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Simulation-based Regularized Logistic
Regression

Robert B. Gramacy∗ and Nicholas G. Polson†

Abstract. In this paper, we develop a simulation-based framework for regu-
larized logistic regression, exploiting two novel results for scale mixtures of nor-
mals. By carefully choosing a hierarchical model for the likelihood by one type
of mixture, and implementing regularization with another, we obtain new MCMC
schemes with varying efficiency depending on the data type (binary v. binomial,
say) and the desired estimator (maximum likelihood, maximum a posteriori, poste-
rior mean). Advantages of our omnibus approach include flexibility, computational
efficiency, applicability in p À n settings, uncertainty estimates, variable selection,
and assessing the optimal degree of regularization. We compare our methodology
to modern alternatives on both synthetic and real data. An R package called
reglogit is available on CRAN.

Keywords: logistic regression, regularization, z–distributions, data augmentation,
classification, Gibbs sampling, lasso, variance-mean mixtures, Bayesian shrinkage.

1 Introduction

Large scale logistic regression has numerous modern day applications from text classifi-
cation to genetics. We develop a flexible framework for maximum likelihood, maximum
a posteriori, and full Bayesian posterior inference for regularized models. Our motiva-
tions stem from a desire to find common ground between point estimation in “large-p”
settings (Krishnapuram et al. 2005; Genkin et al. 2007), where p is the number of pre-
dictors, and full Bayesian inference for “small-p” (Holmes and Held 2006; Frühwirth-
Schnatter and Frühwirth 2007; Frühwirth-Schnatter et al. 2009; Fahrmeir et al. 2010;
Frühwirth-Schnatter and Frühwirth 2010). Collecting such distinct methods into a uni-
fying framework facilitates a number of novel enhancements including posterior inference
for the amount of regularization, and an efficient handling of binomial data.

We start by framing a typical regularized optimization criterion as a powered-up
posterior, or power-posterior (Friel and Pettitt 2008), with a shrinkage prior such as
the lasso (Tibshirani 1996). We then show how inference may proceed by employing
two (heretofore unrelated) data augmentation schemes: one for the powered-up logistic
likelihood; and the other for the prior. The combined effect is a fully Gibbs Markov
chain Monte Carlo (MCMC) sampler which, among other advantages, allows estimators
previously requiring custom algorithms to be calculated via a single simulated annealing
(Kirkpatrick et al. 1983) scheme.

Specifically, consider a set of binary responses, yi, encoded as ±1, regressed on p-
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dimensional predictors xi via the logistic model Pr(yi = ±1|xi, β) = (1 + e−yix
>
i β)−1,

for i = 1, . . . , n. When p is large it is paramount to infer β under regularization or
penalization. A common formulation (e.g., Genkin et al. 2007; Park and Hastie 2008)
involves finding regularized point-estimates β̂ under an Lα-norm penalty, where param-
eters σ2 = (σ2

1 , . . . , σ2
p) control the relative penalization applied to each predictor, and

> is a transpose operation

β̂ = argminβ

n∑

i=1

ln
(
1 + e−yix

>
i β

)
+ ν−α

p∑

j=1

∣∣∣∣
βj

σj

∣∣∣∣
α

, α > 0. (1)

The parameter ν dictates the amount of regularization, the relative pull (ν−1) or shrink-
age of the βj ’s towards zero. Depending on the choice of α, a number of algorithms
have been proposed to solve for β̂. For example, Madigan and Ridgeway (2004) discuss
how the Least Angle Regression algorithm (LARS) can be useful as a subroutine for
the popular case of α = 1. It is typical to work with xi pre-scaled to have unit L2-norm
with σ1 = · · ·σp = 1 so that inference for β is equivariant under a re-scaling of the
covariates. We follow this convention in application but develop much of the discussion
in the general case for completeness. The special setting σ2

j = ∞ indicates no shrinkage
for βj . At least max{0, p − n} of the σ2

j ’s must be finite to obtain stable estimators.
If there is an intercept in the model, denoted by β0, then it is common practice to set
σ2

0 = ∞. Throughout we begin the j–indexing at j = 1, ignoring the 0th term for
simplicity.

Our approach offers a fully probabilistic alternative by viewing the objective func-
tion (1) as a log posterior distribution whose maximum a posteriori (MAP) estimator
coincides with β̂. A multiplicity parameter κ can then be introduced to help find the
MAP via simulation. Our key insight, which makes the simulation efficient, is that
the logistic likelihood component of the posterior can be written hierarchically using
z–distributions (Barndorff-Nielsen et al. 1982), leading to a data augmentation scheme
that generalizes that of Holmes and Held (2006) [HH hereafter]. Combining this with
a standard data augmentation for the prior yields a highly blocked Gibbs MCMC al-
gorithm for logistic regression. Z-distributions also suggest a new representation of the
likelihood that is equivalent (to HH) but requires n fewer latent variables. Finally, we
recognize that κ has a secondary use for binomial data (multiple y observed for each x)
which otherwise would require more latent variables.

A distinctive feature of our framework is how it deals with the amount of regular-
ization, ν, which is traditionally chosen by cross validation (CV). As an alternative,
we may extend the hierarchical model to include a prior for ν so that the marginal
likelihood can be computed and used to set ν = ν̂, or to integrate ν out. Posterior
expectations, thus obtained, can give superior point–estimators for β in large-p linear
regression contexts (Hans 2009), and we show how this extends to logistic regression.

The rest of the paper is outlined as follows. Section 2 provides our data augmenta-
tion strategies for sparse high dimensional logistic regression, and Section 3 develops an
MCMC scheme for estimation. Section 4 illustrates our approach with empirical com-
parisons to modern competitors. Finally, Section 5 concludes with simple extensions



R. B. Gramacy and N. G. Polson 569

and directions for future research. A supporting R package, reglogit, is available on
CRAN.

2 Regularized logistic regression via power-posteriors

The central problem is to find the MLE, MAP, or posterior mean estimator in logistic
regression. To do this, consider the following power-posterior distribution inspired by
Eq. (1):

πκ,α(β|y, ν, σ2) = Cκ,α(ν) exp



−κ




n∑

i=1

ln
(
1 + e−yix

>
i β

)
+ ν−α

p∑

j=1

∣∣∣∣
βj

σj

∣∣∣∣
α





 . (2)

The placement of κ and α as subscripts in πκ,α and Cκ,α(ν), a normalization factor,
signals that these are user specified, not parameters to be estimated. The α setting
indicates the type of Lα regularization, e.g., L1 for absolute, and L2 for quadratic.
The multiplicity (or thermodynamic) parameter κ, is a tool borrowed from the power-
posterior and simulated annealing literature (see, e.g., Pincus 1968; Kirkpatrick et al.
1983; Doucet et al. 2002; Jacquier et al. 2007; Friel and Pettitt 2008), that facilitates
several types of simulation based inference, as we shall describe.

Power-posterior analysis can be helpful for calculating modes and posterior means
from complex optimization criteria, and marginal likelihoods for Bayesian estimators.
Larger values of κ cause the density to concentrate near the modes, whereas small
κ distributes it away from the modes, in the troughs. This motivates two types of
estimators. First, Eκ,α{β|y, σ2, ν} can be estimated for choices of ν by allowing κ to
vary as in simulated annealing. When ν = 0 the estimator converges to the MLE as
κ →∞. When ν > 0, it converges to a posterior mode, or equivalently the regularized
estimator, β̂ solving Eq. (1). Furthermore, setting κ = 1 yields the posterior mean
estimator. Second, we recognize that κ can be used to obtain an efficient computational
framework for binomial regression, where multiple binary responses are recorded for
each predictor. In what immediately follows, we regard κ as fixed—a further discussion
is deferred to Section 3.

Observe that the likelihood–prior combination below yields Eq. (2) via Bayes’ rule.

Lκ(y|β) = e
−κ

∑n
i=1 ln

(
1+e−yix>

i
β

)

=
n∏

i=1

(
1 + e−yix

>
i β

)−κ

(3)

pκ,α(β|ν, σ2) ∝ exp


−κν−α

p∑

j=1

|βj/σj |α

 =

p∏

j=1

exp
{
−κ
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βj

νσj

∣∣∣∣
α}

.

The following subsections provide data augmentation schemes for this likelihood and
prior. They primarily concentrate on the α = 1 case, i.e., the double–exponential or
lasso prior, although results are developed in generality when possible. Section 5 briefly
touches on the simpler α = 2 case.
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2.1 Hierarchical representation of the logistic

Extending a well-known technique for generating logistic regression (e.g., Andrews and
Mallows 1974; Holmes and Held 2006), we represent the powered-up likelihood (3) for β
as a marginal quantity obtained after integrating over latent variables (z, λ), where z =
(z1, . . . , zn) and λ = (λ1, . . . , λn). That is, each element of the product of independent
logistic terms can be written as a two-dimensional integral:

Lκ(y|β) =
n∏

i=1

∫ ∞

0

∫ ∞

0

pκ(zi|β, λi, yi)pκ(λi) dλi dzi. (4)

This suggests a hierarchical representation in terms of latent variables, zi for each yi,
mixed over λi. It remains to determine the appropriate form of pκ(zi|β, λi, yi) and
pκ(λi) so that (1 + e−yix

>
i β)−κ =

∫ ∫
pκ(zi|β, λi, yi)pκ(λi) dλi dzi.1

Our key result, generalizing HH, relies on a scale mixture representation of z–
distributions (Barndorff-Nielsen et al. 1982). These are characterized by their pdf as:

Z(z; a, b, σ, µ) ≡ fZ(z|a, b, σ, µ) =
1

σB(a, b)
ea(z−µ)/σ

(1 + e(z−µ)/σ)a+b
(5)

=
∫ ∞

0

1√
2πλσ2

exp

{
− 1

2λσ2

(
z − µ− 1

2
(a− b)λσ

)2
}

qa,b(λ) dλ

where qa,b(λ) is a Polya distribution, i.e., an infinite sum of exponentials:

qa,b(λ) =
∞∑

k=0

wke−
1
2 ψkλ where ψk = (a + k)(b + k), (6)

and the weights wk are determined via δ = (a + b)/2 and θ = (a− b)/2 as

wk =
(−2δ

k

)
(δ + k)

B(δ + θ, δ − θ)
=

(−1)k(2δ) . . . (2δ + k − 1)
k!

(δ + k)
B(δ + θ, δ − θ)

. (7)

This prior has a simple generative form:

λ
D=

∞∑

k=0

2ψ−1
k εk, where εk ∼ Exp(1). (8)

Then, each component (1 + eyx>β)−κ of the likelihood (dropping i subscripts) can be
written as the cumulative distribution function (cdf) evaluation (at zero) of a particular
z–distribution.

1The notation reserves π(·) for the marginal posterior β as a visual queue for the quantity of primary
interest. All other probability densities use p(·), including the joint for latent (z, λ) and all priors.
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Theorem 2.1. The (powered up) logistic function may be represented as follows.

(
1 + e−yx>β

)−κ

= (9)
∫ ∞

0

∫ ∞

0

1√
2πλ

exp

{
− 1

2λ

(
z − yx>β − 1

2
(1− κ)λ

)2
}

q1,κ(λ) dλdz.

Proof. If z ∼ Z(1, κ, 1, yx>β), then FZ(z) = 1 − (1 + ez−yx>β)−κ, giving 1 − FZ(0) =
(1 + e−yx>β)−κ. In other words,

(
1 + e−yx>β

)−κ

=
∫ ∞

0

Z(z; 1, κ, 1, yx>β) dz, (10)

establishing the outer integration, over z, in Eq. (9). Applying the representation in
Eq. (5) yields the desired result. QED.

The statistical implication of this is a hierarchical model which we summarize in the
following corollary.

Corollary 2.2. The conditional distribution pκ(zi|β, λi, yi) and the mixing distribution
q1,κ(λi) imply that the latent zi follow

pκ(zi|β, λi, yi) ≡ N+

(
yix

>
i β +

1
2
(1− κ)λi, λi

)
, (11)

where N+ is the normal distribution truncated to the positive real line.

In more compact notation, z|β, λ, y ∼ N+
n ((y.X)β + 1

2 (1 − κ)λ,Λ), where y =
(y1, . . . , yn)>, y.X = diag(y)X, Λ = diag(λ1, . . . , λn), and the truncation is to the
all-positive orthant. Observe that, when κ = 1, the above formulation is identical to
the generative model described by HH. Given predictors xi and regression coefficients
β, generate yi ∈ {−1, +1} as yi = sign(zi), where

zi ∼ N (x>i β, λi) and λi =
∞∑

k=1

2
(1 + k)2

εk, εk
iid∼ Exp(1). (12)

When κ > 1, the asymmetry of the z–distribution makes it harder to extract yi from
yix

>
i β + 1

2 (1 − κ)λi, the mean of the truncated normal in Eq. (11). In Section 3.3,
we indirectly suggest that one can interpret κyi as a binomial response when κ is an
integer.

An alternative z–representation:

Theorem 2.1 shows how components of the powered-up logistic likelihood can be repre-
sented hierarchically by the cdf of z–distributions. We therefore call that multiplicity
extension to HH the cdf representation. However, further inspection reveals that it is
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possible to eliminate an integral in Eq. (4) and thus n latent variables, and use the
representation

(1 + ezi−µi)−κ ≡ Z(zi; a = 0, b = κ, 1, µi)

=
∫ ∞

0

1√
2πλi

exp

{
− 1

2λi

(
zi − µi +

1
2
κλi

)2
}

q0,κ(λi) dλi

which avoids integrating over zi. Instead, set them to zero (and µi = yix
>
i β) and

directly obtain (1+eyix
>
i β)−κ. By analogy, we call this a pdf representation as it involves

evaluating a particular z-density function. This simple representation is problematic,
however, since the Polya mixing density q0,κ is improper. In particular, note that ψ0 = 0,
resulting in a infinite weight in the generative formulation (8).

Fortunately, a similar representation may be generated

(1 + e−µ)−κ ≡ Z(z; a, b, 1, µ)
∣∣∣
z=0

(13)

= eaµ

∫ ∞

0

1√
2πλ

exp

{
− 1

2λ

(
−µ− 1

2
(a− b)λ

)2
}

qa,b(λ) dλ

which involves a proper Polya mixing density as long as (a, b) > 0 and a + b = κ. In
Sections 3.1 and 4, we show how the extra eaµ ≡ eayix

>
i β poses no problem for efficient

inference, and that (a = 1
2 , b = κ− 1

2 ) works well in practice. But first, we complete the
power-posterior specification with a family of regularization priors on β.

2.2 Prior regularization

Regularization is achieved via a family of priors, pκ,α(β|ν, σ2), implementing the Lα-
norm via the decomposition pκ,α(βj |ν, σ2) =

∫
pκ,α(βj |ωj , ν, σ2)pα(ωj) dωj , following

Carlin and Polson (1991) and Park and Casella (2008) in regularized (Bayesian) linear
regression context. The idea is that, given βj = ν

κ1/α σj
√

ωjεj and εj
iid∼ N (0, 1), small

ν (i.e., heavy regularization) and large κ (i.e., heavy concentration of power-posterior
density around the mode at the origin) both shrink βj towards zero. We provide pα(ω)
yielding the desired regularization penalty which, after unpacking factors from Cκ,α(ν)
in Eq. (3), is

pκ,α(β|ν, σ2) =
p∏

j=1

pκ,α(βj |ν, σ2
j ) ∝ ν−pκ exp


−κ

p∑

j=1

∣∣∣∣
βj

νσj

∣∣∣∣
α

 . (14)

Box and Tiao (1973) provide a general discussion of (14) in the linear regression context.
Some notable special cases in the recent literature on sparse logistic regression include
the following: when ν = 1, α = 1, and σj = λj it is the Laplace prior used in Genkin
et al. (2007); when α = 2, σj = 1 and ν = σ2 it is the Gaussian prior, and when
α = 2, σj = 1 and ν−1 = λ it is the Laplace prior from Krishnapuram et al. (2005).2

2The λj and λ variables correspond to the shrinkage parameters so named in our references. They
should not be confused with the latent λi used in our hierarchical likelihood representation.
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Inference for ν in these cases typically proceeds by CV, or by inspecting the paths of β̂ν

solutions for varying ν. Assessing the uncertainty in estimators β̂ν̂ on the final choice
of ν̂ can pose difficulties.

Power posterior analysis offers an intriguing third option by providing the potential
for tractable marginalization over prior uncertainty ν ∼ pκ,α(ν). Two particular choices
in the α = 1 case lead to efficient inference by Gibbs sampling [Section 3.1]. One
option is an inverse gamma (IG) prior for ν2 with shape rκ = κ(r + 1) − 1 and scale
dκ = κd, where κ = 1 yields a base case IG(ν2; r, d) prior. The second option is IG for
ν, with identical powering-up identities. It has lighter tails in ν−1, thus providing more
aggressive shrinkage.

The prior in Eq. (14)—for the purposes of efficient inference [Section 3]—is an adap-
tation of a scale mixture of normals result from West (1987) to account for κ. Specifi-
cally,

pκ,α(βj |ν, σ2
j ) =

∫

<+

N
(

βj ; 0, ωj ·
ν2σ2

j

κ2/α

)
pα(ωj) dωj , (15)

where pα(ωj) ∝ ω
− 3

2
j St+α

2
(ω−1

j ) and St+α/2 is the density function of a positive stable
random variable of index α/2. In compact notation, β|σ2, ω, ν, κ ∼ Np(0, ν2/κ2/αΣΩ)
where Σ = diag(σ2

1 , . . . , σ2
p) and Ω = diag(ω1, . . . , ωp). An important corollary, obtained

by adapting an Andrews and Mallows (1974) result, is that if α = 1, ωj
iid∼ Exp(2), and

σj = 1 for j = 1, . . . , p then pκ(β|ν) is double exponential (Laplace) with a mean zero
and scale ν2/κ2.

3 Simulation-based logistic regression

We develop a Gibbs sampling algorithm [Section 3.2] for sampling the augmented power-
posterior pκ(β, z, ω, λ, ν|y, σ2), for any κ. We first derive the relevant posterior condi-
tionals [Section 3.1], treating cdf and pdf representations in turn. When κ = 1 the
marginal samples of β summarize the posterior distribution of the main parameters of
interest. Obtaining the MAP or MLE requires an inhomogeneous Markov chain [Section
3.2]. Finally, we describe how a vectorized κ can facilitate efficient Bayesian binomial
regression [Section 3.3].

3.1 Posterior conditionals

To begin, consider the latent z and λ variables in the cdf and pdf representations, in
turn, followed by the coefficients β and corresponding regularization prior parameters
(ω, ν).
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Latent likelihood parameters (z, λ)

By construction [Eq. (11) of Corollary 2.2], the posterior full conditional for the la-
tents, pκ(zi|β, λi, yi), is a truncated (non-negative) normal distribution. Obtaining
samples, independently for i = 1, . . . , n, is straightforward following the methods of
Robert (1995).

Sampling from the full conditional pκ(λi|β, zi, yi) is complicated by the infinite sum
in the expression for the prior (6), which precludes a näıve approach via truncation
since certain combinations of λi and b ≡ κ can give highly inaccurate, even negative,
evaluations. HH derive an expression for this conditional when κ = 1 and provide
a rejection sampling algorithm by squeezing (Devroye 1986). Although adaptable for
general κ, we prefer a Rao–Blackwellized approach. Interchanging the order of inte-
gration in Eq. (9) suggests a corollary to Theorem 2.1 that is helpful in constructing a
Metropolis–Hastings (MH) scheme for obtaining λi draws.

Corollary 3.1. The following is an alternate integral representation of the logistic
function

exp
{
−κ ln

(
1 + e−yix

>
i β

)}
=

∫ ∞

0

Φ

(
−yix

>
i β − 1

2 (1− κ)λi√
λi

)
q1,κ(λi)dλi,

where Φ is the cdf of the standard normal distribution.

Proposals λ′i ∼ q1,κ(λ) can then be accepted via MH with probability min{1, Ai} where

Ai =
Φ{(−yix

>
i β − 1

2 (1− κ)λ′i)/
√

λ′i}
Φ{(−yix>i β − 1

2 (1− κ)λi)/
√

λi}
. (16)

Good proposals may be obtained by truncating the sum in Eq. (8) at K = 100 for
κ = b = 1, with improvements for larger κ. Direct sampling is also possible (e.g., Weron
1996).

Empirically, the MH acceptance rate is high (> 90%) for κ = 1 because the poste-
rior is similar to the prior (q1,1). Therefore the MH scheme may be preferable to the
rejection/squeezing method of HH who report acceptance rates as low as 25%. Both
rates decline as κ is increased, but the MH rate is still above 1% for κ = 20. A good
rule of thumb is to thin dκe draws for each draw saved, which is reasonable from a
computational standpoint as sampling from qa,b is fast. Even when thinning more than
10-fold, the MH sampler is competitive to HH/Devroye in terms of sheer speed. The
MH requires two Φ evaluations, a few arithmetic operations, and two square roots.
HH/Devroye, by contrast, can perform dozens (or more) expensive operations such as
pow before the squeeze is made. Finally, drawing λi unconditional on zi yields lower
autocorrelation in the overall joint MCMC sampling scheme.

The pdf representation is simpler since zi is set to zero. Proposed λ′i ∼ qa,b may be
accepted or rejected via MH by exchanging a cdf for a pdf in Eq. (16) and replacing
1
2 (1 − κ) with 1

2 (a − b). Another feature that works well for the pdf representation
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is an adaptation of the slice sampler of Godsill (2000). Given λi, the next sample
λ′i may be obtained via an auxiliary uniform random variable as follows. Let φi ≡
φ{(−yix

>
i β + 1

2 (a − b)λi)/
√

λi}, where φ is the pdf of a standard normal distribution.
Then sample

u|λi, xi, yi, β ∼ U [0, φi], followed by λ′i|u, xi, yi, β ∼ qa,b(λ′i)I{φ′i>u}, (17)

where the second step is facilitated by accept/rejects following random draws from the
Polya mixing density. Although more automatic in that it does not require thinning,
we show in Section 4.2 that the MH scheme is faster overall. The two methods behave
similarly when κ gets large, causing the rate of rejections/required thinning to increase.

Regularized regression coefficient parameters (β, ω, ν)

In the cdf representation, the multivariate normal priors for z [Section 2.1] and β [Section
2.2] combine to give β|z, ω, λ, ν, κ ∼ Np(β̃, V ) with hyperparameters

β̃ = V (y.X)>Λ−1

(
z − 1

2
(1− κ)λ

)
, and

V −1 = (ν/κ1/α)−2Σ−1Ω−1 + (y.X)>Λ−1(y.X).

Obtaining V from V −1 is generally O(p3), which represents a significant computational
burden in the p À n context. By employing the Sherman–Morrison–Woodbury formula
(e.g., Bernstein 2005, pp. 67), it is possible to use an O(n3) operation instead, which
could represent significant savings. In the pdf representation a similar combination
of regularization penalties and likelihoods gives an identical V −1 expression, but a
new β̃ = (a − 1

2 [a − b])V X>y [see Appendix 5]. Choosing (a = 1
2 , b = κ − 1

2 ) gives
β̃ = κ

2 V X>y, a particularly simple expression that may be used for κ > 1
2 . It is

interesting to observe that the parameters (λ, ω, ν) only enter into the conditional for
β through V in the pdf representation.

The full conditional distribution of each latent ωj is proportional to the integrand
of Eq. (15). When α = 1 we have the following adaptation of a standard result.

Corollary 3.2. For α = 1, the full conditional distribution of the reciprocal of ω−1
j

follows an inverse Gaussian distribution: ω−1
j |βj , ν, κ ∼ IN( ν

κ |
βj

σj
|−1, 1).

Proof. From the integrand in Eq. (15) with α = 1 we have

pκ(ωj |βj , ν) ∝ 1√
2πωj

exp

{
−1

2

(
κ2β2

j

ν2σ2
j ωj

+ ωi

)}
≡ GIG

(
ωj ;

1
2
, 1,

κ2β2
j

ν2σ2
j

)
,

implying that ω−1
j ∼ IN

(
ν
κ

∣∣∣βj

σj

∣∣∣ , 1
)
. [See Appendix 5 for IN/GIG definitions]. QED.

Our IG priors for ν are both conditionally conjugate. An IG prior for ν2 and the
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representation in Eq. (15) gives

ν2|β, ω, κ ∼ IG


rκ +

κp

2
, dκ +

κ2

2

p∑

j=1

β2
j

σ2
j ωj


 .

An IG prior for ν leads to efficiency gains (in addition to better tail properties) since
there is no conditioning on ω. Using Eq. (14) directly then gives

ν|β, κ ∼ IG


rκ + κp, dκ + κ

p∑

j=1

∣∣∣∣
βj

σj

∣∣∣∣


 ,

extending the analysis of Park and Casella (2008).

3.2 Gibbs sampling and annealing for point estimators

A full Gibbs sampling algorithm for both cdf and pdf representations is outlined in
Figure 1. For compactness, variations with slice sampling for λ [in the pdf case] or a
prior on ν2 are not shown. The former requires replacing each iteration of step 2 by the
method surrounding Eq. (17). The latter requires drawing

ν2(s) ∼ IG


rκ +

κp

2
, dκ +

κ2

2

p∑

j=1

β
2(s)
j

σ2
j ω

(s)
j




in step 5 and specification of ν2(0) on input. Initial latent ωj values are not required.

The samples obtained may be used to approximate expectations under the power-
posterior distribution with multiplicity κ. If κ = 1 then these are samples from a well-
defined posterior distribution which may be used, e.g., to approximate the posterior
mean of β or provide samples from the posterior predictive distribution. Both take the
full uncertainties of all parameters (including ν) into account—a feature unique to full
Bayesian analysis.

Settings of κ > 0 are useful for finding other popular estimators via simulated
annealing (SA). In our context, SA establishes an inhomogeneous Markov chain over a
sequence of power-posteriors, starting with κ = 1 and then increasing according to a pre-
determined schedule. Except when Gibbs sampling is possible for all κ (as for our power-
posterior), it is usually difficult to ensure that the Markov chain mixes well, particularly
when κ increases. A pragmatic approach starts at κ ≈ 1, and systematically makes
modest increases in κ until Monte Carlo variation in the power-posterior expectations of
the quantities of interest is below a pre-determined threshold. Each annealing iteration
is initialized with the last value β(S), ν(S), λ(S) and z(S), from the previous iteration,
thereby stitching the inhomogeneous Markov chains together. The chain for each κ
must have enough iterations to establish convergence to its particular power-posterior.

Annealed procedures such as ours present an MCMC alternative to EM-style algo-
rithms. Importantly, SA is known to converge to the global optima in certain conditions
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Inputs:

� Data: n× p response-multiplied design matrix y.X

� Settings: multiplicity κ > 0; scale factors σ1, . . . , σp where Σ = diag(σ2
1 , . . . , σ2

p);
representation type R ∈ {cdf, pdf}; Polya parameters (a, b) where (a = 1, b = κ)
if R = cdf or (a, b) > 0 and a + b = κ, otherwise; prior parameters (rκ, dκ) > 0;
sample size S

� Initial values: β(0) = (β
(0)
1 , . . . , β

(0)
p )>, ν(0), latents Λ(0) = diag(λ

(0)
1 , . . . , λ

(0)
n ), and

if R = cdf also include latents z(0) = (z
(0)
1 , . . . , z

(0)
n )>

Gibbs sampling, for iterations s = 1, . . . , S:

1. For j = 1, . . . , p take ω−1
j ∼ IN

(
ν(s−1)

κ

∣∣∣∣
β
(s−1)
j

σj

∣∣∣∣
−1

, 1

)
, and let Ω(s) =

diag(ω
(s)
1 , . . . , ω

(s)
p )

2. For i = 1, . . . , n do the following depending on the representation R:

� propose λ′i ∼ qa,b approximately via (8) as λ′i =
∑K

k=1
2εk

(a+k)(b+k)
, where

εk
iid∼ Exp(1) and K large

� draw u ∼ Unif(0, 1) and if u < Ai where

Ai =





Φ{(−yix>i β(s−1)− 1
2 (1−κ)λ′i)/

√
λ′

i}
Φ

{
(−yix>

i
β(s−1)− 1

2 (1−κ)λ
(s−1)
i

)/

√
λ
(s−1)
i

} if R = cdf

φ{(−yix>i β(s−1)− 1
2 (1−κ)λ′i)/

√
λ′

i}
φ

{
(−yix>

i
β(s−1)− 1

2 (a−b)λ
(s−1)
i

)/

√
λ
(s−1)
i

} otherwise

then take λ
(s)
i = λ′i, or take λ

(s)
i = λ

(s−1)
i otherwise.

Then let Λ(s) = diag(λ
(s)
1 , . . . , λ

(s)
p ) and λ(s) = (λ

(s)
1 , . . . , λ

(s)
p )>

3. If R = cdf then for i = 1, . . . , n draw z
(s)
i ∼ N+

(
yix

>
i β(s−1) + 1

2
(1− κ)λ

(s)
i , λ

(s)
i

)
,

and collect them as z(s) = (z
(s)
1 , . . . , z

(s)
n )>

4. � Calculate V −1(s) = (ν(s)/κ)−2Σ−1Ω−1(s) + (y.X)>Λ−1(s)(y.X). If R = cdf

then calculate β̃ = V (s)(y.X)>Λ−1(s)
(
z(s) − 1

2
(1− κ)λ(s)

)
, otherwise β̃(s) =

(a− 1
2
[a− b])V (s)X>y

� Draw β(s) ∼ Np(β̃(s), V (s))

5. Draw ν(s) ∼ IG

(
rκ + κp, dκ + κ

∑p
j=1

∣∣∣∣
β
(s)
j

σj

∣∣∣∣
)

Output: {β(s)}S
s=1, {ν(s)}S

s=1, latents {λ(s)}S
s=1, and if R = cdf also include latents

{z(s)}S
s=1

Figure 1: Pseudocode for simulation based regularized logistic regression.



578 Simulation-based Regularized Logistic Regression

(when κ → ∞), whereas EM is only guaranteed to find a local optima. Although con-
vergence for EM is usually quick, there are no guarantees that it will be so and indeed
there are examples, particularly in high dimensional settings, where convergence can
be arbitrarily slow. SA however, comes with the burden of choosing the schedule for
increasing κ. We have found that for our regularized logistic regression scheme, conver-
gence is fast and mixing so good that short schedules such as κ = 1, 5, 10, 20 are a safe
default [see Section 4]. Even jumping immediately to modest κ (≈ 20), skipping κ = 1,
can very often yield cheap and accurate approximations.

But perhaps the most noteworthy difference between our simulation approach and
previous methods (like EM) is the myriad of options (beyond CV) for inferring ν. One
option, in the classical context, is to use annealing to find the joint mode of (β, ν).
Another option is to first use samples from the posterior marginal p(ν|X, y) to estimate
the posterior mean ν̂ = E{ν|X, y}, and then proceed to estimate β̂ = Eκ{β|ν̂, X, y} as
before. In Figure 1 this would be facilitated by inputting ν(0) = ν̂ and replacing step 5
with ν(s) = ν(s−1). Our experience is that the former works well for small p problems,
and the latter for large p. When p is large, the joint prior for (β, ν) dominates near the
posterior mode of ν, which tends to zero and yields β̂ = 0, which is not helpful. The
marginal posterior mean is far less sensitive to the regularization prior, and represents
a more convenient choice for large p applications. In Section 4.4 we provide an example
where the joint mode is easy to find with a few dozen predictors, whereas an interaction
expanded version using thousands requires more care.

3.3 Efficient handling of binomial data

Another advantage of our approach is the extension to binomial data, where binary
responses are collected repeatedly and independently, ni times for subjects with the
same covariates xi. Contingency tables are one important example. A typical (un-
regularized) logistic regression model is yi|xi ∼ Bin(ni, µi), where µi = eηi/(1+eηi) and
ηi is linear in xi. One way to situate such data within this article’s regularized logistic
regression framework is to flatten it, so that ni components appear in the likelihood for
each subject i:

∏ni

j=1(1 + e−yijx>i β)κ, using the binary encoding yij ∈ {−1, 1} giving∑ni

j=1 |yij | = ni. This allows inference to proceed as described in Section 3, but it can
lead to an inefficient MCMC scheme if the ni are large due to the ni latents required
for each i. It turns out that it is possible to use only two latents for each i, echoing a
feature of methods described by Frühwirth-Schnatter et al. (2009).

Observe that the component of the likelihood for subject i may be equivalently writ-
ten with just two terms as (1+e−x>i β)κyi(1+ex>i β)κ(ni−yi), which is proportional to the
ith component of a typical binomial likelihood with logit link. Hence the full likelihood,
with m unique subjects, can be written as

∏m
i=1(1 + e−x>i β)κi+(1 + ex>i β)κi− , where

κi+ = κyi and κi− = κ(ni − yi). This is identical to a z–distribution representation of
the logistic likelihood with 2m terms, which may be much less than the

∑m
i=1 ni pro-

duced by flattening. The first m terms use response “data” y′i = +1 with multiplicity
parameter κi+, and the second m terms use y′i = −1 with κi−. A multiplicity imple-
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mentation is therefore facilitated by forming vectors y′ and κ′, each of length n = 2m,
and using

∏n
i=1(1 + e−y′ix

>
i β)κ′i .

The MCMC scheme proceeds as in Section 3 by vectorization. For example, steps 2
and 3 for zi and λi would use κ′i instead of κ. For β in step 4 with (a = 0.5, b = κ−0.5)
say, replace κ1n with the κ′ vector in the expression for β̃. Terms can be eliminated
from the likelihood, thus eliminating the corresponding latents, where κ′i = 0, as is the
case when yi ∈ {0, ni}. The original, scalar, κ is used for the conditionals corresponding
to the parameters of the prior. For example, the posterior conditional covariance V of
β is unchanged.

4 Applications

4.1 Pima Indian data

The Pima Indian diabetes data [UCI Machine Learning Repository (Asuncion and New-
man 2007)] includes outcomes for diabetes tests performed on n = 768 women of Pima
heritage with 8 real-valued predictors. Some of the predictors have many zeros, which
may reasonably be interpreted as “missing” values. To remain consistent with the
treatment of this data by HH, and other authors, we do not treat these values in any
special way. The following analysis highlights properties of regularized estimators of
β = (β0 ≡ µ, β1, . . . , β8) obtained with α = 1, σj = 1 for j = 1, . . . , 8, and T = 1000
samples from the resulting posterior (the first 100 as burn-in).
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Figure 2: Power-posteriors for the Pima Indian data: ν = 6, κ ∈ {1, 5, 20}.

Figure 2 summarizes the marginal power posterior(s) for β with boxplots. Three
settings of κ ∈ {1, 5, 20} (each panel) were used, and heavy regularization (fixing ν = 6)
was applied. Only the first panel (κ = 1) summarizes samples from the true posterior.
The κ > 1 settings are useful for obtaining other estimators. The MLE, obtained from
the glm command in R (R Development Core Team 2009), and the MAP as estimated
from the sample(s), are also shown. Shrinkage is apparent in the divergence between the
MAP and MLE values in all panels. Observe how the quartiles and outliers converge on
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the MAP as κ is increased, reflecting higher precision Monte Carlo estimates of those
values. Convergence is particularly rapid for the intercept term, and the two coefficients
with considerable mass near zero (β4 and β5). These columns of X have the highest
concentration of “missing” values (30% and 49% respectively), so it is not surprising
that the MAP estimator excludes them.
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Figure 3: Illustrating the concentration of posterior mass of β2 and β4 on the Pima
Indian data for κ ∈ {1, 5, 10, 20}.

Figure 3 illustrates how mass concentrates on the MAP in two disparate cases for
varying values of κ. For β2 (left panel), which is decidedly non-zero in the power
posterior(s), the convergence to the MAP (apparently around β2 = 15) is modest. In
the case of β4 (right panel) the convergence to the MAP (to zero) is more rapid as κ is
increased, allowing for confident variable de-selection in a way similar to the lasso for
linear regression.

Finally, we consider the case where ν is also inferred by MCMC, jointly with the
other parameters in the model. We use the IG prior on ν with (r = 2, d = 0.1), a typical
default choice for linear regression (e.g., Gramacy and Pantaleo 2010). Figure 4 shows
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Figure 4: Concentration of posterior mass of ν on the Pima Indian data for κ ∈
{1, 5, 10, 20}. The histogram extends to ν = 100 when κ = 1, but the figure is trimmed.
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the marginal posterior for ν under our settings of κ. The rate of convergence is modest,
with the spread of samples in the κ = 20 case being only half that of the κ = 1 case.

4.2 Comparing cdf and pdf representations on binomial data

To illustrate the efficient handling of binomial data and, simultaneously, to compare the
cdf and pdf representations, consider the following simple binomial logistic regression
problem. The true linear predictor is ηi = 1+x>i β where β = (2,−3, 2,−4, 0, 0, 0, 0, 0)>,
and the p = 9 dimensional xi are uniform in [0, 1]p. The responses, yi ∈ {0, . . . , ni}, are
sampled with yi|xi ∼ Bin(ni, µi) where ni = 20 and µi = eηi/(1 + eηi).

RMSE (sd)
flat multi

cdf 0.2117 (0.0602) 0.2120 (0.0606)
pdf 0.2119 (0.0613) 0.2121 (0.0602)

time (sd)
flat multi

cdf 570.4 (37.8) 64.6 (0.82)
pdf 570.2 (28.7) 64.4 (0.99)

Table 1: Comparing RMSEs (left) and timings in seconds (right) of cdf and pdf repre-
sentations and flattened/multiplicity treatments of binomial regression modeling.

Table 1 compares four different implementations of regularized binomial logistic
regression (α = 1) based on the output of 100 repeated experiments with

∑
ni = 2000

(i.e., m = 100 distinct xi predictors). The metrics for comparison are root mean squared
error (RMSE) between the true and posterior mean βs, and overall computing time
of the respective MCMC samplers. In all cases, we use T = 1000 MCMC rounds
with MH sampling of λi at thinning level(s) set by κ′ (i.e., via κ′i for each λi) as
described in Section 3.1. The first 100 rounds were discarded as burn-in. The left table
shows that there is no significant difference between the cdf and pdf representations, or
between the flattened or multiplicity handling of binomial data, in terms of RMSE. The
right table portrays a more interesting story in terms of CPU times. The many fewer
latent variables needed by the multiplicity implementation leads to a much (9x) faster
execution compared to flattening, with no cost in accuracy (via RMSE). In contrast,
there is no speed gain to using n fewer latent zi variables in the pdf representation.
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Figure 5: Comparing MH (left) and slice (right) samplers for a λi in the pdf represen-
tation.

Figure 5 illuminates the differences in behavior between the MH and slice sampler
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for the λi draws (in the pdf representation). A particularly “sticky” case, as chosen from
output of the experiment, had κ′i = 14. The left panel shows that many proposals from
qa,b can be rejected under the MH ratio, even when the chain is automatically thinned.
The right panel shows the chain obtained for the same λi under the slice sampler,
which never saves any rejected draws. However, this comes at the expense of many
rejections in the inner–loop of the slice, resulting in a slow overall sampler. The median
was four, but the mean was 81 owing to a heavy right-hand tail in the distribution of
rejections whose central 95% quantile spanned to 114 and maximum reached 140,600.
The overall MCMC scheme based on the slice sampler took four times longer than the
one based on MH. Despite the absence of rejections, the mixing in slice sampler chain
(assessed visually) was no better than MH. Indeed, their effective sample size due to
autocorrelation (Kass et al. 1998) was nearly identical: 223 for slice sampling, and 221
for MH. Therefore, MH is recommended for speed considerations.

4.3 A simulated p À n experiment

We turn now to a predictive comparison of the methods of this paper, both fully Bayesian
and full/joint MAP (including ν), benchmarked against other modern approaches to
regularized logistic regression. Consider a synthetic data experiment like the one in
Section 4.2 except: ni = 5 for each of 20 unique predictors xi, so that

∑
ni = 100.

Three variations on the data-generating β vectors were used. In the first case p = 9
and β = (2,−3, 0.74,−0.9, 0, 0, 0, 0)>; in the second case p = 100, augmenting β from
the first case with 91 more zeros; and in the third p = 1000 with 900 more zeros still.
Each experiment involves a new random training design in the unit p-cube. Random
testing sets are created similarly, except that n′i = 100 so

∑
n′i = 10000. The metrics

of comparison are (approximated) expected log likelihood (ELL)3 and misclassification
rates.

Fully Bayesian posterior mean estimators (i.e., κ = 1) are derived via priors/MCMC
exactly as described in the preceding sections with (100, 1000), (500, 1500), (1000, 2000)
burn-in and total MCMC rounds in each of the cases p = 9, 100, 1000, respectively.
MAP estimators are found by running a κ = 10 chain initialized at (β, λ, ν)-values from
the κ = 1 chain used for the mean estimators, except in the p = 1000 case where ν was
fixed to its posterior mean for reasons laid out in Section 3.2. Comparators include:
the MLE obtained via the glm command in R; a binomial fit from the glmnet package
(Friedman et al. 2010); and the estimator of Krishnapuram et al. (2005)4 [“krish” for
short]. The MLE was unstable in the p = 100 and p = 1000 cases, so these results were
omitted. CV was used to choose the penalty parameter in the p = 9 and p = 100 cases
for glmnet, via cv.glmnet. The same procedure gave fatal errors in the p = 1000 case
so we plugged in the estimate obtained from the corresponding p = 100 run for this
final case. Reliably setting the penalty parameter for “krish”, via CV or otherwise, was
too computationally intensive for the p = 100, 1000 cases so we picked a setting by hand

3Specifically, the average of (1− pi) log(1− p̂i) + pi log p̂i over all testing locations i, where pi and
p̂i are the true and estimated predictive probabilities of the first label, respectively.

4This is equivalent to the Genkin et al. (2007) estimator but computationally less efficient.
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using out-of-sample simulations from the p = 9 case.
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ELL 5% avg 95%

bayes -0.694 -0.646 -0.582
map -0.710 -0.688 -0.677
glmn -0.703 -0.650 -0.593
mle -0.797 -0.658 -0.588
krish -0.699 -0.619 -0.579
bayes -0.701 -0.680 -0.660
map -0.712 -0.687 -0.678
glmn -0.705 -0.678 -0.629
krish -0.815 -0.711 -0.628
bayes -0.707 -0.687 -0.676
map -0.711 -0.689 -0.677
glmn -0.707 -0.683 -0.639
krish -0.707 -0.734 -0.651

miss 5% avg 95%

bayes 0.065 0.152 0.201
map 0.189 0.199 0.212
glmn 0.092 0.159 0.217
mle 0.074 0.136 0.213
krish 0.061 0.113 0.184
bayes 0.172 0.191 0.210
map 0.188 0.199 0.212
glmn 0.133 0.189 0.212
krish 0.129 0.189 0.244
bayes 0.187 0.198 0.215
map 0.188 0.198 0.215
glmn 0.142 0.193 0.214
krish 0.151 0.211 0.252

Figure 6: Expected log likelihood (ELL) and misclassification rates in boxplot (left) and
tabular (right) form. In both cases there are three sections, depending on the number of
irrelevant predictors in the design matrix, wherein the same estimators are applied. The
vertical dashed-red lines in the boxplots indicate the same demarkation as the horizontal
lines in the tables.

The results of the Monte Carlo experiment are summarized in Figure 6 by boxplots,
and numerically. The best estimators have high ELL, low miss rates, and lower vari-
ability across the 100 repetitions. The fully Bayesian and “krish” methods are the best
when p = 9 (left-hand region of the boxplots and the top region of the tables). The
former wins by ELL, having fewer low values, and the latter wins on miss rate, having
more small ones. The “krish” method wins by both metrics on average, since it em-
ploys a fortuitously hand-chosen setting of the penalty parameter. The MLE is good
on average, but has some extreme ELL and miss rate values. The glmnet and MAP
estimators are positioned in between.

Distinctions in performance between the methods increase with p. See the right-
hand regions of the boxplots and the bottom regions of the tables. The “krish” method
suffers from high variability due to the fixed choice of the penalty parameter. The
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glmnet variability is much lower, but there are many extreme outliers. Behavior in both
p = 100 and 1000 cases is qualitatively similar for this estimator even though the former
used CV to set the penalty parameter and the latter used the same fixed value. The
MAP and fully Bayesian estimators have similar average behavior compared to other
estimators, but with lower variability. Apparently, choosing the penalty parameter via
the posterior offers the most stability in high dimensional settings. The fully Bayesian
approach appears preferable to the MAP in all cases, but this distinction is harder to
make out as p increases.

4.4 Spam data with interactions

For a similar real-data experiment, consider the Spambase data set from UCI. It contains
the binary classifications of 4601 emails based on 57 attributes which are treated as
predictors. An interaction-expanded version of the predictor set contains approximately
1700 predictors. We performed a Monte Carlo experiment comprised of 20 random 5-
fold CV training and testing sets using both the original and expanded predictors.
Estimators were fit on the 100 training sets, and validated by misclassification rate on
the testing ones. The Bayes estimators used (500,1500) MCMC (burn-in, total) rounds
with the original 57 attributes, and (1000,2000) with the expanded set. The MAP and
glmnet calculations were exactly as described for the p = 100 case in Section 4.3 for the
original predictor set, and like the p = 1000 case for the expanded one. And “krish”
was like p = 9 and p = 100, respectively.
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miss 5% avg 95%

bayes 0.074 0.077 0.079
map 0.074 0.077 0.080
glmn 0.077 0.079 0.082
mle 0.071 0.076 0.092
krish 0.072 0.074 0.076
bayes 0.062 0.065 0.068
map 0.063 0.066 0.068
glmn 0.064 0.067 0.070
krish 0.065 0.068 0.072

Figure 7: Misclassification rates in boxplot (left) and tabular (right) form. In both cases
there are two sections, depending absence or presence of interaction terms in the design
matrix, wherein the same estimators are applied. The vertical dashed-red line in the
boxplot indicates the same demarkation as the horizontal line in the table.

The results of the experiment are summarized in Figure 7. The first thing we notice
is that, in contrast with the results in Section 4.3, the performance improves as the
predictor set expands since some of the interaction terms make good predictors. The
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MLE is unstable, and so the regularized estimators offer an improvement even when
the number of predictors is small relative to the number of instances. The Bayesian
methods outperform glmnet across the board, and using the posterior to set the value
of the regularization parameter is important in high dimensional settings. The estimator
“krish” with fortuitous regularization is the best on the original predictor set, but worst
on the expanded one where a revised setting of regularization could not be automated
efficiently.

5 Discussion and extension

We provide a simulation-based approach to regularized logistic regression that facilitates
a variety of inferential goals under a single framework. Most of the development of the
methodology, and all of the applications, involved the α = 1 case. Everything extends
to the ridge prior (α = 2), i.e., an independent normal prior for each coefficient βj with
variance σ2

j ν2/κ. Then, pκ(ωj |β, ν) is a point mass at ωj = 1. Thus similar conjugacy
results hold for the gamma prior on ν and ν2.

From a computational perspective, our methods are competitive with the state-
of-the art in un-regularized (and κ = 1) contexts too. For example, we compared the
efficiency of our methods to the “dRUM” MH sampler described by Frühwirth-Schnatter
and Frühwirth (2010). This method is attractive because it is fast and easy to imple-
ment. For example, on the Pima data it takes about 32s to generate 10,000 samples
from the posterior which is about 7x faster than our pdf representation, which took
230s. However, the MH acceptance rate of the dRUM method was 46% which lead
to a marginal effective sample size (ESS) of 957 averaged over the nine βj coefficients.
Our pdf representation had an average ESS that was about 5x better, at 4518. So the
methods work out to have similar overall efficiences in that example. But in higher
dimensions like the 57-d spam data, our Gibbs sampling approach is much more attrac-
tive. The acceptance rate for dRUM was extremely low at 0.4%, which leads to ESSs
that are essentially nil. Although our pdf representation is (again) 7x slower, faster
convergence due to better movement in the chain leads to reasonable ESSs around 500.

There are several extensions of our methodology that readily present themselves. For
example, handling polychotomous data (i.e., > 2 classes) is straightforward. Following
the setup in HH we may introduce C collections of coefficients β(1), . . . , β(C) for C
classes with the convention that β(C) = 0 so that logistic regression is recovered in the
C = 2 case. Then, we simply work with the conditional likelihoods L(β(j)|y, β(−j))
which turn out to have exactly the form of a logistic regression likelihood for the class
indicator that each yi = j, independently for i = 1, . . . , n. If there are ni > 1 trials
for predictors xi, then our algorithm for binomial logistic regression is applicable via a
vectorized multiplicity parameter as described in Section 3.3. Extending the methods
to ordinal responses is even easier. Johnson and Albert (1999, Chapter 4) describe a
Bayesian probit model which may be adapted for the logit case following either HH or
our cdf representation. The pdf representation may not be readily applicable because
the latent zi are useful for efficient sampling of the ordinal break points.
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A further direction is to other classes of regularization priors. Implementing the
Normal–Gamma extension (Griffin and Brown 2010) requires adding an extra (conju-
gate) parameter. A promising new approach is the horseshoe prior (Carvalho et al.
2010), which can be implemented with the addition of a slice sampler. Often variable
selection is a primary goal of regularization, for which our methods would require fur-
ther extension. For example, HH describe an approach to variable selection for logistic
regression via Reversible Jump MCMC (Green 1995) which is adaptable to our frame-
work. A similar regularized approach in a linear regression is provided by Gramacy
and Pantaleo (2010). For variable selection for logistic regression using spike-and-slab
priors, see Tüchler (2008).
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Appendix 1 Posterior conditional for β in the pdf represen-
tation

For a particular λ, i.e., ignoring the integral in Eq. (13), we have the following expression
for the likelihood in vector/matrix form.

n∏

i=1

(
1 + e−yix

>
i β

)

= eay>Xβ exp

{
−1

2

(
(y.X)β +

1
2
(a− b)λ

)>
Λ−1

(
(y.X)β +

1
2
(a− b)λ

)}

An expression for the posterior conditional density for β can then be obtained by mul-
tiplying by the kernel of the MVN prior given ω, provided below Eq. (15), namely:
exp{− 1

2β>(κ2

ν2 Σ−1Ω−1β)}. Combining the terms in the three exponents gives the fol-
lowing quadratic form:

−1
2

[
− 2ay>Xβ +

(
(y.X)β +

1
2
(a− b)λ

)>
Λ−1

(
(y.X)β +

1
2
(a− b)λ

)
+ β>

(
κ2

µ2
Σ−1Ω−1

)
β

]
.

Collecting terms for β yields

β>
(

(y.X)>Λ−1(y.X) +
κ2

ν2
Σ−1Ω−1

)
β − (2ay>X − (a− b)(y.X)Λ−1λ)β.

Therefore we deduce that the conditional is Np(β̃, V ) where V −1 = (y.X)>Λ−1(y.X) +
κ2

ν2 Σ−1Ω−1. Recognizing that (y.X)Λ−1λ = X>y gives that β̃ = V (a− 1
2 [a− b])X>y.

Appendix 2 Generalized Inverse Gaussian distribution

The pdf of a Generalized Inverse Gaussian, GIG(λ, χ, ψ) is

g(x; λ, χ, ψ) =
(ψ/χ)λ/2

2Kλ(
√

ψχ)
xλ−1 exp

{
−1

2
(ψx + χ/x)

}
,

where Kλ is a modified Bessel function of the second kind. If X ∼ GIG
(

1
2 , χ, ψ

)
then

X−1 ∼ IN(µ =
√

ψ/χ, λ = ψ) where where IN is the inverse Gaussian distribution with
pdf

f(x; µ, λ) =

√
λ

2πx3
exp

{
−λ (x− µ)2

2µ2x

}
.

The mean and variance are E{x} = µ and Var[x] = µ3/λ. A generalized inverse
Gaussian GIG

(
1
2 , χ, ψ

)
is an inverse of an Inverse Gaussian. For simulation from GIG

and IN distributions see Devroye (1986).



590 Simulation-based Regularized Logistic Regression


