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Abstract	
We	have	developed	Simula/on-based	Reconstructed	Diffusion	(SbRD)	to	determine	diffusion	coefficients	
corrected	for	confinement	effects	and	for	the	bias	 introduced	by	two-dimensional	models	describing	a	
three-dimensional	mo#on.	We	 validate	 the	method	 on	 simulated	 diffusion	 data	 in	 three-dimensional	
cell-shaped	 compartments.	 We	 use	 SbRD,	 combined	 with	 a	 new	 cell	 detec9on	 method,	 to	 infer	 the	
diffusion	coefficients	of	a	set	of	na/ve	proteins	in	Escherichia	coli.	We	observe	slower	diffusion	at	the	cell	
poles	 than	 in	 the	 nucleoid	 region	 of	 exponen3ally	 growing	 cells.	 We	 find	 that	 this	 observa3on	 is	
independent	 of	 the	 presence	 of	 polysomes.	 Furthermore,	 we	 show	 that	 the	 newly	 formed	 pole	 of	
dividing	cells	exhibits	a	faster	diffusion	than	the	old	one.	We	hypothesize	that	the	observed	slowdown	at	
the	cell	poles	 is	caused	by	the	accumula1on	of	aggregated	or	damaged	proteins,	and	that	the	effect	 is	
asymmetric	due	to	cell	aging.	

	

Introduction	
Diffusion	 of	molecules	 inside	 cells	 plays	 a	 crucial	 role	 in	 the	 func1oning	 of	 biochemical	 processes.	 In	
prokaryo'c	 cells,	 which	 lack	 membrane-bound	 compartments,	 except	 for	 the	 periplasm	 in	 Gram-
nega%ve	 bacteria,	 the	 majority	 of	 cellular	 processes	 take	 place	 in	 the	 cytoplasm.	 Here,	 the	 random	
mo#on	 of	 (macro)molecules	 allows	 for	 the	 func#oning	 of	 highly	 sophis#cated	 systems,	 such	 as	 the	
correct	localiza+on	of	the	septa+on	ring	in	Escherichia	coli,	governed	by	a	reac.on-diffusion	mechanism	
1,	 the	 signal	 transduc"on	 that	 leads	 to	 chemotaxis	 2,	 or	 the	 transla,on	 of	 mRNA	 into	 proteins	 by	
polysomes,	ribosomes-mRNA	assemblies,	mostly	localized	at	the	cell	poles	3–6.	

The	 cytoplasm	 of	 bacteria	 is	 an	 extremely	 crowded	 environment,	 where	 the	 concentra7on	 of	
macromolecules,	 mainly	 proteins	 and	 RNAs,	 can	 reach	 values	 up	 to	 a	 volume	 frac8on	 of	 15-20%	 in	
growing	 cells	 7–9	and	 even	 higher	 in	 osmo(cally	 stressed	 cells	 10–13.	 The	molecular	 composi0on	 of	 the	
cytoplasm	is	highly	diverse,	with	molecules	spanning	in	size	over	more	than	three	orders	of	magnitudes,	
from	 sub-nanometric	 for	 ions	 and	metabolites,	 to	micrometric	 for	 the	 chromosome	 14,15.	 Despite	 this	
varia%on	 in	 size	 and	 surface	 proper%es	 of	 the	 molecules,	 many	 cellular	 components	 are	 uniformly	
distributed	throughout	the	cell	5,16,17,	with	notable	excep0ons	like	the	chromosome	and	nucleoid-binding	
proteins	(localized	in	the	cell	center	4,18),	the	polysomes	(localized	at	the	poles	and	cytoplasmic	periphery	
3,4,6),	and	aggregated	or	misfolded	proteins	(localized	at	the	cell	poles	19–21)	(Fig.	1).	In	addi-on,	there	is	
increasing	evidence	for	the	forma1on	of	phase-separated	liquid	droplets	or	biomolecular	condensates	in	
the	cytoplasm	of	microorganisms	22–24,	which	are	metastable	structures	where	certain	proteins	par33on.	

Diffusion	of	spherical	par1cles	in	aqueous	solu1ons	can	be	described	by	the	Einstein-Stokes	equa#on	25.	
However,	mo*on	of	par*cles	in	the	highly	crowded	and	inhomogeneous	cytoplasm	of	bacterial	cells	has	
been	extensively	documented	to	deviate	from	the	aforemen5oned	model	16,17,26,27.	We	have	shown	that	
the	 apparent	 diffusion	 is	 solely	 dependent	 on	 the	 complex	mass,	 that	 is	 the	molecular	weight	 of	 the	
monomer,	summed	with	the	molecular	weight	of	the	fluorescent	reporter,	mul6plied	by	the	oligomeric	
state	of	the	analyzed	molecules	16	(Fig.	1).	The	same	conclusion	was	recently	obtained	in	another	study,	
using	a	different	method	 17.	Apparent	diffusion	of	proteins	 interac2ng	with	 large	 cellular	 components,	
such	as	the	cell	membrane,	the	nucleoid,	the	ribosome	or	the	proteasome	complex,	depends	on	the	sum	
of	both	the	interac-ng	masses	and	on	the	interac-on	strength	(dissocia-on	constant,	KD)	of	the	species	
17,28.	The	devia*on	from	the	Einstein-Stokes	equa+on	indicates	that	diffusion	in	cells	depends	not	only	on	
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the	size	of	the	analyzed	molecules,	but	also	on	the	composi5on	and	physical	state	of	the	cytoplasm.	This,	
in	turn,	 is	dependent	of	e.g.	(fluidiza4on	by)	metabolism	29,30,	catalysis-induced	enzyme	movement	31,32	
and	 environmental	 stresses	 11,33.	 The	 devia*on	 from	 Stokes-Einstein	 can	 be	 explained	 by	 taking	 into	
account	 both	 the	 solvent	 quality	 of	 the	 cytoplasm	 and	 the	 size	 of	 the	 diffusing	 species.	 The	
macromolecular	crowding	experienced	by	each	protein	 is	dependent	of	 its	own	molecular	weight,	that	
is,	 smaller	molecules	will	 be	 less	 affected	 by	 the	 crowded	 cytoplasmic	 environment	 than	 bigger	 ones	
16,17,26,27,34	(Fig.	1).	We	have	shown	that	this	so-called	perceived	macromolecular	viscosity	is	not	spa2ally	
uniform	in	the	cell	16.	

Despite	 the	 advancements	 made	 in	 the	 field	 of	 single	 molecule	 fluorescence	 microscopy	 16,17,35–39,	
diffusion	 measurements	 are	 s.ll	 highly	 influenced	 by	 the	 effect	 of	 confinement,	 especially	 in	 small	
compartments	such	as	the	bacterial	cytoplasm	16	and	periplasm	40,41,	and	eukaryo,c	organelles	42.	Here,	
diffusion	coefficients	near	the	cell	boundaries	always	appear	lower	than	in	the	cell	center	16,38.	This	does	
not	 allow	 to	 properly	 separate	 the	 effect	 of	 confinement	 from	 possible	 physiological	 slowdown	 in	
diffusion	of	the	analyzed	species	16	(Fig.	1).	Moreover,	techniques	such	as	Single	Par:cle	Tracking	(SPT)	
and	 Single	 Molecule	 displacement	 Mapping	 (SMdM)	 produce	 a	 two-dimensional	 output	 of	 a	 three-
dimensional	mo+on,	which	 leads	to	obvious	shortcomings	 in	the	es+ma+on	of	diffusion	coefficients	of	
par$cles	freely	moving	in	the	cell	cytoplasm.	

Some	methods	 to	 resolve	 confined	diffusion	have	been	developed.	Bickel	 43	proposed	a	mathema,cal	
method	 to	 obtain	 the	 mean	 square	 displacement	 in	 disks	 and	 sphere	 for	 par5cles.	 Bello8o	 et	 al.	 17	
derived	 a	 Ornstein-Uhlenbeck	 model	 for	 fi0ng	 Fluorescence	 Correla7on	 Spectroscopy	 (FCS)	 data	
acquired	in	a	confined	cylinder	of	infinite	length,	but	not	considering	the	effect	of	the	cell	poles,	which	
represent	the	zones	where	the	confinement	affects	the	observed	diffusion	the	most	16.	

A	detailed	analysis	of	the	diffusion	of	macromolecules	in	the	cell	poles	is	paramount	to	understand	the	
effects	of	aging	in	rod	shaped	cells.	A	study	that	followed	repeated	divisions	of	E.	coli	suggests	that	cells	
that	 inherit	 the	 old	 pole	 exhibit	 a	 diminished	 growth	 rate,	 decreased	 offspring	 produc7on,	 and	 an	
increased	incidence	of	death	44.	Asymmetry	in	the	doubling	3me	of	old	and	new	pole	daughter	cells	has	
also	been	observed	in	a	more	recent	study	in	E.	coli	45.	The	underlying	mechanisms	of	aging	of	bacteria	
are	at	best	poorly	understood.	
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Fig.	1.	Diffusion	in	the	cytoplasm	of	E.	coli.	A	diffusion	map	obtained	with	SMdM	is	overlayed	with	a	schema9c	
of	 the	 cytoplasm	of	 the	 cell.	 The	 top	panel	 highlights	 the	effect	of	 confinement	on	 the	measured	diffusion,	
which	 leads	to	 lower	diffusion	coefficients	near	the	boundaries	of	 the	cell.	The	bo"om	panel	 represents	the	
effect	 of	 the	 perceived	 viscosity	 by	 diffusing	 proteins.	 Since	 diffusion	 scales	with	 the	 complex	mass,	 bigger	
par$cles	will	be	affected	more	by	the	crowding	of	the	cytoplasm	than	smaller	molecules	and	move	rela$vely	
more	slowly,	leading	to	the	devia.on	from	the	Einstein-Stokes	equa+on.	The	le1	panel	represents	our	current	
hypothesis	 on	 the	 observed	 slowdown	 at	 the	 cell	 poles	 compared	 to	 the	 cell	 center,	 with	 accumula6on	 of	
aggregated	or	misfolded	proteins	impairing	the	diffusion	in	these	regions.	

In	this	study,	we	set	out	to	solve	the	shortcomings	of	previous	methods	for	analyzing	confined	diffusion	
in	small	compartments,	and	we	apply	the	new	tools	to	inves4gate	the	rela4onship	between	diffusion	in	
the	cell	pole	regions	and	aging.	We	developed	a	method	to	determine	diffusion	coefficients	that	are	not	
affected	by	the	effect	of	confinement	or	mo1on	along	the	third	dimension.	We	developed	the	technique	
to	unveil	novel	proper,es	of	diffusion	 in	small	compartments	and	we	demonstrate	 its	validity	 in	E.	coli	
cells.	We	first	 inves.gate	a	mathema.cal	approach,	 followed	by	a	simula.on-based	analysis,	which	we	
named	 Simula+on-based	 Reconstructed	 Diffusion	 (SbRD).	 We	 highlight	 the	 limita:on	 of	 using	
mathema&cal	models	 to	 solve	 the	problem	of	confinement,	and	 the	advantages	of	a	 simula7on-based	
approach.	We	use	the	method,	in	combina4on	with	a	new	cell	detec4on	tool,	to	re-analyze	a	previously	
acquired	dataset	16	and	obtain	confinement-corrected	values	for	the	diffusion	of	molecules	in	the	E.	coli	
cytoplasm.	Further,	we	inves6gate	diffusion	near	the	cell	boundaries	and	at	the	cell	poles	to	determine	
how	much	confinement	influences	the	slowdown	in	these	regions.	We	test	the	effect	of	an8bio8cs	that	
disrupt	the	polysome	structure	in	the	apparent	slowdown	of	diffusion	at	the	cell	poles.	Finally,	we	make	
observa(ons	about	asymmetry	in	diffusion	in	the	bacterial	cell,	which	we	associate	with	aging.	
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Results	

A mathematical  solution to the l imitations of confined diffusion 

We	 previously	 showed	 through	 simula4ons	 that	 the	measured	 diffusion	 coefficient	 is	 underes4mated	
when	par)cles	move	by	random	mo)on	in	a	confined	environment.	The	devia)on	from	the	real	diffusion	
coefficient	dras-cally	 increases	when	 the	diffusion	 coefficient	 gets	higher,	 and	 the	analyzed	molecules	
are	in	a	region	closer	to	the	boundary	of	the	confinement	16	(Fig.	2A).		

We	now	developed	a	mathema/cal	model	to	solve	this	limita/on.	The	simplest	approach	to	modeling	of	
diffusion	is	through	Ficks	laws,	which	in	his	second	law	led	to	the	so-called	diffusion	equa.on	(Eq.	1)	

	

𝜕𝜌 𝑥, 𝑡
𝜕𝑡

= 𝐷∆𝜌 𝑥, 𝑡       𝐸𝑞. 1 	

	

In	 the	context	of	 random	mo/on,	 say	a	 random	walk	of	a	par/cle,	ρ	denotes	a	probability	density	 (or	

distribu(on)	and	𝑃 𝑅 =  𝜌 d𝑥! 	would	be	the	probability	of	finding	the	par4cle	within	a	region	R.	

Here	 we	 solve	 analy-cally	 the	 one-dimensional	 diffusion	 equa.on	 with	 reflec.ng	 boundaries.	 For	
simplicity,	 we	 interpret	 ρ(x,	 t)	 as	 the	 probability	 density	 for	 finding	 a	 par3cle	 at	posi%on	 x	 at	 $me	 t.	
Assuming	 that	at	 t	=	0	 the	par(cle	 is	 located	at	x	=	0,	 and	 that	 the	probability	density	ρ(x,	 t)	=	0	as	x	
approaches	infinite	for	any	finite	0me,	a	solu0on	to	equa0on	1	is	then	given	by	equa0on	2:	

	

𝜌 𝑥, 𝑡 =
1
4𝜋𝐷𝑡

exp −
𝑥!

4𝐷𝑡       𝐸𝑞. 2 	

	

In	a	heuris+c	way,	equa+on	2	provides	a	measure	of	the	likelihood	of	finding	a	par+cle	at	posi+on	x	a"er	
!me	t	provided	that	the	medium	where	it	moves	is	infinite.	

Let	us	now	consider	the	diffusion	of	a	par3cle	within	a	bounded	domain,	for	simplicity	from	–	L/2	to	+	
L/2,	where	L	is	the	length	of	the	domain.	We	assume	that	the	par-cle	is	located	at	x	=	0	at	t	=	0,	and	that	
it	 is	 reflected	back	to	the	 interior	of	 the	 interval	once	 it	 reaches	the	boundary	 (Fig.	2B).	The	analy=cal	
solu%on	for	this	case	is	(see	Supplementary	Informa5on	–	Diffusion	on	a	closed	interval):	

	

𝜌! 𝑥, 𝑡 =
1
𝐿 +

2
𝐿 cos

2𝜋𝑛𝑥
𝐿 exp −

4𝜋!𝑛!𝐷𝑡
𝐿!

!

!!!

      𝐸𝑞. 3 	

	

Relying	 on	 an	 analy+cal	 solu+on	 of	 the	 diffusion	 equa+on	 in	 higher	 dimensions	 and	 for	 complicated	
geometries	 is	 not	 convenient.	 Equa1on	 2	 is	 valid	 for	 diffusion	 in	 unbounded	 domains.	 We	 can	
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approximate	 the	 solu/on	 of	 equa/on	 3	 using	 a	 “folding	 approach”,	 by	 accoun/ng	 for	 the	 bounces	 a	
par$cle	makes	when	hi0ng	the	boundaries,	assuming	no	loss	of	energy	in	the	process,	and	adding	them	
up	(Fig.	2C).	

In	this	way,	an	approxima1on	of	equa1on	3	is	given	by	equa1on	4:	

	

𝜌 𝑥, 𝑡 = 𝜌 𝑥, 𝑡 + 𝜌 𝐿 − 𝑥, 𝑡 + 𝜌 𝐿 + 𝑥, 𝑡 + 𝜌 2𝐿 − 𝑥, 𝑡 + 𝜌 2𝐿 + 𝑥, 𝑡 +⋯               𝐸𝑞. 4 	

	

where	the	term	ρ(kL	–	x)	+	ρ(kL	+	x)	corresponds	to	the	density	for	the	par/cle	being	at	x	at	$me	t	a"er	k	
bounces.	When	subs,tu,ng	equa,on	2	in	equa,on	4	we	get:	

	

𝜌 𝑥, 𝑡 =
1
4𝜋𝐷𝑡

exp −
𝑥!

4𝐷𝑡
+ exp −

𝑘𝐿 − 𝑥 !

4𝐷𝑡
+ exp −

𝑘𝐿 + 𝑥 !

4𝐷𝑡

!

!!!

         𝐸𝑞. 5 	

	

where	N	denotes	the	maximum	number	of	bounces	(Fig.	2C).	

One	 can	 take	 a	 similar	 approach	 in	 higher	 dimensions.	 For	 example,	 let	 us	 consider	 the	 diffusion	
equa%on	in	a	rectangular	plate	of	sides	A	(horizontal)	and	B	(ver%cal),	and	let	us	assume	that	the	mo%on	
of	 the	par)cle	on	each	coordinate	 (x,	y)	 is	 independent	of	each	other.	Then,	the	analy4cal	solu4on	for	
the	diffusion	equa.on	is:	

	

𝜌 𝑥, 𝑦, 𝑡 =  𝜌! 𝑥, 𝑡 𝜌! 𝑥, 𝑡          𝐸𝑞. 6 	

	

where	ρA	and	ρB	are	as	in	equa*on	3.	

We	can	however	take	another	approach,	as	we	did	for	the	interval	in	one	dimension	(equa4on	4,	5).	We	
denote	by	p(t)	=	(x(t),	y(t))	the	posi)on	of	a	par)cle	in	the	rectangular	plate	at	)me	t.	As	above,	we	can	
compute	 the	 density	 ρ(x,	 y,	 t)	 by	 adding	 up	 all	 the	 densi0es	 corresponding	 to	 trajectories	 in	 the	
rectangular	 plate	 that	 take	 the	 par.cle	 from	 the	 ini.al	 posi.on	 p0	 to	 some	 final	 posi-on	 pf	 a"er	 a	
number	 of	 bounces	 (Supplementary	 fig.	 1A,	 1B).	What	we	 describe	 is	 an	 example	 of	 a	mathemaAcal	
billiard.	

To	use	these	ideas	to	es,mate	the	diffusion	coefficient	inside	a	cell,	we	approximate	the	geometry	of	the	
cell	by	a	planar	sphero-cylinder,	also	known	as	a	Bunimovich	stadium	(Fig.	2D).	In	this	se>ng,	0-bounce	
and	1-bounce	trajectories	can	be	easily	computed.	Densi5es	corresponding	to	trajectories	that	bounce	
on	the	straight	 (top	and	bo0om)	sides	of	 the	sphero-cylinder	are	computed	as	aforemen2oned.	Those	
corresponding	to	bounces	on	the	circular	sides	can	be	computed	by	solving	the	system	of	equa7ons:	
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𝐴!𝑥! + 𝐵!𝑦!
𝐴!! + 𝐵!!

=
𝐴!𝑥! + 𝐵!𝑦!

𝐴!! + 𝐵!!
  

𝑥!! + 𝑦!! = 𝑅! 

     𝐸𝑞. 7	

	

where	A0	=	yc	–	y0,	B0	=	xc	–	x0,	Af	=	yc	–	yf,	Bf	=	xc	–	xf,	and	(x0,	y0),	(xc,	yc),	(xf,	yf)	represent	the	star*ng	
point,	a	bouncing	point	on	the	circular	sec2on	of	the	cell	boundary	and	the	end	point,	respec2vely	(Fig.	
2D).	

Since	 equa*on	 7	 cannot	 be	 solved	 analy*cally,	we	 developed	 a	 script	 (see	 Supplementary	Material	–	
algorithm	1)	to	compute	the	0-bounce	and	1-bounce	trajectories	of	any	diffusing	par4cle,	provided	that	
the	start	and	end	posi-ons	are	known.	We	then	used	this	algorithm	to	calculate	the	diffusion	coefficient	
of	 two-dimensional	 diffusion	 simula-ons	 in	 a	 billiard,	 generated	with	 Smoldyn	 46	 (Fig.	 2E).	 Smoldyn	
allows	simula*on	of	the	mo*on	of	par*cles	using	a	predefined	diffusion	coefficient	and	*me	resolu*on,	
within	a	simula,on	compartment.	With	our	mathema,cal	model	we	obtain	a	final	diffusion	coefficient	
for	every	pixel	that	is	a	good	approxima3on	of	the	input	diffusion	coefficient	used	for	the	simula3ons.	
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Fig.	2.	Mathema)cal	 solu)on	 to	 confinement.	 (A)	 Effect	 of	 confinement	 on	 diffusion.	Diffusion	 simula5ons	
performed	 in	 a	 billiard	 at	 different	 input	 diffusion	 coefficients.	 The	 posi5on	 of	 the	 par5cles	 was	measured	
every	 1.5	 ms.	 The	 higher	 the	 diffusion	 coefficient	 used	 for	 the	 simula:on,	 the	 more	 pronounced	 the	
confinement	effect	is.	(B).	Sketch	of	the	(random)	mo2on	of	a	par%cle	in	a	1	dimensional	closed	interval.	The	
point	 x0	 stands	 for	 the	 ini-al	 posi-on	 of	 the	 par-cle	 at	 t	 =	 0.	 The	 point	 x(t)	 represents	 the	 posi-on	 of	 the	
par$cle	 at	 $me	 t	 >	 0.	 In	 this	 scenario,	 and	 for	 fixed	 t	 >	 0,	 there	 are	 several	 possibili$es	 for	 measuring	 a	
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par$cle’s	 posi$on	 at	 x(t).	 The	 first	 scenario	 is	 that	 the	 par$cle	 travels	 to	 its	 measured	 posi$on	 without	
bouncing.	 Another	 scenario	 is	 that	 the	 par2cle	 arrives	 at	 its	 measured	 posi2on	 a7er	 bouncing	 (on	 the	
boundaries)	 once.	 In	 this	way,	 there	 are	 infinitely	many	ways	 in	which	 the	 par2cle	 can	 reach	 its	measured	
posi%on,	 depending	on	 the	number	of	 bounces	 the	par%cle	made.	However,	 the	probability	 of	 each	 case	 is	
inversely	propor,onal	to	the	total	distance	traveled.	In	B	we	show	the	distances	traveled	for	0	and	1	bounce	
(against	each	boundary).	 (C)	Solu'ons	of	the	diffusion	equa'on	on	a	bounded	interval	with	 length	L	=	2	μm,	
diffusion	 coefficient	 D	 =	 2	 μm2/s,	 and	 (me	 t	 =	 {0.05,	 0.1,	 0.5}	 seconds,	 shown	 in	 blue,	 red,	 and	 purple	
respec&vely.	The	solid	lines	correspond	to	the	analy&cal	solu&on	(Eq.	3),	while	the	dashed	curves	correspond	
to	 (Eq.	5).	 From	top	 to	bo/om	we	show	comparisons	 for	0,	1,	and	2	bounces.	No@ce	 that	 for	 this	example,	
accoun&ng	for	two	bounces	already	gives	a	sufficiently	good	approxima5on	of	the	analy5cal	solu5on	(bo:om	
panel).	(D)	A	few	trajectories	of	a	billiard	in	the	Bunimovich	stadium.	We	show	one	0-bounce	(solid	line)	and	
four	1-bounce	billiard	trajectories	(dashed	lines).	The	bouncing	points	(xc

1,	yc
1)	and	(xc

2,	yc
2)	are	solu)ons	of	the	

system	 of	 equa,ons	 shown	 under	 (7).	 (E)	 Diffusion	 maps	 of	 a	 billiard	 obtained	 by	 analyzing	 a	 Smoldyn	
simula'on	created	with	an	input	diffusion	coefficient	of	20	µm2/s,	with	par,cles’	posi,on	measured	every	1.5	
ms.	Maps	are	obtained	via	SMdM	analysis	(le5)	and	via	mathema8cal	method	analysis	(right).	

	

Limitations of a mathematical  approach 

Applying	 the	mathema.cal	 approach	 to	 solve	 the	 diffusion	 equa.on	 near	 the	 boundaries	 in	 confined	
environments	has	three	shortcomings.	(i)	The	approxima4on	(equa4on	5)	is	valid	for	the	given	boundary	
condi&ons,	 but	 not	 for	 e.g.	 non-con$nuous,	 non-convex	 surfaces.	 An	 example	 of	 a	 surface	where	 our	
model	would	have	failed	 is	the	Penrose	unilluminable	room	 47	(Fig.	3A),	or	the	matrix	of	mitochondria.	
Some	regions	of	these	surfaces	are	inaccessible	by	rays	that	start	from	par5cular	loca"ons,	regardless	of	
the	number	of	bounces.	However,	for	a	par5cle	freely	diffusing	in	any	compartment,	it	would	be	possible	
to	reach	any	loca,on,	leading	to	the	emergence	of	star,ng	and	final	points	that	cannot	be	connected	by	
reflec%ng	 rays.	 (ii)	 The	 model	 cannot	 be	 extended	 from	 the	 two-dimensional	 billiard	 to	 the	 three-
dimensional	spherocylinder.	Given	a	start	and	end	point	in	two	dimensions,	it	is	always	possible	to	find	a	
reflec%on	point	on	a	circle;	on	the	other	hand,	given	a	start	and	an	end	point	in	three	dimensions,	there	
will	be	an	infinite	number	of	reflec2on	points	on	a	sphere.	Therefore	our	model	implies	that	the	mo2on	
of	par'cles	only	occurs	in	two	dimensions	(x,y	coordinates	of	the	diffusing	par2cles),	while	in	reality	(in	
cells)	 par"cles	 also	 diffuse	 along	 the	 z-axis.	 When	 simula.ng	 diffusion	 in	 a	 three-dimensional	
spherocylinder	 and	 analyzing	 it	 with	 our	 mathema5cal	 model	 (equa5on	 5),	 we	 observed	 an	
underes'ma'on	 of	 the	 diffusion	 coefficient	 throughout	most	 of	 the	 cell,	 and	 an	 overes)ma)on	 of	 it	
close	to	the	boundary	(Fig.	3C).	The	underes9ma9on	is	due	to	the	mo9on	along	the	z-axis,	which	is	not	
accounted	for	in	our	model,	leading	to	a	measured	step	length	shorter	than	the	actual	one	(Fig.	3B,	le9).	
The	overes)ma)on	is	 likely	due	to	par/cles	bouncing	against	the	boundary	at	z	coordinates	where	the	
spherocylinder	(x,y)	sec&on	has	a	smaller	perimeter	(Fig.	3B,	right).	(iii)	Finally,	when	approxima&ng	the	
solu%on	in	a	bounded	domain	one	must	compute	all	trajectories	that	lead	from	the	ini.al	posi.on	p0	to	
the	 final	 posi-on	 pf	 a"er	 0,	 1,	 2,	 .	 .	 .,	 N	 bounces.	 Compu-ng	 all	 these	 trajectories	 analy-cally	 is	
cumbersome,	and	therefore	we	limited	our	analysis	to	the	1-bounce	case.	This	can	be	limi0ng	in	the	case	
of	fast	diffusion	in	small	compartments:	when	the	square	root	of	the	mean	square	displacement	is	much	
higher	 than	 the	 size	 of	 the	 compartment,	 or	when	 the	 acquisi5on	 5me	 is	 very	 long,	 a	 par5cle	 could	
bounce	against	the	surface	mul2ple	2mes	over	the	acquisi2on	period.	
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Despite	these	caveats,	we	have	shown	and	verified	that	the	proposed	``folding	approach’’	is	reasonable	
and,	in	fact,	the	shortcoming	iden1fied	above	are	merely	computa1onal:	(i)	Complicated	geometries	can	
be	 approximated	 by	 the	 union	 of	 convex	 sets,	 similar	 to	 a	 triangula0on	 of	 smooth	 objects.	 For	 each	
convex	set	one	can	poten,ally	tune	and	adapt	our	``folding’’	approach.	(ii)	In	three	dimensions	one	can	
extend	 the	 descrip-on	 for	 the	 rectangular	 plane	 to	 diffusion	 in	 cubes.	 	 Consequently,	 if	 the	 three	
dimensional	 confined	 geometry	 can	 be	 approximated	 by	 triangulated	 cubes,	 one	 can	 s6ll	 apply	 our	
``folding’’	argument.	(iii)	Analy6c	computa6on	of	trajectories	is	computa6onally	expensive.	However,	we	
have	shown	that	based	on	a	 few	bounces,	the	es&ma&on	of	 the	diffusion	coefficient	already	 improves	
significantly.	If	one	pairs	this	with	an	approxima7on	of	complicated	geometries	by	simpler	ones,	one	can	
s"ll	make	sufficiently	good	approxima"ons.	

	

Fig.	3.	Limita&on	of	the	mathema&cal	model	for	confined	diffusion.	 (A)	Schema)c	of	Penrose	unilluminable	
room.	 A	 ray	 (vector)	 star0ng	 from	 the	 center	 of	 the	 room	 can	 never	 reach	 the	 regions	 colored	 in	 yellow,	
regardless	of	the	number	of	bounces	against	the	perimeter.	A	par+cle	moving	by	random	mo+on	(dashed	line)	
can	reach	any	region	in	the	room.	(B)	Limita(ons	of	using	a	2D	model	to	describe	a	3D	mo(on.	Le9	panel:	the	
mo#on	 of	 a	 par#cle	 moving	 in	 3D	 space	 (blue	 arrow)	 is	 projected	 on	 a	 2D	 surface	 (orange	 arrow).	 The	
observed	distance	is	shorter	than	the	actual	travelled	distance,	leading	to	an	underes3ma3on	of	the	diffusion	
coefficient.	Right	panel:	the	effect	of	the	overes6ma6on	of	the	billiard	perimeter.	By	observing	the	projec6on	
of	a	3D	spherocylinder	in	2D,	we	use	as	billiard’s	perimeter	its	largest	xy	projec'on.	The	bouncing	of	par'cles	
will	 likely	 occur	 against	 a	 different	 sec3on	 of	 the	 spherocylinder,	where	 the	 circumference	 of	 the	 billiard	 is	
smaller,	when	displacements	are	binned	in	a	pixel	close	to	the	boundaries,	assuming	the	star4ng	points	of	such	
displacements	are	in	z-stacks	other	than	the	sec+on	of	the	spherocylinder	with	the	largest	circumference	(z	=	0	
for	 a	 spherocylinder	 centered	 in	 (0,0,0)).	 In	 this	 way,	 the	 calculated	 bouncing	 path	 (orange	 arrow)	
overes&mates	the	actual	path	(blue	arrow),	leading	to	an	overes&ma&on	of	the	diffusion	coefficient	near	the	
boundaries.	 (C)	Diffusion	maps	of	a	spherocylinder	obtained	by	analyzing	a	Smoldyn	simula:on	created	with	
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an	 input	diffusion	coefficient	of	20	µm2/s.	Maps	are	obtained	via	SMdM	analysis	 (le5)	and	via	mathema9cal	
method	analysis	(right).	

	

A simulation-based solution to the l imitations of confined diffusion 

We	then	reasoned	that	an	approach	based	on	diffusion	simula4ons	could	have	advantages	compared	to	
mathema&cal	models,	as	the	shape	of	the	compartment	or	the	number	of	bounces	against	the	surface	
would	 not	 be	 limi-ng	 for	 the	 outcome.	 In	 brief,	 we	 developed	 a	method	 to	 recursively	 es1mate	 the	
diffusion	coefficient	with	an	algorithm	that	makes	use	of	Smoldyn	46	and	the	SMdM	technique	16,35	(Fig.	
4A).	Smoldyn	allows	the	simula"on	of	the	mo"on	of	par"cles	within	a	compartment.	The	compartment	
can	be	either	mathema,cally	described,	or	an	 input	of	 triangulated	coordinates	of	any	desired	 shape.	
Confinement	is	accounted	for	in	the	mo2on	of	the	par2cles,	which	reflect	off	of	the	boundaries	without	
losing	 velocity.	 We	 generated	 diffusion	 simula5ons	 with	 Smoldyn	 inside	 a	 spherocylinder,	 and	 as	
an#cipated	the	apparent	diffusion	is	underes#mated,	especially	in	regions	close	to	the	boundaries	(Fig.	
2A,	2E,	3C).	The	extent	of	the	underes'ma'on	is	propor'onal	to	the	diffusion	coefficient,	and	inversely	
propor$onal	 to	 the	 size	 of	 the	 confined	 space	 and	 to	 the	 acquisi$on	 $me.	 Our	 algorithm	 yields	 a	
diffusion	 coefficient	 that	 is	 homogenous	 throughout	 the	 whole	 compartment	 and	 matches	 the	
predefined	value	used	to	create	the	diffusion	simula4ons.	

The	main	steps	for	the	opera/on	of	the	algorithm	are:	(i)	For	simula/ons,	an	input	diffusion	coefficient	
(Dinput

0)	is	used	to	simulate	the	diffusion	of	par3cles	in	a	spherocylinder,	as	previously	described	16.	For	in	
vivo	datasets,	 diffusing	 par/cles	 are	measured	 via	 stroboscopic	 illumina/on	microscopy,	 as	 previously	
described.	The	diffusion	map	is	experimentally	obtained	by	SMdM	16,35;	(ii)	The	diffusion	map	yields	the	
total	 number	 of	 displacements	 per	 cell	 and	 the	 measured	 diffusion	 coefficient	 (Doutput

0)	 for	 every	
posi%on;	(iii)	The	star%ng	(x,y)	coordinates	of	all	the	observed	par3cles	are	used	to	place	them	inside	a	
simulated	spherocylinder,	and	their	z	coordinates	are	randomly	assigned.	This	is	done	by	taking	a	value	
from	a	uniform	random	distribu.on	 ranging	 from	the	 lowest	 to	 the	highest	z	value	 that	a	par+cle	can	
have	 at	 that	 specific	 (x,y)	 posi'on	 inside	 the	 spherocylinder;	 (iv)	 The	 star'ng	 posi'ons	 (x,y,z)	 of	 the	
par$cles	 that	 belong	 to	 a	 specific	 pixel	 of	 the	 original	 diffusion	 map	 are	 selected;	 (v)	 Diffusion	
simula'ons	 are	 run,	 using	 as	 input	 diffusion	 coefficient	 the	Doutput

0	value	 obtained	 via	 SMdM;	 (vi)	 The	
diffusion	 observed	 by	 SMdM	 is	 analyzed	 to	 obtain	 a	 new	 diffusion	 coefficient	 for	 the	 specific	 pixel	
(Doutput

1);	 (vii)	 The	absolute	difference	 (ε)	 between	Doutput
0	 	and	Doutput

1	 is	 calculated;	 (viii)	 The	diffusion	
simula'on	process	(and	subsequent	SMdM	analysis)	is	repeated	recursively,	every	'me	using	a	different	
input	diffusion	coefficient	(Dinput

i).	(ix)	The	difference	(ε)	between	Doutput
0	and	the	one	obtained	through	

the	 last	simula)on	(Doutput
i+1)	 is	calculated;	 (x)	The	recursion	 is	 run	un4l	 the	difference	between	Doutput

N	
and	Doutput

0	reaches	a	minimum;	(xi)	The	input	value	(Dinput
N-1)	that	led	to	the	minimal	difference	between	

Doutput
N	and	Doutput

0	is	then	used	to	create	a	new	map,	which	carries	Dinput
N-1	in	the	posi*on	of	the	analyzed	

pixel;	 (xii)	 The	 process	 is	 repeated	 for	 every	 pixel,	 un9l	 a	 map	 is	 obtained	 in	 which	 the	 diffusion	
coefficients	represents	the	unbiased	diffusion	values,	 that	 is	diffusion	values	that	are	corrected	for	the	
effect	 of	 confinement	 and	 for	 the	 underes1ma1on	 caused	 by	 a	 two-dimensional	 representa.on	 of	 a	
three-dimensional	mo+on.	(xiii)	The	whole	rou+ne	is	repeated	ten	+mes	for	each	cell.	The	output	maps	
obtained	in	each	itera-on	are	averaged	to	account	for	the	randomness	introduced	when	assigning	the	z	
star%ng	 posi%on	 to	 all	 par%cles	 and	 for	 the	 randomness	 introduced	 by	 Smoldyn	 in	 simula%ng	 the	
diffusion	of	par-cles	46.	(Fig.	4A).	
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Simulation-based Reconstructed Diffusion overcomes l imitations of confinement 

caused by cel l  boundaries 

Simula'on-based	Reconstructed	Diffusion	 (SbRD)	 together	with	SMdM	allows	obtaining	more	accurate	
diffusion	maps.	It	 is	possible	to	retrieve	the	actual	diffusion	coefficient	also	for	the	regions	close	to	the	
cell	 boundaries	 (Fig.	 4B).	 	We	also	 simulated	 scenarios	of	 a	 cell	 displaying	 slower	diffusion	at	one	 cell	
pole,	 and	 observed	 that	 SbRD	 is	 correctly	 iden6fying	 the	 region	 with	 slower	 diffusion	 and	 higher	
diffusion	coefficients	in	the	rest	of	the	cell	(Supplementary	Fig.	2).	

We	then	benchmarked	SbRD	against	SMdM	by	varying	Dinput	from	0.01	to	110	μm2/s	and	analyzing	Doutput	
in	 the	 innermost	 100	 nm2	 square	 region	 of	 the	 simulated	 spherocylinder,	 which	 is	 the	 region	 least	
affected	by	the	effect	of	confinement,	and	in	a	cell	pole,	which	is	the	region	most	affected	by	the	effect	
of	confinement.	We	observe	for	the	innermost	region	that	Doutput	obtained	via	SMdM	decreases	to	90%	
of	its	 input	value	already	for	Dinput	of	10	μm2/s,	and	that	the	devia-on	increases	as	expected	with	Dinput	

(Fig.	4C,	 top	panel).	The	decrease	 is	more	pronounced	when	the	cell	pole	 is	analyzed	 (Fig.	4C,	bo>om	
panel),	with	Doutput	obtained	via	SMdM	decreasing	to	90%	of	its	input	value	already	for	Dinput	of	1	μm2/s.	
Importantly,	 the	 output	 of	 SbRD	 remains	 stable	 throughout	 the	 whole	 set	 of	 measurements,	 with	
diffusion	coefficients	near	100%	of	Dinput	(Fig.	4C).	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2023. ; https://doi.org/10.1101/2023.04.10.536329doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.10.536329
http://creativecommons.org/licenses/by/4.0/


13	
	

	

Fig.	4.	Simula)on-based	Reconstructed	Diffusion.	(A)	Algorithm	representa1on	of	SbRD.	(B)	Diffusion	maps	of	
a	spherocylinder	obtained	by	analyzing	a	Smoldyn	simula6on	created	with	an	input	diffusion	coefficient	of	20	
µm2/s.	Maps	are	obtained	via	SMdM	analysis	(top)	and	via	SbRD	(bo4om).	(C)	Comparison	of	the	dependence	
of	the	ra)o	of	Doutput	/	Dinput	in	a	simulated	spherocylinder	when	analyzing	the	centermost	100	nm	by	150	nm	
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area	(top)	and	the	cell	pole	area	(bo0om)	with	SMdM	and	SbRD.	The	gray	do0ed	line	represents	the	ideal	case	
in	which	 the	 ra+o	of	Doutput	over	Dinput	 is	one.	The	 relevant	 range	of	diffusion	coefficients	 for	proteins	 in	 the	
cytoplasm	is	highlighted	in	green.	

	

Bil l iard f itt ing of rod-shaped bacteria  

The	 shape	 of	 E.	 coli	 cells	 is	 generally	 assumed	 to	 be	 a	 spherocylinder	 48–52.	 So%ware	 is	 available	 to	
determine	the	shape	of	E.	coli	cells	 from	two-dimensional	 images	53–55,	but	es(ma(on	and	subsequent	
triangulariza%on	of	their	three-dimensional	shape	does	not	necessarily	lead	to	the	true	shape	of	the	cell.	
For	instance,	invagina/ons	or	protuberances	observed	on	the	xy	plane	might	not	be	observed	on	the	xz	
plane.	By	analyzing	our	microscopy	data,	we	observed	that	 the	vast	majority	of	cells	had	a	shape	that	
could	 be	 very	 well	 approximated	 by	 a	 two-dimensional	 projec/on	 of	 a	 spherocylinder.	 Therefore,	 we	
decided	to	use	this	shape	for	cell	detec0on	and	modeling,	which	at	the	same	0me	allowed	for	an	easy	
implementa#on	 in	 Smoldyn.	 To	 apply	 SbRD	 to	 microscopy	 data,	 we	 developed	 an	 algorithm	 to	
automa&cally	 detect	 cells	 as	 billiards	 in	 microscopy	 images	 (Fig.	 5A).	 Firstly,	 each	 field	 of	 view	 was	
filtered	for	background	noise,	yielding	clusters	of	points	represen6ng	cells.	Point	clouds	were	rotated	so	
that	their	major	axis	was	aligned	to	the	x-axis,	and	subsequently	clustered	using	the	equa4on	of	a	billiard	
(Eq.	8).	

	

𝑥 − 𝑐𝑥!"#$
!
+ 𝑦 − 𝑐𝑦 ! = 𝑟!, 𝑥 < 𝑐𝑥!"#$

𝑦 − 𝑐𝑦 = 𝑟, 𝑐𝑥!"#$ ≤ 𝑥 ≤ 𝑐𝑥!"#!!
𝑥 − 𝑐𝑥!"!!!

!
+ 𝑦 − 𝑐𝑦 ! = 𝑟!, 𝑥 > 𝑐𝑥!"#!!

       𝐸𝑞. 8	

	

We	refine	 the	cell	 selec,ons	via	Maximum	Likelihood	Es,ma,on	using	 the	 following	assump,ons	 (see	
Methods	–	cell	clustering	and	detec.on):	(i)	fluorescent	points	are	uniformly	distributed	throughout	the	
cell;	 (ii)	 the	 cells,	 here	 E.	 coli,	 are	 modeled	 as	 spherocylinders;	 therefore	 the	 2D	 projec7on	 of	 their	
fluorescence	(shape	of	a	billiard)	appears	more	populated	in	the	center	than	near	the	cell	boundary;	(iii)	
all	 the	 fluorescent	 spots	 observed	 in	 a	 cell	 have	 the	 same	 probability	 of	 being	 noise;	 and	 (iv)	 every	
fluorescent	point	 is	equally	 likely	to	be	noise	or	to	be	a	photoconverted	mEos3.2.	We	then	filtered	the	
selected	 cells	 for	 a	minimal	 length	 of	 0.65	 µm	 and	 a	maximal	 width	 of	 1.5	 	 µm	 (see	methods	 –	 cell	
clustering	and	detec.on).	 If	 the	 length	of	 the	final	billiard	describing	 the	 shape	of	 the	 cell	was	bigger	
than	 3	 µm,	 the	 algorithm	 separates	 the	 cluster	 into	 two	 billiards,	 each	 having	 half	 the	 length	 of	 the	
original	one.	The	refinement	step	was	then	repeated	for	every	cluster	of	two-billiards.	This	allowed	the	
accurate	detec)on	of	newly	divided	cells	 (Fig.	5B),	which	 is	o<en	not	possible	with	standard	clustering	
methods,	such	as	Voronoi	(Fig.	5C).	In	our	previous	work	16	we	acquired	a	dataset	of	diffusing	proteins	of	
different	 complex	 mass	 (Supplementary	 Table	 1)	 using	 SMdM.	 Here,	 each	 cell	 was	 clustered	 using	
Voronoi	 clustering.	 We	 re-analyzed	 the	 full	 dataset	 from	 our	 previous	 work	 with	 the	 new	 clustering	
method.	 Importantly,	 we	 observe	 no	 significant	 difference	 between	 the	 two	 datasets,	 both	 in	 the	
number	of	detected	cells	and	in	the	diffusion	coefficients	obtained	via	SMdM	analyses	for	the	cell	center	
(Fig.	5D,	top)	and	for	the	cell	poles	(Fig.	5D,	bo9om).	We	then	used	the	 informa"on	of	each	cluster	to	
recreate	a	spherocylinder	in	Smoldyn	46	having	the	shape	of	the	corresponding	cell,	to	which	we	applied	
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the	SbRD	algorithm	(see	“A	simula5on-based	solu*on	to	the	limita*on	of	confined	diffusion”	from	point	
iii	to	point	xi)	to	reconstruct	diffusion	maps,	corrected	for	the	confinement	effect	and	bias	by	2D	models	
to	describe	a	3D	mo/on,	of	the	single-molecule	fluorescent	microscopy	data.	

	

Fig.	 5.	 Maximum	 likelihood-based	 detec)on	 method.	 (A)	 Field	 of	 view	 and	 fi/ng	 of	 billiards	 around	 the	
iden%fied	 cells,	 using	 a	 maximum	 likelihood	 es%ma%on	 method.	 The	 cell	 indicated	 by	 a	 red	 arrow	 was	
discarded	because	it	has	too	many	displacements.	(B)	Details	of	the	fi.ng	process.	In	the	top	panel,	the	ini'al	
guess	used	for	fi+ng,	encompassing	all	the	points	clustered	as	a	single	cell,	 is	represented	in	grey,	while	the	
final	fi&ng	is	colored.	For	cells	that	 just	completed	division,	the	 ini9al	guess	encompasses	both	cells.	Due	to	
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the	abnormal	 length	of	 the	cell,	 the	fi-ng	 rou0ne	 is	automa0cally	performed	with	 two	billiards	 that	detect	
both	cells.	Using	the	fi0ng	informa5on	it	is	possible	to	iden5fy	the	newly	formed	cell	pole	(white	dots)	and	the	
old	one	 (red	dots).	The	bo0om	panel	 shows	 the	billiard	used	 to	describe	 the	shape	of	cell	7.	Since	cells	are	
represented	 as	 billiards,	 it	 is	 possible	 to	 obtain	 accurate	 es1mates	 of	 their	 length	 and	 radius,	 which	 allow	
dis$nguishing	 the	 cell	 poles	 and	 cell	 center	 for	 every	 cell.	 For	 cells	 that	 just	 divided	 and	 two	 billiards	
overlapping,	the	intersec1on	points	are	calculated	(green	dots)	and	used	to	draw	a	line	(green	line),	which	is	
then	used	to	properly	model	the	spherocylinder	in	the	SbRD	rou5ne.	(C)	Comparison	of	Maximum	likelihood	
method	and	Voronoi	clustering	for	cell	detec0on.	Voronoi	clustering	cannot	properly	dis0nguish	cells	that	are	
too	 close	 to	 each	 other.	 (D)	 Comparison	 of	 the	 apparent	 diffusion	 coefficients	 obtained	 with	 SMdM	 by	
analyzing	the	central	 region	(top)	and	the	poles	 (bo!om)	of	cells	 iden.fied	with	Voronoi	clustering	and	with	
our	maximum	likelihood	method,	from	images	acquired	in	our	previous	work	16.	Curves	are	obtained	via	kernel	
density	es)ma)on.	

	

SbRD correlates the confinement-corrected diffusion coeff icient with the 

perceived viscosity of the cytoplasm 

An	advantage	of	our	clustering	method	is	the	possibility	to	precisely	iden7fy	the	cell	poles	and	the	cell	
center	 by	 using	 the	 radius	 of	 the	billiard	 (Fig.	 5B),	 allowing	us	 to	 analyze	 these	 regions	 separately	 for	
every	cell.	We	then	compared	the	results	obtained	via	SbRD	with	the	results	obtained	via	SMdM	on	our	
previous	 dataset	 16	 (Supplementary	 Table	 1),	 and	 using	 the	 new	 clustering	method	 for	 cell	 detec<on	
(Table	1,	Fig.	6).	We	observe	a	significant	difference	in	the	observed	diffusion	values	for	faster	diffusing	
proteins,	while	for	the	slower	diffusing	par4cles	the	difference	appears	to	be	not	significant.	Notably,	we	
observe	a	higher	 sta-s-cal	 significance	 in	 the	difference	between	 the	diffusion	coefficient	observed	at	
cell	poles.	These	 results	are	 in	 line	with	 the	observa4ons	made	via	 simula4ons,	which	 indicate	 that	 (i)	
given	 the	 fast	 acquisi/on	 /me	 used	 in	 SMdM,	 the	 effect	 of	 confinement	 on	 the	 measured	 diffusion	
results	 less	 pronounced	 for	 slower	 diffusing	 par2cles;	 and	 (ii)	 that	 the	 confinement	 effect	 is	 more	
pronounced	in	the	cell	poles	than	in	the	cell	center.	

We	find	a	correla,on	between	the	diffusion	coefficient	and	the	complex	mass,	while	we	do	not	observe	
any	 correla*on	 between	 the	 diffusion	 coefficient	 and	 the	 number	 of	 interac4ons	 of	 the	 analyzed	
proteins	(Supplementary	Fig.	3).	However,	since	SbRD	yields	diffusion	values	corrected	for	confinement	
effects,	 we	 obtain	 a	 new	 and	 improved	 correla4on	 between	 diffusion	 and	 complex	 mass,	 with	 the	
diffusion	coefficient	scaling	as	D	=	αM-0.6.	Consequently,	the	proposed	correla4on	between	diffusion	and	
perceived	viscosity	(η)	16	changes	to	η	=	αMcomplex

0.27	(Supplementary	Fig.	3).	

	

Protein	
name	

UNIPROT								
ID	

complex	
mass	
(kDa)	

Dapp
center	(μm2/s)	 Dapp

poles	(μm2/s)	 Dcc
center	(μm2/s)	 Dcc

poles	(μm2/s)	

mean	
standard	
devia&on	

mean	
standard	
devia&on	

mean	
standard	
devia&on	

mean	
standard	
devia&on	

mEos3.2	 VUXFR*	 25.7	 11.8	 1.9	 8.7	 1.4	 14.2	 2.7	 11.6	 1.9	

ThrC	 P00934	 72.8	 7.5	 1.2	 5.3	 1.5	 8.5	 1.5	 6.4	 2.0	

GrxC	 90AC62	 34.8	 9.9	 1.3	 7.8	 1.3	 11.6	 1.7	 10.1	 2.0	
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IlvC	 P05793	 318.9	 2.8	 0.4	 2.1	 0.4	 3.0	 0.4	 2.4	 0.5	

AceB	 P08997	 85.9	 7.0	 1.3	 5.8	 1.4	 7.9	 1.4	 7.2	 1.8	

AcpP	 P0A6A8	 34.3	 9.5	 1.7	 7.5	 1.3	 11.2	 2.7	 9.6	 1.9	

ErpA	 P0ACC3	 75.5	 7.5	 0.7	 5.5	 0.9	 8.5	 1.0	 6.7	 1.4	

TrxA	 P0AA25	 37.5	 8.3	 1.5	 6.2	 1.3	 9.4	 1.9	 7.8	 1.8	

LeuS	 P07813	 122.9	 3.9	 0.8	 2.4	 0.5	 4.2	 0.9	 2.7	 0.7	

Icd	 P08200	 142.8	 5.0	 0.9	 3.8	 0.7	 5.5	 1.1	 4.5	 0.9	

TrxA2_hvo	 A0A558GCJ2	 37.8	 8.2	 1.3	 6.0	 1.0	 9.3	 1.7	 7.4	 1.3	

TrxA_lla	 A0A089XQE8	 37.4	 6.4	 1.1	 4.6	 1.1	 7.2	 1.5	 5.6	 1.6	

Table	 1.	 Lateral	 diffusion	 coefficients	 of	 cell	 center	 and	 cell	 poles	 obtained	 via	 SMdM	 and	 SbRD	 for	
constructs	fused	to	mEos3.2.	The	columns	show	the	name	of	the	protein,	their	complex	mass,	their	diffusion	
values	 obtained	 via	 SMdM	 (Dapp)	 for	 cell	 center	 and	 cell	 poles,	 and	 the	 confinement-corrected	 diffusion	
values	obtained	via	SbRD	(Dcc).	The	Uniprot	ID	is	provided	for	every	protein,	except	for	mEos3.2,	for	which	the	
Fpbase	ID	is	given.	
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Fig.	 6.	 Comparison	of	 the	 diffusion	 values	 obtained	 via	 SMdm	and	 via	 SbRD.	Comparison	 of	 the	 apparent	
diffusion	 coefficient	obtained	 via	 SMdM	and	of	 the	 confinement-corrected	diffusion	 coefficient	 for	both	 the	
cell	 center	 (top)	 and	 the	 cell	 poles	 (bo1om)	 for	 the	 dataset	 of	 proteins	 tagged	 with	 mEos3.2	 16.	 Asterisks	
indicate	sta*s*cal	significance	obtained	via	a	Mann-Whitney	U	test	for	non-normally	distributed	data.	

	

SbRD versus SMdM analysis of the diffusion coefficient at the cel l  poles  

Diffusion	measured	near	the	cell	boundary	and	in	the	cell	pole	regions	of	rod-shaped	bacteria	appears	
slower	than	in	the	cell	center	due	to	confinement	effects	16,38,56–58.	We	recently	showed	16	that	the	ra'o	
between	 the	 diffusion	 coefficient	 at	 the	 cell	 poles	 and	 cell	 center	 is	 lower	 for	 SMdM	 data	 than	 for	
simulated	 data,	 where	 par0cles	 are	 treated	 as	 mathema0cal	 points	 moving	 of	 random	 mo0on.	 This	
indicates	 that	 the	 slowdown	 observed	 in	 cells	 must	 be	 due	 to	 some	 physiological	 effects,	 such	 as	
increased	 crowding	 in	 the	 polar	 region,	 possibly	 due	 to	 aggrega5on	 of	 old	 or	 damaged	 proteins,	 the	
presence	 of	 the	 transla.on	 machinery,	 or	 dynamic	 structures	 genera!ng	 over-	 and	 undercrowded	
regions	16.	One	of	the	key	unanswered	ques3ons	about	the	diffusion	measured	at	the	cell	poles	is:	how	
much	of	the	observed	slowdown	is	due	to	confinement	and	how	much	is	due	to	physiological	effects?	It	
is	not	possible	to	decouple	these	effects	by	SMdM	or	other	single	molecule	microscopy	techniques.	The	
ra#o	between	the	diffusion	coefficient	at	the	cell	poles	and	the	cell	center	obtained	by	SbRD	correlates	
linearly	with	 the	 ra,o	 obtained	 by	 SMdM	 (Supplementary	 Table	1).	 This	 is	 not	 observed	 in	 simulated	
cells	(Fig.	7A).	Therefore,	the	slowdown	observed	at	the	poles	cannot	be	a<ributed	solely	to	the	effect	of	
confinement.	We	compared	the	ra0o	between	the	diffusion	at	the	cell	poles	and	the	diffusion	at	the	cell	
center	obtained	via	SbRD	with	the	one	obtained	via	SMdM	for	all	the	analyzed	cells	clustered	as	billiards.	
We	observe	a	Dpole/Dcenter	ra#o	of	0.74	±	0.13	for	SMdM	and	0.80	±	0.16	for	SbRD	(Fig.	7B).	We	analyzed	
the	 difference	with	 a	Mann-Whitney	U	 rank	 test	 for	 non-normally	 distributed	 data	 and	 obtained	 a	p-
value	<<	0.01.	We	therefore	conclude	that	about	20%	of	the	previously	observed	25%	slowdown	at	the	
cell	poles	can	be	a+ributed	to	confinement	effects.	

	

Effect of Rifampicin and Erythromycin on diffusion at the cel l  poles 

The	 slowdown	 in	 diffusion	 at	 the	 cell	 poles	 observed	 via	 SbRD	 can	 be	 due	 to:	 (i)	 the	 presence	 of	
polysomes,	 large	 structures	 composed	 of	 several	 ribosomes	 bound	 to	 the	 same	mRNA	molecule;	 (ii)	
clusters	 of	 aggregated	 or	 damaged	 proteins	 that	 hinder	 the	 mobility	 of	 other	 molecules;	 (iii)	 or	 the	
presence	 of	 unknown	 substructures.	 To	 test	 the	 first	 hypothesis,	 we	 treated	 E.	 coli	 cells	 expressing	
mEos3.2	 with	 the	 an0bio0cs	 rifampicin	 and	 erythromycin,	 which	 disrupt	 the	 polysomes	 via	 different	
mode	of	ac(ons.	Rifampicin	 inhibits	DNA-dependent	RNA	biosynthesis	by	 inhibi0ng	the	bacterial	RNA-
polymerase	 59,60,	 which	 leads	 to	 rapid	 RNA	 deple3on,	 par3cularly	 of	 mRNA	 61,62,	 while	 erythromycin	
inhibits	the	assembly	of	the	large	ribosomal	subunits	50S	63.	Hence,	the	use	of	these	an/bio/cs	should	
make	the	diffusion	coefficients	at	the	poles	and	middle	of	the	cell	similar	if	the	polysomes	would	form	a	
major	hindrance	for	the	mobility	of	mEos3.2.	However,	we	do	not	observe	a	significant	change	in	ra=o	of	
the	diffusion	coefficients	(Fig.	7C),	with	values	of	0.84	±	0.12,	0.86	±	0.12	and	0.82	±	0.12	for	untreated	
cells,	cells	treated	with	erythromycin	and	cells	treated	with	rifampicin,	respec4vely.	This	is	confirmed	by	
the	Mann-Whitney	U	rank	test	for	non-normally	distributed	data.	To	further	inves5gate	the	effect	of	the	
an#bio#cs,	 we	 analyzed	 the	 absolute	 values	 of	 diffusion.	 For	 cells	 treated	 with	 erythromycin,	 the	
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diffusion	 at	 the	 cell	 center	 and	 at	 the	 cell	 poles	 show	 a	moderate	 increase	 compared	 to	 the	 control	
sample,	while	 for	cells	 treated	with	rifampicin	the	 increase	 is	much	 larger	 (Fig.	7D).	For	the	cell	center	
regions	we	observe	diffusion	 coefficients	of	 14.76	±	2.30	μm2/s,	 16.99	±	2.04	μm2/s	 and	20.65	±	3.61	
μm2/s,	and	for	 the	cell	poles	12.31	±	1.87	μm2/s,	14.62	±	2.35	μm2/s	and	16.98	±	3.99	μm2/s,	 for	cells	
untreated,	 treated	with	 erythromycin	 and	 treated	with	 rifampicin,	 respec4vely;	 the	Mann-Whitney	 U	
rank	confirms	these	findings	(p-values	<<	0.01).	We	tenta,vely	conclude	that	the	overall	faster	diffusion	
in	the	presence	of	the	an.bio.cs	is	the	result	of	a	lower	viscosity	due	to	the	deple3on	of	mRNA,	which	is	
most	pronounce	upon	rifampicin	treatment.	

	

Analysis of diffusion at the cel l  poles indicates asymmetry that correlates with 

aging 

We	then	analyzed	the	microscopy	data	for	differences	between	the	cell	poles	(Supplementary	Fig.	4).	We	
reasoned	 that	 differences	 in	 aging	 of	 the	 two	 poles	 could	 lead	 to	 differences	 in	 diffusion,	 especially	
because	misfolded	and	aggregated	proteins	tend	to	accumulate	at	the	old	pole	19–21.	We	acquired	SMdM	
data	 of	 newly	 divided	 cells	 by	 selec1ng	 fields	 of	 view	with	 cells	 that	 had	 just	 completed	 the	 division	
process	(Fig.	5B,	5C),	and	we	subsequently	applied	SbRD	to	the	datasets.	We	determined	the	diffusion	
coefficient	 corrected	 for	 confinement	 effects	 of	 mEos3.2	 in	 each	 cell	 individually	 and	 find	 that	 the	
diffusion	at	the	old	pole	is	significantly	slower	than	at	the	new	pole.	The	ra7o	between	the	diffusion	at	
the	new	cell	pole	and	the	cell	center	is	0.86	±	0.15,	while	Dold-pole/Dcenter	is	0.80	±	0.13	(Supplementary	Fig.	
5).	With	the	assump/on	that	the	new	cell	pole	enables	on	average	faster	diffusion	than	the	old	cell	pole,	
we	 subtracted	 Dold-pole	 from	 Dnew-pole	 for	 each	 cell.	 We	 obtained	 a	 distribu3on	 of	 residual	 diffusion	
coefficients	with	a	mean	higher	than	zero	(Fig.	7E).	We	performed	a	one-sided	Wilcoxon	signed-rank	test	
to	 confirm	 whether	 the	 observed	 difference	 was	 significant,	 and	 obtained	 a	 p-value	 <	 0.05.	 These	
findings	confirm	the	hypothesis	 that	aging	 influences	 the	structure	of	 the	cytoplasm	at	 the	poles	of	E.	
coli,	causing	macromolecules	at	the	older	cell	pole	to	diffuse	slower	than	at	the	new	one.	
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Fig.	7.	Cell	pole	analysis	of	diffusion.	(A)	Comparison	of	the	ra0os	of	the	diffusion	coefficients	at	the	poles	and	
center	 of	 the	 cell	 for	 data	 analyzed	 by	 SbRD	 and	 SMdM.	 The	 black	 do7ed	 line	 shows	 the	 case	 when	 the	
diffusion	at	the	poles	and	center	is	equal.	For	simulated	data	(orange)	the	ra8o	obtained	with	SbRD	is	equal	to	
1	 for	each	protein.	 For	microscopy	data	 (blue)	we	find	a	posi6ve	 correla6on	between	 the	 ra6o	obtained	by	
SMdM	and	 SbRD.	 (B)	 Ra%os	 of	 diffusion	 at	 the	 poles	 and	 the	 cell	 center	 obtained	 by	 SMdM	and	 SbRD.	 (C)	
Ra#os	of	diffusion	at	the	poles	and	cell	center	by	SbRD	for	control	cells,	and	cells	treated	with	250	μg/ml	of	
erythromycin	or	500	μg/ml	rifampicin.	(D)	Diffusion	coefficients	at	the	cell	center	(blue)	and	poles	(orange)	for	
control,	 erythromycin-	 and	 rifampicin-treated	 cells.	 (E)	 Distribu*on	 of	 differences	 in	 diffusion	 coefficients	
between	 the	 newly	 formed	 cell	 pole	 and	 the	 old	 cell	 pole.	 The	 orange	 line	 represents	 the	 average	 of	 the	
distribu(on,	the	black	dashed	line	is	the	zero.	All	curves	are	obtained	via	kernel	density	es(ma(on.	Sta(s(cal	
significance	is	indicated	with	asterisks.	

	

Discussion	
We	developed	a	new	method	to	obtain	diffusion	coefficients	that	are	not	affected	by	confinement	effects	
and	bias	by	2D	modeling	of	a	3D	mo2on.	This	method	is	key	not	only	for	measuring	lateral	diffusion	in	
small	compartments,	but	also	for	diffusion	in	proximity	of	boundaries,	such	as	the	plasma	or	organellar	
membranes.	 Despite	 the	 enormous	 advancements	 offered	 by	 SMdM	 in	 probing	 molecule	 mo:on	
compared	 to	 other	 methods,	 the	 values	 obtained	 near	 boundaries	 are	 affected	 by	 the	 effect	 of	
confinement.	Our	 newly	 developed	method	 SbRD	 allows	 examining	more	 precisely	 regions	 of	 the	 cell	
that	are	small	and	or	geometrically	more	complex.		

	

A method to reconstruct confinement-corrected diffusion coefficients in small  

cel ls  

The	main	advantage	of	the	SbRD	method	is	that	the	shape	of	the	analyzed	compartment	does	not	limit	
the	 analysis.	 In	 fact,	 compartments	 of	 any	 shape,	 that	 can	 be	 visualized	 and	 reconstructed	 via	
triangulariza*on,	 can	 be	 used	 to	 recreate	 an	 iden*cal	 virtual	 compartment.	 In	 this	 way,	 our	 method	
allows	 reconstruc-ng	 unbiased	 diffusion	 in	 heterogeneous	 compartments	 such	 as	 those	 in	 eukaryo-c	
cells.	

We	show	by	simula/ons	that	lateral	diffusion	measurements	performed	in	small	compartments,	such	as	
the	prokaryo+c	cell,	are	bound	to	underes+mate	the	diffusion	coefficient,	not	only	 in	 the	regions	near	
the	boundary	but	also	 in	 the	cell	center.	The	confinement	effect	 in	 the	cell	center	 is	mostly	due	to	2D	
observa(on	 of	 a	mo(on	 in	 3D.	 Using	 the	 here	 developed	 tool	 for	 cell	 clustering,	we	 precisely	 detect	
spa$al	informa$on	such	as	radius,	length,	center	and	orienta$on	angle	of	a	cell.	We	use	this	informa$on	
to	 reconstruct	 cells	 with	 an	 assumed	 spherocylindrical	 shape	 in	 Smoldyn	 46.	 Recursive	 diffusion	
simula!ons	 then	 yield	 the	 diffusion	 coefficient	 corrected	 for	 the	 confinement	 effect	 and	 the	 spa!al	
component	 of	 mo*on.	 This	 approach	 led	 us	 to	 (more	 precisely)	 es*mate	 the	 dependence	 of	 the	
diffusion	coefficient	on	the	complex	mass	of	the	diffusing	species	and	 infer	from	the	data	the	viscosity	
perceived	by	a	molecule	of	given	molecular	mass.	
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We	observed	a	linear	dependence	of	the	ra3o	between	the	diffusion	at	the	cell	poles	and	the	cell	center	
for	data	acquired	via	SbRD	and	via	SMdM,	as	shown	in	Fig.	7A,	indica%ng	that	the	observed	slowdown	in	
diffusion	at	the	cell	poles	can	be	a1ributed	to	physiological	effects,	and	not	solely	to	confinement.	

	

Asymmetric diffusion at the cel l  poles correlates with aging 

We	previously	obtained	indica3ons	that	the	diffusion	at	the	cell	poles	is	slower	than	in	the	center	of	E.	
coli	cells	16.	We	now	determine	precisely	how	much	slower	the	diffusion	is	at	the	cell	poles,	and	we	show	
that	 disassembly	 of	 polysomes	 and	 deple1on	 of	 mRNA	 by	 an1bio1c	 treatment	 do	 not	 affect	 the	
differences	 in	 diffusion	 between	 the	 poles	 and	 the	 center	 of	 cell.	 In	 fact,	 the	 diffusion	 coefficient	
increases	by	a	similar	percentage	in	each	region	of	the	cell,	sugges5ng	that	the	an5bio5c	treatment	has	
decreased	the	overall	viscosity	of	the	cell.	

Moreover,	we	were	able	to	precisely	detect	dividing	cells	and	the	new	cell	poles,	and	we	show	that	the	
ones	 at	 the	 division	 site	 exhibit	 a	 faster	 diffusion	 compared	 to	 the	 old	 cell	 poles.	 The	 diffusion	
coefficients	at	 the	new	and	old	pole	are	86%	and	80%,	 respec-vely,	of	 the	value	measured	at	 the	cell	
center.	 In	 eukaryo.c	 cells	 aging	 is	 accompanied	 by	 an	 increased	 cytosolic	 crowding	 64.	 Here,	 we	
hypothesize	that	rela.ve	slowdown	of	diffusion	at	the	old	pole	is	consistent	with	an	increase	in	crowding	
and	an	indica'on	of	aging	in	E.	coli.	

Previous	studies	suggested	the	possibility	of	accumula6on	of	aggregated	proteins	at	the	cell	poles	of	E.	
coli	 as	 a	 possible	 cause	 for	 the	 observed	 aging	 effects	 19.	 In	 the	 recent	 study	 from	 Łapińska	 et	 al.	 45,	
however,	the	authors	do	not	observe	protein	aggrega3on	in	the	form	of	inclusion	bodies	and	they	argue	
that	proper	techniques	for	the	inves,ga,on	of	the	structure	of	cell	poles	are	lacking.	Here,	we	developed	
a	method	to	more	precisely	assess	the	structure	of	the	cytoplasm	in	the	cell	pole	regions.	We	also	do	not	
see	 indica)ons	 of	 protein	 aggrega)on	 such	 as	 inclusion	 bodies	 in	 our	 dataset.	We	 conclude	 that	 the	
slower	 diffusion	 observed	 at	 the	 old	 cell	 pole	 is	 an	 indica4on	 of	 the	 presence	 of	 par4ally	 aggregated	
misfolded	macromolecules.	

The	E.	coli	cell	cycle	is	divided	in	three	different	phases:	the	B	period,	which	goes	from	the	cell	birth	to	
the	 beginning	 of	DNA	 replica3on;	 the	 C	 period,	which	 goes	 from	 the	 beginning	 to	 the	 termina3on	of	
DNA	 replica,on;	 and	 the	 D	 period,	 which	 represents	 the	 ,me	 between	 the	 termina,on	 of	 DNA	
replica(on	and	cell	division	65,66.	During	the	D	period,	the	two	chromosomes	segregate	to	two	different	
parts	of	the	cell,	and	a	period	of	protein	synthesis	is	necessary	for	comple3ng	the	cell	division	process.	If	
accumula&on	of	 sta&c	or	 semi-sta$c	 structure	 is	a	 sole	 characteris$c	of	 the	cell	poles,	 then	 the	newly	
formed	cell	pole	should	exhibit	a	diffusion	value	close	to	the	one	measured	at	the	cell	center.	Since	we	
observe	a	slower	diffusion	at	the	new	cell	pole	(albeit	 less	slow	than	at	the	old	pole)	compared	to	the	
one	measured	at	the	cell	center,	we	conclude	that	the	accumula1on	of	damaged	or	aggregated	protein	is	
not	a	specific	characteris.c	of	the	cell	pole,	rather	it	is	a	consequence	of	steric	hindrance	exerted	by	the	
nucleoid,	 which	 causes	 accumula.on	 of	 structures	 in	 nucleoid-free	 regions	 of	 the	 cell.	 Based	 on	 the	
currently	 available	 literature	 19,44,45,67,	 we	 hypothesize	 that	 the	 observed	 slowdown	 is	 maintained	
throughout	the	cell	cycle,	and	that	it	is	possibly	passed	down	from	mother	cell	to	daughter	cells,	where	
one	of	 the	daughter	cells	will	 inherit	 the	“slow	pole”	 from	the	mother,	while	the	other	will	 inherit	 the	
“fast	pole”	(Fig.	8).	
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Fig.	8.	Accumula-on	of	aggregated	structures	at	the	cell	poles	and	correla-on	with	aging.	A	cell	with	an	old	
pole,	with	 slower	 diffusion,	 and	a	 new	 cell	 pole,	with	 faster	 diffusion	 is	 shown	 at	 the	 top.	 As	 the	 cell	 cycle	
progresses	 this	 difference	 is	maintained.	When	 the	 cell	 divides	 and	 the	 septa5on	 ring	 forms	 (red),	 the	 two	
daughter	cells	will	inherit	the	two	cell	poles.	One	of	the	cells	will	have	the	oldest	pole	as	its	old	pole,	while	the	
other	will	have	the	new	pole	of	the	mother	as	its	old	pole.	

	

Concluding remarks 

We	developed	 Simula.on-based	 Reconstructed	Diffusion	 (SbRD)	 to	 determine	 diffusion	 coefficients	 in	
any	compartment,	corrected	for	confinement	effects	and	by	the	mo2on	of	par2cles	along	the	z-axis.	We	
applied	 the	 technique	 to	 a	 previously	 recorded	 dataset.	 Using	 SbRD,	 we	 obtain	 a	 more	 precise	
correla'on	between	the	diffusion	coefficients	and	the	complex	mass	of	the	diffusing	species,	from	which	
we	 infer	 the	 perceived	 viscosity	 for	 proteins	 diffusing	 in	 the	 cytoplasm.	 We	 recorded	 new	 single-
molecule	displacement	datasets	to	characterize	the	slower	diffusion	at	the	cell	poles,	and	to	determine	
differences	in	confinement-corrected	diffusion	at	the	old	and	new	pole.	We	correlate	slower	diffusion	at	
the	old	poles	with	aging	of	the	cells.	We	argue	that	our	method	and	analyses	provide	new	possibili9es	
for	inves*ga*ng	the	mechanism	of	aging	of	bacteria	and	other	types	of	cells.	
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Materials	and	methods	

Live-cell  s ingle-molecule microscopy 

Media	prepara)on,	cell	culturing,	measurements	setup	and	live-cell	imaging	was	performed	as	described	
16.	 Briefly,	 for	 each	 experiment	 we	 started	 a	 pre-culture	 of	 E.	 coli,	 bearing	 a	 pBAD	 plasmid	 for	 the	
expression	of	mEos3.2,	by	scratching	a	glycerol	stock	with	a	sterile	 inocula<on	 loop	and	dipping	 it	 in	a	
14-mL	plas(c	culturing	tube	containing	3	mL	of	LB	medium,	prepared	following	the	formula	of	10/10/5%	
(w/v)	 in	 MilliQ	 of	 NaCl,	 tryptone	 (Formedium),	 and	 peptone	 (Formedium),	 respec3vely,	 and	
supplemented	with	ampicillin	(100	µg/mL).	We	incubated	the	pre-culture	overnight	at	30°C,	with	shaking	
at	200	rpm.	On	the	following	day	we	transferred	30	µL	of	the	LB	pre-culture	into	3	mL	of	MOPS-buffered	
minimal	medium	 (MBM),	prepared	 following	 the	 formula	 in	 68,	 supplemented	with	0.1%	 (v/v)	 glycerol	
and	ampicillin	 (100	µg/mL).	 Cultures	were	 incubated	overnight	 at	 30°C,	with	 shaking	 at	 200	 rpm.	 The	
next	day	cells	were	diluted	to	a	final	OD600	of	0.05	to	0.08	into	prewarmed	MBM	containing	0.1%	(v/v)	
glycerol,	ampicillin	(100	µg/mL)	and	0.1%	(w/v)	L-arabinose,	and	incubated	the	at	30°C,	with	shaking	at	
200	rpm	for	4	to	6	hours	before	microscopy	experiments.	Right	before	the	measurements,	the	cultures	
were	spun	down	in	a	tabletop	centrifuge	and	concentrated	three	4mes	in	the	growth	medium.	

To	ensure	a	 constant	 temperature	of	 the	microscope	during	 the	 imaging	process,	 the	 instrumenta3on	
was	turned	on	4	to	5	hours	before	the	measurement,	to	minimize	the	xy	dri$	of	the	samples.	Cells	were	
imaged	 on	 a	 clean,	 non-func%onalized	 high-precision	 glass	 slide	 {specs,	 manufacturer},	 previously	
sonicated	in	5M	KOH	for	45	minutes	and	then	rinsed	10	8mes	with	MilliQ,	followed	by	a	drying	process	
via	pressurized	air.	 Immobiliza2on	of	the	samples	was	achieved	by	deposi2ng	5	µL	of	concentrated	cell	
suspension	on	the	glass	slied	and	then	pressing	the	cells	against	the	glass	surface	with	solidified	agarose	
pads	having	the	same	composi0on	of	the	MBM	medium	with	a	final	concentra0on	of	agarose	of	0.75%	
(w/v),	formed	inside	a	polydimethylsiloxane	(PDMS)	chamber.	

Once	 the	 cells	 se*led,	 we	 selected	 an	 area	 of	 our	 field	 of	 view	 to	 perform	 the	 measurements.	 We	
adjusted	the	focus	and	the	laser	beam	angle	to	obtain	the	highest	number	of	foci,	which	resulted	in	the	
beam	 angle	 slightly	 below	 that	 of	 the	 cri3cal	 angle	 for	 total	 internal	 reflec-on	 [highly	 inclined	 and	
laminated	 op,cal	 sheet	 microscopy	 69].	 The	 camera	 and	 the	 laser	 were	 then	 synchronized	 in	 the	
stroboscopy	mode,	with	 illumina5on	 pulses	 necessary	 to	 first	 photoconvert	 and	 then	 detect	mEos3.2	
every	1.5	ms	16,35.	For	a	detailed	overview	of	the	scripts	used	for	managing	the	microscope,	we	refer	to	
our	code	70.	

Erythromycin	treatment	was	performed	for	1	hour	a5er	cells	reached	an	OD600	of	0.12-0.15	on	the	day	of	
measurement,	by	adding	erythromycin	to	the	cell	culture	to	a	final	concentra5on	of	250	ng/µL.	Agarose	
pads	were	supplemented	with	the	same	erythromycin	concentra3on.	

Rifampicin	 treatment	 was	 performed	 as	 described	 for	 erythromycin,	 using	 a	 final	 concentra'on	 of	
rifampicin	 of	 500	ng/µL.	 Agarose	 pads	were	 not	 supplemented	with	 rifampicin,	 as	 this	 influenced	 the	
photoconversion	of	mEos3.2.	

To	 analyze	 dividing	 cells,	 we	 visually	 inspected	 different	 fields	 of	 view	 in	 every	 sample,	 and	 selected	
areas	 in	 which	 a	 pair	 of	 obviously	 dividing	 cells	 were	 observed.	 Dividing	 cells	 were	 then	 analyzed	
separately	during	data	analysis.	
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Cell  clustering and detection 

The	first	step	in	our	data	analysis	pipeline	is	represented	by	the	detec4on	and	clustering	of	the	cells	in	
the	 imaged	field	of	view.	First,	 the	whole	analyzed	field	of	view	was	converted	 into	a	2D	histogram	 in	
which	every	bin	represents	a	certain	number	of	fluorescent	points.	The	background	value	was	calculated	
by	 taking	 the	median	 value	 of	 the	 bins.	 Only	 the	 fluorescent	 points	 belonging	 to	 bins	 having	 a	 value	
higher	 than	 the	 background	 value	 plus	 one	 standard	 devia4on	 were	 kept	 and	 used	 to	 create	 point	
clouds.	For	each	point	cloud	the	eigenvectors	were	obtained	through	the	calcula6on	of	the	covariance	
matrix,	which	allowed	calcula0ng	the	angle	between	the	first	eigenvector	and	the	x	axis.	From	this,	an	
appropriate	rota)onal	matrix	was	applied	to	the	xy	coordinates	of	the	point	cloud,	to	align	its	major	axis	
parallel	to	the	x-axis.	This	allowed	obtaining	a	first	set	of	features	of	the	point	cloud,	namely	the	length,	
the	width,	 the	 rota,on	 angle	 and	 the	 center,	which	we	 used	 to	 describe	 a	 billiard	 encompassing	 the	
point	cloud.	Shape	 refinement	was	obtained	by	fi7ng	an	 improved	billiard	around	 the	point	cloud	via	
maximum	likelihood	es.ma.on.	The	fi3ng	was	performed	by	applying	the	following	assump.ons:	(i)	the	
fluorescent	molecules	are	uniformly	distributed	throughout	the	cells.	Since	the	cells	are	spherocylinders	
imaged	in	two	dimensions,	the	number	of	molecules	observed	is	directly	propor2onal	to	the	thickness	of	
the	cells;	 therefore	the	boundary	areas	are	 less	populated	than	the	center;	 (ii)	every	observed	point	 is	
equally	likely	as	any	other	to	be	due	to	random	noise;	(iii)	the	probability	of	a	point	being	random	noise	
is	 equal	 to	 the	probability	of	 a	point	being	a	fluorescent	molecule.	 From	 these	 three	assump8ons	we	
obtain	the	following	probability	mass	func5on	for	each	par5cle	(Eq.	9):	
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Where	N	is	the	number	of	par0cles	(X,Y)	inside	the	spherocylinder,	V	is	the	volume	of	the	spherocylinder,	
which	is	modeled	based	on	all	the	points	(X,Y)	within	the	spherocylinder,	and	hx,y	is	the	thickness	of	the	
spherocylinder	at	 the	xy	coordinate	of	 the	detected	point.	All	 these	parameters	depend	on	the	size	of	
the	 spherocylinder,	 which	 is	 described	 by	 its	 length,	 its	 radius,	 its	 center	 and	 its	 rota5on	 angle.	
Therefore,	 these	 are	 used	 as	 fi/ng	 parameters	 to	 iden5fy	 the	 best	 spherocylinder	 describing	 the	
detected	point	cloud.		

The	iden(fied	cells	are	then	filtered	based	on	their	shape,	discarding	cells	that	are	shorter	than	0.65	µm	
(possibly	cells	that	are	par0ally	out	of	the	field	of	view),	or	wider	than	1.5	µm	(possibly	noise	or	dri#).	
Cells	 having	 a	 length	 bigger	 than	 3	 µm	 were	 automa5cally	 reanalyzed	 as	 dividing	 cells.	 In	 case	 of	
overlapping	 billiards	 for	 dividing	 cells,	 the	 intersec4on	 points	 were	 iden4fied	 by	 calcula4ng	 the	
intersec(on	of	the	two	semicircles	describing	the	two	adjacent	cell	poles.	From	this,	 it	was	possible	to	
calculate	 the	 volume	 of	 the	 two	 spherical	 sec2ons	 of	 the	 neighboring	 cell	 poles.	 Since	 any	 of	 the	
observed	points	 could	belong	 to	either	 cell,	 the	final	 volume	used	 to	 calculate	 the	probability	density	
had	to	be	adjusted	by	adding	the	intersec2on	volume	(Eq.	10):	
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Where	N	is	the	number	of	par0cles	(X,Y)	inside	the	two	spherocylinders,	V(X1,Y1)	is	the	volume	of	the	first	
spherocylinder,	 V(X2,Y2)	 is	 the	 volume	 of	 the	 second	 spherocylinder,	 V(Xint,Yint)	 is	 the	 volume	 of	 the	
intersec(on	between	 the	 two	 spherocylinders,	h1	 is	 the	 thickness	of	 the	first	 spherocylinder	 at	 the	xy	
coordinate	 of	 the	 detected	 point,	 and	 h2	 is	 the	 thickness	 of	 the	 second	 spherocylinder	 at	 the	 xy	
coordinate	of	the	detected	point.	

Finally,	the	 iden-fied	cells	are	visually	 inspected	and	discarded	 if	not	suitable	for	analysis	 (e.g.	dividing	
cells	not	correctly	iden-fied,	for	which	the	total	length	is	shorter	than	3	µm).	The	fi6ed	spherocylinders	
are	 then	 used	 to	 create	 clusters	 from	 the	 point	 clouds.	 The	 data	 analysis	 is	 then	 performed	 on	 each	
cluster	separately,	ignoring	the	points	that	are	not	included	in	the	cluster.	More	 informa(on	on	the	cell	
detec%on	and	clustering	can	be	found	on	our	code	70.	

	

SMdM analysis 

SMdM	 analysis	 was	 performed	 as	 described	 previously	 16,	 with	 the	 excep+on	 that	 cell	 clustering	was	
performed	prior	to	peak	pairing.	Briefly,	we	recorded	several	consecu:ve	movies	for	each	field	of	view	
and	paired	the	observed	localiza2ons	from	the	two	consecu2ve	frames	of	the	stroboscopic	illumina2on	
pa#ern.	 For	 single-molecule	 analysis,	we	 used	 the	 STORM-analysis	 package	 developed	 by	 the	 Zhuang	
laboratory,	which	is	included	in	the	3D-DAOSTORM	program	for	peak	detec0on	71.	A$er	a	full	movie	was	
analyzed,	the	localiza/ons	were	corrected	for	xy	dri$.	

All	 the	detected	peaks	 in	each	field	of	 view	were	used	 for	 clustering	and	 for	finding	 the	 shape	of	 the	
spherocylinder	that	best	describes	the	shape	of	the	cell,	as	reported	in	the	sec3on	above.	

Displacements	were	obtained	from	all	the	peaks	belonging	to	a	single	cell,	by	pairing	localiza9ons	from	
the	two	consecu+ve	frames	of	the	stroboscopic	illumina'on	pa+ern.	We	set	a	maximum	distance	of	600	
nm	between	any	two	peaks	to	be	paired:	the	distance	is	then	used	to	find	all	possible	peak	pairs	for	each	
couple	of	frames.	To	obtain	a	displacement,	we	match	each	peak	in	the	first	frame	of	the	couple	with	all	
the	peaks	falling	within	a	radius	of	600	nm	in	the	second	frame.	This	procedure	is	repeated	for	all	frame	
couples	of	 each	field	of	 view.	A	hard	filter	based	on	 the	number	of	detected	displacements	was	 then	
applied,	discarding	cells	with	less	than	2000	or	more	than	20000	displacements,	as	described	16.	

A	 pixel	 map	 with	 pixel	 size	 of	 100	 nm2	was	 obtained	 for	 each	 cell,	 with	 every	 pixel	 containing	 the	
informa(on	of	all	the	peak	pairs	for	which	the	star(ng	posi(on	is	located	inside	the	pixel	itself.	Each	pixel	
of	the	map	containing	a	minimum	number	of	displacements	(set	to	10	in	our	study)	was	then	fi;ed	using	
a	modified	two-dimensional	probability	density	func3on	(PDF),	which	accounts	for	a	 linear	background	
effect	k,	which	can	be	caused	by	an	ambiguity	in	the	assignment	of	peak	pairs	16	(Eq.	11):	
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Since	t	is	known,	as	it	represents	the	/me	between	two	stroboscopic	laser	pulses,	the	PDF	was	fi!ed	on	
the	 detected	 displacements	 r,	 using	 the	 diffusion	 coefficient	D	 and	 the	 background	 value	 k	 as	 fi%ng	
parameters.	 Displacements	 were	 detected	 using	 the	 MLE	 clustering	 method	 (see	 sec9on	 above)	 for	
SbRD.	Displacements	were	detected	both	using	the	MLE	clustering	method	and	Voronoi	clustering	when	
comparing	the	two	clustering	methods	using	SMdM.	

Given	our	advanced	cell	detec/on	method,	we	could	perform	an	accurate	iden/fica/on	of	the	different	
cell	 regions,	namely	the	cell	poles	and	the	cell	center.	Fi&ng	a	billiard	to	detect	 the	shape	of	 the	cells	
allows	obtaining	precise	informa2on	about	their	length	and	their	radius,	which	in	turn	allow	iden2fying	
the	 cell	 pole	 regions	 and	 the	 central	 region	 of	 the	 cell.	 All	 the	 displacements	 belonging	 to	 the	 same	
region	were	then	used	to	perform	the	fi2ng	using	equa5on	10,	yielding	informa5on	about	the	diffusion	
coefficient	in	the		different	regions	of	the	cell	16.	

The	 dependence	 of	 the	 diffusion	 coefficient	 on	 the	 complex	 mass	 was	 fi7ed	 using	 a	 power	 law	
rela%onship	D	 =	αMcomplex

β,	where	Mcomplex	 is	 the	 complex	mass	 and	α	and	β	are	 fi&ng	 parameters	 16.	
Fi#ng	was	performed	using	the	func5on	curve_fit	included	in	the	SciPy	library	72.	

	

Smoldyn simulations 

Simula'ons	were	performed	using	the	so5ware	Smoldyn	46,	as	described	16.	A	diffusion	coefficient	and	a	
!me-step	length	are	used	as	input	for	the	simula2ons,	together	with	the	total	simula2on	2me.	At	every	
!me	 step,	 Smoldyn	 randomly	 selects	 a	 step	 length	 from	 a	 normal	 distribu!on	 having	 as	 mean	 the	
squared	mean	squared	displacement	calculated	from	the	input	diffusion	coefficient,	as	well	as	a	random	
direc&on	 in	 the	 xyz	 space	 for	 each	 par+cle.	 These	 values	 are	 used	 to	 simulate	 the	 mo1on	 of	 every	
par$cle	in	the	system	at	every	$me	step,	un$l	the	total	simula$on	$me	is	reached.	In	our	simula$ons	we	
used	a	'me	step	of	0.1	ms	and	a	 total	 simula'on	'me	of	2	 seconds.	Par'cles	every	15	steps	 (1.5	ms)	
were	then	paired	together	in	displacements,	the	results	were	benchmarked	against	the	microscopy	data.	

We	used	Smoldyn	to	generate	two	separate	datasets.	First,	we	simulated	the	mo8on	of	par8cles	using	
input	diffusion	coefficients	ranging	from	0.01	to	110	µm2/s	in	a	spherocylinder	having	length	and	width	
of	2.25	and	0.9	µm,	respec4vely,	as	these	reflect	the	average	cell	size	observed	in	our	previous	work	16.	
We	then	generated	a	second	dataset	using	 input	diffusion	coefficients	ranging	from	1	to	20	µm2/s	 in	a	
spherocylinder	with	a	length	ranging	from	1.4	to	2.9	µm	and	width	ranging	from	0.6	to	1.5	µm,	always	
keeping	 the	 ra,o	 between	 length	 and	 width	 higher	 than	 2	 and	 lower	 than	 4	 to	 reproduce	 actual	
dimensions	of	E.	coli.	

We	analyzed	the	output	of	our	simula/on	using	the	same	approach	adopted	for	SMdM	measurements	
and	compared	the	results	with	those	obtained	by	SbRD	(see	sec8on	SbRD	analysis).	The	equa*on	used	
for	simulated	data	does	not	account	for	linear	background	correc3on	(Eq.	12):	

𝑝 𝑟, 𝑡 =
2𝑟
4𝐷𝑡 𝑒

! !
!

!!"         𝐸𝑞. 12 	

More	informa+on	about	the	simula+ons	can	be	found	on	our	code	70.	
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SbRD analysis 

Simula'on-based	Reconstructed	Diffusion	 (SbRD)	was	applied	by	using	Smoldyn	 simula:ons	on	SMdM	
analyses.	A	collec,on	of	points	represen,ng	a	cell,	either	coming	from	a	Smoldyn	simula0on	or	from	a	
microscopy	experiment,	 is	analyzed	using	SMdM	(see	sec8on	SMdM	analysis).	This	analysis	provides	a	
pixel	map	of	 the	 cell,	 in	which	 for	 each	pixel	 the	diffusion	 coefficient,	 as	well	 as	 the	xy	 start	 and	end	
posi%ons	 of	 each	 displacement,	 are	 known.	 For	 microscopy	 measurements,	 the	 new	 cell	 clustering	
method	 allowed	 us	 to	 determine	 the	 length	 and	 radius	 of	 the	 spherocylinder	 in	 which	 the	 diffusing	
par$cles	are	confined,	which	could	be	modeled	in	Smoldyn.	 In	the	case	of	dividing	cells,	the	septum	is	
modeled	as	a	reflec,ng	wall	passing	through	the	intersec,on	points	of	the	two	billiards,	encompassing	
two	separate	cells,	and	parallel	 to	the	z	axis.	 In	the	case	of	data	 from	Smoldyn	simula6ons,	 the	 length	
and	 radius	 of	 the	 spherocylinder	 are	 known.	 These	 informa5on	 were	 then	 used	 to	 start	 a	 recursive	
simula'on	 in	Smoldyn	by	placing	a	number	of	par'cles	equal	 to	 the	number	of	displacements	 in	 their	
respec&ve	xy	 star%ng	posi%on	 inside	 the	pixel,	with	 the	 z	posi%on	 randomly	 assigned	 to	 each	par2cle	
inside	 the	 spherocylinder,	 which	 in	 the	 case	 of	 microscopy	 data	 was	 modeled	 as	 described	 in	 Cell	
clustering	and	detec.on.	A	simula*on	las*ng	for	1.5	ms,	with	simula*on	steps	of	0.1	ms	is	started,	using	
as	input	diffusion	coefficient	the	value	of	the	pixel	obtained	via	SMdM	(see	sec7on	Smoldyn	simula-ons).	
The	 output	 of	 this	 simula/on	 is	 then	 used	 to	 perform	 a	 fi4ng	 using	 equa/on	 11,	 with	 D	 as	 fi%ng	
parameter.	 The	 squared	 difference	 between	 the	 output	 diffusion	 obtained	 via	 simula,ons	 and	 the	
diffusion	 obtained	 via	 SMdM	 is	 then	 calculated.	 The	 program	 then	 recursively	 iterates	 the	 simula:on	
process	un*l	such	squared	difference	reaches	a	minimum.	The	input	diffusion	coefficient	used	to	obtain	
the	 output	 diffusion	 coefficient	 that	 minimizes	 the	 squared	 difference	 is	 then	 regarded	 as	 the	 real	
diffusion	coefficient	of	the	pixel.	This	process	is	then	repeated	10	8mes	for	each	pixel	to	account	for	the	
randomness	 introduced	by	Smoldyn	46	 in	 the	choice	of	 the	step	 length	and	the	direc/on	of	mo/on,	as	
well	as	 for	 the	randomness	 introduced	 in	 the	placing	 the	par4cle	along	 the	z-axis.	The	process	 is	 then	
repeated	for	every	pixel	of	the	original	SMdM	map,	from	which	an	SbRD	map	is	obtained.	The	pixel-by-
pixel	differences	between	 the	SbRD	map	and	 the	SMdM	map	are	used	 to	 construct	a	difference	map.	
More	informa+on	about	the	SbRD	analysis	can	be	found	on	our	code	70.	

	

Statistical  analysis 

All	sta's'cal	analyses	were	performed	using	the	Python	package	stats	from	the	SciPy	library	72.	Shapiro-
Wilk	test	for	normality	73	was	used	to	check	whether	the	data	are	normally	distributed,	using	a	level	of	
confidence	of	5%.	The	test	assumes	the	null	hypothesis	for	data	that	are	normally	distributed.	Therefore,	
if	the	obtained	p-value	is	lower	than	0.05	the	null	hypothesis	is	rejected	and	the	data	are	assumed	to	be	
non-normally	distributed.	Non-normally	distributed	datasets	are	visualized	via	kernel	density	es3ma3on.	

The	Mann-Whitney	U	rank	test	74	was	used	to	test	whether	the	means	of	two	non-normally	distributed	
datasets	 are	 equal.	 In	 the	 case	 of	 comparing	means	 of	 datasets,	 i.e.	when	 no	 prior	 assump.ons	 are	
made	and	no	precise	outcome	is	expected,	such	as	in	the	case	of	comparing	the	diffusion	coefficients	of	
cells	 treated	 with	 an.bio.cs,	 a	 two	 sided	 test	 was	 performed.	 In	 the	 case	 of	 comparing	 means	 of	
datasets	 in	 which	 a	 specific	 outcome	 was	 expected,	 such	 as	 in	 the	 case	 of	 comparing	 the	 diffusion	
coefficient	of	the	two	different	cell	poles,	a	one	sided	test	was	performed.	
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The	Wilcoxon	signed-rank	test	75	was	used	to	test	whether	the	median	of	a	dataset	coming	from	paired	
measurements	is	significantly	different	from	zero.	This	test	was	used	to	assess	whether	the	difference	in	
diffusion	between	the	new	cell	pole	and	the	old	cell	pole	was	significantly	higher	than	zero,	therefore	it	
was	conducted	as	a	one	sided	test.	Sta/s/cal	significance	in	pictures	are	indicated	with	1	asterisk	(*)	for	
p-value	<	0.05,	2	asterisks	(**)	for	p-value	<	0.01	and	3	asterisks	(***)	for	p-value	<	0.001.	
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