
Simulation-based Search of Combinatorial Games

 Lukasz Lew lew@mimuw.edu.pl

University of Warsaw, Poland
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Abstract

Monte-Carlo Tree Search is a very success-
ful game playing algorithm. Unfortunately
it suffers from the horizon effect: some im-
portant tactical sequences may be delayed
beyond the depth of the search tree, causing
evaluation errors. Temporal-difference search
with a function approximation is a method
that was proposed to overcome these weak-
nesses, by adaptively changing the simulation
policy outside the tree.

In this paper we present an experimental evi-
dence demonstrating that a temporal differ-
ence search may fail to find an optimal policy,
even in very simple game positions. Classical
temporal difference algorithms try to evaluate
a local situation with a numerical value, but,
as it appears, a single number is not enough
to model the dynamics of a partial two-player
game state.

As a solution we propose to replace numerical
values by approximate thermographs. With
this richer representation of partial states,
reinforcement-learning algorithms converge
and accurately represent dynamics of states,
allowing to find an optimal policy.

1. Introduction

The game of Go is a great challenge for artificial intel-
ligence. Despite a recent progress, the best Go-playing
programs are not stronger than serious amateurs, and
immensely weaker than professional players. The game
of Go remains an exciting source of inspiration for new
algorithms.
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The best Go-playing programs are currently based on
the Monte-Carlo Tree Search (MCTS) approach. This
method was introduced in 2006 (Coulom, 2006; Kocsis
& Szepesvári, 2006; Gelly et al., 2006), and allowed
programs to improve from a weak amateur level to a
strong amateur. Unlike traditional search algorithms
based on the min-max search combined with a static
evaluation function, Monte-Carlo programs evaluate
positions by averaging the final outcomes of many ran-
dom continuations. This principle fits well with the
dynamic nature of the game of Go, and allowed the
new generation of Monte-Carlo programs to outperform
classical programs significantly.

Although Monte-Carlo techniques resulted in a huge
improvement, current algorithms are still based on a
tree search and suffer severely from the horizon effect.
With hundreds of legal moves, the game of Go has
a huge branching factor. During the playout, after
exiting the tree, even if a position seems calm there
are usually plenty of moves that if played need an
immediate response to avoid a big loss. This notion of
a threat and a response is crucial for a good quality of
playout results. It is partially covered in simulations by
a fixed playout policy based on an expert knowledge.
Unfortunately many simple tactics are not covered and
a fixed policy consistently makes mistakes.

The horizon effect can be overcome by human players by
decomposing the analysis of a position into independent
sub-problems. Most of the situations on the board
may be searched locally, and the global analysis of the
situation can be obtained by combining those local
searches. Decomposing the global search into small
local searches can considerably reduce the complexity.

The problem of decomposing a big global search into
smaller local searches was identified very long ago.
A mathematical foundation for this method was es-
tablished with Combinatorial Game Theory (Conway,
1976). Application of this theory to the game of Go
allowed to solve some endgames positions complexity
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of which is far beyond the reach of traditional search
algorithms (Berlekamp & Wolfe, 1994; Müller, 1999).
Besides formal solutions of endgames, most of so-called
“classical” Go programs, such asGNU Go, combined lo-
cal searches of sub-goals into a heuristic global analysis
of a position.

In order to apply decomposition ideas to Monte-Carlo
Tree Search, many programmers suggested using re-
sults of local searches to adaptively modify playouts
to the current board situation. The tree-search part
(moves within the game tree) of MCTS algorithm al-
ready adapts the playout policy by focusing on better
moves. Adapting the playout policy outside of the tree
is necessary to overcome the horizon effect.

Adaptive playouts are widely considered as a very
promising idea by authors of Go programs, but very
few effective algorithms are known. A variety of
reinforcement-learning algorithms were proposed (Sil-
ver et al., 2007; Silver et al., 2008; Silver, 2009). This
research produced a Go program, RLGO, that does not
perform any tree search and can compete with classical
programs. But RLGO is still much weaker than the
state-of-the-art Monte-Carlo programs that use a static
playout policy.

This paper presents new ideas on applying a temporal-
difference search to combinatorial games. Experiments
with combinatorial games modeling simple Go position
show that traditional methods for the state-value ap-
proximation can fail even in very simple situations. An
alternative approach based on the approximate ther-
mography is proposed. Experimental results demon-
strate that approximate thermographs can be used in
a reinforcement-learning framework, and can overcome
the difficulties of traditional state values.

2. A Simple Artificial Problem

Algorithms are tested on a simple artificial sum of
games. Such a problem is depicted in Figure 1. Fig-
ure 2 shows an equivalent Go position. This board
can be separated into three completely independent
areas. This is an a simple situation that does not rep-
resent the complexity of the game of Go. However,
this situation is complex enough to be a challenge for
adaptive-playout Monte-Carlo algorithms.

For such a simple problem, it is easy to determine
an optimal strategy. The total number of possible
states in this sum of games is equal to the product of
the number of the states in each game, that is to say
3×3×5 = 45. The optimal strategy consists in playing
in the games H-I-I-G, in a sequence. This yields a
score of 4 + 0− 2 = 2 for Left.

G

+2 -2

H

+4 -4

I

+3

0 -6

Figure 1. A simple sum of three combinatorial games (G,
H, and I), each being represented by a tree. Two players,
Left and Right, alternatively make a move. The game starts
in the root position for all the components. A move consists
of choosing a game and moving from its current position
to the left or right child, depending on whose turn it is to
play. It is not possible to play in a game in which current
state is a leaf. The game is over when all the components
have reached a leaf. The final score for Left is the sum of
the leaf values. For instance, if Left starts by playing in
the game I, then it would reach the leaf +3. Then Right
could play in the game H, and reach the leaf −4. Then the
only move for Left would be to +2, in the game G. The
final score of this game would be 3− 4+2 = 1. The players
don’t know the value of each leaf. They are only given the
final score of the game.

A key aspect of this problem is a notion of a threat.
When playing in game I, Right does not score a lot
of points, but makes a threat. Left should answer
immediately or else it would lose 6 points. Go players
call this sente and it is an essential element of a Go
strategy.

3. Temporal-Difference Search

The simplest approach to reduce the complexity of a
sum of games consists of approximating its state value
by the sum of local state values. In our simple example,
this would mean estimating 3 + 3 + 5 = 11 parameters,
one for each node, instead of having one parameter for
each of the 3×3×5 = 45 global states. The complexity
of this method for approximating the value function is
equal to the sum of the game complexities, instead of
their product. When a number of games is high, this
decomposition can produce a huge simplification.

It is possible to estimate the parameters of this sim-
plified state-value approximation with a temporal-
difference search (Silver, 2009). Temporal-difference
search consists of adjusting evaluation parameters using
the simulated playouts and their results.

Algorithm 1 shows a simple form of a temporal-
difference search based on the TD(λ) algorithm. Pa-
rameters of this algorithm are N (the epoch length),
ǫ (the exploration coefficient), α (the learning rate),
and λ (the decay rate of the eligibility traces). The
parameters of the algorithms were N = 1000, ǫ = 0.2,
α = 0.001, λ = 0.9.
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Figure 2. This Go board is similar to the abstract sum of
the games of Figure 1. Black is Left, and White is Right.
A territory scoring (Japanese style) is assumed. The leaves
of the abstract games correspond to the following move
sequences: Leaf +2 in the game G is J; −2 is J; +4 is
A; −4 is A. The game I is a little more complicated. +3

is the sequence C- B- D. The move of Right at the root
of I is D- E- C. The leaf 0 is reached after F. Leaf −6
is F.
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Figure 3. The change(delta) of the value function (an incen-
tive) for different moves of Left player. The greedy policy
chooses a move with a highest value.
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Figure 4. The change (delta) of the value function (an in-
centive) for different moves of Right player. The greedy
policy chooses a move with a lowest value.

Algorithm 1 TD(λ) Policy Iteration

~θ ← 0 {Reset the parameters}
~θπ ← ~θ
loop

for n = 1 to N do

~e← 0 {Clear the eligibility traces}
s0 ← an initial state
i← 0
while si is not terminal do

if random() < ǫ then

~e← 0
ai ← random action

else

{a greedy action}

~e← λ~e+ ∂V̂ (~θ, si)/∂~θ

ai ← argmaxa(V̂ (~θπ, si.play(a)))
end if

si+1 ← si.play(ai)

δ ← V̂ (~θ, si+1)− V̂ (~θ, si)
~θ ← ~θ + αδ~e
i← i+ 1

end while

end for
~θπ ← ~θ {the policy update}

end loop

Figures 3 and 4 show the result of applying Algorithm 1
to the sum of combinatorial games. Many other param-
eter values were tried, on a variety of combinatorial
games, and oscillations were observed most of the time.

This result demonstrates that temporal-difference
search fails to converge to any policy when the state
value is approximated by the sum of the values of
independent games.

4. Combinatorial Game Theory

A classical value function assigns to each state only
a single number – an expected reward. Such a rep-
resentation must necessarily depend on a policy and
therefore represents the value of one policy only.

The previous section shows that even simple state
spaces arising in the game of Go (or, more generally,
in the combinatorial games) may lead to oscillation
problems in classical Temporal Difference learning. To
overcome this problem, a knowledge accumulated from
a simulated experience should be independent of a
policy used. To achieve this while simultaneously ben-
efiting from a divide-and-conquer approach, we need
a representation of components that is richer than a
single number, and can reflect dynamics of states.
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Figure 5. The thermographs of G, H, and I. Thermographs
of gote games like G and H are symmetric triangles. Ther-
mographs of sente games like I are asymmetric.

Combinatorial games can be represented quite accu-
rately using thermographs. Next section explains what
a thermograph is and how it can be recursively built.

5. Thermographs

The simplest approximation to represent a combina-
torial game would be two numbers - a left stop and a
right stop. Stops are results of the game if left or right
player plays the first move and an alternating optimal
play follows. For instance on Figure 1: LS(I) = 3 and
RS(I) = LS(IR) = 0 (IR (resp. IL) denotes what
remains of I after Right (resp. Left) has played a move
in the game I).

Stops of games would be sufficient if after one player
starts his opponent would always respond in the same
game or pass if there is no response. But in a combina-
torial game sum it may happen that one player plays
two or more moves in a row in the same game while
his opponent plays elsewhere.

To model this we assume that there exists an environ-
ment consisting of many simple games and the player
may choose to either play a move in a game G or to
play it in the environment and get t points. This is
equivalent to giving t points of “tax” (A value t is also
called ambient temperature or value of tenuki.) to the
opponent with each move. Taxed stops LSt(G) and
RSt(G) are the results of a taxed game under optimal
play when Left or respectively Right player plays first.

Note that if the tax is too high then neither player will
be willing to play first in the game (or equivalently,
when the ambient temperature is high enough, both
players will prefer to play in the environment.) They
will wait until the tax is low enough. Such point is called
the temperature of the game: t(G) and corresponds to
the notion of the urgency of the play.

When a current tax is equal to the temperature of the
game, then both stops are equal. This value is called the
mean of the game: m(G) = LSt(G)(G) = RSt(G)(G).
Because waiting for the tax to be low enough is an
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Figure 6. A simple combinatorial game and a recursive cal-
culation of its thermograph. The green dashed line shows
an approximation used in CG-TD(0) algorithm. Horizontal
gray arrows represent taxing.

optimal strategy, we have: LSt(G) = RSt(G) = m(G)
for all t >= t(G).

A thermograph is a graphical plot of stop functions.
On the horizontal axis is the result of the game with
positive values on the left. On the vertical axis is the
tax (or the ambient temperature).

It is easy to recursively compute thermographs. If GL

and GR are the sets of the left and the right options of
G then:

LSt({G
L|GR}) = max(RSt(G

L)− t,m(G)) , (1)

RSt({G
L|GR}) = min(LSt(G

R) + t,m(G)) , (2)

and (t(G),m(G)) are the coordinates of the intersec-
tion of RSt(G

L)− t and LSt(G
R) + t. Note that the

maximum in max(RSt(G
L) − t,m(G)) goes over the

right stops of all the options in GL and m(G).

An example of the thermographs and the process of the
recursive computation is graphically shown on Figure 6.

Given the thermographs, HOTSTRAT strategy (play
in a hottest game) is close to optimal. Other strategies
like SENTESTRAT or THERMOSTRAT can be found
in (Berlekamp et al., 1982).

Cazenave (2002) gives an empirical comparison of dif-
ferent strategies on simple combinatorial games.

6. Approximation Of Thermographs

Thermographs of big games can be quite complex -
they can have many corners. We propose a triangle ap-
proximation. Each component will be represented with
four numbers: temperature t(G), mean m(G), left stop
and right stops LS(G) = LS0(G), RS(G) = RS0(G).
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Left and right taxed stops are assumed to be verti-
cal masts above (t(G),m(G)), and straight lines below
going through (0, LS(G)) and (0, RS(G)) respectively.

Given such approximations of all options (children)
it is straightforward to compute a temperature and
a mean of a parent. An approximation process is
illustrated in Figure 6. Firstly, an approximation of a
right stop function of all left options must be done using
Equation 1. In the case of approximated thermographs,
it is sufficient to find max(RS(GL)), and a mean and
a temperature of a game with the highest mean. A
resulting approximated right stop function, and the
same stop function taxed are marked with a green
dashed line. Next the same steps must be repeated for
GR. Intersection of the two approximated stops will
yield the mean and the temperature of G.

7. Combinatorial Games Temporal

Difference Learning.

Algorithm 2 CG-TD(0)
while not converged do

s← (s[1], s[2], ..., s[N ]) {a sum of games}
while ∃i : s[i] has options do

i← π(s) {choose a component of the sum}
G← s[i]
H ← π(G) {choose an option of G to play}
s[i]← H {update CG components}
{calculate the update direction of G based on the left op-
tions}
{find the option with the highest mean}
L← argmax

L∈GL (m(L))

{find the highest right stop}

lrs← max(RS(GL)) {GL right stop}
rs← m(G)− t(G)
{intersection with the taxed mast of the left options}

t1 ←
m(L)−rs

2
{intersection with the taxed right stop of the left options}

t2 ← t(L) lrs−rs

lrs−(m(L)−2·t(L))

t′ ← min(t1, t2) {first intersection}
m′ ← rs + t′ {the mean of the first intersection}
{update the thermograph of G}
m(G)← m(G) + α(m′ −m(G))
t(G)← t(G) + α(t′ − t(G))
LS(G)← t(G) + α(lrs− LS(G))
{calculate update direction of G based on the right options}
. . . {analogous code}
{update the thermograph of G}
. . . {analogous code}

end while

{Update the thermographs of the leaves}

δ ←Result(s)−
∑

N

i=1 m(s[i]) {prediction error}
for i = 1 to N do

t(s[i])← 0.0
m(s[i])← m(s[i])− αδ

N

LS(s[i])← m(s[i])
RS(s[i])← m(s[i])

end for

end while

The combinatorial-games temporal-difference learning
(CG-TD(0)) algorithm uses an approximation scheme
presented in the previous section.

With each node of each component of the game sum,

t

t(L)

m(L)

t1

t2

m′

t(G)

m(G)

lrs LS(G)

rs

45◦

Figure 7. Update algorithm. A whole left stop (and the
mean-temperature point) of the approximate thermograph
G is moved in the direction of the big arrows to improve
the consistency with the thermograph L as described on
Figure 6 .

this algorithm maintains an approximated thermograph
represented with four numbers: mean, temperature,
left and right stops. A state is a position in the game
trees of all the components. The starting state consists
of the roots of all the components. State is final if none
of the components has options (children).

A next state is chosen according to the policy π: firstly,
the component is chosen, then the component’s option.
The state is then updated by replacing the chosen
component by its chosen option (a child in the tree). At
this point the component G that just disappeared will
be updated according to the approximate thermography
described in the previous section.

The algorithm is easiest understood by looking at Fig-
ure 7. The taxed line approximating all the left options
should match the left stop function of the game G -
LSt(G) - like in Figure 6. If it doesn’t the algorithm
adjusts the left stop LS(G), the mean m(G) and the
temperature t(G) in the direction of the correct posi-
tion on the taxed line. The amount of adjustment is
controlled by the learning rate. Next, a similar update
is done for the right options (not shown on Figure 7).

Leaf nodes are updated using a classical gradient de-
scent to match the result. They will converge to the
correct (up to a global constant) values as long as the
policy will visit enough variety of the final states (the
combinations of the component’s leaf nodes). This is
sufficient for interior nodes to converge as long as all
the children are visited infinitely many times.

The exact equations given in Algorithm 2 are provided
to help with the implementation. They are obtained
using geometric properties of the thermographs on Fig-
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Figure 8. Temperatures

ure 7. The figure alone should be enough to understand
the algorithm.

Figure 8 shows very fast convergence of the tempera-
tures to the correct values yielding near-optimal HOT-
STRAT (play in hottest game) policy.

8. Conclusion

We have shown that TD(λ) with a linear function ap-
proximation may be unable to find an optimal policy
because a single number is not sufficient to represent
the value of a local game. To cover that weakness we
designed a richer representation of state value based
on Combinatorial Game Theory. We designed a ther-
mograph approximation which allows to create simple
reinforcement learning algorithms converging to correct
approximate thermographs.

A correct temperature estimate allows us to find a
policy close to optimal. Applying this idea to Monte-
Carlo Go could produce adaptive playouts, covering
many weaknesses of existing expert-based static playout
policies.

This algorithm could be further extended to cover
zugzwang (situations where neither player wants to
play first) by allowing players to pass when the tem-
perature is negative, and finishing game early. This
would cover situations like seki in the game of Go.
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