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Abstract The reliability of blades is vital to the system
reliability of a hydrokinetic turbine. A time-dependent reli-
ability analysis methodology is developed for river-based
composite hydrokinetic turbine blades. Coupled with the
blade element momentum theory, finite element analysis
is used to establish the responses (limit-state functions) for
the failure indicator of the Tsai–Hill failure criterion and
blade deflections. The stochastic polynomial chaos expan-
sion method is adopted to approximate the limit-state func-
tions. The uncertainties considered include those in river
flow velocity and composite material properties. The prob-
abilities of failure for the two failure modes are calculated
by means of time-dependent reliability analysis with joint
upcrossing rates. A design example for the Missouri river
is studied, and the probabilities of failure are obtained for a
given period of operation time.

Keywords Reliability · Composite · Hydrokinetic turbine ·
Time-dependent

1 Introduction

River-based hydrokinetic turbines extract kinetic energy
from flowing water of a stream, river, or current (Brooks
2011; Guney 2011). They have similar working principles
as wind turbines. The main difference between hydrokinetic
turbines and wind turbines is their working environment.
The density of water, in which hydrokinetic turbines are put
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into operation, is about 800 times higher than that of air.
Hydrokinetic turbines are advantageous over conventional
hydro-power and wind power in the following aspects (Lago
et al. 2010): A hydrokinetic turbine does not alter natural
pathways of rivers; its energy extraction is much higher than
the other renewable power technologies; it requires less civil
engineering work and introduces less hazards to the envi-
ronment; the application of hydrokinetic turbines is more
flexible. Due to the significant advantages of hydrokinetic
turbines, this technology has attracted increasing attention
of researchers in recent years (Ginter and Pieper 2011;
Hantoro et al. 2011).

As the most important part of the hydrokinetic turbine
system, the turbine blade has a high requirement for its
performance and strength (Kam et al. 2011). Composite
materials offer several advantages, such as high ratio of
strength to weight, resistance to corrosion, excellent fatigue
resistance, and design flexibility. These make composite
materials an attractive choice for the construction of turbine
blades. Besides, applications of composite materials in the
marine and ocean engineering demonstrated that the load-
induced deformations of composite elliptic hydrofoils can
delay cavitation inception while maintaining the overall lift
and drag (Motley and Young 2011a).

Due to the complex manufacturing process, the mate-
rial properties of composites tend to be more random than
metallic materials (Young et al. 2010). For instance, the
overall performance of composite turbine blades can be
affected by fiber misalignments, voids, laminate properties,
boundary conditions and so on (Kriegesmann et al. 2011;
Motley and Young 2011b; Pimenta et al. 2012). There are
also many uncertain factors existing in the working envi-
ronment of turbines and composite structures. In recent
years, efforts have been made to reduce the effects of
uncertainties on the performance of composite structures
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and turbine blades. For example, Toft and Sørensen (2011)
established a probabilistic framework for design of wind tur-
bine blades by adopting a reliability-based design approach.
Val and Chernin (2011) assessed the reliability of tidal tur-
bine blades with respect to the failure in bending. Motley
and Young (2010) presented a reliability-based global opti-
mization technique for the design of a marine rotor made of
advanced composite. Similarly, Young et al. (2010) used a
reliability-based design and optimization methodology for
adaptive marine structures. They mitigated the influence
of composite material uncertainty on the performance of
self-adaptive marine rotors. Eamon and Rais-Rohani (2009)
applied the probabilistic design modeling and reliability-
based design optimization methodology to the optimization
of a composite submarine structure. More developments
about the probabilistic design method in the design and opti-
mization of composite structures can be found in Chiachio
et al. (2012).

The most commonly used methods for the probabilistic
design of composite structures and turbine blades can be
classified into two categories: reliability-based design opti-
mization (RBDO) and the inverse reliability design (IRD).
RBDO is a methodology that ensures the reliability is
satisfied at a desired level by introducing the reliability con-
straints into the design optimization framework (Du and
Sudjianto 2005). IRD identifies the design loading using
the inverse reliability analysis method (Du et al. 2004).
Even though the existing RBDO and IRD methods can be
employed for the design of regular composite structures
and wind turbine blades, it is hard to use them to guar-
antee the reliability of composite hydrokinetic blades over
the service life. The reason is that most existing RBDO
and IRD methods employed for the design of composite
structures and turbine blades are based on time-invariant
reliability analysis, while the uncertainties in hydrokinetic
turbine blades always change with time. For instance, the
river flow climate, which governs the loading of turbine
blades, is a stochastic process with strong auto-correlations
(Muste et al. 2004; Otache et al. 2008). This means that
the monthly river flow velocity has much longer memory
than the wind climate and that the reliability of hydroki-
netic turbine blades is time dependent. The Monte Carlo
simulation (MCS) can be used for time-dependent reliabil-
ity analysis, but it is computationally expensive. Efficient
time-dependent reliability analysis methods, therefore, need
to be employed for the probabilistic design of composite
hydrokinetic turbine blades.

In the past decades, many methods have been proposed
for the time-dependent reliability analysis, such as the
Gamma distribution method, Markov method (Yang and
Shinozuka 1971), and the upcrossing rate method (Sudret
2008a). Amongst the above methods, the upcrossing rate
method is the most widely used one (Schall et al. 1991;

Engelund et al. 1995), which has been applied to the time-
dependent reliability analysis for function generator mech-
anism (Zhang and Du 2011), steel beam under stochastic
loading (Andrieu-Renaud et al. 2004), and hydrokinetic tur-
bine blades (Hu and Du 2012). As the method in Zhang
and Du (2011), Andrieu-Renaud et al. (2004) and Hu and
Du (2012) is based on the simple Poisson assumption, it
cannot well take into account the correlation of river veloc-
ities at different time instants. A more accurate method
called the first order reliability method with joint upcross-
ing rate (JUR/FORM) has been recently developed (Hu
and Du 2011). This method combines the joint upcrossing
rates (JUR) with First Order Reliability Method (FORM).
It is suitable for the time-dependent reliability analysis of
composite hydrokinetic turbine blades in this work.

The objective of this work is to develop a reliability
analysis model for composite hydrokinetic turbine blades
by quantifying the effects of uncertainties in river flow
velocity and composite material properties on the perfor-
mance of hydrokinetic turbine blades over the design life.
It is an improved work of the reliability analysis method of
hydrokinetic turbine blades presented in Hu and Du (2012).
The finite element method (FEM) is employed to analyze
the performances of the hydrokinetic turbine blade. The
JUR/FORM reliability analysis method is adopted for reli-
ability analysis. A three-blade horizontal-axis hydrokinetic
turbine system developed for the Missouri river is studied.
The probabilities of failure of turbine blades according to
the Tsai–Hill failure criterion and excessive deflections are
analyzed.

The remainder of the paper is organized as follows: In
Section 2, we provide the state of the art of the time-
dependent reliability analysis methods. Following that, in
Section 3, we analyze uncertainties that affect the perfor-
mance of composite hydrokinetic turbine blades and study
the potential failure modes of turbine blades. In Section 4,
we discuss the way of modeling the loading of turbine
blades and the methods employed to establish the limit-
state functions. A design example is given in Section 5 and
conclusions are made in Section 6.

2 The state of the art of time-dependent reliability
analysis methods

Reliability analysis problems can be divided into the follow-
ing two categories:

• Time-invariant reliability problems with random vari-
ables

• Time-dependent reliability problems with stochastic
processes
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In the past decades, many methods have been devel-
oped for time-invariant reliability problems. These methods
include FORM, Second Order Reliability Analysis Method
(SORM), and Importance Sampling Method (ISM).

For the time-dependent reliability analysis problems,
such as the reliability analysis of composite hydrokinetic
turbine blades under stochastic river flow loading, are much
more complicated. To show the complexities, in the follow-
ing subsections, we first discuss the differences between the
two reliability problems and then review several methodolo-
gies for time-dependent reliability analysis.

2.1 Time-dependent reliability and time-invariant
reliability

Time-invariant reliability does not change over time while
the time-dependent reliability does. Let a general limit-state
function be

G = g(X, Y(t), t) (1)

in which X = [X1, X2, · · · , Xn] is a vector of random vari-
ables, and Y(t) = [Y1(t), Y2(t), · · · Ym(t)] is a vector of
stochastic processes.

(a) Time-dependent reliability

For the general limit-state function in (1), the response
variable G is a random variable at any instant of time. Let
the threshold of a failure be e. If a failure occurs when
G = g (X, Y (t) , t) > e, the time-dependent probability
of failure over a time interval [t0, ts] is given by

Pf (t0, ts) = Pr {g (X, Y (t) , t) > e, ∃ t ∈ [t0, ts]} (2)

where Pr{·} stands for the probability.
The corresponding time-dependent reliability is given by

R (t0, ts) = Pr {g (X, Y (t) , t) < e, ∀ t ∈ [t0, ts]} (3)

The time-dependent reliability tells us the likelihood that
no failure will occur over a time period.

(b) Time-invariant reliability

At a specified time instant ti , the reliability is given by

R (ti ) = Pr {g (X, Y (ti ) , ti ) < e} (4)

This reliability is called instantaneous reliability or time-
invariant reliability. It is the probability that the response
variable is not greater than the threshold at ti , thereby not in
the failure region, regardless whether a failure has occurred
or not prior to ti . It is meaningful for only a time-invariant

limit-state function g(X), which does not depend on time,
resulting a constant reliability. For a time-dependent prob-
lem over [t0, ts], the instantaneous reliability is only used
for the initial reliability at t = t0.

The methods for the time-invariant reliability, however,
may not be directly used to calculate the time-dependent
reliability. The major reason is that the time-dependent
reliability is defined over a time period, which consists
of infinite numbers of time instants where the response
variables are dependent.

2.2 Methodologies for time-dependent reliability analysis

2.2.1 MCS for time-dependent reliability analysis

The implementation of MCS for time-dependent reliability
analysis is quite different from that for time-invariant one.
The differences lie on the ways of counting failure events
and generating random samples.

If stochastic processes are involved, we need at first to
generate their trajectories (sample traces). Since a trajec-
tory is a continuous function of time, we need to use many
discretization points (time instants) to accurately represent
the function. At each of the time instants, a stochastic pro-
cess is a random variable and the random variables at all
the time instants are usually dependent. As a result, the ran-
dom samples are stored in a two-dimensional array—one
is indexed by time instants, and the other is indexed by
random trajectories. For a time-invariant problem, the sam-
ples are represented by just a one-dimensional array because
no time is involved. The size of the samples of a time-
dependent problem is therefore much higher than that of a
time-invariant one.

After the samples are generated, a limit-state function
will be evaluated at all the sample points. Compared to a
time-invariant problem, the number of function calls for a
time-dependent problem will be much higher because of the
above reason. By comparing the value of a limit-state func-
tion against the failure threshold, we will know if a failure
occurs. If the limit-state function value is greater than the
threshold at any discretized time instant, we consider the
event as a failure. The details of MCS for time-dependent
reliability analysis are provided in Appendix A.

Due to its high computational cost, MCS is not practi-
cally used for time-dependent reliability analysis, but may
be used as a benchmark for the accuracy assessment for
other reliability analysis methods.

2.2.2 Poisson assumption based upcrossing rate method

Given its high efficiency, the Poisson assumption based
upcrossing rate method has been widely used (Zhang and
Du 2011; Andrieu-Renaud et al. 2004; Hu and Du 2012).
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With this method, the time-dependent probability of failure
over time interval [t0, ts] is computed by

p f (t0, ts) = 1 − [
1 − p f (t0)

]
exp

{
−

∫ ts

t0
v+ (t) dt

}
(5)

in which v+(t) is the upcrossing rate at time t , and p f (t0)
stands for the instantaneous probability of failure at the
initial time.

It is difficult to obtain the upcrossing rate v+(t). One
effective way is using FORM. FORM transforms random
variables {X, Y(t)} into the standard normal variables
U (t) = [UX, UY (t)]. Then the limit state function becomes
G = g (U (t) , t) (Zhang and Du 2011). After the lineariza-
tion of the limit-state function at the Most Probable Point
(MPP) u∗(t), the upcrossing rate v+(t) is computed using
the Rice’s formula (Rice 1944, 1945) as follows:

v+ (t) = ω (t) φ (β (t))

{
φ

( ·
β (t)

/
ω (t)

)
−

[ ·
β (t)

/
ω (t)

]

×�

(
− ·

β (t)
/
ω (t)

)}
(6)

where φ(·) and �(·) represent the probability density func-
tion (PDF) and cumulative distribution function (CDF) of a
standard normal random variable, respectively, and

β (t) = ∥
∥u∗ (t)

∥
∥ (7)

in which ‖·‖ stands for the magnitude of a vector.
ω(t) is given by

ω2 (t) = ·
α (t)

·
α

T
(t) + α (t) C̈12 (t, t) αT (t) (8)

where

α (t) = ∇g
(
u∗ (t) , t

)/∥∥∇g
(
u∗ (t) , t

)∥∥ (9)

and

C̈12 (t1, t2)

= C̈21 (t1, t2)

=

⎡

⎢
⎢⎢
⎢
⎢⎢
⎢
⎣

0 0 · · · 0

0
∂2ρY1 (t, t)

∂t1∂t2
· · · 0

...
...

. . .
...

0 0 · · · ∂2ρYm (t, t)

∂t1∂t2

⎤

⎥
⎥⎥
⎥
⎥⎥
⎥
⎦

(n+m)×(n+m)

(10)

in which ρYi (t, t) is the autocorrelation coefficient function
of stochastic process Yi .

·
α (t) and

·
β (t) are the derivatives of α(t) and β(t),

respectively.
Even if the Poisson assumption based upcrossing rate

method has been widely used, large errors have been
reported for this method by Madsen etc. (Madsen and
Krenk 1984; Vanmarcke 1975; Preumont 1985; Singh et al.
2010). One of the main error sources is the Poisson assump-
tion, which assumes that the events that the response
upcrosses the failure threshold are completely independent
from each other. This assumption does not hold for many
cases because there are always some correlations between
the failure events and failures may occur in clusters. To
overcome this drawback, Madsen and Krenk (1984) pro-
posed a method to consider the correlation between two
time instants of a Gaussian process. His method focuses
on only Gaussian processes. Vanmarcke (1975) has made
some empirical modifications to the Poisson assumption
based method. His modifications, however, are limited to
stationary Gaussion process. Most recently, Singh et al.
(2010) has established a “composite” limit-state function
method, which can accurately estimate the time-dependent
reliability problems with limit-state functions in a form of
G = g (X, t), where there are no input stochastic pro-
cesses. The JUR/FORM (Hu and Du 2011) method has
recently been developed by extending Madsen and Krenk’s
method (1984) for more general problems with both random
variables and non-stationary stochastic processes. We next
review the main idea of the JUR/FORM.

2.2.3 JUR/FORM

JUR/FORM aims to release the Poisson assumption by con-
sidering the correlations between the limit-state function at
two time instants. It can be applied to general problems
with both random variables and stochastic processes. Since
it is based on FORM, it is much more efficient than MCS
while the accuracy is higher than the traditional upcrossing
method. With this method, the time-dependent probability
of failure p f (t0, ts) is computed by

p f (t0, ts) = Pr {g (X, Y (t0) , t0) > e}
+ Pr {g (X, Y (t0) , t0) < e}
×

∫ ts

t0
fT1 (t) dt (11)

where fT1 (t) is the PDF of the first-time to failure.
Pr {g (X, Y (t0) , t0) > e} is the probability of failure at the
initial time, and Pr {g (X, Y (t0) , t0) < e} ∫ ts

t0
fT1 (t) dt is

the probability of failure over [t0, ts] given that no failure
occurs at the initial time.
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fT1 (t) can be obtained by solving the following integral
equation (Madsen and Krenk 1984):

v+ (t) = fT1 (t) +
∫ t

t0
v++ (t, τ ) fT1 (τ )

/
v+ (τ ) dτ (12)

in which v+(τ ) is given in (6), and v++(t, τ ) stands for the
joint probability that there are upcrossings at both t and τ .
The equations for v++(t, τ ) are given in Appendix B.

Given its advantages, we use JUR/FORM for the relia-
bility analysis of the composite hydrokinetic turbine blades.
We also use MCS to verify the accuracy of JUR/FORM.

Figure 1 shows the three steps of JUR/FORM (Hu
and Du 2011). In the first step, we divide the time-
interval into discretized time instants. We then use FORM
to search for MPPs at every time instant and calculate

α (ti ) , β (ti ) ,
·
α (ti ) ,

·
β (ti ) and C

(
ti , t j

)
. The PDF fT1 (t)

can then be obtained using (6) and (12), and the formulas
in Appendix B. Finally, the time-dependent probability of
failure is calculated by (11).

In the following section, we discuss how to apply the
time-dependent reliability analysis method to evaluate the
reliability of composite hydrokinetic turbine blades over the
design life.

Step 1: Initialize parameters 

Reliability analysis at it and it t+ Δ  

Step 2: Perform the MPP search 

Solve for 
upcrossing 

rate ( )iv t+
 

 
Solve for joint upcrossing 

rate ( , )i jv t t++  

Solve for PDF 
1
( )T if t  

Step4: Integration of 
1
( )T if t  

Step 3: Compute PDF 
1
( )T if t  

α β α βi i i i(t ), (t ), (t ), (t )  

Calculate 0( , )f sp t t  

Initial reliability 

0( )R t

. .

Fig. 1 Numerical procedure of JUR/FORM

3 Uncertainty and failure modes analysis for composite
hydrokinetic turbine blades

3.1 Uncertainty analysis

3.1.1 River f low velocity

Due to the natural variability, the river flow velocity is
the major uncertainty inherent in the working environment
of hydrokinetic turbine blades. It is directly related to the
safety of the turbine blade. Analyzing the uncertainty of the
river flow velocity is critical to the reliability analysis of
hydrokinetic turbine blades. The river flow velocity, how-
ever, is difficult to be modeled exactly since it varies both in
space and time. To present the variation of river flow veloc-
ity over space and time, we need many historical river flow
velocity data at different locations of the river cross section.
This kind of data is not available at most of the time. In order
to overcome this limitation, Hu and Du (2012) proposed to
present the river flow velocity in the form of river discharge,
of which the data have been recorded for many rivers. With
the river discharge and the assumption that the shape of a
river bed is a rectangle, the cross section average river flow
velocity is calculated by the Manning–Strickler formula as
follows (Arora and Boer 1999; Schulze et al. 2005; Allen
et al. 1994):

v (t) = n−1
r Q (t)2/3 S1/2 (13)

in which v(t) is the river water flow velocity (m/s), nr is the
river bed roughness, S is the river slope (m/m), and Q(t) is
given by (Hu and Du 2012; Allen et al. 1994)

Q (t) = 0.946d0.898
m

0.698d0.341
m + 2.71d0.557

m
(14)

where dm is the monthly discharge of the river (m3/s).
The distribution of dm is lognormal (Beersma and Buis-

hand 2004; Mitosek 2000), and its CDF is given by

FDm (dm) = �

(
ln (dm) − μDm (t)

σDm (t)

)
(15)

in which μDm (t) and σDm (t) are the mean and stan-
dard deviation of ln (dm), respectively. These two param-
eters are time-dependent because the river discharge varies
seasonally.

The autocorrelation coefficient of the normalized and
standardized monthly river discharge is approximated by
(Otache et al. 2008; Wang et al. 2005)

ρDm (t1, t2) = exp

(

−
(

t2 − t1
ζ

)2
)

(16)
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where ζ is the correlation length. Therefore, after normal-
ization and standardization, the monthly river discharge
can be presented by its underlying Gaussian process with
autocorrelation coefficient function given in (16).

3.1.2 Uncertainties in composite materials

The hydrokinetic turbine blade is made of fiberglass/epoxy
laminates with [0/90/0/90/0]s symmetric configurations.
Due to the natural variability in laminate properties, fiber
misalignment, and the fabrication process of composite
materials, uncertainties exist in the stiffness of composite
materials. Herein, four variables are represented by proba-
bility distributions. These random variables are E11 andE22

(E33) (elastic modulus along direction 1, 2 and 3), G12

(G13), and G23 (shear modulus). All the random vari-
ables are normally distributed. As suggested in Young et al.
(2010), a 2 % coefficient of variation was assigned to the
material parameters of the composite material as shown
in Table 1. The coefficient of variation is the ratio of the
standard deviation to the mean of a random variable.

After identifying the uncertainties in the composite
hydrokinetic turbine blade, we analyze the potential fail-
ure modes that may occur during the operation of turbine
blades.

3.2 Failure modes of composite hydrokinetic turbine
blades

The failure modes of wind turbine blades have been reported
in literature. They can be used as a reference for ana-
lyzing hydrokinetic turbine blades because both wind and
hydrokinetic turbine blades share similar working prin-
ciples. For wind turbine blades, the commonly studied
failure modes include failures due to fatigue (Ronold
and Christensen 2001; Veldkamp 2008), extreme stresses
(Ronold and Larsen 2000; Saranyasoontorn and Manuel
2006), excessive deflections (Grujicic et al. 2010), corro-
sion (Lee 2008; Mühlberg 2010), and so on. Based on the
studied failure modes, in this work, we mainly focus on
the failure modes with respect to the Tsai–Hill failure cri-

Table 1 Distributions of random variables of the composite material

Variable Value Distribution

Mean Coefficient
type

of variation

Young’s E11 = 45.6 GPa 0.02 Gaussian

modulus E22 = E33 = 16.2 GPa 0.02 Gaussian

Shear G12 = G13 = 5.83 GPa 0.02 Gaussian

modulus G23 = 5.786 GPa 0.02 Gaussian

terion and excessive deflection. The major reason of doing
this is that the extreme stress and deflection can be obtained
from static analysis and that the two failure modes can be
analyzed using the same kind of reliability analysis method.

The fatigue of turbine blades is also critical to the reli-
ability of a turbine system. The fatigue reliability analysis
requires a stress cycle distribution of blades obtained from
a large number of simulations or experiments. It also needs
stochastic S-N curve to account for uncertainties in material
fatigue tests. It is a much more challenging task and will be
one of our future works.

3.2.1 The Tsai–Hill failure criterion for composite turbine
blades

For plane stresses, the failure indicator of the Tsai–Hill
criterion is

find = σ 2
1

s2
L

− σ1σ2

s2
L

+ σ 2
2

s2
T

+ τ 2
12

s2
LT

(17)

where σ1, σ2 and τ12 are local stresses in a lamina with ref-
erence to the material axes. sL , sT and sLT are the failure
strengthes in the principal material directions. sL stands for
the longitudinal strength in fiber direction (direction 1), sT

denotes transverse strength in matrix direction (direction 2),
and sLT indicates the in-plane shear strength (in plane 1–2).

If σ1 > 0, use longitudinal tensile strength for sL ; if σ2 >

0, use transverse tensile strength for sT ; otherwise, use the
compressive strength for sL and sT . To determine whether
the composite blade laminate will fail due to applied load-
ing, the method first calculates stresses across the different
plies, followed by applying the Tsai–Hill interactive failure
criterion based on these stress levels. The composite blade
laminate is considered to fail when a first ply fails. This
point of failure is the first ply failure (FPF) (Araújo et al.
2010; Zhang and Yang 2009), beyond which the laminate
may still carry the load. For a safe design, the composite
laminates should not experience stress high enough to cause
FPF. Figure 2 shows a failure evaluation of the hydrokinetic
turbine blade using the Tsai–Hill criterion in ABAQUS.

The limit-state function with respect to the Tsai–Hill
failure criterion is defined by

g1 (Xb, Yb (t) , t) = find (Xb, Yb (t) , t)− fallow, t ∈ [t0, ts]

(18)

where find (Xb, Yb (t) , t) is the failure indicator of the com-
posite blade based on the Tsai–Hill criterion, fallow is the
allowable value, Xb = [E11, E22, G12, G23] is the vector
of random variables, and Yb (t) = [v (t)] is the vector of
stochastic process. When g (Xb, Yb (t) , t) > 0, a failure
occurs based on the Tsai–Hill criterion.
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Fig. 2 Blade failure evaluation under hydrokinetic loadings (based on the Tsai–Hill criterion)

3.2.2 Excessive def lection of turbine blades

Figure 3 shows the deflection of the hydrokinetic turbine
blade due to the river flow loading. The deflection of the
blade is inevitable during the operation. It is correlated with
various turbine performances, such as the power produc-
tion, cavitation characteristics, possible failure modes of
composite materials, and so on (Motley and Young 2011a;
Young et al. 2010). It is one of the critical parameters
that need to be investigated during the turbine blade design
phase.

Since the river climate varies over time, it results in the
variation of the tip deflection of the turbine blade during
operation. The actual deflection of the turbine blade should
not exceed the allowable one. We then define the following
limit-state function:

g2 (Xb, Yb (t) , t)

= εactual (Xb, Yb (t) , t) − εallow, t ∈ [t0, ts] (19)

where εactual (Xb, Yb (t) , t) and εallow are the actual and
allowable deflections of the turbine blade at time t ,
respectively.

Based on the failure modes and limit-state functions
we defined, we then discuss the reliability analysis of the
composite turbine blade.

4 Simulation-based time-dependent reliability analysis
for composite hydrokinetic turbine blades

To perform the time-dependent reliability analysis for the
composite hydrokinetic turbine blades, we need to address
two more challenges. The first one is how to analyze the per-
formance responses of turbine blades under the stochastic
river flow loading. The other one is how to build limit-
state functions in terms of the blade response for reliability
analyses. In this paper, we propose to use the BEM-FEM
coupled method to compute the responses of composite
turbine blades. By applying the simulation results from
BEM-FEM, we build surrogate models for the responses
through the stochastic polynomial chaos expansion (SPCE)
method. Finally, the time-dependent reliability analyses are
performed on these surrogate models.

4.1 Construction of surrogate models

4.1.1 BEM-FEM coupled method

The blade element momentum theory (BEM), proposed by
Glauert in 1935, has been widely used to calculate the load
of turbine blades. It is applicable to estimate the steady
loads, the thrust and power for different settings of speed,
rotational speed and pitch angle of turbines (Martin 2008).

Un-deformed 

Deformed 

Fig. 3 Deformed and un-deformed geometry of the hydrokinetic turbine blade
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Fig. 4 Flowchart of the
BEM-FEM
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Since it is based on the momentum theory and the local
events taking place at the blade elements, it may not be as
accurate as that from the 3-dimentional computational fluid
dynamics (CFD) simulations. However, the BEM calcula-
tion is much faster than the CFD simulation. Given its high
efficiency and many corrections to the original model, BEM
provides engineers with an effective way of approximating
the aerodynamic/hydrodynamic loadings on turbine blades.

In the present work, we employ BEM to compute the
loadings on the composite hydrokinetic turbine blades in
reliability analysis. The load produced by BEM serves as
the input of FEM, which generates the stress distribution of
the turbine blade. We refer this procedure as the BEM-FEM
coupled method.

Figure 4 shows the flowchart of the BEM-FEM coupled
method. For BEM, we assume that there is no-radial-
dependency among blade elements. However, we incorpo-
rate the Prandtil’s tip loss, Glauert correction, and hub loss
into the model to ensure reliable results. The hydrodynamic
loadings obtained from the BEM code have been validated
with Blade Tidal, which is a design tool for tidal current
turbines (Blade Tidal 2011).

Figure 5 presents the finite element mesh of the blade,
which is divided into eight stations, and each station is
applied with concentrated hydrodynamic forces on the blade
surface using multipoint constraints (MPC) technique.

If BEM-FEM is directly employed for the time-
dependent reliability analysis, the efficiency will be very
low, as the number of FEM runs is much higher than that
of the time-invariant reliability analysis. Since the time-
dependent reliability analysis will be later integrated into an
optimization framework, the direct use of BEM-FEM may
not be affordable in terms of computational efforts. There-
fore, we construct surrogate models based on limited and
selected BEM-FEM analyses. In the next section, we will
introduce a method to construct the surrogate models based
on the FEM simulations.

4.1.2 SPCE method

Since the uncertainties are all modeled by random vari-
ables, we use the SPCE method to get the surrogate models
for the two limit-state functions. As an efficient tool for
multi-disciplinary design optimization (MDO) in various
engineering applications, SPCE has drawn much attention
in the past decades. With SPCE, the chaos expansion for a
response Z is given by (Eldred and Burkardt 2009; Sudret
2008b)

Z =
P∑

i=0

χii (ξ) (20)

Fig. 5 Finite element mesh of
the blade
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where χ i are deterministic coefficients, i (ξ ) are the i-th
order random basis functions, ξ = [ξ1, ξ2, · · · ξn] is a vec-
tor of independent standard random variables, and P is the
number of terms. The total number of terms for a com-
plete polynomial chaos expansion of order p and n random
variables is given by

1 + P = (n + p)!
n!p! (21)

The use of independent standard random variables in (20)
is critical because it allows decoupling of the multidimen-
sional integrals in a mixed basis expansion (Eldred 2009).
i (ξ ) are multivariable polynomials, which involve prod-
ucts of one-dimensional polynomials. For the expansion of
a response with different kinds of random variables, mixed
bases will be used. There are different kinds of basis func-
tions for different uncertainty distributions (Eldred 2009).
For a normal (Gaussian) uncertain variable, the ideal basis
function is the Hermit polynomial. For a uniform or expo-
nential distribution, the ideal basis function is Legendre or
Laguerre polynomial.

In this work, the point collocation method is applied
to get the deterministic coefficients χi in (20). For the
point collocation method, sampling of input random vari-
ables is the key to ensure the efficiency and accuracy of the
approximation. The most commonly used sampling meth-
ods include the Random Sampling (RS), Latin Hypercube
Sampling (LHS), and Hammersley Sampling (HS) (Chen
et al. 1995). We use HS to generate samples for input
random variables because it is capable of providing bet-
ter uniformity properties over multi-dimensional space than
LHS and RS.

For the time-dependent reliability analysis of composite
hydrokinetic turbine blades, the uncertainties in the mate-
rial are modeled as Gaussian random variables, which can
be expanded using the Hermit polynomial basis. The flow
velocity is a stochastic process that varies randomly over
time. As a result, at different time instants, the velocity dis-
tributions will be different. There is no single distribution
we could use for the expansion. Therefore, we regard the
flow velocity as a variable with unknown distribution and
then treat it with a uniform distribution bounded by the cut-
out and cut-in velocity as shown in Fig. 6. This treatment is
similar to expand a general variable. As shown in the exam-
ple in this paper, this treatment works well for the reliability
analysis of turbine blades. For stochastic polynomial chaos
expansion, we therefore use the Hermit polynomials for
E11, E22 (E33), G12 (G13),and G23; and Legendre polyno-
mials for the river velocity. For multivariate basis functions,
the mixed bases are used for expansion.

PDF 

inv outv
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t i

t
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Fig. 6 Distribution of river flow velocity

With the expansion order of two, the polynomial chaos
expansion model for the studied problem in this work is
given by

Zs =
20∑

k=0

χ s
i i (ξ)

= χ s
0 +

4∑

i=1

χ s
i H1 (ξi ) + χ s

5 L1 (ξ5 (t))

+
4∑

i=1

χ s
5+i H1 (ξi ) L1 (ξ5 (t))

+
3∑

i=1

4∑

j=i+1

χ s
(i, j)H1 (ξi )H1

(
ξ j
)

+
4∑

i=1

χ s
15+i H2 (ξi ) + χ s

20L2 (ξ5 (t)) (22)

ξ j = x j − μX j

σX j

, j = 1, · · · , 4 (23)

and

ξ5 (t) = 2v (t) − vL − vU

vU − vL
(24)

in which

– ξ j , j = 1, · · · , 4, are the standard normal random
variables corresponding to material strengths

– ξ5(t) is a normalized uniform random variable bounded
in [−1, 1], which is associated with the stochastic
process of river velocity v(t) at time t

– x = [x1, x2, x3, x4] is a vector of specific values for
random variables [E11, E22, G12, G23]
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– μX j and σX j are the mean and the standard deviation of
random variable X j , respectively

– vL is the lower bound of tip river velocity expansion
interval

– vU is the upper bound of river velocity expansion
interval

– Hi (·) , i = 1, 2, is the i th order Hermit polynomial
basis

– Li (·) , i = 1, 2, is the i th order Legendre polynomial
basis

– Zs, s = 1, 2, represents the limit-state functions, s = 1
for limit-state function 1 in (18), and s = 2 for limit-
state function 2 in (19)

– χ s
i , s = 1, 2 and i = 0, 1, 2, · · · , 20, stand for the

deterministic coefficients of the surrogate models. s =
1 for surrogate model associated with limit-state func-
tion 1 and s = 2 for surrogate model associated with
limit-state function 2.

Assume that Np simulations are performed for the tur-
bine blades at the sample points generated from HS, the
deterministic coefficients χ s

i , s = 1, 2 and i = 0, 1,
2, · · · , 20, are then solved by the point collocation method
as follows:

⎛

⎜⎜
⎜
⎝

0
(
ξ1

)
1

(
ξ1

) · · · 20
(
ξ1

)

0
(
ξ2

)
1

(
ξ2

) · · · 20
(
ξ2

)

...
... · · · ...

0
(
ξ Np

)
1

(
ξ Np

) · · · 20
(
ξ Np

)

⎞

⎟⎟
⎟
⎠

⎛

⎜⎜
⎜
⎝

χ s
0

χ s
1
...

χ s
20

⎞

⎟⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

Zs
(
ξ1

)

Zs
(
ξ2

)

...

Zs
(
ξ Np

)

⎞

⎟
⎟
⎟
⎠

(25)

where ξ i = [
ξ i

1, ξ
i
2, ξ

i
3, ξ

i
4, ξ

i
5 (t)

]
, i = 1, · · · , Np is the i th

group of sample points generated from HS, and Zs
(
ξ i
)

is
the blade response of Zs with the i th group of sample points
obtained from the simulation.

4.2 Reliability analysis of composite hydrokinetic turbine
blades

We assume that the seasonal effects of river flow velocity
repeat in the same time periods of any year. This assumption
is reasonable given the fact that the Earth circulates around
the Sun annually with the same seasonal effects. Based on
this assumption, the probability of failures during T -years
operation can be calculated by

pi
f (T ) = 1 −

[
1 − pi

f (Ye)
]T

(26)
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Fig. 7 Flowchart of simulation-based time-dependent reliability
analysis

where pi
f (T ) is the probability of failure during T years;

pi
f (Ye) is the annual probability of failure. istands for the

two failure modes as follows:

• i = 1 for the failure with respect to the Tsai–Hill failure
criterion

• i = 2 for the failure of excessive deflection

In (26) the annual probability of failure pi
f (Ye) is defined

over a time interval [0, t], where t is equal to one year. The
annual probability of failure pi

f (Ye) can be solved by apply-
ing JUR/FORM given in Section 2 and using the surrogate
models in Section 4.1.

4.3 Numerical procedure

In this section, we summarize the numerical implementation
of the reliability analysis method discussed above. Figure 7
depicts the procedure of the implementation.

• Step 1: Sample generation: generate the samples of ran-
dom variables using the Hammersley Sampling method
based on their distribution.

• Step 2: BEM-FEM coupled analysis: with the input
samples from step 1, analyze the failure indicator with
respect to the Tsai–Hill failure criterion and deflection
of the hydrokinetic turbine blade using BEM-FEM.

• Step 3: Design of experiments: construct surrogate
models using the outputs from simulations and approx-
imate the responses with the stochastic polynomial
chaos expansion method.

• Step 4: Reliability analysis: perform time-dependent
reliability analysis by applying the JUR/FORM method.
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Table 2 Deterministic parameters used for reliability analysis

Parameter fallow εallow �t

Value 1 3.5 × 10−2 (m) 5 × 10−3 (month)

5 Case study

We studied a one-meter long composite hydrokinetic tur-
bine blade with varying chord lengths, cross sections and
an eight-degree twist angle. This blade is for a hydrokinetic
turbine system that is intended to put into operation in the
Missouri River. During the design process, we evaluated the
reliability of the hydrokinetic turbine over a 20-year design
period.

5.1 Data

5.1.1 River discharge of the Missouri River

Based on the historical river discharge data of Missouri river
from 1897 to 1988 at Hermann station, the mean and stan-
dard deviation of the monthly river discharge were fitted as
functions of t as follows (Hu and Du 2012):

μDm (t) = amean
0

+
5∑

i=1

[
amean

i cos (iωmeant) + bmean
i sin (iωmeant)

]

(27)

σDm (t) = astd
0 +

5∑

j=1

[
astd

j cos ( jωstdt) + bstd
j sin ( jωstdt)

]

(28)

where

amean
0 = 2335, amean

1 = −1076, amean
2 = 241.3,

amean
3 = 61.69, amean

4 = −30.92, amean
5 = 32.38,

bmean
1 = 57.49, bmean

2 = −174.9, bmean
3 = −296.2,

bmean
4 = 213.6, bmean

5 = −133.6, ωmean = 0.5583 (29)

astd
0 = 1280, astd

1 = −497.2, astd
2 = 145.8,

astd
3 = 225.4, astd

4 = −203.1, astd
5 = 99.47,

bstd
1 = −82.58, bstd

2 = −19.06, bstd
3 = −178.7,

bstd
4 = 36.15, bstd

5 = −52.47, ωstd = 0.5887 (30)

The auto-correlation coefficient function of the normalized
and standardized monthly discharge was assumed to be

ρDm (t1, t2) = exp
{
− [

20 (t2 − t1)
/

3
]2
}

(31)

5.1.2 Deterministic parameters for time-dependent
reliability analysis

Table 2 presents the deterministic parameters for the relia-
bility analysis, which include the limit states and time step
size.

5.2 Sampling of random variables

According to the distributions of random variables and their
bases for expansion, samples were generated. Since there
are five variables to be expanded using the SPCE method
and the expansion order is two, the minimal number of sam-
plings required is 21 according to (21). To achieve a good
accuracy of approximation, we generated more samples (32
samples). The samples are depicted in Fig. 8.

5.3 Responses from FEM simulation

BEM-FEM coupled simulations were performed at the sam-
ple points generated in Section 5.2. Based on the simula-
tion results, surrogate models were constructed. Figure 9
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Fig. 9 Values of failure indicators from simulation and predicted
values

presents the failure indicators of the Tsai–Hill failure cri-
terion from simulations versus the predicted ones from the
surrogate model. Figure 10 shows the deflections obtained
from simulations versus the predicted ones from the surro-
gate model.

The figures indicate that the SPCE method well approx-
imates the responses because the two curves are almost
linear. Thus the approximated models could be confidently
used for assessing the reliability of the turbine blade.
Figures 11 and 12 illustrate the response of failure indicator
of the Tsai–Hill failure criterion and that of the deflection
versus the river velocity and composite material property,
respectively.
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Fig. 10 Deflections from simulation versus predicted deflections
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Fig. 11 Failure indicator for Tsai–Hill failure criterion

5.4 Reliability analysis and results

We first calculated the probability of failure of the hydroki-
netic turbine blade over a one-year time period [t0, ts] = [0,
1] yr. We then computed the probability of failure over the
life time [t0, ts] = [0, 20] yr using (26).

5.4.1 Time-dependent probabilities of failure

Figures 13 and 14 give the time-dependent probabilities of
failure of composite hydrokinetic turbine blades over a one-
year time period with respect to the failure modes of the
Tsai–Hill failure criterion and excessive deflection, respec-
tively. To verify the accuracy of the reliability analysis, we
also performed MCS with a sample size of 2 × 106.
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Fig. 12 Deflection of turbine blades
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Fig. 13 Time-dependent probabilities of failure with respect to Tsai–
Hill failure criterion

The results indicate that the accuracy of the reliability
analysis from JUR/FORM is good. The probability of fail-
ure for the Tsai–Hill failure criterion is 5.6312 × 10−4 over
a one-year period. The probability of failure due to exces-
sive deflection is 11.0843 × 10−4 over a one-year time
period. The failure mode of the Tsai–Hill failure criterion is
less likely to happen than that of excessive deflection for this
design. The probabilities of failure for the Tsai–Hill failure
criterion and excessive deflection over a 20-year life period
are 1.12 × 10−2 and 2.19 × 10−2, respectively.
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Fig. 14 Time-dependent probabilities of failure with respect to exces-
sive deflection

Table 3 Number of function calls and actual computational cost for
Tsai–Hill failure criterion

[t0, ts ] JUR/FORM MCS

months
Time (s) Function calls Time (s) Function calls

[0, 4] 27.83 11403 1.47 × 103 2 × 108

[0, 6] 30.55 11167 2.03 × 103 3 × 108

[0, 8] 30.20 11427 3.26 × 103 4 × 108

[0, 10] 26.45 11870 4.91 × 103 5 × 108

[0, 12] 28.69 11821 6.89 × 103 6 × 108

Tables 3 and 4 present the actual computational costs
and numbers of function calls required by JUR/FORM and
MCS for the two failure modes, respectively. The analy-
ses were run on a Dell personal computer with Intel (R)
Core (TM) i5-2400 CPU and 8 GB system memory. The
results indicate that JUR/FORM is much more efficient
than MCS. This means that the computational effort will
decrease significantly when JUR/FORM is employed to
substitute MCS for the time-dependent reliability analy-
sis. This is especially beneficial when the time-dependent
reliability analysis is embedded in the hydrokinetic turbine
blade optimization framework where the reliability analysis
is called repeatedly.

5.4.2 Sensitivity analysis of random variables

Sensitivity factors (Choi et al. 2007) are used to quantify the
importance of random variables to the probability of failure.
Given the transformed limit-state function g (U (t) , t) and
MPP U∗ (t), the sensitivity factor of random variable Ui (t)
at time instant t is given by (Choi et al. 2007)

si (t) = −U∗
i (t)

/⎡

⎣
n+m∑

j=1

(
U∗

j (t)
)2

⎤

⎦

0.5

(32)

Based on this, we obtained the sensitivities factors of
random variables at every time instant.

Table 4 Number of function calls and actual computational cost for
excessive deflection

[t0, ts ] JUR/FORM MCS

months
Time (s) Function calls Time (s) Function calls

[0, 4] 23.97 9449 1.28 × 103 2 × 108

[0, 6] 23.64 9692 2.86 × 103 3 × 108

[0, 8] 25.95 9625 3.87 × 103 4 × 108

[0, 10] 23.04 9933 5.67 × 103 5 × 108

[0, 12] 23.72 9827 7.78 × 103 6 × 108
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Fig. 15 Sensitivity factors for the Tsai–Hill failure criterion

Figures 15 and 16 show sensitivity factors of the five
random variables for the Tsai–Hill failure criterion and
excessive deflection, respectively.

With the results of sensitivity analyses in Figs. 15 and 16,
we summarize our major findings as follows:

• The river velocity makes the highest contributions to the
probability of failure, while the uncertainties in material
properties make smaller contributions.

• The river velocity always makes negative contribution
to the reliability of composite turbine blades. This
means that an increase in velocity will result in a
decrease in reliability.

• With respect to the failure mode of excessive deflection,
elastic modulus along direction 1 (i.e. E11), irrespective
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Fig. 16 Sensitivity factors for the excessive deflection failure

of river velocity, makes the highest positive contribu-
tions to the reliability of composite hydrokinetic turbine
blades. It is followed by the shear modulus G12(G13).

• For the failure mode of the Tsai–Hill failure criterion,
E22 turns out to make negative contributions to the
reliability of turbine blades while the sensitivity with
respect to E11 is positive and the largest.

• The shear modulus G23 always makes negligible con-
tributions to both of the failure modes.

6 Conclusions

Using an appropriate reliability analysis method is critical
for the probabilistic design of composite hydrokinetic tur-
bine blades. In this work, we developed a simulation based
time-dependent reliability model for composite hydroki-
netic turbine blades. The BEM-FEM coupled method was
used to get the responses of failure indicator of the Tsai–Hill
failure criterion and deflections of turbine blades. The SPCE
method was adopted to establish the limit-state functions,
and JUR/FORM was employed to perform time-dependent
reliability analysis. By incorporating these analysis meth-
ods, we evaluated the influence of uncertainties in river
flow velocity and composite material properties on the
performance of turbine blades.

The results illustrated that the composite hydrokinetic
turbine blade has larger probability of failure for the exces-
sive deflection than that due to the Tsai–Hill failure crite-
rion. The former, therefore, needs to be paid more attention
during the design phase.

Sensitivity analysis of random variables showed that the
river flow velocity makes the highest contribution to the
probability of failure of the composite hydrokinetic turbine
blade for both failure modes. The sensitivity analysis of
the composite material parameters showed that E11 always
makes a positive contribution and is the most important
composite material parameter for the reliability of turbine
blades. Therefore, this parameter should be focused on
during the design stage. The shear modulus G23 makes neg-
ligible contributions to the two failure modes. E22 makes
a positive contribution to the reliability of turbine blades
against excessive deflection while this contribution turns to
be negative for the reliability against the failure mode of
Tsai–Hill failure criterion. This demonstrated that the mate-
rial parameters of the composite material make different
contributions to the reliability of turbine blades.

Our future work includes coupling the CFD simulation
with FEM to improve accuracy and applying the developed
method to the reliability-based design optimization (RBDO)
of composite hydrokinetic turbine blades. Fatigue reliability
analysis will also be our future work.
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Appendix A: MCS for time-dependent reliability
analysis

The MCS for time-dependent reliability analysis involves
both a stochastic process (river flow discharge) and random
variables. To generate samples for the stochastic process,
we discretize the time interval [t0, ts] into N points. Then
the samples of the normalized and standardized river flow
discharge process Dm is generated by

Dm = mDm + Mς (33)

where ς = (ς1, ς2, · · · , ςN )T is the vector of N indepen-
dent standard normal random variables; mDm = (μDm (t1),
μDm (t2), · · · , μDm (tN ))T is the vector of mean values of
Dm = (Dm (t1) , Dm (t2) , · · · , Dm (tN ))T ; and M is a
lower triangular matrix obtained from the covariance matrix
of Dm .

Let the covariance matrix of Dm at the N points be
CN×N , we have

CN×N

=
⎛

⎜
⎝

ρDm (t1, t1) ρDm (t1, t2) · · · ρDm (t1, tN )

ρDm (t2, t1) ρDm (t2, t2) · · · ρDm (t2, tN )

.

.

.
.
.
.

. . .
.
.
.

ρDm (tN , t1) ρDm (tN , t2) · · · ρDm (tN , tN )

⎞

⎟
⎠

N×N

(34)

Then M can be obtained by

CN×N = PDP−1 = MMT (35)

in which D is a diagonal eigenvalue matrix of the covariance
matrix CN×N , and P is the N × N square matrix whose i-th
column is the i-th eigenvector of CN×N .

After samples of the stochastic process of river flow dis-
charge are generated, they are plugged into the limit-state
functions, and then the samples (trajectories) of the limit-
state functions are obtained. A trajectory is traced from the
initial time to the end of the time period. Once the trajec-
tory upcrosses the limit state, then a failure occurs; and the
remaining curve will not be checked anymore. The process
is illustrated in Fig. 17.

Time t

Limit state 

g 

t1 

Upcrossing: failure occurs 

Fig. 17 A trajectory of a limit-state function

Appendix B: Computation of v++(t1, t2)

Madsen has derived the expression for v++(t1, t2) as follows
(Madsen and Krenk 1984)

v++ (t1, t2)

= λ1λ2 fW (β) �
(( ·

β1 − μ1
)/

λ1
)
�
(( ·

β2 − μ2
)/

λ2
)

+ λ1λ2 fW (β) κ�
((

μ1 − ·
β1

)/
λ1

)
�
((

μ2 − ·
β2

)/
λ2

)

+ λ2
1λ

2
2 fW (β)

∫ κ

0
(κ − K ) f

Ẅ
∣
∣W

( ·
β
∣
∣β; K

)
d K

(36)

in which

fW (β) = {
exp

[(
β2

1 − 2ρβ1β2 + β2
2

)/(
2 − 2ρ2)]}

/(
2π

√
1 − ρ2

)
(37)

β = [β1, β2] represents the time-invariant reliability index
at time t1 and t2. μ1 and μ2, and λ1 and λ2, κ are the mean
values, standard deviations, and correlation coefficient of
L̇ (t1)

∣∣β and L̇ (t2)
∣∣β, respectively. They are calculated by

the following equations (Hu and Du 2011):

μ =
[

μ1

μ2

]
= cL̇Lc−1

LLβ

=
[

(β2 − ρβ1) ρ1

(β1 − ρβ2) ρ2

]
/(

1 − ρ2) (38)

∑
= c

L̇|L
= cL̇L̇ − cL̇Lc−1

LLcLL̇

=
[

λ2
1 κλ1λ2

κλ1λ2 λ2
2

]
(39)
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where

[
cL̇L̇ cL̇L
cLL̇ cLL

]
=

⎡

⎢
⎢
⎣

ω2 (t1) ρ12 0 ρ1

ρ21 ω2 (t2) ρ2 0
0 ρ2 1 ρ

ρ1 0 ρ 1

⎤

⎥
⎥
⎦ (40)

ρ1 = ·
α (t1) C (t1, t2) αT (t2)

+ α (t1) Ċ1 (t1, t2) αT (t2) (41)

ρ2 = α (t1) C (t1, t2)
·
α

T
(t2)

+ α (t1) Ċ2 (t1, t2) αT (t2) (42)

ρ12 = ·
α (t1) Ċ2 (t1, t2)αT (t2) + ·

α (t1) C (t1, t2)
·
α

T
(t2)

+ α (t1) C̈12 (t1, t2)αT (t2)

+ α (t1) Ċ1 (t1, t2)
·
α

T
(t2)

(43)

ρ21 = ·
α (t1) C (t1, t2)

·
α

T
(t2) + α (t1) Ċ1 (t1, t2)

·
α

T
(t2)

+ α (t1) C̈21 (t1, t2)αT (t2)

+ ·
α (t1) Ċ2 (t1, t2) αT (t2)

(44)

C (t1, t2)

=

⎡

⎢
⎢
⎣

1 0 · · · 0
0 ρY1 (t1, t2) · · · 0
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · ρYm (t1, t2)

⎤

⎥
⎥
⎦

(n+m)×(n+m)

(45)

and

Ċ j (t1, t2)

= ∂C (t1, t2)
/
∂t j

=

⎡

⎢⎢
⎢
⎢⎢
⎣

0 0 · · · 0

0
∂ρY1 (t1, t2)

∂t j
· · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · ∂ρYm (t1, t2)

∂t j

⎤

⎥⎥
⎥
⎥⎥
⎦

(n+m)×(n+m)

,

j = 1, 2

(46)
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