
Simulation-based ‘STRESS’ Testing Case Study:
A Multicast Routing Protocol

Ahmed Helmy, Deborah Estrin
Computer Science Department/ISI
University of Southern California

Los Angeles, CA 90089
email:fahelmy, estring@usc.edu�

Abstract

In this work, we propose a method for using simu-
lation to analyze the robustness of multiparty (multicast-
based) protocols in a systematic fashion. We call our
methodSystematicTesting ofRobustness byExamination
of SelectedScenarios (STRESS). STRESS aims to cut the
time and effort needed to explore pathological cases of a
protocol during its design. This paper has two goals: (1)
to describe the method, and (2) to serve as a case study of
robustness analysis of multicast routing protocols. We aim
to offer design tools similar to those used in CAD and VLSI
design, and demonstrate how effective systematic simula-
tion can be in studying protocol robustness.

1 Introduction

Multiparty protocols support applications ranging from
conferencing to data dissemination and network games. De-
signing wide-area multiparty protocols is becoming more
complex with the growth of the Internet and the introduc-
tion of new service models. Anticipating errors in such pro-
tocols often requires extensive simulation and testing, and
sometimes unexpected cases are not observed until deploy-
ment.

In this paper, we describe a simulation framework (re-
ferred to as STRESS) supported by a set of tools, designed
for studying protocol behavior in the context of pathologi-
cal cases. Some of the general concepts for STRESS draw
from simulation-based verification techniques and reacha-
bility analysis [12]. In particular, we introduce techniques
for state and topology reduction and investigate various
packet loss scenarios to capture robustness characteristics.

�This work was supported by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. DABT63-96-C-0054.

The definition of error conditions enables us to capture the
faulty (error-prone) cases automatically.

We apply these techniques to support the design, analy-
sis, and testing of multiparty protocols; specifically, mul-
ticast routing. As a case study, we apply our method
to the Protocol Independent Multicast-Sparse Mode (PIM-
SM) [5]. Our study revealed several pathological errors in
PIM-SM, and evaluated solutions to eliminate these errors.

The rest of the paper is organized as follows. Section
2 provides an overview of the STRESS method. The case
study for PIM-SM is presented in section 3. Results are
given in section 4. Sections 5 and 6 address related work,
summary and future work, respectively.

2 The Method Overview

Therobustnessof a protocol is its ability to respond cor-
rectly to failures and packet loss. The goal ofSTRESSis
to provide a framework for systematic testing of protocol
robustness through the examination of selected scenarios.

For a given protocol, we first capture a set of error-prone
scenarios. This is achieved by: (a) investigating arepre-
sentativesubset of the protocol state space, and (b) defining
error conditions. We use these scenarios to iteratively evalu-
ate design trade-offs, analyze behavior, and test implemen-
tations of the protocol.

As shown in figure 1, our basic approach consists of
three stages:scenario generation(pre-processing),tracing
(simulation), andoutput analysis(post-processing). These
stages are explained in the rest of this section.

2.1 Scenario Generation

Scenarios describe the simulation environment including
routed topology, host scenariosandloss scenarios.
Routed topology The routed topology is the network in-
frastructure upon which the protocol operates; e.g. nodes,

Figure 1. STRESSmethod block diagram

As a component of the routed topology, unicast routing
may be a common source of error. Unicast routing inconsis-
tencies may be either (a) transient, or (b) long lived, which
may be due to a multicast region spanning more than a uni-
cast routing AS. The study of case (a) is convergence anal-
ysis, which has been addressed elsewhere [6]. We are in-
terested in case (b). We add an inconsistent unicast routing
component to force the multicast routing protocol into states
encountered in such pathology, and analyze those states.
Host scenarios Host scenarios are combinations of pos-
sible host actions. For multicast routing, these actions in-
clude joining, leaving, or sending packets to groups. For
large numbers of hosts and groups it is prohibitively costly
to explore all possible combinations exhaustively.

The heuristics used herein do not guarantee that all faulty
scenarios for a protocol are covered. Our more practical and
achievable objective is to study multicast protocol behavior
for scenarios that include the primary host events. For these
scenarios, we generate all possible message loss cases and
extract the faulty scenarios automatically.

To illustrate, we choose a simple scenario that has one
source and two receivers ‘R1’ and ‘R2’ for the same group.
We estimate all possible combinations of our host model,
then try to reduce the number to those scenarios that may
affect the protocol state transitions. We call such scenar-
ios representative scenarios. To obtain the representative
scenarios we apply practical and protocol contraints. For
example, the above scenario has five possible host events:
source sending to a group , receiver joining a group (‘J1’

and ‘J2’ for ‘R1’ and ‘R2’, respectively), and receiver leav-
ing a group (‘L1’ and ‘L2’).

For all possible permutations, there exists5! = 120 sce-
narios, considering that each host event occurs once. Then
we apply protocol constraints, (e.g.a receiver cannot leave
before it joins the group), to reduce the number of possi-
ble combinations to5!=(2! � 2!) = 30 scenarios. Further,
as a practical constraint, we assume that (the source sends
packets throughout the simulation), to reduce the number of
possible scenarios to30=5 = 6 scenarios, as follows:

1)J1:J2:L1:L2 2)J1:J2:L2:L1 3)J1:L1:J2:L2
4)J2:J1:L1:L2 5)J2:J1:L2:L1 6)J2:L2:J1:L1

Loss and Failures The input to the ‘loss & failures’ sub-
stage (shown in figure 1) is obtained from initial traces of
simulations without protocol message loss. These traces
guide further simulations to cover all possible protocol mes-
sage loss scenarios.

The loss and failure scenarios include loss of state in
routers (e.g. due to crashes), or loss of packets. Packet
loss may occur due to congestion or failures. We classify
these events as simply ‘packet loss’, and create exhaustive
loss scenarios to capture all the possible protocol transitions
and pathologies due to packet loss.

We consider single fault models; those that address the
occurrence of a single fault per scenario. In particular, the
loss of a single protocol message by any of the intended
receivers.

For most multicast protocols, hop-by-hop messages are
multicast on multi-access network (LANs), and may experi-
ence selective loss; i.e. may be received by some nodes but
not others. We use the term LAN to designate a connected
network with respect to IP; this includes shared media (such
as Ethernet, or FDDI), hubs, switches, and other network
devices. The likelihood of selective loss is increased when
LANs contain multiple network devices. Selective loss may
affect protocol robustness. Similarly, multiparty protocols
and applications must deal with situations of selective loss.
This differentiates these applications most clearly from their
unicast counterparts, and raises interesting robustness ques-
tions.

Our case study illustrates why selective loss should be
considered when evaluating protocol robustness. This les-
son is likely to extend to the design of higher layer protocols
that operate on top of multicast and can have similar selec-
tive loss.

2.2 Simulation and Tracing

During this stage the protocol mechanisms are simulated
and traces are collected:

Simulation One desirable approach for simulating com-
plex protocols, is to include detailed mechanisms of parts

2

Figure 2. PIM-SM rendezvous scenario
As shown in figure 2, when a receiver’s local router (A)

discovers it has local receivers, it sendsjoin message to-
ward a Rendezvous-Point (RP). Thejoin messages are mul-
ticast hop-by-hop. Each router along the path toward the
RP builds aroute entryand sends thejoin messages on to-
ward the RP. A route entry is the state held in a router to
maintain the shared distribution tree and includes the source
and group addresses, the interface from which packets are
accepted (incoming interface), and the list of interfaces to
which packets are sent (outgoing list). Upon arriving at
a router, a multicast packet is forwarded according to the
route entry.

3

Figure 3. The equivalent topologies

Prunes First, we considerN-router LAN topologies,
whereN = 1; 2; and 3, respectively. It is trivial to prove
that these topologies are not equivalent for hop-by-hop mes-
sages.

Assumption: N-router LAN topology, whereN > 3,
is reducible to the 3-router LAN topology for prunes, w.r.t.
single message loss scenarios.

To justify our assumption we first prove that a4-router
LAN topology is reducible to a3-routerLAN topology.

Correctness condition: If a router on the LAN has the
LAN as its incoming interface, there must be one other
router with the LAN in its outgoing list. Once this condi-
tion is satisfied, violating it is considered a protocol error.

Next, we examine the3-router LAN topology. In fig-
ure 3, topology ‘I’, assume thatA andB are downstream
routers, andC is an upstream router.

- In figure 3, topology ‘I’, routerC has the LAN in its
outgoing list, routerA has the LAN as its incoming inter-
face, and routerB is leaving the group and so sends aprune
towardsC. Thepruneis multicast on the LAN.

The only case where the correctness condition may be vi-
olated is whenC receives theprunewhile A does not. In the
other cases, either thepruneis not received byC, or is re-
ceived byA which triggers aprune-overrideto re-establish
the LAN in C’s outgoing list. This is illustrated by the se-
lective loss pattern for theprunemessage sent byB (see left
table).

A C A D C
0 0 0 0 0
0 1 0 0 1
1 0 error 0 1 0
1 1 0 1 1

1 0 0
1 0 1
1 1 0 error
1 1 1

where a ‘0’ indicates no-loss and ‘1’ indicates loss. The
error occurs when the upstream router (C) received the
prune, but the router with downstream members (A) did not
receive it.

- In figure 3, topology ‘II’, we add another downstream
routerD. The selective loss pattern table is given above.

The only error occurs when the upstream router (C) re-
ceives theprune, but neither of the downstream routers re-
ceives it. If thepruneis received by any of the downstream
routers, aprune-overridewould re-establish the LAN inC’s
outgoing list.

From the symmetry of the loss patterns and topology we
see that all errors are triggered by the same transitions ex-
perienced by routerA in topology ‘I’. Hence, the extended
topology ‘II’ does not introduce any new errors, and ex-
hibits the same external behavior as does topology ‘I’. We
conclude that topology ‘I’ and topology ‘II’ are equivalent
for prunes. With the addition of an upstream router (fig-
ure 3, topology ‘III’), no added error cases are encountered.

Similarly, in [10] we show that theN+1-router LAN
topology is reducible to theN case; whereN � 3.

From the above we see that by simulating the3-router
LAN topology we capture all the errors, with respect to se-
lective loss (for theprunemechanism), that may be experi-
enced by anyN-routerLAN topology; whereN > 3.

In [10] we establish similar equivalence for theJoin and
Assert, and conclude that a4-router LAN topology is an
equivalent topology for PIM-SM.

4

Figure 4. Topology used

For our case study, we use a4-router LAN topology
with an added Rendezvous-Point (RP) to capture shared
tree characteristics. The overall physical topology consists
of five routers, four of which are connected via a LAN, as
shown in figure 4.

3.3 Test suites

In this section we elaborate on the routed topology, host
scenarios and loss pattern generation used for our case
study. We also describe the simplifications and subsettings
applied.

Physical and routed topologies The overall topology
used is that shown in figure 4. For the unicast routing pro-
tocol we use a centralized version of Dijkstra’s SPF algo-
rithm.

PIM-SM uses the underlying unicast routing tables for
building multicast trees. Therefore, unicast routing incon-
sistencies affect the operation of PIM-SM. To investigate
such interaction we add a component to force inconsistent
multicast routes between PIM routers, as shown in figure 4,
topology 1.

Host scenarios Since protocol states for different groups
do not interact, we consider only one group. Also, since
protocol states for different sources do not interact, it suf-
fices to consider only one source ‘S’ per simulation run.
The source is modeled as a constant-bit rate (CBR) stream
with fixed packet size. The source model does not affect the
correctness of the method. However, to assure full control-
lability over the selective loss model, we set the data rate to
ensure that no loss occurs due to queue overflow1.

We consider two receivers (‘R1’ and ‘R2’) for the same
group to account for shared tree state interactions. We use
the host scenarios described in section 2.1.

Loss patterns We investigate all possible selective loss
scenarios for multicast hop-by-hop PIM-SM messages in
this representative topology.

1For this we use packet size of 180 bytes, and a send interval of 25 ms
(i.e. source rate of 57.6 kb/s), this ensures no queue drops on the 1.5 Mb/s
links used with 10 packet queue limit.

Loss models are applied exhaustively to those links that
carry the protocol messages under investigation. The trac-
ing stage identifies these links during the first simulation
run, without packet loss, and feeds back the link informa-
tion to the loss generation module, as shown in figure 1. As
we will show in section 4, the number of representative sce-
narios is quite small, and hence the number of overall lossy
scenarios explored is manageable.

We do not address state loss or node crashes in this doc-
ument. However, crash scenarios may be implemented in a
way similar to loss scenarios.

Tracing Trace information includes the event type (send
or receive), node, type of message, and time. Every data
packet is assigned a unique sequence number.

For example, the trace ‘R2 Node A Rcv 7 t 190’ means
that receiverR2 in nodeA received data packet7 at190ms.

Subsetting As an example of state subsetting, we only
consider shared group states, but not source-specific states.
The messages considered in the study arejoin, prune, as-
sert andregistermessages. To studyjoins, prunesandas-
sertswithout the effect ofregisters, we consider a topology
where the source and the RP are co-located (see S1 in fig-
ure 4, topology 1). This is an example ofmessage subset-
ting.

When studyingregisters, joins andpruneswe consider
topology 2 in figure 4 where: (a) S2 is the source, hence
nodeA sends registers to the RP, and (b) the routed topology
has consistent unicast routing, to eliminate the effect of the
assertmechanism. This representsfunction (or mechanism)
subsetting.

3.4 Applying the Method

This section describes the simulator and gives an illustra-
tive example, to show how STRESS may be used to identify
and analyze protocol errors.

The Simulation Framework We have implemented an
initial version of the STRESS method in the Network Sim-
ulator ‘NS’2. NS is an event-driven packet-level simulator
controlled and configured via OTcl.To support our method,
we have added modules to provide LAN support, controlled
selective loss, protocol tracing, profiling capabilities, and a
detailed implementation of PIM-SM, based on ‘pimd’ [8].
This implementation serves as the simulation environment
for our case study. In addition, the building blocks were
designed to be re-used within the same framework to apply
this method to other multiparty protocols.

Figure 5 depicts the network and protocol simulation
modules, explained next.

2For the simulator see http://catarina.usc.edu/vint.

5

Figure 6. Packet traces
topology 1. Traces in figure 6 give partial history of the er-
rors found. The first error (i.e. the packet duplication) has
the host event ‘J2’ as the closest host event in its history at
time 200ms. This transient error is caused by parallel paths
to the RP, and is resolved using theAssertmessages ex-
changed during the duplication at time 246ms. The second
error (i.e. packet loss) is a leave transient; it has a host event
‘L1’ in its recent history. The loss is due to theprunesent
by nodeA at 300ms, and is resolved by aprune-override
sent by nodeB at 310ms.

The above end-point errors are considered transient er-
rors, but not design errors.

4 Results

This section describes the protocol design errors revealed
for PIM-SM under STRESS, followed by an evaluation of
the protocol coverage achieved by the study. For a detailed
discussion of the protocol errors and fixes see [10].

Unlike our example above, we are only interested in non-
transient errors. For this, we have modified the error condi-
tions to not consider single duplication or loss.

We describe a partial list offaulty scenarioscaptured
by STRESS. We obtained this list after simulating only a
few of the representative scenarios. The traces produced
provided guidance to discover the protocol errors. Design
errors discovered includeAssert, Join/PruneandRegister
mechanisms.
Asserts For the first topology (figure 4, topology 1), a
black hole was observed for one receiver.

The faulty scenario in this case involved another receiver
joining in the recent history of the black hole. By analyzing
the protocol trace history after rolling back, we noticed that
anAssertprocess took place right before the loss.

6

In addition, the faulty scenario included the loss of ajoin
message, which prevented the establishment of the branch
of the shared tree from the Assert winner to the RP. Hence,
the protocol design error is allowing a router on a branch of
the tree that is not completely established, to participate in
Asserts.

Joins and Prunes Over the same topology (i.e. figure 4,
topology 1), several other faulty scenarios lead to black
holes. The host scenarios involved one receiver leaving just
before black holes were experienced by the other receiver.
In these casesjoin andprunemessages occurred the recent
history of the end-point error.

Furthermore, all such scenarios included either: (i) loss
of a join message, preventing a pruned branch from being
re-established; or (ii) selective loss of aprunemessage, pre-
venting ajoin (i.e. prune-override) from being triggered.
The protocol design error in this case was not allowing
a second chance for routers with downstream members to
overrideprunes.
Registers In the second topology (figure 4, topology 2),
faulty scenarios were captured that cause packet duplicates
at the end-points.

In this case, the observed faulty scenarios did not follow
a regular pattern, and were developed iteratively (i.e. when
one faulty scenario led to a suggested fix in the protocol,
the fix was implemented and the method re-run to observe
further faulty scenarios).

The first scenario involved a single host receiving dupli-
cates merely by joining the group. The packets were being
delivered at least twice, once directly from the source –by
virtue of being on the same LAN–, and the second deliv-
ery from the shared tree after theregister reached the RP
and was sent down the shared tree. When the number of
packet duplicates exceeded two, this suggested a loop. The
loop occurred when a packet received over the shared tree
on the LAN, was (a) picked up by the local router, (b) re-
registered to the RP, and (c) forwarded down the shared tree
again. The protocol error was allowing the packets to flow
down from the shared tree to the originating LAN, and be
re-registered. The fix was to prune such sources from the
shared tree.

The second scenario involved another receiver joining
before the duplicates were observed. The pruned branch
of the shared tree was re-established by the joining receiver,
allowing the packets to flow down the shared tree to the
originating LAN, and subsequently, causing the loop.

The third scenario involved aprunemessage loss, again
allowing the packets to flow down the shared tree to the
originating LAN, and led to looping.

Rules were added to prevent packets from being for-
warded back on their original LANs in the above scenarios.

For overall protocol coverage we considered two met-
rics: a) scenario coverage by investigating theselective loss

scenarios, and b) code coverage usingrepresentativesce-
narios simulations.

Scenarios covered The initial number of simulated sce-
narioswithout protocol message loss was 12; 6 (in sec-
tion 2.1), over 2 topologies (in section 3.3).

After feeding back the link traces for the messages under
study, the loss patterns were assigned to the corresponding
links. The scenario generator then set-up the simulations
for the new scenarios with loss.

The total number of scenarioswith protocol message loss
simulated is given by the following formula:

X
8Topos

 X
8Reps

 X
8Msgs

 X
8Links

LinkMsgs � 2
(LinkRtrs�1)

!!!

Term Meaning
Topos Topologies
Reps Representative Scenarios
Msgs Messages under study
LinkMsgs No. messages traversing the link
LinkRtrs No. routers connected to the link

For each topology, this formula gives the number of sce-
narios automatically generated after the first (loss free) sim-
ulation run, during which the number of messages and links
(traversed by these messages) is counted.

For example, for the first topology, the messages un-
der study werejoins, prunesandasserts. The representa-
tive scenarios triggered 16joins, 12prunes, and 12asserts
on the LAN, and 16joins and 16pruneson point-to-point
links, with a total of 352 scenarios with loss. For the second
topology, there were 296 scenarios with loss.

Protocol code coverage A large portion of the multicast
support code in NS was annotated automatically to provide
code tracing. Out of 91 procedures (procs), following are
the procedures covered by the representative scenarios:

Topology Procs covered %ge
Topology1 79 86:8%

Topology2 80 87:9%

Total 84 92:3%

Procedures that were not invoked dealt mainly with
source-specific state (which was abstracted in our test
suites), or with the modularity of the object-oriented nature
of the code.

5 Related work

The related work falls mainly in the field of protocol ver-
ification. We are not aware of any other work to develop
systematic methods for testing multiparty protocol robust-
ness. In addition, some concepts of STRESS were inspired
by VLSI chip testing.

There is a large body of literature dealing with verifi-
cation of communication protocols. Protocol verification
typically addressessafety(e.g. deadlock freedom),liveness

7

(e.g. livelock freedom), andresponsiveness(e.g. timeli-
ness) properties. Most protocol verification systems aim to
detect violations of these properties.

In general, the two main approaches for protocol veri-
fication are theorem proving and reachability analysis (or
model checking) [3]. Theorem proving systems define a
set of axioms and construct relations on these axioms. De-
sirable properties of the protocol are then proven math-
ematically. Theorem proving includesmodel-basedfor-
malisms (e.g. VDM [11]) andlogic-basedformalisms (e.g.
Nqthm [2]). For multiparty protocols, however, theorem
proving systems are likely to be even more complex and
perhaps intractable.

Reachability analysis algorithms try to generate and in-
spect all the protocol states that are reachable from given
initial state(s). Such algorithms suffer from the ‘state space
explosion’ problem, especially in complex systems as are
multiparty protocols. To circumvent this problem, state re-
duction and controlled partial search techniques [7] could
be used. STRESS has similarities with controlled partial
searches, but explores protocol states based on the repre-
sentative scenarios.

There is an analogy between STRESS and VLSI
systematic design for testability using Built-In-Self-Test
(BIST) [1]. BIST provides a systematic technique for chip
testing synthesis, and can be used to detect faults due to
single-stuck-line.

BIST uses a ‘test generator’ to produce the input pat-
terns applied to the circuit under test, and ‘response mon-
itor circuit’ to monitor and detect error signals. The test
patterns are chosen to maximize fault coverage with a min-
imum number of inputs. Conceptually, this resembles the
STRESS framework. However, VLSI testing is performed
on a given circuit, whereas network protocol robustness
must be established over arbitrary and time-varying topolo-
gies.

6 Summary and Future Work

The goals of our method are to systematize and provide
tools for robustness analysis of multiparty protocols. This
paper presented our initial attempts to achieve these goals
in the context of one multicast routing protocol. We used
scenario generation, simulation tracing, and output analy-
sis to obtain a set of error-prone scenarios. In particular,
we described several techniques: a)representative scenar-
ios andequivalent topologies, to circumvent the ‘state ex-
plosion problem’, b)selective lossover LANs, to capture
robustness characteristics, c)subsetting, to reduce the com-
plexity of our analysis, d) the definition oferror conditions,
to enable automatic capture offaulty scenarios, and e)sce-
nario and code coverage, to evaluate the space covered by
the simulations.

Using STRESS, we were able to discover several errors
in PIM-SM, and suggest solutions to these errors.

Future directions for this research include: a) Develop-
ing algorithms for automatic scenario generation, that re-
place the heuristics used in this study3, b) Investigating
a richer set of scenarios, including timers, heterogeneous
topologies with asymmetric and uni-directional links, other
protocols (e.g. PIM-DM [4]) and multicast interoperability,
c) Extending the method to apply to end-to-end multiparty
protocols. To achieve this, the multicast distribution tree
may be viewed as alogical LAN, with various selective loss
and delay models, and d) Applying conformance testing to
real implementation through an emulation interface.

References

[1] M. Abramovici, M. Breuer, and A. Friedman. Digital Sys-
tems Testing and Testable Design.AT & T Labs, 1990.

[2] R. Boyer and J. Moore. A Computational Logic Handbook.
Academic Press, Boston, 1988.

[3] E. Clarke and J. Wing. Formal Methods: State of the Art and
Future Directions.ACM Workshop on Strategic Directions
in Computing Research, Vol. 28, No. 4, Dec. 1996.

[4] D. Estrin, D. Farinacci, A. Helmy, V. Jacobson, and L. Wei.
Protocol Independent Multicast - Dense Mode (PIM-DM):
Protocol Specification.Experimental RFC, Sept. 1996.

[5] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering,
M. Handley, V. Jacobson, C. Liu, P. Sharma, and L. Wei.
Protocol Independent Multicast - Sparse Mode (PIM-SM):
Protocol Specification.RFC 2117, Mar. 1997.

[6] D. Estrin, M. Handley, A. Helmy, P. Huang, and D. Thaler. A
Dynamic Bootstrap Mechanism for Rendezvous-based Mul-
ticast Routing.Sub. IEEE/ACM Trans. on Networking, May
1997.

[7] P. Godefroid. Using partial orders to improve automatic ver-
ification methods.Proc. 2nd Workshop on Computer-Aided
Verification, Springer Verlag, New York, 1990.

[8] A. Helmy. Protocol Independent Multicast (PIM-SM): Im-
plementation Document.Internet Draft, Jan. 1997.

[9] A. Helmy. Systematic Testing of Multicast Protocol Robust-
ness.USC-CS-TR 98-663, www.usc.edu/dept/cs, Dec. 1997.

[10] A. Helmy and D. Estrin. Simulation-based ‘STRESS’ Test-
ing Case Study: A Multicast Routing Protocol.USC-CS-TR
98-674, www.usc.edu/dept/cs, Mar. 1998.

[11] C. Jones. Systematic Software Development using VDM.
Prentice-Hall Int’l, 1990.

[12] F. Lin, P. Chu, and M. Liu. Protocol Verification using
Reachability Analysis: state explosion problem and relief
strategies.ACM SIGCOMM’87, 1987.

3We are currently investigating semi-formal approaches, based on well-
established VLSI testing techniques [1], and extending them to synthesize
test topologies and scenarios automatically (see [9]).

8

