::probability

5.2 Modeling Workloads

Workloads are modeled using UML use case diagrams. Actors represent workloads,
and use cases represent scenarios which can be activated by the requests. Two
different stereotypes, ≪OpenWorkload≫ and ≪ClosedWorkload≫, are defined to
denote open and closed workloads respectively. These stereotypes are associated
with actors.

Open workload: ≪OpenWorkload≫
This stereotype denotes an open workload.

Stereotype Base Class Tagged Values
≪OpenWorkload≫ Actor PAoccurrence

Tag definitions:

Tag Type Multiplicity Domain Attribute Name
PAoccurrence RTarrivalPattern [0..1] ClosedWorkload::occurrence

Closed Workload: ≪ClosedWorkload≫
This stereotype denotes a closed workload.

Stereotype Base Class Tagged Values
≪ClosedWorkload≫ Actor PApopulation

PAextDelay

Tag definitions:

Tag Type Multiplicity Domain Attribute Name
PApopulation Integer [0..1] ClosedWorkload::population
PAextDelay PAperfValue [0..1] ClosedWorkload::extDelay
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5.3 Modeling Resources

Resources are modeled using UML deployment diagrams. Each diagram represents
some resources which are available in the system. Resources correspond to node
instances.

Active Resource: ≪PAhost≫
This stereotype denotes an active resource.

Stereotype Base Class Tagged Values
≪PAhost≫ Node PAutilization

PAthroughput
PAschedPolicy
PActxSwT
PArate

Tag definitions:

Tag Type Multiplicity Domain Attribute Name
PAutilization mean [0..1] Resource::utilization
PAthroughput mean [0..1] Resource::throughput

PAschedPolicy

Enumeration {
’LIFO’,
’FIFO’,
’PS’ }

[0..1] ActiveResource::schedPolicy

PActxSwT PAperfValue [0..1] ActiveResource::ctxSwTime
PArate Real [0..1] ActiveResource::rate

Passive Resource: ≪PAresource≫
This stereotype denotes a passive resource.

Stereotype Base Class Tagged Values
≪PAresource≫ Node PAutilization

PAthroughput
PAcapacity
PAaxTime

Tag definitions:

Tag Type Multiplicity Domain Attribute Name
PAutilization mean [0..1] Resource::utilization
PAthroughput mean [0..1] Resource::throughput
PAcapacity Real [0..1] PassiveResource::capacity
PAaxTime PAperfValue [0..1] PassiveResource::accessTime
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5.4 Modeling Scenarios

Scenarios are modeled as UML activity diagrams.

Simple Action: ≪PAstep≫
This stereotype denotes a simple (atomic) step.

Stereotype Base Class Tagged Values
≪PAstep≫ ActionState PArep

PAinterval
PAdemand
PAhost
PAdelay
PArespTime

Tag definitions:

Tag Type Multiplicity Domain Attribute Name
PArep Integer [0..1] ActionBase::repetitions
PAinterval PAperfValue [0..1] ActionBase::interval
PAdemand PAperfValue [0..1] SimpleAction::demand
PAhost String [0..1] SimpleAction::host
PAdelay PAperfValue [0..1] SimpleAction::delay
PArespTime mean [0..1] ActionBase::responseTime

Composite Action: ≪PAcompositeStep≫
This stereotype models a composite action (step). This is necessary due to a lim-
itation of the UML CASE tool used (ArgoUML) which at the moment does not
support composite action states to be defined explicitly.

Stereotype Base Class Tagged Values
≪PACompositeStep≫ ActionState PArep

PAinterval
PArespTime

Tag definitions:

Tag Type Multiplicity Domain Attribute Name
PArep Integer [0..1] ActionBase::repetitions
PAinterval PAperfValue [0..1] ActionBase::interval
PArespTime mean [0..1] ActionBase::responseTime
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Resource Acquire: ≪GRMacquire≫
This stereotype models a request for a passive resource.

Stereotype Base Class Tagged Values
≪GRMacquire≫ ActionState PAresource

PAquantity

Tag definitions:

Tag Type Multiplicity Domain Attribute Name
PAresource String 1 ResActionBase::resource
PAquantity PAperfValue [0..1] ResActionBase::quantity

Resource Release: ≪GRMrelease≫
This stereotype models the release of a passive resource.

Stereotype Base Class Tagged Values
≪GRMrelease≫ ActionState PAresource

PAquantity

Tag definitions:

Tag Type Multiplicity Domain Attribute Name
PAresource String 1 ResActionBase::resource
PAquantity PAperfValue [0..1] ResActionBase::quantity

5.5 Tagged Value Types

The UML Performance Profile proposes the use of the Tag Value Language to express
tag values; Tag Value Language (TVL) is a subset of the Perl [97] language. The
use of some high-level language for tags helps the software modeler, which can use
complex expressions and variables in value specifications. We decided to use the
whole Perl language in order to express tag values. The reason is that the freely
available Perl implementation [34] ships with an interpreter library, which allows the
embedding of a Perl interpreter in a program. As it is easier and more convenient to
use the full language interpreter rather than developing an ad-hoc one for a subset,
the UML-Ψ tool described in III makes use of the Perl interpreter library to parse
tag values.

In describing tagged value types we use the following syntactical conventions:

• Strings and characters in bold face are literals (e.g., “element”). Note that
square brackets and commas are literals, and are used to define a Perl array.

• Strings in angular brackets are non terminals (e.g., < element >).

• A vertical bar | denotes alternative choices.
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5.5.1 PAperfValue

This data type is used to express performance annotations which can be given as
random variables with some suitable distribution.

An element of type PAperfValue is a Perl vector of three elements. The first
element is used to describe whether a given parameter is assumed (for example,
based on experience), predicted (for example, computed by a performance tool) or
measures. This distinction is only used as a mnemonic aid for the modeler, as it
is ignored by the performance tool. The second element of the PAperfValue vector
is the keyword “dist”, meaning that the value represents a distribution. The third
element actually describes the type of distribution.

< PAperfValue > := [ < SourceModifier > ,“dist”, < PDFstring > ]

< SourceModifier > := “assm”|“pred”|“msrd”

< PDFstring > := [ < constantPDF > | < uniformPDF >

| < exponentialPDF > | < normalPDF >

| < ltnormalPDF > | < rtnormalPDF >

| < lrtnormalPDF > ]

< constantPDF > := < real > |“constant”, < real >

< uniformPDF > := “uniform”, < real > , < real >

< exponentialPDF > := “exponential”, < real >

< normalPDF > := “normal”, < real > , < real >

< ltnormalPDF > := “normal”, < real > , < real > , < real >

< rtnormalPDF > := “normal”, < real > , < real > , < real >

< lrtnormalPDF > := “normal”, < real > , < real > , < real > , < real >

The currently available distributions are the following:

Constant This represents a constant value, and may be expressed as a real number
alone or preceding the value with the keyword “constant”:

< constantPDF >:=< real > |“constant”, < real >

Exponential This represents a negative exponential distribution with given mean:

< exponentialPDF >:= “exponential”, < mean >

Uniform This represents a uniform distribution over the interval [a, b]:

< uniformPDF >:= “uniform”, < a > , < b >
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Normal This represents the normal distribution with given mean and standard
deviation:

< normalPDF >:= “normal”, < mean > , < stddev >

It should be noted that normally distributed random variables may assume
positive and negative values. This can cause problems if this distribution is
used to express the duration of some action. For this reason, users are expected
to use one of the Left or Left-and-Right Truncated Normal distributions to
express durations, setting the left truncation point at some non negative value.

Truncated Normal These distributions represent truncated normal distribution
with given mean and standard deviation. The normal distribution may be
truncated to the left, to the right or both.

< ltnormalPDF > := “ltnormal”, < mean > , < stddev >,< left tr point >

< ltnormalPDF > := “rtnormal”, < mean > , < stddev >,< right tr point >

< ltnormalPDF > := “lrtnormal”, < mean > , < stddev >,

< left tr point >,< right tr point >

5.5.2 RTarrivalPattern

This type is used to define arrival patterns for system workloads.

< RTarrivalPattern > := ′[′< bounded > | < unbounded > | < bursty >′]′

< bounded > := “bounded”, < real > , < real >

< bursty > := “bursty”, < PDFstring > , < integer >

< unbounded > := “unbounded”, < PDFstring >

We have three types of arrival patterns:

Bounded The inter-arrival time between two successive requests is uniformly dis-
tributed, and the lower and upper bounds are given by the first and second
parameter respectively.

Bursty Requests arrive in burst of given maximum size. The time between
successive burst is given by the first parameter, and the maximum burst
size is given by the second parameter. The actual burst size is computed
for each arrival as a random variable uniformly distributed over the interval
0 . . . Maximum Burst Size.

Unbounded Requests arrive one at a time, with inter-arrival time given by the
parameter. The bounded arrival pattern is a special case of this one, with
inter-arrival time uniformly distributed over an interval.
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5.6 An Example

In this section we illustrate with a simple example how the annotations previously
introduced can be applied to UML models. The proposed example is very similar
to the one appearing in Sec. 8 of [75]. It involves a web-based video streaming
application. We assume a constant population of 10 users. Each user selects a video
to view using a web browser and the browser contacts the remote web server for the
video to be sent back through the Internet. The video server triggers the activation
of a video player on the workstation of the user before sending the stream of frames.
The UML use case, deployment and activity diagrams are depicted in Fig. 5.1.

The annotations are shown in the figure inside note icons mainly for display
purposes. In fact, CASE tools may provide different means of entering tagged
values; for example, ArgoUML/Poseidon display them in the properties box on the
bottom of the editing area, and are not shown directly into the UML model.

The use case diagram in Fig. 5.1(a) describes the workload driving the system.
There is a single actor stereotyped as ≪ ClosedWorkload≫ representing a closed
workload. The workload consists of a population of 10 requests, and the assumed
time each request spends waiting between end of service and start of the next service
period is exponentially distributed with mean 50 seconds. The requests activate
the activity diagram associated to use case “Request Video”, which is shown in
Fig. 5.1(c).

The activity diagram in Fig. 5.1(c) describes the computations performed when
executing the “Request Video” use case. Each action is annotated with the name of
the resource needed to service the request. In this example, all steps are stereotyped
as≪PAstep≫, and thus represent computations performed on some resource, whose
name is specified in the PAstep tag. Those names correspond to node names in the
deployment diagram. The service demands are specified as random variables of some
given distribution. The “Send Video” action is repeated 100 times, since the PArep
tag is assigned value 100.

The deployment diagram in Fig. 5.1(b) is used to describe the resources available
in the system. In this case, the resources are the following:

• A processor “ClientWorkstation”, with FIFO scheduling policy and processing
rate of 1.0 (meaning that a service demand of t seconds will be serviced in
exactly t seconds of simulated time, in case of no resource contention);

• A processor “WebServerNode”, with FIFO scheduling policy and processing
rate of 2.0 (meaning that a service demand of t seconds will be serviced in t/2
seconds of simulated time, in case of no resource contention);

• A processor “VideoServerNode”, with FIFO scheduling policy and processing
rate of 2.0;

• A processor “Internet”, representing the communication network. The net-
work is modeled as an active resource with Processor Sharing scheduling policy
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PApopulation = 10
PAextDelay = ["assm", "dist",

["exponential", 50.0]]

(a) Use Case Diagram (b) Deployment Diagram

(c) Request Video Activities

Figure 5.1: UML representation of a Web video application.

and processing rate of 1.0.
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6
The Simulation Model

In this chapter we describe how UML elements are mapped (translated) into sim-
ulation processes; we also show how the different types of simulation processes are
implemented, by describing them in pseudocode. There is an almost one-to-one
mapping between UML elements and simulation processes. This makes the model
generation step almost straightforward; also, it is very easy to map simulation results
from processes back to the UML elements they refer.

The simulation processes are described using an rather unconstrained Pascal-like
notation. For simplicity and clarity we will use data types rather freely; also, we
omit the instructions for computation of the performance measures. We denote with
X.some tag either the value of attribute some tag of object X, or the value of the
tag some tag associated to the UML object X. Either way, the context will help in
identifying which of the two alternatives hold.

6.1 Mapping the UML Model into the Perfor-

mance Model

We describe briefly the transformation algorithm which is used for transforming
annotated UML models into performance models. The algorithm is very simple, in
that it builds a simulation model with almost the same structure as the software
model.

The algorithm performs the following basic steps:

1. Each actor is translated into the corresponding workload process (open or
closed workload, depending on its stereotype);

2. Each action in activity diagrams is translated into the appropriate type of pro-
cessing step (fork/join action, simple/composite action, require/release action)
depending on its UML type and the associated stereotype.

3. Actions are linked in a predecessor-successor relation, according to the transi-
tions in the activity diagrams.
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4. Finally, nodes in deployment diagrams are mapped into processing resources
or passive resources, depending on their stereotype.

The pseudo code for the transformation algorithm is reported below. The algo-
rithm refers to the simulation processes which will be described in more detail in
the next sections.

{Process Use Case diagrams}
for all Use Case diagram U do

for all Actor a ∈ U do
if a is tagged as OpenWorkload then

Ac← Make new OpenWorkload(a) process
else if a is tagged as ClosedWorkload then

Ac← Make new ClosedWorkload(a) process
end if
for all Use Case u associated with a do

Sc←Make new PScenario object
Link Sc to Ac
A←Activity diagram associated with u
{Process Activity diagram}
for all Activity s ∈ A do

if s is stereotyped as ≪PAstep≫ then
if a is a simple action then

P [a]← new SimpleAction(a) process
else

P [a]← new ComposieAction(a) process
end if

else if a is stereotyped as ≪GRMacquire≫ then
P [a]← new AcquireAction(a) process

else if a is stereotyped as ≪GRMrelease≫ then
P [a]← new ReleaseAction(a) process

else if a is a fork node then
P [a]← new ForkAction(a) process

else if a is a join node then
P [a]← new JoinAction(a) process

end if
Add P [a] to Sc

end for
{Link activities}
for all a, b ∈ A such that b is successor of a do

Set P [b] as a successor of P [a]
end for

end for
end for
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end for
{Process Deployment diagrams}
for all Deployment diagram D do

for all Node instance n ∈ D do
if n is tagged as ≪PAhost≫ then

p←New PRhost(n) process
else if n is tagged as ≪PAresource≫ then

p←New PResource(n) process
end if

end for
end for
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6.1.1 Workloads

Actor

UC[1]

UC[n]

PAoccurrence = <occ>

<<OpenWorkload>>

PAprob=p[1]

PAprob=p[n]

process OpenWorkload( Actor A );

var

   u : OpenWorkloadUser;

begin

   while ( true ) do begin

      hold( A.PAoccurrence );

      u := new( OpenWorkloadUser( A ) );

      activate( u );

   end;

end;

process OpenWorkloadUser( Actor A );

var

   i  : integer;

   uc : UseCase;

begin

   { choose i in [1..n] with

   probability [A.p[1]..A.p[n]] }

   uc := new( CompositeAction( UC[i] ) );

   activate( uc );

end;

Figure 6.1: Mapping open workloads into simulation processes

The mapping of an open workload into a simulation process is shown in Fig. 6.1.
Each actor which is stereotyped as ≪OpenWorkload≫ is mapped into a simulation
process of type OpenWorkload. The behavior of this process consists of an infinite
loop, during which it waits for an amount of time specified in the PAoccurrence

tag and then creates a simulation process of type OpenWorkloadUser. The latter
represents a workload user, that is, a request to the system. A workload user
randomly chooses one of the use cases associated with the corresponding actor. A
simulation process corresponding to the selected use case is created and activated.
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Actor

UC[1]

UC[n]

PApopulation = <pop>
PAextDelay = <ext>

<<ClosedWorkload>>

PAprob=p[1]

PAprob=p[n]

process ClosedWorkload( A: Actor )

var

   i : integer;

   u : ClosedWorkloadUser;

begin

   for i:=1 to A.pop do begin

      u := new( ClosedWorkloadUser( A ) );

      activate( u );

   end;      

end;

process ClosedWorkloadUser( A: Actor )

var

   i  : integer;

   uc : UseCase;

begin

   while ( true ) do begin

      hold( A.PAextDelay );

      { choose i in [1..n] with

      probability [ A.p[1]..A.p[n] ] }

      uc := new( CompositeAction( UC[i] ) );

      activate( uc );

      { Wait for uc to terminate }

   end;

end;

Figure 6.2: Mapping closed workloads into simulation processes

The mapping of a closed workload to the simulation model is depicted in Fig. 6.2.
Each actor which is stereotyped as ≪ ClosedWorkload≫ is mapped into a simu-
lation process of type ClosedWorkload. Its actions are simply to create as many
ClosedWorkloadUser processes as specified in the PApopulation tag. Each process
of type ClosedWorkloadUser represents a user (request); its action is to execute an
infinite loop. First, the user waits for an amount of time corresponding to the
PAextDelay tag (the “think time”). Then, it randomly selects one of the use cases
associated with the actor. A simulation process corresponding to the selected use
case is created and activated. When the simulation process executing the use case
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terminates, the loop is iterated again and a new request appears to the system.

6.1.2 Resources

Processor

<<PAhost>>

PAschedPolicy=<sch>
PActxSwT=<ctx>
PArate=<rate>

process ActiveResource( N: NodeInstance )

var

   j    : Action;

   jobq : queue of Action; { Queue of jobs }

begin

   while ( true ) do begin

      while ( not jobq.empty( ) ) do begin

         j := jobq.first( );

         jobq.remove_first( );

         hold( j.Pademand / N.PArate );

         activate( j );

      end;

      passivate( );

   end;

end;

Figure 6.3: Mapping active resources into simulation processes

The mapping between an active resource and the corresponding simulation processes
is given in Fig. 6.3. Each UML node instance which is stereotyped as ≪PAhost≫
is translated into a simulation process of type Processor. For simplicity, only the
“FIFO” and “LIFO” scheduling policies are considered in the simulation process
of Fig. 6.3; implementation of the Processor Sharing (“PS”) scheduling policy has
been implemented in the UML-Ψ simulation tool, but is not reported here as it
is only a variation of the same basic idea. Simulation processes of type Processor

contain a queue of waiting jobs. Each job is extracted from the queue according to
the scheduling policy (from the front of the queue in the case of “FIFO” scheduling,
from the back of the queue in the case of “LIFO” scheduling). Each job is an action
waiting for service (see the performance model on page 46). The active resource
simulates the execution of the job by waiting for an amount of time equal to the
service demand divided by the speed (processing rate) of the processor. At this
point, the action corresponding to the completed job is resumed, and another job is
extracted from the queue.
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Resource

<<PAresource>>

PAaxTime=<axt>
PAcapacity=<cap>

process PassiveResource( N: NodeInstance )

var

   r     : Action;

   reqq  : queue of Action; { Queue of requests }

   avail : integer;

begin

   avail := N.PAquantity;

   while ( true ) do begin

      while ( not jobq.empty( ) ) do begin

         r := reqq.first( );

         if ( r.quantity <= avail ) then begin

            avail := avail - r.quantity;

            reqq.remove_first( );

            hold( N.PAaxTime );

            activate( r );

         end;

      end;

      passivate( );

   end;

end;

Figure 6.4: Mapping passive resources into simulation processes

The mapping between a passive resource and the corresponding simulation pro-
cesses is given in Fig. 6.4. A passive resource is modeled as a process with an
associated queue of requests. Note that releasing tokens is performed by the process
modeling a release action, which will be illustrated in a later section. A process of
type Resource performs the following actions. It checks the first request in its queue.
If the request can be satisfied, then the number of available tokens is decreased
accordingly and the simulation process associated with the request is resumed. If
the request cannot be satisfied, it is left in the queue.
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6.1.3 Actions

Action

PArep      = <rep>
PAinterval = <int>
PAdemand   = <dem>
PAhost     = <host>
PAdelay    = <del>

<<PAstep>>

process SimpleAction( A: Action )

var

   i    : integer;

   next : ActionBase;

begin

   while ( true ) do begin

      hold( A.PAdelay );

      for i:=1 to A.PArep do begin

         if ( A.PAhost <> nil ) then

            { Request service to A.PAhost }

         else

            hold( A.PAdemand );

         if ( i < A.PArep )

            hold( A.PAinterval );

      end;

      { Activate next step }

      next := choose_next_action( );

      activate( next );

      { Wait for the next execution }

      passivate( ); 

   end;

end;

Figure 6.5: Mapping simple actions into simulation processes

A simple action stereotyped as ≪PAstep≫ is mapped into a simulation process as
shown in Fig. 6.5. The simulation process modeling a simple action executes a cycle
for a number of times equal to the PArep attribute of the action state. For each
iteration, service is requested to the active resource where the step is executed, if
defined. If the host processor is not defined, then the simple action process waits
for the time specified in the PAdemand attribute. Once complete, a SimpleAction

process activates one of its successors, chosen randomly according to the probability
of outgoing transitions.
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CompositeAction
PArep      = <rep>
PAinterval = <int>

<<PAcompositeStep>>

process CompositeAction( A: Action )

var

   i    : integer;

   next : ActionBase;

begin

   while ( true ) do begin

      for i:=1 to A.PArep do begin

         activate( A.root );

         { Wait for the substeps to complete }

         if ( i < A.PArep )

            hold( A.PAinterval );

      end;

      { Activate next step }

      next := choose_next_action( );

      activate( next );

      passivate( ); { Wait for the next execution }

   end;

end;

Figure 6.6: Mapping composite actions into a simulation process

Fig. 6.6 shows the mapping from a composite action to the corresponding sim-
ulation process. The behavior of a CompositeAction process consists of activating
its root step, waiting for all the sub-steps to terminate. This behavior is iterated
as many times as required by the PArep tagged value. Similarly to SimpleAction

processes, the successor step is finally selected and executed.
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Acquire
PAresource = <res>
PAquantity = <q>

<<GRMacquire>>

process AcquireAction( A: Action )

var

   res  : PassiveResource;

   next : ActionBase;

begin

   res := A.PAresource;

   while ( true ) do begin

      enqueue( res.reqq ); { Join the request queue }

      if ( res.idle( ) ) then

         activate( res );  { Wake up resource }

      passivate( );        { Wait to be served }

      { Activate next step, or owner }

      next := choose_next_action( );

      activate( next );

      { Wait for the next execution }

      passivate( );        

   end;

end;

Figure 6.7: Mapping acquire actions into simulation processes

Fig. 6.7 shows the mapping from an action acquiring a passive resource and the
corresponding simulation process. The process puts itself on the queue of requests
association with the target resource. At this point, the simulation process modeling
the passive resource is awaken (if idle), so it will examine the queue and decide
whether some process can be serviced. Once the AcquireAction process gets the
resource, it choses and activates the next action.
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Release
PAresource = <res>
PAquantity = <q>

<<GRMrelease>>

process ReleaseAction( A: Action )

var

   res  : PassiveResource;

   next : ActionBase;

begin

   res := A.PAresource;

   while ( true ) do begin

      res.avail := res.avail + A.PAquantity;

      { The maximum number of instances of this

      resource is res.PAquantity, so we clip off

      the excess }

      if ( res.avail > res.PAquantity )

         res.avail := res.PAquantity;

      if ( res.idle( ) ) then

         activate( res );

      { Activate next step }

      next := choose_next_action( );

      activate( next );

      { Wait for the next execution }

      passivate( );

   end;

end;

Figure 6.8: Mapping release actions into simulation processes

Fig. 6.8 illustrates how an action releasing a passive resource is mapped into the
corresponding simulation process. It is very simple, consisting only in updating the
available number of tokens of the resource, and reactivating the PassiveResource sim-
ulation process associated to the resource. In general, we allow actions to release an
arbitrary amount of tokens for any resource. This means that at any given time, the
number of available tokens may be greater to the total capacity of the resource. In
order to cope with this, ReleaseAction processes ensure that the maximum available
number of tokens does not exceed the resource capacity.



80 6. The Simulation Model

A[1] A[N]

process ForkAction( A: Action )

var

   i    : integer;

   next : ActionBase;

begin

   while ( true ) do begin

      for i:=1 to N do

         activate( A[i] );

      next := choose_next_action( );

      activate( next );

      { Wait for the next execution }

      passivate( ); 

   end;

end;

A[1] A[N]

process JoinAction( A: Action )

var

   i    : integer;

   next : ActionBase;

begin

   while ( true ) do begin

      { Wait to be activated exactly N

      times, one from each predecessor }

      for i:=1 to N do

         passivate( );

      next := choose_next_action( );

      activate( next );

      { Wait for the next execution }

      passivate( ); 

   end;

end;

Figure 6.9: Mapping fork and join actions into simulation processes

6.2 The validation issue

Validation of a simulation model deals with the accuracy of the modeling process,
i.e. how accurately the simulation model represents the real system. Validation
is usually an iterative process involving comparison of model and system behavior.
Discrepancies between these behaviors are used to tune the model until its accuracy
is considered acceptable [60].

In the context of SPE, the “real system” is an abstract representation of a SA.
Specifically, we have considered here a UML representation of a SA. Such an abstract
representation cannot be directly executed, so the standard validation techniques
cannot be applied within this context.

Formal validation techniques [16] can be used to validate performance models
when an already implemented system is not available. The idea is to develop a
formal proof that the performance model is valid, according to the scope of the



6.2. The validation issue 81

simulation. To get such a formal proof of correctness both the system to simulate
and the simulation model must be translated into a formal and precise mathematical
notation. The model is considered validated if it is possible to formally prove that it
behaves in the same way as the system and satisfies the requirements specification
with sufficient accuracy. Note that this validation method does not require the
simulation model to be actually implemented.

As observed in [16], developing formal proofs of correctness in realistic cases is
not always possible under the current state of the art. If the system to be modeled
is a set of UML diagrams the problem is even worse, because UML has no formal
semantics. There are some research addressing this open problem, as discussed
in [31, 85]. However, giving a formal description of a simulation model is difficult,
and currently there is no standard notation to do so. A few works describe a
semantics for a subset of a simulation language [25, 27, 95]. Thus, the simulation
model could be formally described by first translating it into a simulation program
for which there is a formal semantics.

A simpler validation approach is to develop a set of test cases, each one being
an UML representation of an already implemented SA. Then we can validate the
simulation model with the implemented SA.

Both the approaches above have some drawbacks. Formal validation is difficult
given the current state of the art, since UML descriptions of SA and simulation
models have no standard, formal representation. On the other hand, validation of
simulation models against testing, using standard techniques, gives no guarantee
that the transformation from UML model into performance model always preserves
properties of the original SA. Validation by example can be used just to show that
the transformation can produce valid models, and not that the transformation must
always produce valid models.

We outline another possible approach to model validation. We observe that
transforming UML models into simulation models is very similar to defining a se-
mantics of a set of annotated UML diagrams. This semantics should depend on what
UML diagrams are used and how they are annotated; we assume annotations based
on the Performance Profile. The transformation S : U →M defines a mapping from
the space of the annotated UML diagrams U into the space M of the simulation
models. The mapping S could be defined according to the informal UML semantics
defined in the standard [74], and according to the equally informal semantics of the
annotations described in the UML performance profile [75]. Function S could be
defined in an arbitrary way. However, if we treat S as a semantics function, we can
impose a constraint on it by requiring the soundness property to hold. Suppose that
we define an equivalence relation ≈U ⊆ U × U and ≈M ⊆ M ×M . Given that, we
can define a soundness property for the transformation S as follows:

for each X,Y ∈ U : S(X) ≈M S(Y )⇒ X ≈U Y (6.1)

This means that, for each pair of annotated sets of UML diagrams X and Y , if they
map to equivalent performance models, then they represent similar SA.
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Defining the equivalence relations ≈M and ≈U is very difficult. Two SA could be
equivalent if they represent the same system at different levels of detail, or if they
describe two systems providing the same functionalities, or if they are structurally
equivalent, and so on. Two simulation models could be equivalent if they are struc-
turally equivalent, or if they represent systems with the same performances under
identical conditions. However, note that we could define an efficient performance
model validation technique by using the definition of relations ≈M and ≈U so that
the soundness property can be easily and possibly automatically verified.



7
An application to UML Mobility

Modeling

7.1 Introduction

In this chapter we describe an application of the simulation-based UML performance
modeling approach introduced earlier. We develop an integrated UML notation for
describing and evaluating the performances of mobile systems described at a high
level of detail. We combine the annotations from the profile described in Chapter 5
with a structured approach for describing mobile systems in term of use case, activity
and deployment diagrams.

Motivations The current generation of network-centric applications exhibits an
increasingly higher degree of mobility. From one side, wireless networks allow de-
vices to move from one location to another without loosing connectivity. From the
other side, new software technologies allow code fragments or entire running appli-
cations to migrate from one host to another. In this direction, design approaches
based on location awareness and code mobility have been proposed where the ap-
plication components can move to different locations during their execution. This
should improve system quality, allowing a higher degree of flexibility and increas-
ing the performance. Indeed, from the performance viewpoint, moving components
of an application in a distributed environment could lead to transforming remote
interaction into local ones. We consider software mobile system at a high level of
abstraction and we refer to SA to describe system structure and behavior [18, 90].
Mobile software systems can be represented by SA [39]; in particular, one can de-
fine mobile SA with various mobility styles, whose definition depends on whether
they require copies creation of components at new locations, or local change of com-
ponents preserve their identity (mobile agent). In the former case we can further
distinguish systems where the copy is created at the location of the component that
starts the interaction (code on demand), or systems where it is created at the lo-
cation of the component that accepts the interaction (remote evaluation). Many
formalisms have been proposed to represent mobile software systems and for rea-
soning about mobility [37, 71, 72, 78, 100]. However, most of these formalisms
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cannot be considered Architectural Description Language (ADL), since they do not
explicitly model components and interactions as first class entities. Several models
of SA have been proposed based on formal ADL with precise semantics and syntax,
as presented and compared in [68]. On the other side, due to the difficulties in in-
tegrating formal ADL in the design practice, other approaches consider semi-formal
widely used modeling languages such as UML, taking advantage of the availability
of development tools [70].

We consider mobile software systems at the SA level, and an UML-based system
specification. Performance modeling of mobile software systems is a difficult task,
which should be carried out from the early design stages of system development. The
integration of quantitative performance analysis with software system specification
has been recognized to be a critical issue in system design. In particular, performance
is one of the most influential factors that drive system design choices.

We address the problem of integrating system performance modeling and analysis
with a specification of mobile software system based on UML. In particular we
describe an integrated approach to modeling and performance evaluation of mobile
systems at the architectural level based on simulation. Here we show how the
performance-enabled UML specifications described in Chapter 4 can be applied to
modeling and performance evaluation of mobile systems. We consider both physical
mobility (devices which physically change their locations) and code mobility (code
fragments which migrate from one execution host to another).

Previous Works Baumeister et al. propose in [19] an extension of UML class and
activity diagrams to represent mobility. They define new stereotypes for identifying
mobile objects and locations. Stereotypes are also defined for moving and cloning
activities. Mobile systems are then represented by using activity diagrams using
either a “responsibility centered notation”, which focuses on who is performing
actions, and a “location centered notation” which focuses on where actions are
being done and how activities change their location. While this approach has the
advantage of requiring only minor extensions to UML, a possible shortcoming is that
it represents in the same activity diagram both the mobility model (how objects
change their location) and the computation model (what kind of computations the
objects do). For large models this could render the diagrams difficult to understand.

Some UML notation mechanisms can be used to represent mobile SA, as dis-
cussed in [87]. They are based on the tagged value location to express a component
location, and the stereotypes copy and become to express the location change of a
component. They can be used in Collaboration diagrams to model location changes
of mobile components. Grassi and Mirandola [44] suggest an extension to UML to
represent mobility using collaboration diagrams. Collaboration diagrams contain a
location tagged value representing the physical location of each component. They
define the moveTo stereotype, which can be applied to messages in the collaboration
diagram. When the moveTo stereotype is present, it indicates that the source com-
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ponent moves to the location of the destination component before interacting with
it. Sequence diagrams are used to describe the interactions between components,
regardless of the mobility pattern of the components.

Kosiuczenko [58] proposes a graphical notation for modeling mobile objects based
on UML sequence diagrams. Mobile objects are modeled using an extended version
of lifelines. Each lifeline is represented as a box that can contain other objects (life-
lines). Stereotyped messages are used to represent various actions such as creating
or destroying an object, or entering and leaving an object. This approach has the
drawback of requiring a change in the standard notation of UML sequence diagrams,
that is, lifelines should be represented as boxes, with possibly other sequence dia-
grams inside. Existing graphical UML editors and processors need to be modified
in order to support the new notation.

7.2 The approach

We consider a mobile system as a collection of devices and processes running on
them. Devices include both communication networks, processors with a fixed lo-
cation (e.g., a desktop PC) and mobile devices (e.g., a PDA). We consider both
physical mobility, that is the possibility that the devices change their physical loca-
tion, and logical mobility, that is the fact that fragments of code can migrate from
one execution host to another. A computation on the system is modeled as a set
of activities carried out on the devices. A configuration of the system is a specific
allocation of activities on processors. So, while a mobile entity travels through the
system, it activates a sequence of configurations, each representing a specific system
state. Once a configuration is activated, the mobile entity starts an interaction with
the system. This typically includes requesting service to the devices (processors) or
performing communications, which we also model as requesting service to network
devices. We assume that while a mobile entity is interacting with the system, it
cannot move, i.e., the system configuration cannot change. Further movements are
possible when the interaction is completed. Changes of scenario (and hence mo-
bility) may happen only at the end of an interaction. Even if possible in theory,
it is complex to apply our approach to modeling mobile systems in which change
of scenario are triggered by some external event, possibly interrupting the current
activity at some point.

The proposed approach to mobile system modeling involves three main steps,
which are depicted in Fig. 7.1

1. Enumerate the various mobility strategies of the mobile entities.

2. Model the sequence of configurations which are triggered in each mobility
strategy.

3. Model the interactions performed by the mobile entities in each configuration.
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Behavior 1

Behavior 2

Conf 1 Conf 2 Conf 3

Behavior modeling

Sequence of configurations

Interaction between components

Figure 7.1: Overview of the mobility modeling steps

The first step deals with identifying the mobility pattern of the entities. For
example, users of the system may exhibit a bigger or smaller probability to change
their location, hence they may exhibit different degrees of mobility. Also, users may
move through the system with different preferential patterns. We define a mobility
behavior as the sequence of different configurations which are executed while the
user moves. Such mobility behaviors need to be identified, and further described
in the next steps. Mobility behaviors are represented by UML use case diagrams.
Also, the set of resources (processors) which are present in the system are described
using Deployment diagrams.

The next step involves the description of the sequence of configurations which
are triggered while the mobile entities travel through the system. Such description
can be easily expressed as a state transition diagram. We use activity diagrams
for this purpose. Each activity represents a particular configuration of the system.
Transitions describe the order in which configurations are triggered as the user
moves. We will refer to these diagrams as “high level” activity diagrams.

The last step involves detailing what happens while the system is in each config-
uration. This means specifying what are the interactions between the components
while each configuration is active. This is done again using activity diagrams. Each
Action state is associated to the Deployment node instance on which the activity
takes place. Each node of the activity diagrams defined in the previous step is
expanded as an interaction. This can be readily expressed using standard UML no-
tation as activity diagrams have a hierarchical structure, that is, each action state
may be exploded into another diagram. We will refer to these diagrams as “low
level” activity diagrams.

In order to illustrate the proposed approach we introduce an application example
of software mobile system.

Let us consider the example of software system illustrated in Fig. 7.2. There is
a mobile user that is connected to a PC using a PDA with a wireless network card.
The user is viewing a video stream, which is generated by a video server residing on
the PC.

Three different Local Area Networks (LAN1, LAN2 and LAN3) are connected
through the Internet. Each LAN allows wireless connections as well as wired ones.
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The PC is connected to LAN3 and does not move, while the user with the PDA trav-
els through the different LAN. In the configuration C1 of Fig. 7.2(a) the communica-
tion between the PDA and the PC travels through the path LAN1–Internet–LAN3.
In the configuration C2 of Fig. 7.2(b) the communication is routed through the path
LAN2–Internet–LAN3, and in the configuration C3 of Fig. 7.2(c) the communication
between the PC and the PDA is routed through LAN3 only.

LAN1 LAN2 LAN3

PDA PC

Internet

(a) Configuration C1

LAN1 LAN2 LAN3

PCPDA

Internet

(b) Configuration C2

LAN1 LAN2 LAN3

PCPDA

Internet

(c) Configuration C3

Figure 7.2: A mobile user travels through three different LAN

7.2.1 Modeling the choice of Mobility

As the very first step, it is necessary to provide the physical structure of the system.
This can be done by using UML deployment diagrams, which describe the processing
resources available on the system. Such resources include both CPUs and also
communication links. The deployment diagram describing the system in the example
is illustrated in Fig. 7.3.

In the example above, we suppose that the mobile user can behave in two different
ways. In behavior B1 he joins the system in LAN1, then travel to LAN2 and finally
to LAN3 and leaves the system. In behavior B2 the user joins the system in LAN2,
travel to LAN1 and leaves the system. We model these behaviors with the use case
diagram in Fig. 7.4.

The diagram shows an Actor (mobile entity) that can perform one of the as-
sociated use cases, each representing one possible mobility behavior. An Actor
represents each class of mobile entity. The Use Cases associated with that Actor
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Figure 7.3: Deployment diagram for the example

Figure 7.4: UML representation of different mobility possibilities

represent the different ways in which entities of the associated mobile entity class
may interact with the system. Note that this is perfectly consistent with the UML
semantics of use case diagrams [74], as they are used to specify the behavior of an
entity without specifying its internal structure.

7.2.2 Modeling Mobility Behaviors

The next step is to describe the order in which configurations are activated in each
behavior. To do that, we associate an activity diagram to each use case; each activity
of the activity diagram represents a configuration of the system. If the mobile user
triggers the configuration Cj immediately after the configuration Ci, then in the
activity diagram there will be a transition between the activity representing Ci and
the one representing Cj. Considering our example, the two behaviors B1 and B2 are
represented as the activity diagrams of Fig. 7.5.

(a) Activity diagram associated
to B1

(b) Activity diagram asso-
ciated to B2

Figure 7.5: Activity diagrams associated to the mobility behaviors

Note that in this way it is possible to represent non-determinism that is a be-
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havior can have multiple successors. Fig. 7.6(a) illustrates an example where the
mobile entity starts by activating configuration A. Then it may proceed by acti-
vating one of configuration B and C. After that, configuration D is activated. It
is important to observe that the activity diagrams associated to behaviors do not
need to be acyclic. Thus, it is also possible to model situations in which the user
triggers the same sequence of configurations for a number of times. Moreover, using
fork and join nodes of activity diagrams it is possible to represent the concurrent
execution of different configurations. This can be used to model situations in which
the mobile entity generates copies of itself, each one traveling independently through
the system. Fig. 7.6(b) shows an example where a mobile entity starts by entering
configuration A. Next, it splits in two copies, one executing configuration B and the
other executing configuration C in parallel. This means that the two copies of the
mobile entity can move to different locations and perform different interactions with
the system. After that, the two copies synchronize and collapse into one instance,
which proceeds by executing configuration D.

(a) (b)

Figure 7.6: Modeling nondeterministic mobility behavior 7.6(a) and mobile concur-
rent execution of multiple agent instances 7.6(b)

7.2.3 Modeling Interactions between Components

The final step is describing the activities carried out in each configuration. To do
that, we use the hierarchical structure of the activity diagrams to associate the
interactions to each action state identified in the previous step. Namely, we expand
each action step representing a configuration into the activity graph describing the
sequence of actions which are taken during the interaction between the mobile entity
and the system. It is necessary to specify where the actions are executed. To do so
it is possible to use “swimlanes”, which are a means for specifying responsibility for
actions. The name of the swimlanes denotes the Deployment node instance on which
the actions execute. As some graphical UML editors do not support swimlanes, it is
possible to tag each action with the PAhost tagged value, whose value is the name
of the node instance of the deployment diagram corresponding to the host where
the action is executed. Fig. 7.7 shows the interactions performed while the system
we are considering is in configuration C1 and C3 using the swimlane-based notation.

The interaction between the PDA and the PC is very simple. Basically, first the
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(a) Interaction in configuration C1 (b) Interaction in configura-
tion C3

Figure 7.7: UML description of the interactions

PDA computes which frames it needs. Then a suitable request is encoded and sent
through the communication networks to the PC. The request is unmarshalled, and
the requested frames are encoded and packed into a reply message. This message is
sent back through the network to the PDA, which finally displays the frames. Note
that in Fig. 7.7 we omitted the description of the interaction in configuration C2,
as this is basically the same as in C1, with the only difference that LAN2 is used
instead of LAN1.

7.3 Summary of the UML Mobility Approach

The proposed mobility modeling approach can be summarized in the following steps:

1. Identify the processing resources (processors or networks) available in the sys-
tem. Each resource is represented by a node instance in the UML deployment
diagram.

2. Identify the classes of users of the system. Users represent workloads applied
to the system. Each class of users is represented as an Actor in the use
case diagram. Actor may represent either a fixed population of users (closed
workload) or an unlimited stream of users (open workload).

3. Identify the mobility behaviors. For each class of users it is necessary to iden-
tify the different pattern of mobility they may exhibit. Each of such mobility
patterns is represented by a use case associated to the Actor representing the
class of users.
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4. Provide a high level description of the mobility behaviors. An activity dia-
gram is association to each of the use cases identified in the previous step.
Such activity diagram represents the sequence of configuration changes which
happens in the system while the mobile user moves.

5. Describe the interactions occurring in each system configuration. Each Ac-
tion states defined in the previous step are expanded into a low-level activity
diagram describing the interactions between system entities. Each Action of
the low-level diagram represents a service requested to a specific processing
resource. Code mobility is represented by associated Activities in the low-
level diagram to different hosts. Physical mobility is represented by a possibly
different interaction pattern associated to nodes of the high-level activity dia-
gram.

Quantitative informations required by the simulator can be associated to UML
elements as described in Chapter 4. Each use case can be tagged with the probability
of its occurrence, that is, the probability that the associated Actor (motile entity)
will execute that use case (mobility behavior) upon arriving to the system. Action
states of the high-level activity diagram associated to each use case can be annotated
with the probability of occurrence, the number of times they are repeated and
the delay between repetitions. As each action state represents a configuration, the
annotations allow the specify (nondeterministically) the pattern of mobility and how
long the system remains in each configuration. When the simulator “executes” a
configuration, it basically executes all the activities of the low-level activity diagram
embedded in the configurations.

A mobile code fragment moving from host H1 to host H2 is represented as follows.
Let C1 be the configuration where the code executes in H1 and C2 the configuration
where the code executed in H2. The low level activity diagram describing C1 and
C2 will contain an action state (or a whole subdiagram) corresponding to the com-
putation. Such action state or subdiagram will be tagged with the PAhost tagged
value, which describes the location where the activity is executed. In C1 we set
PAhost=H1, and in C2 we set PAhost=H2.

Physical mobility is modeled in a similar way. If a mobile device travels through
the system, as in our example, probably it will interact with different other nodes
for communicating. Depending on the situation, it may even choose a different
communication pattern, and hence a different interaction style with other entities.
Such interaction styles will be represented by (possibly different different) structures
of the low level activity diagrams.

7.4 A Simple Example

The case study illustrated in the previous sections has been simulated using the
parameters reported on Table 7.1. A single user interacts with the system (closed
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workload), and the probability p that the user triggers the behavior B1 (see Fig. 7.5)
has been set to p = 0.3, while the probability that the user triggers the behavior B2

has been set to 1− p.

Parameter Value
(Un)Marshalling Requests Constant 0.1s
(Un)Marshalling Responses Exponential, mean=5.0s
Request Transmission Times Exponential, mean=1.0s
Response Transmission Times Exponential, mean=10.0s
Request Computation Exponential, mean=0.1s
Frame Encoding Time Exponential, mean=20.0s
Display time on the PDA Exponential, mean=20.0s
PDA Speedup factor 0.2
PC Speedup factor 10.0
Processors Sched. Policies FIFO

Table 7.1: Simulation Parameters for the Mobile System Example

The simulation results are shown in Table 7.2. They are the steady-state mean
values computed at 90% confidence level; for simplicity only the central value of the
confidence interval is shown.

Internet utilization 0.039
LAN1 utilization 0.010
LAN2 utilization 0.028
LAN3 utilization 0.072
PDA utilization 0.832
PC utilization 0.015
Behavior B1 response time 445s
Behavior B2 response time 312s

Table 7.2: Simulation Results for the Mobile System Example.
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libcppsim: A process-oriented

simulation library

In this chapter we illustrate the design and implementation of libcppsim, a general-
purpose, process-oriented simulation library written in C++. libcppsim provides
the user with a set of classes for implementing coroutines, simulation processes,
the SQS data structure, and basic statistical functions for collecting and processing
simulation results. The basic simulation entity provided by the library is the simu-
lation process : methods are provided for activating, stopping and rescheduling sim-
ulation processes. The library provides simulation primitives which are commonly
implemented in many process-oriented simulation languages or libraries, such as the
Simula language [35].

The choice of the C++ programming language was motivated by the availability
of efficient compilers and utility libraries (such as libraries for XML processing [62]),
which greatly accelerated the simulator development. We implemented a minimal-
istic set of simulation primitives in order to provide a simple and general framework
on top of which more complex, high-level functionalities can be defined. Many ex-
isting simulation packages are either special-purpose or not very efficient. For that
reason we decided to implement our own simulation toolkit which includes only the
needed functionalities. This simplified the debug of the simulation tool as we had
access to all the source code, and potential problems in the simulation library would
reside in a restricted set of modules providing only simple functionalities.

8.1 Introduction and general concepts

The package structure of libcppsim is illustrated in Fig. 8.1; in the figure, UML
packages denote sets of functionally related classes. There are two root packages:
Coroutines and Variables. The Coroutines package provides two different implementa-
tions of coroutines, which are used for implementing both simulation processes and
the Sequencing Set. The Variables package contains the basic definition of a “vari-
able”, that is an entity which has a an internal state which can be updated with
new values; variables provides a method for computing a function of this internal
state. Using the abstraction of a “variable” it is possible to derive random number
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libcppsim

Processes

Coroutines Variables

StatisticsRandom
Number
Generators

Sequencing
Set

Figure 8.1: libcppsim package structure

generators and statistics classes. Random number generators are implemented as
variables returning a different value every time it is computed, thus producing a
stream of pseudo-random numbers. Statistics are special kind of variables which
are repeatedly updated with a sequence of observations of some quantity of inter-
est computed by the simulation, and whose value is the requested statistics (mean,
confidence interval, variance and others).

8.2 Coroutines

Coroutines are a programming construct which can be very helpful for implementing
process-oriented simulation languages and libraries; Simula had coroutines as a
built-in facility. Unfortunately, the C and C++ programming languages, which are
widely used and extremely efficient, do not provide coroutines natively.

Coroutines are blocks of code with associated state, which are activated according
to the following rules:

• One coroutine at a time is active and is running; control is retained either
until the coroutine terminates or until it explicitly resumes another coroutine.

• There exists a “main coroutine” which is the first coroutine being activated.
The main coroutine gains control as soon as the program is executed.

• An active coroutine that gives up control by resuming another one retains its
current execution context. When the suspended coroutine is resumed, it will
execute from the point at which it last stopped.

Coroutines can be considered as a special kind of procedures, as defined in most
structured programming languages. For procedures there is a strict caller-callee
activation order, that is, the caller procedures can transfer control to the called
one, and be reactivated only when the latter terminates. On the other hand control
can flow arbitrarily for coroutines (see Fig. 8.2). Coroutines can be considered as
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f() g() h() f() g() h()

Figure 8.2: Flow control for routines (left) and coroutines (right). Time advances
downward. Thick lines represent which (co)routine is active at any given time.

a cooperative multithreading environment, with coroutines acting as lightweight
threads explicitly passing control each other.

Adding support for coroutines to the C++ programming language is not trivial.
Each C++ function is associated to a data structure called activation record which
is stored in the run-time stack. The activation record contains informations about
the status of the routine, such as the value of the local variables. When a subroutine
call occurs, a new activation record for the called function is created and put on the
top of the stack. All the local variables, defined by the called routine, are stored
on the newly created activation record. Similarly, when a routine terminates, its
activation record is pushed from the stack. LIFO handling of the runtime stack
does not work anymore with coroutines, because the currently active coroutine may
not be the one associated with the topmost activation record. This implies that the
order of activation of coroutines is not given by the LIFO stack handling.

This problem can be solved in different ways. The first approach is the “copy-
stack implementation” described by Helsgaun [46]. The stack of the currently op-
erating coroutine is kept in the C++ runtime stack. When a coroutine suspends,
the runtime stack is copied in a buffer associated with the coroutine. The buffer
is allocated in the dynamic heap, so it does not interfere with the normal stack
operation. A coroutine is resumed by copying the content of that buffer to C++’s
runtime stack and setting the program counter to the saved execution location.
While this approach is fairly portable, it makes the assumption that the run-time
stack is implemented as a contiguous block of memory, as opposed to a linked list
of frames.

A second approach is simpler and more portable, and consists of making use
of the context handling facilities provided by most Unix SysV-like environments.
The Operating System provides functions allowing user-level context switching be-
tween different threads of control within a process. These functions are getcontext(),
setcontext() and makecontext().

The getcontext() function is used to initialize a user-supplied data structure of
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type ucontext t with a copy of the current context. The ucontext t data structure is
defined as follows under the Linux OS [64] (in file /usr/include/asm/ucontext.h):

typedef struct ucontext

{

    unsigned long int uc_flags;

    struct ucontext *uc_link; /* Reference to the 

                                 next context            */

    stack_t uc_stack;         /* Where the stack for 

                                 this context is located */

    mcontext_t uc_mcontext;

    __sigset_t uc_sigmask;

    struct _fpstate __fpregs_mem;

} ucontext_t;

The relevant fields of the structure are uc link which, if nonzero, points to the context
to be activated when this one terminates, and uc stack, which contains a pointer to a
dynamically allocated user memory area which holds the context. stack t is defined
as follows:

typedef struct sigaltstack

{

    void *ss_sp;

    int ss_flags;

    size_t ss_size;

} stack_t;

ss sp points to the stack.
The makecontext() procedure modifies an ucontext t data structure; the user de-

fines a function which will be executed when the context is activated, and an optional
successor context to be activated when the function terminates. The swapcontext()
function saves the current context and activates a new one.

Both approaches have advantages and disadvantages. The “copy-stack” ap-
proach requires a copy of the C++ runtime stack to be saved every time a coroutine
passes control, which may cause a considerable overhead. Moreover, the approach
requires that the run-time stack is internally represented as a contiguous block of
memory (which however is the most common case in practice). The approach based
on the ucontext t data structure does not incur in this overhead, as the context each
coroutine is allocated only once when the coroutine is activated. A coroutine switch
(performed via the swapcontext() system call) just makes the CPU’s stack pointer
to point to the stack of the coroutine to be resumed. This approach does not de-
pend on the layout of the run-time stack, but does require the Operating System
to support the makecontext and swapcontext system calls (old versions of Linux did
not implement them).

Unfortunately, the ucontext t based approach does not allow the coroutine con-
text to grow past the dimension defined when the context is allocated. The user is
required to set the maximum dimension of the context in advance; choosing a too
small buffer results in weird runtime behaviors caused by stack corruption which
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are typically very difficult to debug. The “copy-stack” approach does not have
this limitation. The libcppsim library implements both alternatives, and the user
can choose one at compile time. As a general rule, it is useful to use the “copy-
stack” variant when developing the simulation program, in order to ensure that stack
corruption errors do not happen; then, when the program is checked and correct,
production runs may be done with the more efficient context-based approach.

The coroutine class is defined as follows:

class coroutine

{

public:

    virtual ˜coroutine ();    

    inline bool terminated( void ) const;

    void resume( void );

    void call( void );

    static size_t cStackSize;

protected:

    coroutine( );

    void detach( void );

    virtual void main( void ) = 0;            

private:

    inline void enter( void );

    coroutine   *_caller;

    coroutine   *_callee;

    static coroutine *_current_coroutine;

};

Note that it is a virtual class, since the main() is pure virtual. Users can implement
their own coroutines by inheriting a class from coroutine. The meaning of user-
accessible methods (public and protected) is the following:

main() This method represents the body of the coroutine. When the coroutine
object is activated, the function main() is executed. The coroutine terminates
when main() terminates.

bool terminated() Returns true if and only if the coroutine object represents a
terminated coroutine, that is, a coroutine whose main() function finished.

call() This method is used for invoking a coroutine, setting the caller as the corou-
tine to activate when this one terminates or performs a detach() operation.
This method also sets the caller and callee pointers accordingly, so that when
the caller terminates, control is automatically passed to the caller.

resume() Activates the coroutine from the main() function, if this is a newly created
coroutine, or from the point it was last suspended. Note that this method does
not set a caller-callee relationship between the coroutines. This means that
when the resumed coroutine terminates, control is not transferred to the one
who performed the resume() operation.

detach() Suspends the execution of the coroutine.
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coroutine
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Figure 8.3: libcppsim process package class diagram

The enter() method is used to actually save save the context of the current coroutine
and restore the context of the one control is passed to. Implementation details can
be found in Helsgaun [46].

8.3 Simulation processes

Once coroutines are available, it is very easy to define simulation processes on top
of them. Fig. 8.3 shows the class hierarchy related to simulation process implemen-
tation.

A simulation process is represented by the process class, and it inherits from
coroutine. Simulation processes implement their functionalities in term of the basic
activation primitives provided by the coroutine class.

Each simulation process has a unique identifier and a user-supplied (not necessar-
ily unique) name. The process class implements methods providing all the scheduling
primitives described in Section 3.4. The actions performed by the simulation process
should be specified by redefining the pure virtual method inner body().

One feature which was missing from the initial implementation of the process

class was a mechanism for automatic garbage collection. This is a feature which
is not present in the C/C++ languages, but is extremely valuable when writing
simulation programs. The reason is that when many simulation processes are dy-
namically created, it is often desirable to have them automatically destroyed when
they terminate and are not reachable from any live pointer.

It turns out that the implementation of a complete garbage collector was not
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really necessary. Instead, we chose to implement a simpler mechanism based on
smart pointers. A smart pointer is represented by the templated class handle〉T〈,
which represents a reference to an object of type T which can be shared among
multiple owners. When the last handle containing a reference to some object goes
out of scope and is deallocated, then the referenced object is automatically destroyed
and its memory reclaimed. The implementation of the handle class is based on
the reference-count idea described in [94]. Basically, the handle class redefines the
constructor, destructor and assignment operator in order to maintain a count of
the number of active references to the shared object. When this counter goes to
zero, the object is destroyed. Our implementation is however slightly different in
that the reference count is kept inside the shared object. This requires that, in
order to be put inside an handle〈T〉, the type T must be derived from the shared

class, which contains just a counter and operators to increment and decrement it.
This approach has the disadvantage that not every data type can be used inside an
handle (e.g., it is impossible to have an handle〈double〉), but it has the advantage
that the reference count is preserved even when a handle〈T〉 is dereferenced as an
object of type “pointer to T” and then back to a different hanlde〈T〉. That is, in the
following fragment of code, with our implementation of handles, the reference count
is preserved correctly:

int foo( void )

{

    handle<process> p = get_some_process( );

    process* r = p.rep( );  // Dereference p

    handle<process> q( r ); // OK. reference count preserved

}

Situations like that happen in the implementation of some methods of the process

and sqs classes, and are unavoidable. Note that sharing the same object between
handles and ordinary C++ pointers may cause problems, as handles may cause the
shared object to be destroyed, making pointers invalid.

Simulation processes may be associated with an event notice, represented by an
instance of a class derived from absEvNotice. The event notice basically contains
the simulation time the process must be activated, and its position in the SQS. The
latter is clearly dependent upon how the SQS data structure is implemented. Hence,
every SQS implementation defines its own specialized version of event notice.

8.4 Sequencing Set implementations

The Sequencing Set (SQS), as described in Section 3.4, is a data structure containing
the set of simulation processes to activate sorted by nondecreasing timestamp order.
Thus, it is basically a priority queue, where the priority is given by the process
(re)activation time. Each simulation process contained in the SQS is associated
with an event notice. We keep event notices as separate entities (derived from the
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sqsabsEvNotice

dllEvNoticeprioEvNotice sqsDllsqsPrio
1_sqs

0..*
1_sqs

0..*

Figure 8.4: libcppsim Sequencing Set class diagram

absEvNotice class) in order to be able to provide different implementations of the
sequencing set data structure, each one needing particular informations in its event
notices. We provide two different implementations of the SQS data structure (see
Fig, 8.4).

The first implementation is contained in class sqsDll, and is based on a simple
doubly linked list. This data structure is very simple, but inserting an element in
the list requires linear time on average. A more efficient implementation, based on
balanced search trees, is given in class sqsPrio. The expected insertion time in this
case is proportional to the logarithm of the SQS size.

8.5 Random variate generations

Each simulation engine should provide an efficient and statistically robust mech-
anism for producing streams of pseudo-random numbers with given distribution.
libcppsim defines an abstract templated class rng〈T〉 representing a pseudo-random
number generator producing a stream of numbers of type T . Thus, it is possible
to generate streams of random integers, real or boolean values, by setting T to
the appropriate datatype in a subclass. The rng〈T〉 class hierarchy is depicted in
Fig. 8.5.

It turns out that the basic ingredient for generating stream of pseudo-random
numbers is a good uniform generator RN(0, 1) over the interval [0..1]. We chose to
implement algorithm MRG32k3a from L’Ecuyer [61], which is known to have long
period and very good statistical properties, other than being very efficient. In the
pseudocode used below, rngUniform01() denotes the implementation of this ran-
dom number generator.

The following random variate generators are currently implemented. The imple-
mentations are taken from [16, Ch. 5].

Uniform distribution: U(a, b), a < b

It is implemented by class rngUniform.
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rngBernoulli
#_p: double

T:bool

rngNormal
#_mu: double
#_sigmasq: double

T:double

rngDiscEmprical
#_p: vector<double>

T:int

rng
T

rngGam
#_a: double
#_b: double

T:double

rngErl
#_m: double
#_k: int

T:double

rngWeib
#_a: double
#_b: double

T:double

rngExp
#_mean: double

T:double

rngUniform
#_a: double
#_b: double

T:double

rngDiscUniform
#_a: int
#_b: int

T:int

rngConst
#_mean: double

T:double

rngLTNormal
#_mu: double
#_sigmasq: double
#_l: double

T:double

rngRTNormal
#_mu: double
#_sigmasq: double
#_r: double

T:double

rngLRTNormal
#_mu: double
#_sigmasq: double
#_l: double
#_r: double

T:double

Figure 8.5: libcppsim Random Number Generators class diagram

Density:

f(x) =







1

b− a
a < x < b

0 otherwise

Distribution function:

F (x) =















0 x ≤ a
x− a

b− a
a < x < b

1 x ≥ b

Generator:
rng<double> U1 = rngUniform01( );

return U1.value( )*(_b - _a) + _a;

Exponential distribution: EXP(a), a > 0

It is implemented by class rngExp.
The parameter a > 0 is the mean of the distribution. The rate parameter is a−1.

Density:

f(x) =

{

a−1 exp
(

−x

a

)

x > 0

0 otherwise

Distribution function:

F (x) =

{

1− exp
(

−x

a

)

x > 0

0 otherwise

Generator:
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rng<double> U1 = rngUniform01( );

return (double)(- _mean*log( 1.0 - U1.value( ) ) );

Weibull distribution: WEIB(a, b), a, b > 0

It is implemented by class rngWeib.
Density:

f(x) =







ba−bxb−1 exp

[

−
(x

a

)b
]

x > 0

0 otherwise

Distribution function:

F (x) =







1− exp

[

−
(x

a

)b
]

x > 0

0 otherwise

Generator:

rng<double> U1 = rngUniform01( );

// pow( a, b ) returns a raised to the b power

return _a*pow( -log( 1.0 - U1.value() ), 1.0/_b );

Gamma distribution: GAM(a, b), a, b > 0

It is implemented by class rngGam.
Density:

f(x) =







(x/a)b−1

aΓ(b)
exp

(

−x

a

)

x > 0

0 otherwise

where Γ(b) is the gamma function:

Γ(b) =

∫

∞

0

ub−1e−udu

The distribution function has no simple closed form.
Generator:
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rng<double> U1 = rngUniform01();

rng<double> U2 = rngUniform01();

// M_E = e = 2.71828...

if ( b < 1.0 ) {

    const double beta = (M_E+b)/M_E;

    while( 1 ) {

        double U = U1.value( );

        double W = beta*U;

        double V = U2.value( );

        if ( W < 1.0 ) {

            double Y = pow( W, 1.0/b );

            if ( V <= exp( -Y ) )

                return a*Y;

        } else {

            double Y = -log( (beta-W)/b );

            if ( V <= pow(Y, b-1.0) )

                return a*Y;

        }

    }

} else if ( b < 5.0 ) {

    while( 1 ) {        

        double U_1 = U1.value( );

        double U_2 = U2.value( );

        double V_1 = -log( U_1 );

        double V_2 = -log( U_2 );

        if ( V_2 > ( b-1.0 )*( V_1-log( V_1 )-1.0 ) )

            return a*V_1;

    }

} else {

    double alpha = 1.0/sqrt( 2.0*b - 1.0 );

    double beta = b - log(4.0);

    double gamma = b + 1.0/alpha;

    double delta = 1.0 + log( 4.5 );

    while( 1 ) {

        double U_1 = U1.value( );

        double U_2 = U2.value( );

        double V = alpha*log( U_1/(1.0-U_1) );

        double Y = b*exp( V );

        double Z = U_1 * U_1 * U_2;

        double W = beta + gamma*V - Y;

        if ( W+delta-4.5*Z >= 0 )

            return a*Y;

        else

            if ( W >= log( Z ) )

                return a*Y;

    }

}

k-Erlang distribution: ERL(m, k), m > 0, k positive integer

It is implemented by class rngErl.
Density: the same as that of GAM(m/k, k).
Distribution function: No closed form for the general case.
Generator:
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if ( k < 10 ) {

    rng<double> U1 = rngUniform01();

    double prod = 1.0;

    for ( int i=0; i<k; i++ )

        prod *= ( 1.0 - U1.value() );

    return -( m/(double)k )*log( prod );

} else {

    rng<double> U2 = rngGam( m/(double)k, k );

    return U2.value();

}

Normal distribution: N(µ, σ2), σ > 0

It is implemented by class rngNormal.
µ is the mean and σ2 is the variance of the distribution. Density:

f(x) =
1

σ
√

2π
exp

[

−(x− µ)2

2σ2

]

Distribution function: No closed form expression.
Generator:

rng<double> U1 = rngUniform01();

rng<double> U2 = rngUniform01();

// M_PI = pi = 3.1415...

double R = sqrt( -2.0*log( U1.value( ) ) );

double T = 2.0*M_PI*U2.value( );

val[0] = mu + sigma*( R*cos( T ) );

val[1] = mu + sigma*( R*sin( T ) );

return val[0] and val[1];

Truncated Normal distributions: NL(µ, σ2, l), NR(µ, σ2, r), NLR(µ, σ2, l, r), σ >
0

These distributions are similar to the Normal distribution, except that the range of
values they can assume is constrained to the left, to the right or both.

µ is the mean and σ2 is the variance of the distribution. l is the the left truncation
point, and r is the right truncation point.

Let

g(x) =
1

σ
√

2π
exp

[

−(x− µ)2

2σ2

]

−∞ < x <∞

The density function fL for the Left Truncated Normal distribution NL(µ, σ2, l)
is defined as:

fL(x) =











0 if x ≥ l
g(x)

∫ +∞

l
g(x)dx

otherwise

Generator:
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rng<double> U1 = rngNormal(mu, sigmasq);

double result;

do {

    result = U1.value();

} while ( result < l );

return result;

The density function fR for the Right Truncated Normal distribution NR(µ, σ2, r)
is defined as:

fR(x) =











g(x)
∫ r

−∞
g(x)dx

if x ≤ r

0 otherwise

Finally, the density function fLR of the Left and Right Truncated Normal dis-
tribution NLR(µ, σ2, l, r) is defined as:

fLR(x) =







g(x)
∫ r

l
g(x)dx

if l ≤ x ≤ r

0 otherwise

Generator functions are very similar to the one for the Left Truncated Normal
distribution.

Constant distribution: C(µ)

It is implemented by class rngConst.
This distribution always returns the constant value µ, and is trivially imple-

mented.

Bernoulli distribution: BER(p), 0 < p < 1

Probability mass function:

X =

{

1 with probability p

0 with probability 1− p

Generator:

rng<double> U1 = rngUniform01();

return ( U1.value( ) <= p );

Empirical Distribution

This distribution is implemented by class rngDiscEmpirical. Let us consider a set
of probabilities p0, p1, . . . pn−1 such that for each i = 0, . . . n − 1, 0 ≤ pi ≤ 1, and
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∑n−1
i=0 pi = 1. The empirical distribution returns one of the integers [0, 1, . . . n − 1]

with probabilities [p0, p1, . . . pn−1] respectively.

P (X = i) =

{

pi if i = 0, 1, . . . n− 1

0 otherwise

The generator can then be expressed as:

rng<double> U1 = rngUniform01();

const double tmp = U1.value( );

double sum = 0.0;

int i;

// p is the vector of probabilities

for ( i=0; i<(int)p.size( )-1; i++ ) {

    sum += p[i];

    if ( tmp < sum ) break;

}

return (int)i;

Discrete Uniform DISCU(a, b), a < b integers

This generator is implemented by class rngDiscUniform. The probability mass func-
tion is:

P (X = i) =







1

b− a + 1
if i ∈ [a, a + 1, . . . b]

0 otherwise

8.6 Output Data Analysis

Simulation results are typically a sequence of observations of quantities of interest.
For example, let us consider a road traffic simulation. Suppose that the modeler is
interested in computing the mean number of cars crossing a bridge each day. The
simulation produces a sequence of observations X1, X2, . . . Xn corresponding to the
number of cars crossing the bridge on day 1, 2, . . . n. Unfortunately, the estimator
X̂ = 1

n

∑

Xi is in general a biased estimator of the mean X̄. The reason is that the
observations X1, X2, . . . Xn are in general autocorrelated, and thus not statistically
independent. In addition to the autocorrelation problem, the initial conditions of
the simulation must be accurately chosen, since they may effect all the computed
observations.

libcppsim implements a set of classes dealing with collection of statistics. Fig-
ure 8.6 shows the relevant portion of the class diagram.

All types of statistical variables inherit from the var〈Tin, Tout〉 abstract base
class. Class var represents “variables” which can be updated many times by feeding
variables of type Tin, and compute some function from the input data as a result of
type Tout. Each variable has a (not necessarily unique) name, and supports two pure
virtual methods: update() and reset(). These are used to insert a new value and reset
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var

#_name: string
#_numUpdates: int
#_numResets: int

+update(v:T_in)
+reset()
+value(): T_out
+report()

T_in
T_out

confInt

+_lBound: double
+_uBound: double
+_confl: double

statistic

#_confl

+setConfl(c:double): double
+getConfl(): double

T_in:double
T_out:confInt

mean repmean welch

histogramaccum bmeans

trremoval

#_ob: vector<double>

T_in:double
T_out:vector<double>

trremoval_frac

#_frac: double

trremoval_const

#_l: int

rng

T_in:double
T_out

Figure 8.6: libcppsim statistics class diagram

the variable to a known state. The result can be computed by invoking the value()
method. Variables are not stateless; thus, it is possible that successive repeated
invocations of the value() method return different results. This is particularly useful,
as a random stream can be represented as a special kind of variable which can be
updated with the seed of the pseudo-random number generator, and whose value()
method returns the next pseudo-random number from the stream, at the same time
updating the seeds. Class var defines also a pure abstract report() method which
can be used to display a report about the content of the class.

The statistics class represents a base class for a number of predefined statistic
functions. In addition to the methods and attributes defined in its parent class var,
statistics contains an attribute representing the confidence level of the computed
result.

The trremoval class is used to model algorithms dealing with the removal of the
initialization bias from a sequence of observations. Suppose that the simulation run
produces the sequence of observations Y1, Y2, . . . Yn for some parameter of interest.
In general using the whole sequence to compute the statistics is dangerous as there
is a bias associated to artificial or arbitrary initial conditions. One method to
overcome this limitation is to divide the sequence of observations into two phases:
first an initialization phase including observations Y1, Y2, . . . Yd, followed by a data-
collection phase Yd+1, Yd+2 . . . Yn. The parameter d, 0 < d ≪ n is called truncation
point. Classes inheriting from trremoval are used to identify the truncation point d
according to some specific algorithm.
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mean

This class is used to compute a confidence interval for the mean of a sequence of
statistically uncorrelated observations Y1, Y2, . . . Yn. The point estimator Ŷ of the
mean Ȳ , is computed as [17]:

Ȳ =
1

n

n
∑

i=1

Yi (8.1)

The approximate 100(1− α)% confidence interval for Ȳ is computed as

Ȳ − tα/2,fσ(Y ) ≤ E(Y ) ≤ Ȳ + tα/2,fσ(Y ) (8.2)

where tα/2,f is the 100(1 − α/2)% percentage point of a t-distribution with f
degrees of freedom; that is, tα/2,f is defined by P (t ≥ tα/2,f = α/2. Also,

σ2(Y ) =
1

n(n− 1)

n
∑

i=1

(Ȳ − Yi)
2

accum

This class is used to compute a time-weighted sum of observations Y1, Y2, . . . Yn,
n > 1 with timestamps respectively t1, t2, . . . tn. The result is computed as

A =
n−1
∑

i=1

Yi(ti+1 − ti)

repmean

One method of computing the mean of observations Y1, Y2, . . . Yn is called the method
of independent replications. The simulation is repeated a total of R times, each run
using a different random number stream and independently chosen initial condi-
tions. Let Yri be the ith observation within replication r, for i = 1, 2, . . . nr and
r = 1, 2, . . . R. For fixed replication r, Yr1, Yr2, . . . Yrnr

is a possibly autocorrelated
sequence of observations. However, for different replications r 6= s, Yri and Ysj are
statistically independent. We compute the sample mean Ȳr within each replication
r by

Ȳr =
1

nr

nr
∑

i=1

Yri r = 1, 2, . . . R

The R sample means Ȳ1, Ȳ2, . . . Ȳn are statistically independent and identically
distributed. Then, a confidence interval for the mean Ȳ can be computed by Eq. 8.2.
The method reset() is used in class repmean to start a new replication.

Note that this class depends on the trremoval class. This is because a strategy
for removing the initialization bias must be provided when creating an object of
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type repmean. By default a simple strategy consisting of deleting the first 20% of
each replication is employed.

bmeans

The method of batch means divides the output data from one replication (after
deleting an appropriate amount of the initial observations) into a number of batches,
and then treating the means of these batches as if they were independent. Let us
consider the sequence Yd+1, Yd+2, . . . Yn after deleting the first d observations. We
form k batches of size m = (n− d)/k and compute the batch means as:

Ȳj =

jn
∑

i=(j−1)n+1

Yi+d (8.3)

for j = 1, 2, . . . k (we assume k divides n−d evenly). The variance of the sample
mean is estimated by

S2

k
=

1

k

k
∑

j=1

(Ȳj − Ȳ )2

k − 1
=

∑k
j=1 Ȳ 2

j − kȲ 2

k(k − 1)
(8.4)

where Ȳ is the overall sample mean of the data after deletion. The batch means
Ȳ1, Ȳ2, . . . Ȳk, even if not independent, are approximately independent for large batch
sizes. The reader is referred to [16, 17, 60] for guidelines on setting appropriate values
for the batch size k.

Within the class bmeans the user can call the method reset() is used to start a
new replication.

Note that this class depends on the trremoval class. This is because a strategy
for removing the initialization bias must be provided when creating an object of
type bmeans. By default a simple strategy consisting of deleting the first 20% of the
observations is employed.

welch

This class implements the graphical procedure of Welch [99] for identifying the length
of the initial transient period. Let us consider R independent replications, of length
n each: replication r produces the observations Yr1, Yr2, . . . Yrn, where r = 1, 2, . . . R.
First, we compute the average across the repetitions:

Ȳ i =
1

R

R
∑

j=1

Yji i = 1, 2, . . . n (8.5)



112 8. libcppsim: A process-oriented simulation library

Ensemble average are smoothed by plotting a moving average, considering time
window of length w:

Yj(w) =























1

2w + 1

w
∑

m=−w

Ȳj+m w + 1 ≤ j ≤ n− w

1

2j − 1

j−1
∑

m=−j+1

Ȳj+m 1 ≤ j ≤ w

(8.6)

The graph of Yj(w) is less variable as j increases. The truncation point is the
value of j at which the plot definitely stabilizes.

The user should invoke the update() method of this class in order to add a
new observation value for the current replication. The method reset() is used to
terminate the current replication, and start a new one. The plot is produced by
calling the method report(); it produces a file named rep.<histogram_name> which
can be processed by the gnuplot tool [42].

histogram

This class computes an histogram profile from the inserted values Y1, Y2, . . . Yn. The
user supplies an expected lower bound and upper bound for the observed values.
Also, the user specifies the number of cells (bins) in which the histogram will be
divided. Instances of the class histogram do not compute anything using the value()
method. Users are expected to call the report() method to print the informations
concerning an histogram. A sample printout is presented in Fig. 8.7.

The problem of initialization bias

One of the most difficult problems in steady-state simulation output analysis is the
removel of the initialization bias [16]. The problem can be stated as follows. Let I
the set of initial conditions for the simulation model and assume that as n → ∞,
P (Xn ≤ x|I) → P (X ≤ x), where {Xi} is the stochastic process corresponding
to the sequence of observed values from the simulation, and X is the steady-state
random variable. The steady-state mean of the process {Xi} is µ = limn→∞ E(Xn|I).
The problem with the use of the estimator X̄n = 1

n

∑n
i=1 Xi for a finite n is that

E(Xn|I) 6= µ, and thus X(X̄n|I) 6= µ.
As an example, consider the computation of the average waiting time on a simple

M/M/1 queue shown in Fig. 8.8. This is a system made of a single server with an
unlimited buffer (queue) of waiting customers served in FIFO order. The interarrival
time of customers is modeled by an exponentially distributed random variable with
rate τ = 0.09 and service rate ω = 0.1. Fig. 8.8 shows the mean waiting time
computed after averaging 50 independent replications of the simulation experiment,
and after the plot has been smoothed with Welch’ approach, with window size
w = 500. We can see that the first d observations of the mean waiting time, with
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Name / Obs / N / min / max / mean / std.dev

Normal / 50000 / 22 / -4.02 / 4.09 / -0.00 / 1.00

bin/ low.bound/ bin% / cum% / Histogram /count

0/ -INFTY/ 0.00/ 0.00/ /0

1/ -5.00/ 0.00/ 0.00/ /0

2/ -4.50/ 0.00/ 0.00/. /1

3/ -4.00/ 0.01/ 0.01/. /4

4/ -3.50/ 0.07/ 0.08/. /35

5/ -3.00/ 0.52/ 0.60/. /258

6/ -2.50/ 1.74/ 2.34/*** /870

7/ -2.00/ 4.47/ 6.81/******** /2236

8/ -1.50/ 9.19/ 16.00/**************** /4596

9/ -1.00/ 15.05/ 31.05/*************************** /7524

10/ -0.50/ 19.23/ 50.27/***********************************/9613

11/ 0.00/ 18.84/ 69.12/********************************** /9421

12/ 0.50/ 15.13/ 84.24/*************************** /7564

13/ 1.00/ 9.17/ 93.42/**************** /4586

14/ 1.50/ 4.31/ 97.73/******* /2155

15/ 2.00/ 1.66/ 99.39/*** /830

16/ 2.50/ 0.48/ 99.87/. /241

17/ 3.00/ 0.11/ 99.98/. /55

18/ 3.50/ 0.02/100.00/. /9

19/ 4.00/ 0.00/100.00/. /2

All remaining bins are 0

Figure 8.7: Sample histogram printout

d ≈ 1000, are consistently lower than the real waiting time. If those values are
included in the computation of the mean waiting time, the result will be highly
biased and the confidence interval will be larger.

Currently, there is no automatic method for detecting the length of the initializa-
tion bias which can be proven correct in every situation. Different approaches have
been proposed in the literature [101], although their general effectiveness is dubious,
and strongly depends on the specific simulation model to which they are applied.
For that reason, simulation packages usually implement one of the following simple
strategies:

• Removing a prefix consisting of a fixed fraction (eg, 20%) from the sequence
of observations;

• Performing a very long simulation run such that the effect of the initial tran-
sient period can be neglected.
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Figure 8.8: Average waiting time for the first 8000 customers of an M/M/1 queue
from 50 independent replications. Moving averages with window size w = 500 are
plotted

trremoval const

This class represents a very simple strategy for removing the initialization bias.
It basically discards the first d observations from the sequence Y1, Y2, . . . Yn,
where d is specified by the user. The value() method returns the vector of values
Yd+1, Yd+2 . . . Yn, if more than d values have been inserted using the update()
method.

trremoval frac

This class implements the initialization bias removal strategy consisting in removing
a prefix of the sequence of observations Y1, Y2, . . . Yn of length ⌊n×f⌋, with 0 ≤ f ≤
1, and ⌊·⌋ denoting rounding to the nearest lower integer.



9
UML-Ψ Tool Description

In this chapter we describe the UML-Ψ prototype tool which has been built in order
to show how the general approach described in Part II can be applied in practice.

9.1 Introduction

The UML-Ψ tool parses a software model annotated according to the UML profile
described in Chapter 5. The model has to be exported in XMI format [76], which is
an XML-based representation of the UML model. Unfortunately, the XMI notation
described in the standard can be implemented in different (and incompatible) ways
by CASE tool vendors. This constitutes an obstacle to large-scale adoption of XMI
as platform-neutral representation of UML models. UML-Ψ understands the XMI
dialect used by the freely available ArgoUML modeling tool [2], and its commercial
counterpart Poseidon [80]. ArgoUML version 0.12 and Poseidon version 1.4 have
been tested. Note that UML-Ψ is known not to work with Poseidon version 1.6, as
the XMI format it employs is different and incompatible with previous versions.

UML-Ψ builds an internal representation of the UML model; only the portions
of the model which are relevant for the performance evaluation model construction
are considered. At this point the internal UML model representation is used to
build the simulation performance model. The simulation model is based on the one
presented in Fig, 4.4, p. 46.

Once the performance model is set up, UML-Ψ starts the simulation by activating
the simulation processes representing the workloads and the resources. The workload
processes create the requests arriving to the system, which in turn will activate the
corresponding activity diagrams. The simulation stops when one of the following
conditions becomes true first:

• The simulation time reached a user-defined maximum value;

• All the performance measures computed during the simulation converged
within the given confidence interval width.

In Fig. 9.1 we depict the high-level structure of the UML-Ψ model processing
framework. The UML model is created using a CASE tool. At the moment, UML-
Ψ has been tested with the models generated by ArgoUML [2] version 0.12 and its
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Figure 9.1: The UML-Ψ model processing framework

commercial counterpart Poseidon [80], version 1.4. The annotated UML model has
to be exported in XMI format. Due to different implementations of the XMI format
by different tool vendors, it is at the moment not possible to use UML-Ψ with other
CASE tools. In fact the XMI specification [76] did not attempt to create an official
metamodel for UML.

Once the XMI representation of the UML software system has been created, the
UML-Ψ tool parses the XML document and builds an internal simplified represen-
tation of the relevant portions of the UML SA.

From this internal representation, a simulation model is derived. The model is
executed by considering both the parameters specified by the user (tagged values
associated to UML elements), and also by including a configuration file. This con-
figuration file can be an arbitrary fragment of Perl code. After this code has been
parsed, the Perl interpreter environment (modified by every declaration contained
in the configuration file) is used to parse the tagged values. Hence, the configura-
tion file may be used to define Perl variables which are used inside tagged values.
The user may then explore different performance behaviors for different values of
these variables by simply changing the configuration file, without affecting the UML
model.

Finally, the simulation performance model is executed. The computed results are
inserted into the XMI document as tagged values associated with the UML elements
they refer. It is possible to use the CASE tool to reopen the UML model in order
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Figure 9.2: UML-Ψ class diagram, main part

to see the results. The performance modeling cycle may be repeated many times,
until the performance goals have been satisfied.

9.2 UML-Ψ class diagram

A portion of the class diagram for the UML-Ψ tool is given in Fig. 9.2. The diagram
shows on the left part the classes used for representing the UML model which is
reconstructed from the XMI representation provided as input. On the right part,
portion of the classes which are used to build the simulation model can be seen. We
observe the almost direct correspondence between UML elements and simulation
processes. There is a one-to-one mapping between a workload process and the
corresponding UML actor; the simulation model is as a whole associated to the
UML model. Finally, each resource (active or passive) corresponds to a node in
the depoloyment diagram. Simulation actions are associated to action states in
Activity diagrams, and transitions between actions are the simulation counterpart
of transitions between action states.

9.3 UML model representation

The class hierarchy concerning the UML model has its root in the umlObject class.
This class contains the common attributes and basic operations of all UML model
elements. Each UML object can be stereotyped with at most one stereotype, and
may have an arbitrary number of tagged values associated with it. Stereotypes and
tagged values are represented as objects of class umlStereotype and umlTaggedValue
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Figure 9.3: Class diagram for UML-Ψ simulation actions

respectively. A UML model is represented by class umlModel, which contains objects
of class umlActor, umlUseCase and umlNode. They represent actors, use cases and
deployment diagram nodes respectively. A use case is associated with a composite
action which describes its behavior.

The common features of UML actions are represented in class umlActionBase.
This abstract class contains a reference to a list of outgoing transitions
(umlTransition). A transition, in turn, is associated to a source and a target action.
The different kind of actions in UML models are represented by classes inheriting
from umlActionBase. These are: composite actions (umlCompositeAction), simple
actions (umlSimpleAction), pseudo states (umlPseudoState, which correspond to fork
and join nodes, for example) and the final state (umlFinalState).

9.4 Simulation model representation

The structure of the simulation model, whose top portion is reported on the right
side of Fig. 9.2, is similar to that just seen for the UML model representation.
The root class of the hierarchy is simObject (derived from the process class of the
libcppsim library). Simulation actions, workloads and resources are represented by
class simActionBase, simWorkload and simResource respectively, all inheriting from
the base simObject class.

The class hierarchy representing simulation actions is shown in Fig. 9.3. The
class hierarchy follows a pattern similar to that of the corresponding UML model
representation. The root class is simActionBase. Its dynamic behavior (that is, the
body of the inner body() method inherited from the process class) is not specified;
this allows subclasses to implement specific behaviors, according to their type. Sub-
classes are defined to implement atomic actions (simSimpleAction), composite actions
(simCompositeAction), fork and join nodes (simForkAction and simJoinAction respec-
tively), actions dealing with passive resources (simResActionBase), and the special
call action (simCallAction). A call action is needed to overcome a limitation of Ar-
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Figure 9.5: Class diagram for UML-Ψ simulation resources

goUML and Poseidon, which at the moment do not provide functionalities to define
composite actions, even if they are defined in the UML standard. As a workaround,
a composite action is modeled as follows. The user must specify a use case associated
with the content of the composite action. This is necessary as ArgoUML/Poseidon
do not allow users to create an activity diagram without it being used to specify
a class or use case behavior. At this point, a simple (atomic) action is used where
the composite action would have been put. This atomic action is stereotyped as
≪PAcompositeStep≫. A tagged value labeled ActivateUC must contain the name
of the use case to activate when the action is to be executed.

The class diagram representing simulation workloads, depicted in Fig. 9.4, is very
simple; a simWorkload virtual base class is used to represent a generic workload,
whereas specialized simOpenWorkload and simClosedWorkload classes are used to
model open and closed simulation workload processes respectively.

Finally, Fig. 9.5 depicts the class diagram of UML-Ψ processes representing active
and passive resources. The simResource virtual base class is the root of the resource
processes hierarchy. Resources are specialized in active resources, or processors
(simActiveResource) and passive resources (simPassiveResource). Active resources
are specialized again depending on their scheduling policy. Hence, we define a
class representing a simulation process of a processor with FIFO scheduling policy
(simPRHost FIFO), one for the LIFO scheduling policy (simPRHost LIFO) and one
for the Processor Sharing (PS) scheduling policy (simPRHost PS). Adding more
scheduling policies to the simulation engine requires the user to derive a suitable
class from simActiveResource.
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10
The NICE Case Study

10.1 Introduction

In this chapter we apply the performance evaluation approach and the UML-Ψ tool
previously introduced to the NICE case study from [7]. We show how performance
analysis can be performed on early UML models in order to verify if the SA satisfies
its performance requirements set by the system commissioner. This case study is in
part motivated by the fact that it proved to be difficult to handle using analytical
software performance evaluation techniques (in particular, using Process Algebras)
due to the state-space explosion problem [24, 32]. The simulation-based approach
we apply is of course immune to such problem.

Naval Integrated Communication Environment (NICE) is a project developed
by Marconi Selenia. It provides communications for voice, data and video in a
naval communication environment. It also provides remote control and monitoring
in order to detect equipment failures in the transmission/reception radio chain. It
manages the system elements and data distribution services, enables system aided
message preparation, processing, storage, retrieval distribution and purging, and it
implements radio frequency transmission and reception, variable power control and
modulation and communications security techniques. The system involves several
operational consoles that manage the heterogeneous system equipment including the
ATM based Communication Transfer System (CTS) through blind Proxy computers.

On a gross grain the Software Architecture is composed of the NICE Man-
agement subsystem (NICE MS), CTS and EQUIP subsystems, as highlighted in
Fig. 10.1. The WORKSTATION subsystem represents the management entity,
while the PROXY AGENT and the CTS PROXY AGENT subsystems represent
the interface to control the EQUIP and the CTS subsystems, respectively.

Actually, the real configuration of the software system will be composed by one
instance of WORKSTATION subsystem, two instances of CTS PROXY AGENT
subsystem, ten instances of PROXY AGENT subsystem and at least twenty EQUIP
subsystem instances. In general, a PROXY AGENT instance manages at least two
EQUIP instances.

The more critical component is the NICE MS subsystem. It controls both inter-
nal and external communications and it satisfies the following class of requirements:
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Figure 10.1: NICE static software description

fault and damage management, system configuration, security management, traf-
fic accounting and performance management. All these class of requirements must
satisfy some particular performance constraints. For the sake of the presentation,
in this work we focus on two scenarios representing two crucial activities of the
NICE system: Equip Configuration and Recovery activities. The two scenarios are
described in Fig. 10.2. The estimated execution times of the various actions are
exponentially distributed random variables; the mean values were provided by the
system developers and are reported in Fig. 10.3.

10.2 Equip Configuration Scenario

The configuration scenario is activated by an operator when new parameter setting of
one or more equipments is required. The system configuration activity consists in a
set of actions having the aim the reconfiguration of any equipment (see Fig. 10.2(a)).

The performance constraint for this activity, as required by the system develop-
ers, is: ”The equipment configuration has to be performed within 5 seconds (with a
tolerance of 1 second)”.

10.3 Recovery Scenario

The activity of system recovery belongs to the class of Fault and damage man-
agement requirements. This activity reacts to the failure of a remote controlled
equipment. The recovery consists in a set of actions, part of which are executed on
the equipment in fault and the others are executed on the CTS subsystem.
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Figure 10.2: NICE configuration and recovery scenarios

The performance requirement for this activity, as required by the system devel-
opers, is: ”A recovery has to be performed within 5 seconds (with a tolerance of 1
second), when a failure occurs”.

For the sake of the modeling, as shown in Fig. 10.2(b),the WORKSTATION
subsystem is decomposed in three main components: COORDINATOR, P1 and P2
where P1 and P2 are auxiliary components interacting with PROXY AGENT sub-
system and CTS PROXY AGENT subsystem, respectively, while COORDINATOR
represents the control logics of the WORKSTATION subsystem.

When a failure occurs, COORDINATOR actives two parallel executions (a fork
takes place), the one through P1, PROXY AGENT and EQUIP and the other
through P2 and CTS PROXY AGENT. When the recovery procedure is completed,
COORDINATOR receives a notification from P1 and P2 (a join takes place).

10.4 Simulation Modeling

In order to apply the simulation-based modeling technique, it is necessary to trans-
late the sequence diagrams of Fig. 10.2 into activity diagrams. This can be done
easily, resulting in the activity diagrams depicted in Fig. 10.4(a) (which corresponds
to the Configuration scenario of Fig. 10.2(a)) and the activity diagram of Fig. 10.4(b)
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Figure 10.3: Mean execution times

(corresponding to the Recovery scenario of Fig. 10.2(b)).
Note that the system we are simulating is synchronous, meaning that when

an equipment is being configured (resp. repaired), then no other equipment can
be configured (resp. repaired) at the same time, but must wait until the current
corresponding operation has been completed. In order to simulate this behavior it
is necessary to use two passive resources in order to simulate a lock on the scenarios.
When executing a scenario it is first necessary to get the lock; if no configuration
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Figure 10.4: Activity diagram for the Configuration and Activity Scenario. The
Configuration diagram (on the left) has a composite state (“Get and Trap Set”)
whose content is described by the small diagram of Fig. 10.4(a)

(recovery) operation is currently running, then the lock is granted immediately. If
the lock is not available, the configuration (recovery) request is put on a queue. We
compute the mean execution time of the scenarios, including the contention time
spent waiting for another running scenario to complete. The service demand for
each action state was set as in Fig. 10.3.

A simplified representation of the resulting simulation model is given in Fig. 10.5.
Each node represents a simulation process and arrows indicate the process activation
order. This graph shows the correspondence between the activity diagrams and the
simulation processes. The dotted arrows indicate requests or releases of passive
resources, which in our example are denoted as borderless gray boxes labeled as
“Lock Configuration Scenario” and “Lock Recovery Scenario”. As explained above,
these resources are used to guarantee that only a single configuration and recovery



126 10. The NICE Case Study

scenario is executed at the same time.
We simulate the system considering an increasing number N of equipments, for

N = 1 . . . 6. We assume that the time between successive configuration or recovery
operations on the same equipment are exponentially distributed with mean 15s.
Simulation results in terms of average execution times of the Configuration and
Recovery scenarios are shown in Table 10.1, which are also plotted in Fig. 10.6 as a
function of N . The table displays also the total execution time of the simulations
on a Linux/Intel machine running at 900Mhz, with 256MB or RAM.

N Configuration Scenario Recovery Scenario Simulation
Mean Exec.
Time (s)

Requirement
Satisfied?

Mean Exec.
Time (s)

Requirement
Satisfied?

Exec. Time

1 4.02 yes 6.61 no 56s
2 4.68 yes 7.64 no 1m09s
3 5.50 yes 10.26 no 1m37s
4 6.87 no 13.70 no 1m29s
5 8.95 no 17.66 no 2m44s
6 10.94 no 23.97 no 2m51s

Table 10.1: Computed mean execution times for the Configuration and Recovery
scenarios, for different number N of equipments. The rightmost column reports the
execution time of the simulation program
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11
Conclusions

11.1 Contributions of this work

In this work we considered performance evaluation of software systems during the
early development stages. We proposed an approach for quantitative evaluation
of the performances of software systems described at a high level of detail with
annotated UML diagrams. We developed a prototype tool for automatic translation
of the software model into a process-oriented simulation model. The tool executes
the simulation model and inserts performance results into the original UML diagram.

We developed a UML notation based on the UML Performance Profile [75] to
add quantitative, performance-oriented informations to UML use case, activity and
deployment diagrams. Use case diagrams are used to represent workloads driving
the system. Activity diagrams describe the computations which are performed,
including acquiring/releasing passive resources. Finally, deployment diagrams de-
scribe the resources available: they include active resources (processors), and passive
resources. UML is the de-facto standard for specifying and describing software ar-
tifacts; it is widely used and easy to learn and understand. Software performance
evaluation techniques using UML as a specification notation have the advantage of
not requiring users to learn a completely new and often ad-hoc notation.

We defined a process-oriented simulation model for representing the dynamic
behavior of the software system described by the UML diagrams. Choosing a simu-
lation model as the performance model has been motivated by several factors. First,
simulation is a very general modeling technique which allows unconstrained model
representation. Then, the structure of the performance model is very similar to
that of the corresponding UML model. This makes the mapping process between
software and performance models very easy, and thus less error-prone. Moreover,
this has the advantage that it is extremely easy to report performance results back
into the original software model. This is a particularly viable feature, which is not
provided by many software performance evaluation approaches present in the lit-
erature. We defined the simulation (meta)model in Chapter 4, and more detailed
informations are given in Chapter 6. We showed in Chapter 5 how UML elements
can be annotated with quantitative, performance-oriented informations.

We developed a prototype tool, called UML-Ψ, for parsing annotated UML mod-



132 11. Conclusions

els and translating them into the simulation model. UML-Ψ is written in the C++
programming language, and is based on a general-purpose process-oriented simu-
lation library which has been developed. The simulation library can be used to
implement arbitrary simulation models, as it provides Simula-like process schedul-
ing facilities and basic statistical functions for analyzing simulation results. The
UML-Ψ tool parses an XMI description of the UML model, and builds the corre-
sponding simulation model. Model parameters are obtained from the annotations
(stereotypes and tagged values) associated with the UML elements. Tag values can
be given according to a simple syntax; they are evaluated using the Perl interpreter
library, which allows users to include arbitrary Perl expressions. The simulation
model is executed until all the performance measures can be computed with the
requested accuracy, or until the simulation time reaches a user-defined termination
value. Results are associated to the UML elements they refer, so the user can easily
get feedback. The libcppsim library has been described in Chapter 8, and the
UML-Ψ tool in Chapter 9.

It should be noted that, in order to use our approach, the software modeler
only needs to learn the syntax used for specifying the performance annotations, as
described in Chapter 5. No knowledge of performance evaluation techniques are
requested, as the steps of performance model generation, execution and feedback
are done automatically by the UML-Ψ tool.

Moreover, we defined an extension of the performance evaluation approach which
can be applied to modeling and evaluation of mobile systems described in UML. We
use annotated UML activity diagrams to describe how the configuration of the mo-
bile system evolves as the result of location changes; both physical mobility (devices
changing their physical location), and logical mobility (code fragments migrating
from one processor to another) can be represented. Describing the extension of the
performance evaluation approach to mobility modeling was the topic of Chapter 7.

Finally, we presented a simple case study in which an early performance assess-
ment of an integrated naval communication system was performed. The case study
was partly motivated by the fact that it proved to be difficult to handle using Process
Algebra-based performance modeling, due to the state space explosion problem [32].
Simulation does not suffer the state space explosion problem, and we were able to
compute the performance measures with a very limited resource usage on the host
machine. The case study has been described in Chapter 10.

This work is, to the best of our knowledge, the first one applying the ideas
presented in the UML Performance Profile to the derivation of a simulation perfor-
mance model (Petriu and Shen in [77] derive LQN performance models from UML
diagrams annotated according with the profile). We propose some modifications to
the UML profile in order to better adapt it to direct implementation of the perfor-
mance model. We contribute a general-purpose simulation library (libcppsim) and
the prototype performance evaluation tool UML-Ψ. Using the prototype we can
argue that the proposed software performance evaluation approach is sound and
potentially useful in practice. Both the libcppsim library and the UML-Ψ tool can



11.2. Relevant publications 133

be easily extended to add new functionalities due to their modular nature. They
will be released as open source software, so we hope that people will be able to use
them as building blocks for other projects.

Comparison with previous approaches Other existing simulation-based per-
formance modeling approaches to software performance evaluation (some of which
have been described in Sec. 1.2) differ from our proposal as they make use of custom-
defined annotations of UML models and/or custom representations of the UML
model. This is expected, as the UML Performance Profile was not available until
recently. Our aim was to test the effectiveness of what is the proposed standard for
UML-based performance evaluation. In particular, our approach differs from that
of Arief and Speirs [6] in that we use different kind of UML diagrams to describe
the software system; also, we use the standard XMI notation to export the soft-
ware description in XML. With respect to the approach by de Miguel et al. [36],
we do not focus explicitly on real-time applications and constraints modeling; we
considered a more generic performance evaluation framework, which however could
be specialized with minimum effort to real-time applications (the UML Performance
Profile [75] alreay defines a sub-profile for real-time modeling). Finally, with respect
to the approach proposed by Hennig [49], our proposal is fully based on simula-
tion rather than emulation of the system behavior. We do not generate synthetic
components emulating the behavior of real components, but instead built a whole
simulated system. Both approaches have their merits: building a simulation model
of the whole system does not require the software architect to develop a “skeleton”
application on which emulated components must be plugged, and thus simplifies the
performance evaluation steps. On the other hand, using a partly developed system
on which (emulated) parts can be changed may yield more accurate performance
results.

11.2 Relevant publications

The work described in this thesis has been the subject of some publications, which
we now list in chronological order.

In [8] we discussed the problems behind simulation-based performance evalua-
tion of software systems. In [12] we illustrated the basic ideas behind the approach
proposed here. The use of use case and activity diagrams for performance evalua-
tion purposes was introduced, along with the simulation-based performance model
and an early prototype of the UML-Ψ tool. In [10, 11] deployment diagrams were
introduced for representing active resources, and the approach was extended accord-
ingly. The integrated approach for mobility and performance evaluation modeling
was introduced in [13]; finally, in [7] the Naval Integrated Communication Envi-
ronment (NICE) case study was presented, together with a new extension of the
performance model including passive resources.
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11.3 Open Problems

The work presented in this thesis can be extended in several directions. We propose
here some considerations on possible future extensions of the approach previously
described.

UML-related improvements Currently we do not use all types of UML dia-
grams which are defined. While the subset we consider proved to be expressive
enough to represent many real-world situations, different users may be more com-
fortable with different kind of diagrams for expressing the same things. Thus, the
UML profile could be extended to include more types of UML diagrams. In partic-
ular, it would be very useful to include sequence diagrams and state charts in the
performance modeling approach. Sequence diagrams provide a different way to ex-
press computations with respect to activity diagrams. However, sequence diagrams
make communications between elements explicit, while in activity diagrams com-
munication is modeled as an action requesting service to a network resource. State
chart diagrams are defined in the UML standard as a superset of activity diagrams.
However, state charts put more emphasis on the notion of “event”, while activity
diagrams put more emphasis on the notion of “activity” taking some amount of time
to complete before starting the next one. The simulation model should be easy to
expand to include these different views of the system.

Simulation-related improvements Other possible improvements may be re-
lated to the performance indices which are currently computed by the UML-Ψ tool.
At the moment, only a limited set of measures is computed; more performance in-
dices (for example quantiles or distributions) would certainly be useful. The UML
performance profile already defines some of them, so it is just a matter of extending
our simulator. The libcppsim library can also be extended both by providing a
richer set of statistical data analysis functions, and by providing some more high-
level simulation entities on top of the simulation process abstraction in order to
facilitate the modeling process. Useful simulation entities may include condition
variables, resources, more advanced communication primitives (such as the mail-
boxes provided by CSIM [89]). Some ideas may be derived from the excellent DE-
MOS package [26], originally written for the Simula language, which has already
inspired the development of the libcppsim library.

Further improvements It would be extremely useful to integrate the proposed
approach into a general framework consisting of different environments for software
systems specification and automated evaluation and prediction of quantitative and
qualitative characteristics of the system. Currently the UML-Ψ tool can be used as a
stand-alone method for performance evaluation of UML specifications. However, our
approach may also be considered part of an integrated software development plat-
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form allowing users to specify a software system using different notations (including
UML), and providing different kind of analysis to be performed on the system: re-
liability analysis, performance analysis with possibly different approaches, security
analysis, and others.

Overall, the proposed simulation-based approach to software performance mod-
eling demonstrated that UML can be used also for quantitative software analysis.
The next logical step would be to develop another UML profile for evaluating other
quantitative characteristics of the software, such as reliability. Hopefully, the UML-
Ψ tool could be extended to include different modules able to perform different kind
of analysis on the same SA.
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