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ABSTRACT In recent years, the employment of full-wave electromagnetic (EM) simulation tools has 
become imperative in the antenna design mainly for reliability reasons. While the CPU cost of a single 
simulation is rarely an issue, the computational overhead associated with EM-driven tasks that require 
massive EM analyses may become a serious bottleneck. A widely used approach to lessen this cost is the 
employment of surrogate models, especially data-driven ones: versatile and easily accessible. Yet, one of the 
unresolved issues remains the curse of dimensionality. Standard modeling techniques are merely capable of 
rendering surrogates for low-dimensional cases within narrow parameter ranges. In pursuit to overcome these 
limitations, a novel technique has been recently proposed, where the overall modeling process is carried out 
within a confined domain, set up based on performance specifications and spectral analysis of an auxiliary 
set of reference designs. This work offers a further development of the aforementioned method. Instead of 
tackling the entire antenna responses, only the selected characteristic points (relevant to the figures of interest 
considered in the antenna design process) are handled. This allows for achieving excellent model accuracy at 
a low computational cost. The proposed approach can be an attractive modeling alternative for systems with 
well-structured characteristics. 

INDEX TERMS Antenna modeling; surrogate modeling; domain confinement; principal components; 
dimensionality reduction; response features.

I. INTRODUCTION 

Stringent performance requirements imposed on modern 
antennas, partially stemming from new emerging application 
areas, have led to a rapid increase in the complexity of the 
antenna topologies. These areas comprise, among others, 
wireless communications [1] (including 5G technology [2]), 
internet of things (IoT) [3], [4], wearable [5] or tele-medicine 
appliances [6]. Design of antennas for these applications 
requires maintaining small physical dimensions [7], [8], 
which makes the task even more challenging. From the 
utility perspective, contemporary antenna structures have to 
fulfill various demands, including multi-band or MIMO 
operation [9], [10], polarization/pattern diversity [11], [12] 
or harmonic suppression [13]. To implement such 

functionalities, antenna geometries are gradually becoming 
more and more complex, and, consequently, described by an 
increased number of parameters. To account for the 
phenomena present in multi-functional antennas of reduced 
physical size, and/or realizing specific functions (circular 
polarization [14], broadband operation [15], band notches 
[16]), utilization of full-wave electromagnetic (EM) 
simulation tools is imperative. Simplified descriptions, such 
as analytical or equivalent networks representations, are no 
longer a viable option, mostly to due to their unavailability 
or inaccuracy. 

Despite being reliable and accurate, full-wave EM 
simulations are computationally expensive. The aggregated 
simulation cost may even turn prohibitive, when repetitive 
analyses are required, as for common procedures such as 
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parametric optimization [17], statistical analysis [18] or yield 
estimation [19]. The expenditures boost even further in the 
case of global optimization procedures. In fact, performing 
EM-driven antenna optimization with the use of the most 
popular population-based metaheuristics (particle swarm 
[20]-[25] or genetic algorithms [26], [27]) is usually very 
costly. As a consequence, an extensive research effort has 
been directed toward expediting the optimization 
procedures. Miscellaneous frameworks have been developed 
including strictly algorithmic methods (e.g., based on 
selective suppression of sensitivity updates through finite 
differentiation [28], [29]) or the employment of adjoint 
sensitivities [30]. An alternative approach is to exploit 
surrogate models (or metamodels) [31]-[41].  

One can distinguish two basic groups of metamodels, 
each having its advantages and drawbacks. The first one are 
physics-based models, which exploit the specific knowledge 
of the system under design, usually in the form of an 
underlying low-fidelity model. Among many physics-based 
surrogate-assisted frameworks, space mapping techniques 
[31], response correction algorithms [32] or adaptive 
response scaling [33], but also feature-based optimization 
[34], may be listed. Good generalization capability of the 
physics-based surrogates is a result of a typically high 
correlation between the low- and high-fidelity models. 
Unfortunately, in antenna design, reliable physics-based 
surrogates typically involve rather costly coarse-mesh EM 
analysis, which puts the efficacy of the overall optimization 
framework in question.  

The second, and the most popular group of metamodels 
are data-driven surrogates. The primary reasons for their 
widespread use are the following: (i) their construction 
requires no physical insight; (ii) they are easily transferable 
between application areas, and (iii) they are readily 
accessible (e.g., SUMO [42], DACE [43], UQlab [44]). 
Plenitude of the data-driven surrogate modelling techniques 
have been developed, e.g., kriging [35], radial basis 
functions (RBF) [36], neural networks [37]-[39], Gaussian 
process [40] or support vector regression [41]. A primary 
limiting factor of data-driven models is the curse of 
dimensionality. In practice, constructing a reliable surrogate 
for modern antennas described by large numbers of 
parameters is hardly doable, especially when the surrogate is 
supposed to be valid over broad ranges of antenna operating 
conditions (otherwise imperative to ensure design usefulness 
of the model).  

As a result of the aforementioned limitations, over the 
recent years, a class of constrained data-driven modeling 
techniques evolved that share a key concept of surrogate 
domain confinement from the standpoint of the design 
objectives [45]-[48]. Each of these frameworks exploits a 
database of high-quality designs (so-called reference points), 
optimized for selected operating conditions or material 
parameters, and serving to focus the overall modeling 
process in the most promising part of the parameter space. 
The most flexible technique of this class seems to be the 
nested kriging framework [47]. The technique utilizes two 

surrogates: the (inverse) first-level model used to define a 
domain for the ultimate surrogate representing the responses 
of the structure under design. Due to limited amount of data 
available, the first-level model is a mere approximation of 
the manifold of optimal designs, and has to be extended in 
order for the surrogate model domain to comprise all designs 
that are optimal in a particular design context. The main 
benefits of the nested kriging are: (i) straightforward design 
of experiments, (ii) facilitated design optimization (by 
employing quality initial designs yielded by the first level 
model), (iii) low cost of setting up reliable surrogates by far 
surpassing that of the conventional techniques. In [48], a 
further advancement of nested kriging has been proposed in 
the form of explicit reduction of the model domain 
dimensionality. This is realized by performing orthogonal 
extension with respect to only a few selected vectors being 
the most dominant principal components of the reference 
design set. This allows for achieving a significant reduction 
in training data acquisition cost with respect to the basic 
version of the nested kriging method.  

In this work, a response feature technology [49] is 
incorporated into the dimensionality-reduced framework 
[48]. More specifically, in our approach, instead of modeling 
the complete response of the antenna at hand, only its 
characteristic (feature) points are handled. This allows us to 
smoothen out the functional landscape to be processed, 
which facilitates the rendition of the surrogate model and 
leads to considerable reduction of the computational 
expenses associated with the acquisition of the training data. 
The actual selection of the response features is very much 
problem dependent. For example, in the case of multiband 
antennas, the natural choice may be frequency/level 
coordinates of their resonances or frequencies corresponding 
to –10 dB reflection levels when bandwidth manipulation is 
intended in the design process. 

Feature-based surrogates constructed within confined 
domain of reduced dimensionality cover broad ranges of 
both the antenna parameters and the operating conditions. 
At the same time, the cost of the training data acquisition is 
a fraction of that of the conventional data-driven modelling 
techniques and significantly lower than for the original 
nested kriging framework. This is achieved at the expense 
of limiting the scope of applicability of the modelling 
method to structures whose responses feature well 
distinguished characteristic points, e.g., the aforementioned 
multi-band antennas. As a result, the proposed 
methodology is not as versatile as other frameworks that do 
not impose any restraints on the response structure of the 
component under design. Yet, the characteristics of many 
real-world antennas are inherently structured (e.g., narrow-
band or multi-band antennas). Consequently, the 
employment of the feature-based techniques is not hindered 
by the aforementioned factors. Our approach is validated 
using a dual- and a triple-band antenna, as well as a ring-
slot antenna. The surrogates obtained with the proposed 
technique may be successfully employed for design 
purposes, as it is corroborated by the provided application 
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case studies. 
The main technical contributions of the work can be 

summarized as follows: (i) incorporation of the response 
feature technology into the performance-driven modelling 
framework with reduced domain dimensionality, (ii) 
rigorous formulation and implementation of the modelling 
framework, (iii) demonstration of computational benefits 
that can be achieved as compared to handling the complete 
antenna responses, (iv) demonstration of design utility of 
the feature-based surrogates, specifically, for reliable and 
rapid parameter tuning of multi-band antennas. 

The remainder of the paper is structured as follows. 
Section II.A delineates the nested kriging modeling 
technique with explicit dimensionality reduction being one 
the main cost-reduction mechanisms of the proposed 
modeling framework. The second mechanism is the 
response feature technology described in Section II.B, 
whereas their incorporation into a single modeling 
framework is outlined in Section II.C. Section III provides 
verification examples corroborating suitability of the 
proposed methodology for antenna modeling purposes. The 
results are summarized in Section IV concluding the entire 
work.  

II.  FEATURE-BASED MODELING WITHIN CONFINED 
DOMAIN OF REDUCED DIMENSIONALITY  
This section outlines the proposed modeling framework and 
its three major components, i.e., performance-based domain 
confinement, domain dimensionality reduction using principal 
component analysis (PCA), and the response feature 
technology. The last subsection explains the incorporation of 
the latter into the overall modelling framework. The 
employment of the above listed mechanisms allows for 
achieving substantial savings of the training data acquisition 
cost in comparison to the conventional techniques. 
Considerable savings can be also obtained over the 
performance-driven modelling framework that is enhanced by 
the response feature technology, regardless whether the 
dimensionality reduction is applied or not. 

Formally speaking, the problem considered in this work 
can be stated as follow: develop a modeling technique 
operating at the level of the response features and within a 
confined domain of reduced dimensionality to allow for 
rendering reliable surrogates within broad ranges of the 
antenna geometry parameters at the same time enabling 
significant lowering of the computational cost. 

A. TWO-LEVEL MODELING WITH EXPLICIT 
DIMENSIONALITY REDUCTION 

The recently reported dimensionality-reduced 
performance driven modelling framework [48] follows a 
general paradigm of the constrained modelling [47]. In [47], 
the surrogate is constructed within a confined domain—a 
subset of the original parameter space—that encompasses 
high-quality designs with respect to the assumed figures of 
interest. The domain definition requires setting up an auxiliary 
inverse model (the first-level surrogate). In the original nested 
kriging formulation [47], it is subsequently extended in the 

directions orthogonal to the objective space image through the 
first-level model. Whereas the dimensionally-reduced domain 
of [48] is defined by orthogonally extending the objective 
space image merely in a limited number of directions selected 
based on the principal component analysis of the reference 
design set. The volume of the confined domain (both of the 
original and the dimensionality-reduced one) is significantly 
smaller than the volume of the typically used box-
constrained domain, delimited by the lower and upper bands 
on the design variables. This allows for constructing reliable 
surrogates at a fraction of the cost required by conventional 
modelling techniques. 

Reference Designs. Principal Components 

In either of the constrained modelling frameworks [45]-
[48], the modeling process is performed from the perspective 
of the objective space rather than the design space. The 
former is defined by the ranges on the performance figures 
fk: fk.min  fk  fk.max, k = 1, …, N, and will be denoted as F = 
[f1.min f1.max]  …  [fN.min fN.max]. In the case of antennas, the 
typical figures of interest are the operating frequencies or 
bandwidths, yet, they may also refer to material parameters, 
such as substrate permittivity. Let us also denote as f = [f1 … 
fN]T  F, the objective vector, whose entries are the 
performance figures fk pertinent to a particular design task. 
Similarly, the parameter space X (i.e., the intended region of 
validity of the surrogate model according to the conventional 
modeling approach), is delimited by the ranges li  xi  ui, i 
= 1, …, n. The vector of the antenna parameters will be 
denoted as x = [x1 … xn]T, whereas l = [l1 …, ln]T and u = [u1 
…, un]T, refer to the lower and upper bounds on x, 
respectively. 

The aim is to construct the surrogate within the part of 
the parameter space X that accommodates the designs of high 
quality (i.e., optimum or nearly optimum for all f  F). The 
quality of the design x with respect to the performance figure 
vector f is quantified by a scalar merit function U(x,f). Thus, 
the design x*, optimal with respect to f, is obtained by 
minimizing U as 

 
     * ( ) arg min ( , ) FU U

x
x f x f                        (1) 

 
The designs optimum in the sense of (1) for all objective 

vectors f  F occupy the hypersurface UF(F) = {UF(f) : f  
F }. In both the nested kriging technique [47] and PCA-based 
nested kriging technique [48], the surface itself was 
approximated with the use the reference designs x(j) 
= [x1

(j) … xn
(j)]T, j = 1, …, p, rendered by optimizing the 

antenna in the sense of (1), where x(j) = UF(f(j)) and f(j) = [f1
(j) 

… fN
(j)] refer to the selected target objective vectors. Clearly, 

uniform allocation of the vectors f(j) = [f1
(j) … fn

(j)]T j = 1, …, 
p,  in F is preferable to maximize the information about the 
structure of interest across the objective space. Often, the 
reference designs are rendered specifically for the purposes 
of the surrogate construction. Another option is the usage of 
the designs that have already been optimized during the 
previous work with the particular structure. 
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Clearly, a specific definition of the merit function U(x,f) 
is problem dependent. As an example, let us consider a multi-
band antenna optimized for matching improvement at the 
required operating frequencies f0.k, k = 1, …, N. In this case 
the performance figures are the antenna resonant frequencies 
fk = f0.k, and a possible formulation of the merit function is 

 
 11 0.1 11 0.( , ) max | ( , ) |,...,| ( , ) |NU S f S fx f x x           (2) 

 
where S11(x,f) stands for the antenna reflection at the design 
x and frequency f.  

In this work, the surrogate domain is defined as in [48], 
i.e., by orthogonally extending manifold UF(F) in the most 
dominant directions (i.e., derived from the principal 
components of the reference designs). The aim is to reduce 
the domain dimensionality, and, thereby, to increase the 
prospective savings in the training data acquisition cost, 
without losing any important information. Through spectral 
decomposition of the reference design set, it is possible to 
gain insight into correlations between the optimum design 
sets and the assumed design objectives.  

In the following, the basic definitions pertaining to the 
principal component analysis of the reference design sets are 
provided. Let xm refer to a center of gravity of the set 
{x(j)}j =1,…, p 

 
( )

1

1


 
p

p
m

jp
x x                                 (4) 

 
Further, let Sp denote the covariance matrix of {x(j)} defined as 
 

( ) ( )

1

1 ( )( )
1 

  
 

p
j j T

p m m
jp

S x x x x                    (5) 

 
The principal components of the reference design set [50], 

i.e., the eigenvectors ai, i= 1, …, n of Sp, indicate the most 
significant directions of correlations between the optimized 
design parameters and the target vectors within the objective 
space F. Whereas the variance of the reference set in the 
eigenspace is described by the eigenvalues i, which are 
assumed to be arranged in the descending order, i.e., 1  2  
…  n  0. We will also use the following matrix 

 

 1 ...i iA a a                                     (6) 
 
whose columns are the first i eigenvectors ai. In addition, the 
matrix A = An will stand for the matrix containing all 
eigenvectors. 

Domain Definition 

This subsection provides a description of the surrogate 
model domain definition according to the methodology 
proposed in [48], and adopted in this work. Toward this end, 
the inverse surrogate sI(f) : F  X, referred to as the first-
level model, is rendered using the training data set {f(j),x(j)}, 
j = 1, …, p. The model sI allows for approximating the 
optimum-design surface UF(F). As the reference design set 

is of a limited size, sI(F) is an imperfect rendition of UF(F). 
In order to accommodate the discrepancies between the two 
sets, sI(F) has to be somewhat extended. In the original 
nested kriging formulation [47], the extension is performed 
in all orthogonal directions {vn

(k)(f)}, k = 1, …, n – N, 
whereas in PCA-based constrained modeling [48], the 
extension is applied in a selective manner. Accordingly, the 
manifold sI(F) is outstretched along the vectors constructed 
using the most dominant eigenvectors ai of the reference set.  

On the one hand, the number K of the principal 
components, in which the extension is to be carried out, has 
to be greater than the number N of the objectives (otherwise, 
the extension would be trivial). On the other hand, only the 
directions that carry meaningful information about the 
antenna response variability should be used, which is 
decided upon using the eigenvalue analysis. Once the exact 
value of K is chosen the extension vectors are constructed as 
follows. First, the representation of {tj(f)}j=1,…,N, in the basis 
{ai}i=1,…,K, has to be found as 

 
   1 1( ) ... ( ) ( ) ... ( ) T

N K Nt f t f A t f t f                      (7) 
 
where tj(f), j = 1, …, N, denote the vectors tangent to sI(F) at 
f. The size of the vectors ( )jt f , j = 1, …, N, is K  1. In 
finding the vectors normal to sI(F) within the subspace 
spanned by the columns of the matrix AK, the following 
matrix T(f), being a complement of  1( ) ... ( )Nt f t f  to a square 
matrix of size K  K, is utilized  
 

 1 1 2( ) ( ) ... ( ) ...  N N N KT f t f t f e e e                  (8) 
 
In (8), ej = [0 … 0 1 0 … 0]T, i.e., the entries of the vector 

ej are equal to zero, except for the jth position containing 1. 
Employing the Gram-Schmidt orthogonalization [51] to T(f) 
allows for rendering the orthonormal basis of K vectors  

 

1 1( ) ( ) ... ( ) ( ) ... ( )    
GS N K NT f t f t f w f w f            (9) 

 
The second part of the matrix TGS consists of the vectors 

wj(f), j = 1, …, K – N. These will be used to extend sI(F) . 
The dependence of the vectors wj(f) on the objective vector f 
implicates that for each f  F a separate calculation is 
required. A remark should be made, that the vectors ( )jt f

of (7) are close to the vectors ( )jt f of (8), due to a typically 
good alignment between the tangent vectors tj(f) and the 
eigenvectors aj, j = 1, …, N.  

Let us now address the issue of an appropriate choice of 
the number K of the principal components. As mentioned 
before, one needs K > N. At the same time, the eigenvalues 
are normally quickly decreasing, which indicates that the 
majority of information about antenna response variability is 
contained within the subspace spanned by the first few 
eigenvectors. In practice, it suffices to appoint K = N + 1 or 
N + 2. The actual choice of K is problem specific and will 
further be discussed in Section III. 
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f2.max

f2.min

f1.maxf1.min

F

f (j)

  
(a) 

x1

x3

x2
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t1
(k)

t2
(k)

w1
(k)

t1
(j) t2

(j)

w1
(j)

 
(b) 

FIGURE 1. Conceptual illustration of the surrogate domain confinement 
with explicit dimensionality reduction: (a) two-dimensional objective 
space F, (b) three-dimensional parameter space X, the first-level model 
image sI(F), along with two exemplary points sI(f) and their respective 
tangent vectors t1 and t2 as well as the normal vector w1; the reference 
designs are marked with black circles. It should be noted, that K < n, i.e., 
the intended dimensionality of the confined domain Xs should be smaller 
than the dimensionality of the original parameter space X; yet, shown is 
the sole case that could be presented graphically, i.e., K = n. 

 
In the last step, the first-level surrogate sI(f) and the 

vectors wj are used to defined the surrogate model domain 
XS. We have 

 
( )

1
( ) ( ) : ,

1 1, 1,...,









      
      


K N

k
I k n

kS

k

T F
X

k n N

x s f w f f           (10) 

 
In other words, XS contained all points of the form 

 
( )

1
( ) ( )


  K N k

I k nk
Tx s f w f                       (11) 

 
for all f  F, and all combinations of –1  λk  1 for k = 1, …, 
K – N. The parameter T of (10) refers to the lateral dimension 
of the domain XS and its value is chosen to be a fraction 
(between five and ten percent) of the reference set spread 
along the most dominant eigenvector. Also, it accommodates 
the relationships between the subsequent eigenvalues k. A 
modification to this scheme is possible, in which individual 
coefficient values Tk are adopted for each vector wk, instead of 
a joint value T. This would enable to account for the relative 
contribution of particular directions and will be considered in 
the future work. The surrogate model domain dimensionality 
is appointed by selecting the parameter K. A graphical 
illustration of the considered concepts can be found in Fig. 1, 
here, presented for a two-dimensional objective space F, and 
a three-dimensional parameter space X. Figure 1 shows the 
case for the dimensionality K of the domain XS equal to the 
dimensionality n of X (for enabling proper illustration). 
Whereas in practice one should assume K < n. 

 
(a) 

 
(b) 

 
(c) 

FIGURE 2. Graphical illustration of the benefits of response feature 
approach: (a) reflection responses of the ring slot antenna of Section 3 
evaluated for 1.5 ≤ sd ≤ 4.0 and for 0.3 ≤ g ≤ 2.3 at f = 2.4 GHz. Other geometry 
parameters are set to: lf = 27, ld = 6.5, wd = 2.2, r = 14.5, s = 5.3, o = 5.1 (all 
dimensions in mm). The feature point components evaluated within the 
same design space region: frequency (b) and level (c). It can be observed 
that the dependence of the feature point coordinates on antenna geometry 
parameters is significantly less nonlinear than for the entire characteristics. 
At the same time, the information carried by the feature points is sufficient 
for handling the design problems the points were defined for (here, the 
matching improvement task of (2)). 

B. RESPONSE FEATURES 
The concept of handling appropriately chosen 

characteristic points (features) of the response of device at 
hand rather than its entire responses (e.g., frequency 
characteristics) has been successfully employed in antenna 
design in various contexts, such as modeling [52], parametric 
optimization [53] or statistical analysis [54]. The motivation 
behind reformulating the design task in terms of the response 
features has come from the scrutiny of the dependence of the 
feature coordinates on the design variables, which appears to 
be much less nonlinear (in fact, often close to linear) than a 
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similar dependence of the original responses (see Fig. 2). 
Figure 2 provides graphical illustration of the benefits 
coming from employing response feature approach: the 
dependence of the feature point coordinates on the antenna 
parameters is shown in Figs. 2(b) and (c)), whereas the 
respective dependence for the entire characteristics is shown 
in Fig. 2(a).  

Technically, the features have to be selected within a 
given design context and have to reflect the design goals. The 
actual selection of the response features requires the analysis 
of the system outputs and identification easily 
distinguishable characteristic points. The extraction of the 
response features from the EM simulations is carried out 
through post-processing.  

An illustrative example of the concepts outlined above 
constitute narrow- and multi-band antennas. Here, a natural 
choice of response features are the points corresponding to 
the antenna resonances and –10 dB level of reflection. This 
selection of response features allows handling design tasks 
such as allocation of the resonances at the intended 
frequencies or enhancing the antenna bandwidth. It should 
be emphasized, that the feature-based approach allows for 
directly encoding the knowledge about the figures of interest 
relevant to the particular design optimization problem at 
hand. Whereas in the conventional approach, in which the 
entire responses are processed, subsequent extraction of this 
information is necessary.  

The following notation will be used. Let R(x) denote the 
EM-simulated antenna response at the design x. The symbol 
R stands for the aggregated antenna outputs and may consists 
of its reflection response S11(x,f), gain G(x,f), etc., where f is 
the frequency within a certain simulation range as provided by 
the model. Let also   = [1

T … P
T]T be the vector whose 

entries are the characteristic points of the response (features): 
φk  = [ωk  λk]T, k = 1, …, P; with ωk and λk being the frequency 
and the level (magnitude) coordinates, respectively.  

Let us recall the design task of matching improvement of 
multi-band antennas of Section II.A (cf. (2)). Here, the 
feature vector  comprises the frequency and level 
coordinates of the antenna resonances: ωk = f0.k and λk = 
S11(f0.k), k = 1, …, P, respectively. We have φ = [φ1

T … φP
T]T 

= [f0.1 S11(f0.k) … f0.P S11(f0.P)]T, where P refers to the number 
of antenna bands. In the case of bandwidth enhancement, the 
feature vector is φ = [φ1

T … φP
T]T, where each consecutive 

vector φk
T = [f0.k S11(f0.k) fL.k S11(fL.k) fH.k S11(fH.k)]T, i.e., it 

contains the frequency and level coordinates of the k-th 
antenna resonance, along with the coordinates of the points 
of –10 dB level of the antenna response around it, i.e., λL.k = 
|S11(fL.k)| = –10 dB and λH.k = |S11(fH.k)| = –10 dB, k = 1, …, k.  

In the feature-based framework, the objective function 
(1) has to be reformulated in terms of the response features 
and will be denoted as Uf((x)). Accordingly, the design task 
is transformed into 

 

|S11(x(0))|

–10 dB

|S11|
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FIGURE 3. Graphical explanation of the response features selection for a 
particular design task: the features corresponding to –10 dB level () (for 
bandwidth enhancement at a target frequency f0 – bottom-left panel), and 
the point corresponding to f0 () (for antenna matching improvement at f0 
– bottom-right panel). 

 
    * arg min ( )U

x
x φ x                          (12) 

 
In the case of the multi-band antennas the merit function (2) 
of Section II.A may therefore be defined as 
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where f0.k
t denotes the k-th target operating frequency, and β 

is a penalty coefficient. In (13), the primary objective is 
minimization of antenna reflection, and the second term of 
(13) permits allocation of the antenna operating frequencies. 
In the case of bandwidth enhancement, the merit function 
may be defined as  
 

    1( , ) min ,..., PU B B  x φ x x                 (14) 
 
where the kth relative (fractional) bandwidth is defined as 

 
        0. . . .

0.

2 min ,
( ) k L k H k L k

k
k

f f f f
B

f
  


x x x x

x     (15) 

 
The graphical illustration of the response features 

selection depending on the optimization goals is shown in 
Fig. 3. The top panel of Fig. 3 presents the exemplary 
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antenna reflection characteristic at the initial design x(0), 
along with the response features corresponding to the 
antenna resonance and –10 dB reflection levels. The bottom-
left panel of Fig. 3 shows the antenna response optimized for 
minimum in-band reflection with the use of the “resonance” 
feature point (marked with square). Whereas the bottom-
right panel illustrates the response of the same structure 
optimized for maximum symmetrical bandwidth, obtained 
using the –10 dB characteristic points (marked with circles). 

C. PCA-BASED CONSTRAINED MODELING WITH 
RESPONSE FEATURES 

The proposed feature-based modeling procedure over 
dimension-reduced constrained domain consists of the 
following steps: 

1. Objective space F definition by selecting relevant 
performance figures and their ranges; 

2. Reference designs acquisition x(j), j = 1, …, p, 
(Section II.A);  

3. Application of the principal component analysis of the 
reference design set to yield the eigenvectors ak 
(Section II.A); 

4. Construction of the first-level surrogate sI; 
5. Definition of the dimension-reduced constrained domain 

XS (Section II.A); 
6. Allocation of the training data samples xB

(k), k = 1, …, 
NB, within XS (Section II.C); 

7. Training data acquisition R(xB
(k)), k = 1, …, NB; 

8. Response features extraction (R(xB
(k))), k = 1, …, NB; 

(Section II.B); 
9. Surrogate model identification based on the data 

pairs {xB
(k),(xB

(k))}k = 1, …, NB. 

The surrogate model is set up within XS using kriging 
interpolation [55] with {xB

(k), (xB
(k))}k = 1, …, NB, being the 

training data set. The samples xB
(k) are uniformly allocated 

within XS; (xB
(k)) refer to the extracted characteristic points of 

the corresponding responses. The surrogate provides a 
prediction of the response feature coordinates for any given 
design x within XS. The details concerning the design 
experiments are delineated in the next subsection. Figure 4 
shows the flow diagram of the overall modeling framework: 
exploiting the response feature technology outlined in Section 
II.B and operating on the constrained domain of reduced 
dimensionality (the domain definition with the use of the 
principal component analysis of the reference design set is 
described in Section II.A). 
 

Design of Experiments. Surrogate Model Optimization 
 

The geometry of the surrogate model domain is generally 
complex (in particular, its lateral dimensions significantly 
exceed the tangential ones), therefore, its handling may be 
inconvenient from the point of view of design of experiments 
(DoE). In particular, uniform allocation of the training data 
samples in XS is a nontrivial task. In order to facilitate DoE 
within the proposed framework, a surjective mapping H 
between the unit hypercube [0,1]K (normalized domain) and 

XS is defined (see [47] for details). Using this transformation, 
it suffices to generate uniformly distributed data samples 
{z(k)}, k = 1, …, NB, within [0,1]K using a standard procedure 
(e.g., Latin Hypercube Sampling [56]) and subsequently 
transform them into XS using H as 
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where 
 

 1.min 1 1.max 1.min .min .max .min( ) ... ( ) T
z N N N Nf z f f f z f f    f   (17) 

 
The procedure (16), (17) is repeated for all vectors z(k) to 

yield the uniformly distributed training data set {xB
(k)} in XS as 

 
( ) ( )( )k k
B Hx z ,      k = 1, …, NB                    (18) 

 
Note that the sample uniformity is understood with 

respect to the objective space F rather than the domain XS. 
For example, if the performance figure f1 corresponds to the 
antenna center frequency f0.1, the antenna designs are equally 
spread over the interval [f1.min, f1.max]. 
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FIGURE 4. Flow diagram of the proposed surrogate modeling procedure 
exploiting the response feature technology and operating on the 
constrained domain of reduced dimensionality. 
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FIGURE 5. Geometry of Antenna I: ring slot antenna [50]; microstrip feed 
marked with dashed line. 

 

Table 1. Modeling Results and Benchmarking for Antenna I 

Number 
of training 
samples 

Relative RMS Error 

Conventional  
Models 

Nested 
Kriging 
Model 
[47] 

Nested 
Kriging 
Model 
with  

Response 
Features 

[49] 

PCA-
Based 
Nested 
Kriging 

Modeling 
[48] 

PCA-Based 
Nested 
Kriging  

Modeling 
with  

Response 
Features 

[this work] 

Kriging RBF 

Model I II III IV V VI 

20 60.8 % 64.5 % 50.7 % 5.3 % 38.8 % 2.52 % 

50 56.9 % 61.0 % 19.4 % 4.7 % 12.6 % 0.90 % 

100 50.8 % 53.2 % 12.9 % 2.8 % 7.1 % 0.18 % 

200 35.8 % 37.9 % 7.7 % 2.5 % 3.8 % 0.15 % 

400 31.5 % 34.1 % 5.1 % 2.3 % 2.3 % 0.25 % 

800 25.6 % 27.2 % 3.7 % 2.0% 1.8 % 0.20 % 

 
Table 2. Optimization Results for Antenna I 

Target Operating 
Conditions Geometry Parameter Values [mm] 

f0 [GHz] r lf ld wd r s sd o g 

3.4 3.5 26.75 5.96 1.16 11.87 5.04 3.17 4.84 0.98 

4.8 2.2 22.06 4.83 0.32 10.19 3.35 4.67 5.96 1.38 

5.3 3.5 22.22 4.69 0.38 8.77 3.36 5.33 5.89 1.80 

2.45 4.3 26.97 6.33 2.07 14.17 4.99 1.92 4.84 0.49 

 
In this work, similarly as in [40], the transformation H is 

also used to simplify the design optimization process. More 
specifically, the design task (12) can be transformed into an 
equivalent problem 

 

 * * *

[0,1]
( ) where arg min ( ( ))

n
H U H


 

z
x z z φ z       (19) 

 
 The benefit is that the problem (19) is solved over the 
normalized domain delimited by box constraints instead the 
geometrically complex set XS. Possible formulations of the 
objective function Uφ are given by (13) and (14)). 

 Furthermore, the first level surrogate can be employed to 
yield a quality initial design, which, for any given performance 
figure target vector ft will be (for details, see [47]) 
 

(0) ( )t
Ix s f                                 (20) 

 
Given available data about the antenna at hand encoded 

in the reference design set, equation (20) produces the best 
possible approximation of the design optimum with respect 
to f t, which normally needs only a slight tuning by means of 
a local optimization algorithm. 

III.  DEMONSTRATION CASE STUDIES 
This section discusses validation of the modeling procedure 
outlined in Section 2, as well as provides comparisons with 
five benchmark procedures: the conventional data-driven 
surrogates: RBF (Model I), kriging interpolation (Model II), 
as well as three variants of the nested kriging technique: the 
basic procedure [47] (Model III), the feature-based version 
[49] (Model IV), as well as the dimensionally reduced nested 
kriging [48] (Model V). The numerical experiments involve 
three antennas: a ring-slot antenna, as well as a dual- and 
triple-band uniplanar dipoles. The application of the 
surrogates rendered within the proposed technique for 
antenna optimization is also investigated. 

A.  CASE STUDY I: RING-SLOT ANTENNA 
Our first example is a ring-slot antenna (Antenna I) 

depicted in Fig. 5 [57], implemented on a 0.76-mm-thick 
substrate. The substrate relative permittivity εr is one of the 
two performance figures, the second being the antenna 
operating frequency. The antenna of Fig. 5 is fed through a 
microstrip line whose width wf is adjusted so that 50 ohm input 
impedance for the selected εr value is ensured. The structure 
features a circular ground plane slot with defected ground 
structure (DGS) for harmonic suppression [57]. The design 
variables are x = [lf ld wd r s sd o g]T. The antenna EM model R 
is simulated in CST (~300,000 cells, simulation time 90 s). 

The surrogate is to cover the following ranges of the 
performance figures: operating frequency f  [2.5, 6.5] GHz 
and substrate permittivity r  [2.0, 5.0]. The lower and upper 
bounds on geometry parameters (derived based on the 
reference design set) are: l = [22.0 3.5 0.3 6.5 3.0 0.5 3.5 
0.2]T, and u = [27.0 8.0 2.3 16.0 7.0 5.5 6.0 2.3]T, 
respectively. The database designs match the following pairs 
of f and εr (frequency in GHz): {f, εr} = {2.5 2.0}, {4.5 2.0}, 
{6.5 2.0}, {2.5 3.5}, {4.0 3.5}, {5.0 3.5}, {6.5 3.5}, {2.5 5.0}, 
{4.5 5.0}, and {6.5 5.0}. 

The following setup for the validation process has been 
adopted. The surrogate models have been constructed within 
the proposed framework (Model VI) using the training data 
sets of various sizes: 20, 50, 100, 200, 400, and 800 samples. 
The modeling error (average relative RMS) has been 
estimated through the split sample method [58] with the test 
set consisting of 100 random samples.  

lf

wf
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wd
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(a) 

 
(b) 

 
(c) 

 
(d) 

FIGURE 6. EM-simulated antenna responses of Antenna I: initial designs 
(…..) yielded by the proposed PCA-and feature-based surrogate, and the 
optimized designs (—). The designs obtained for the following objective 
vectors: (a) f0 = 3.4 GHz, r = 3.5, (b) f0 = 4.8 GHz, r = 2.2, (c) f0 = 5.3 GHz, r 
= 3.5, (d) f0 = 2.45 GHz, r = 4.3. Target operating frequencies are marked 
using vertical lines. 

 
The proposed procedure (Model VI) is benchmarked 

against the conventional models: RBF (Model I) and kriging 
(Model II), both set up within the unconstrained domain 
delimited by the lower and upper bounds on the parameters 
l, u, respectively. The benchmark methods also include the 
following performance-driven models built within the 
constrained domain: the original nested kriging (Model III), 
the version exploiting response features technology (Model 
IV), and dimensionality reduced nested kriging (Model V). 
The number of the principal directions K = 4 has been 
adopted for the proposed surrogate. This value has been 
assessed as the maximum justifiable value based on the 
analysis of the normalized eigenvalues of the reference 
designs: 1 = 1.00, 2 = 0.09, 3 = 0.05, 4 = 0.026, 5 = 
0.005, 6 = 0.004, 7 = 0.0005, 8 = 0.00005.  

The lateral dimension of the constrained domain XS has been 
set as T = 0.5 mm (this value corresponds to around 5 percent of 
the lateral span of the unconstrained domain X; see [47] for 
details).  Table 1 gathers the results obtained for Antenna I 
within the proposed framework (Model VI) and all the 
benchmark procedures (Models I through V). It can be observed 
that all the surrogates constructed within constrained domains 
(Models III through VI) are considerably more reliable than 

those built within conventional interval-type domains (Models 
I and II), which are unusable for practical purposes even when 
set up with as many as 800 samples. Also, the proposed PCA- 
and feature-based surrogate (Model VI) is considerably more 
accurate than all other models rendered within any other 
variations of the nested kriging framework. It should also be 
observed that the feature-based frameworks (without 
dimensionality reduction (Model IV) and dimensionally 
reduced (Model VI)) allow for achieving practically acceptable 
predictive power even for the smallest data set sizes of as little 
as 20 or 50 samples. 

The design utility of the proposed modeling technique has 
been verified by employing the surrogate built for K = 4 and 
N = 100 training samples for parameter tuning of Antenna I. 
The numerical results for several target pairs of the 
performance figures (antenna operating frequency and 
substrate permittivity) are gathered in Table 2. Figure 6 
presents EM-simulated responses of Antenna I: (i) the initial 
designs rendered by the proposed surrogate, as well as (ii) 
the optimized designs for the selected target operating 
vectors. The results presented in Fig. 6 corroborate that 
neither PCA-based dimensionality reduction of the 
constrained domain nor restricting the modeling process to 
response features rather than the entire antenna 
characteristics exert detrimental effects on the design 
quality. Thus, the proposed surrogate can be employed for 
antenna designing purposes: the optimized designs are of 
high quality and the operating frequencies are allocated with 
sufficient precision with respect to the target. 

B.  CASE STUDY II: DUAL-BAND UNIPLANAR ANTENNA 
The proposed modeling methodology has also been 

demonstrated using a dual-band antenna fed by a coplanar 
waveguide (Antenna II) shown in Fig. 7 [58]. The antenna 
structure is implemented on the RO4350 substrate with r = 
3.48, h = 0.762 mm. In Fig. 7, the designable parameter 
vector is x = [l1 l2 l3 w1 w2 w3]T; with the following fixed 
dimensions: l0 = 30, w0 = 3, s0 = 0.15 and o = 5 (all 
dimensions in mm). The computational model is simulated 
using CST Microwave Studio time-domain solver (~100,000 
cells; simulation time ~60 seconds).  

In this case study, the surrogate model is to cover the 
following ranges of the antenna operating frequencies: f1 
[2.0, 3.0] GHz (lower band) and f2  [4.0, 5.5] GHz (upper 
band). The reference designs of [40] were utilized, which 
correspond to the following pairs of the target operating 
frequencies: {f1,f2} [GHz]: {2.0, 4.0}, {2.2, 5.0}, {2.0, 5.5}, 
{2.3, 4.5}, {2.4, 5.5}, {2.6, 4.0}, {2.7, 3.5}, {2.8, 4 .7}, {3.0, 
4.0}, and {3.0, 3.5}. The lower and upper bounds on 
geometry parameters are l = [29 5.0 17 0.2 1.5 0.5]T and u = 
[42 12 25 0.6 5.2 3.5]T, respectively.  

As in the previous case, the surrogates have been set up 
with the use of the training data sets of the sizes from 20 to 
800 samples. The number of the principal directions has been 
set to K = 4, and the value of the extension parameter was T 
= 0.25 mm. The rationale behind this setup is similar to that 
of the first case study. Table 3 shows the modeling results 
for the benchmark methods (Models I through V), and the 
proposed one (Model VI). 
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FIGURE 7. Geometry of Antenna II: uniplanar dual-band dipole antenna 
[52].  
 
 

Table 3. Modeling Results and Benchmarking for Antenna II 

Number 
of training 
samples 

Relative RMS Error 

Conventional  
Models 

Nested 
Kriging 
Model 
[47] 

Nested 
Kriging 
Model 
with  

Response 
Features 

[49] 

PCA-
Based 
Nested 
Kriging 

Modeling 
[48] 

PCA-Based 
Nested 
Kriging  

Modeling 
with  

Response 
Features 

[this work] 

Kriging RBF 

Model I II III IV V VI 

20 24.5 % 26.3% 19.0 % 1.43% 10.0 % 0.58 % 

50 21.7 % 24.9 % 9.9 % 0.51% 5.1 % 0.29 % 

100 17.3 % 19.8 % 6.4 % 0.39% 2.9 % 0.18 % 

200 12.6 % 14.3 % 4.4 % 0.56% 2.8 % 0.21 % 

400 9.3 % 10.5 % 3.8 % 0.43% 2.1 % 0.18 % 

800 7.2 % 8.7 % 3.4 % 0.46% 1.9 % 0.14 % 

 
Table 4. Optimization Results for Antenna II 

Target Operating 
Conditions Geometry Parameter Values [mm] 

f1 [GHz] f2 [GHz] l1 l2 l3 w1 w2 w3 

2.45 5.30 33.45 9.08 18.10 0.30 2.41 2.22 

2.20 4.50 35.04 6.73 18.81 0.49 4.04 1.86 

3.00 5.00 29.16 10.14 19.85 0.38 2.83 0.96 

2.10 4.20 36.12 6.51 19.85 0.51 4.41 1.95 

 
For supplemental verification, the proposed surrogate has 

been utilized for antenna optimization. Figure 8 and Table 4 
show the results obtained with the surrogate built with 50 
training samples for four different pairs of the target 
operating frequencies. Figure 8 shows EM-simulated initial 
and optimized responses of Antenna II. As in the previous 
example, the results of Fig. 8 confirm that PCA-based 
domain dimensionality reduction in conjunction with 
restricting the modeling process to response features are not 
detrimental to the quality of the optimal designs. As it stems 
from Fig. 8, even though the operating frequencies at the 
initial designs rendered by the first-level (inverse) surrogate 
for the assumed target vector are not allocated perfectly, the 
quality of the optimal designs is high and the design 
specifications are met. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

FIGURE 8. EM-simulated antenna responses of Antenna II: initial designs 
(…..) yielded by the proposed PCA-and feature-based surrogate, and the 
optimized designs (—). Vertical lines mark target operating frequencies: 
(a) f1 = 2.45 GHz, f2 = 5.3 GHz, (b) f1 = 2.2 GHz, f2 = 4.5 GHz, (c) f1 = 3.0 GHz, 
f2 = 5.0 GHz, and (d) f1 = 2.1 GHz, f2 = 4.2 GHz. 
 

                  
FIGURE 9. Geometry of Antenna III: Uniplanar Triple-Band Antenna [52]. 

C.  CASE STUDY III: TRIPLE-BAND UNIPLANAR 
ANTENNA 

Our last example is a triple-band uniplanar antenna built as 
a stack of three ground plane slits separated by two slots that 
is fed by a coplanar waveguide [59]. Figure 9 shows the 
antenna geometry described by the following vector of the 
design variables: x = [l1 l2 l3 l4 l5 w1 w2 w3 w4 w5]T; with l0 = 30, 
w0 = 3, s0 = 0.15 and o = 5 being fixed (all dimensions in mm). 
As in the second case study, the structure is implemented on 
the RO4350 substrate. The numerical experiments are arranged 
similarly as in the first two examples: the training data sets sizes 
range from 20 to 800, the number of taken into account principal 
directions is K = 4, the extension parameter T = 0.25 mm. The 
antenna computational model is simulated using CST 
Microwave Studio transient solver (~180,000 cells; simulation 
time ~80 seconds). 
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Table 5. Modeling Results and Benchmarking for Antenna III 

Number 
of training 
samples 

Relative RMS Error 

Conventional  
Models 

Nested 
Kriging 
Model 
[47] 

Nested 
Kriging 
Model 
with  

Response 
Features 

[49] 

PCA-
Based 
Nested 
Kriging 

Modeling 
[48] 

PCA-Based 
Nested 
Kriging  

Modeling 
with  

Response 
Features 

[this work] 

Kriging RBF 

Model I II III IV V VI 

20 28.5 % 30.1 % 38.9 % 2.65 % 44.8 % 1.71 % 

50 22.7 % 23.5 % 16.0 % 0.25 % 16.5 % 0.66 % 

100 19.9 % 19.8 % 11.2 % 0.22 % 10.9 % 0.24 % 

200 18.6 % 19.2 % 9.9 % 0.19 % 8.7 % 0.89 % 

400 17.2 % 18.8 % 9.7 % 0.14 % 6.4 % 0.43 % 

800 16.8 % 17.4 % 7.8 % 0.20 % 4.3 % 0.19 % 
 

Table 6 Optimization Results for Antenna III 

Target Operating 
Frequencies  

[GHz] 

Geometry Parameters  
[mm] 

f1 f2 f3 l1 l2 l3 l4 l5 w1 w2 w3 w4 w5 

1.6 2.56 3.58 40.20 4.85 33.89 9.63 24.66 0.25 0.95 0.78 2.43 0.61 

1.8 2.34 3.51 39.05 7.98 34.08 7.80 24.67 0.43 1.23 0.49 2.37 0.82 

2.1 2.94 4.12 37.24 9.98 31.24 10.32 22.58 0.50 1.29 0.91 1.09 0.55 

2.4 3.36 5.04 36.42 12.08 29.03 11.21 20.48 0.57 0.94 1.04 0.59 0.67 

 
For this case study, the goal is to build the surrogate valid 

for the antenna operating frequencies fk, k = 1, 2, 3, with f2 = 
f1k1 and f3 = f2k2 (the actual operating frequencies are 
calculated based on the values of the ratios k1 and k2). The 
intended frequency ranges are: f1 [1.5, 2.5] GHz, and k1, k2  
[1.2, 1.6]. For Antenna III, the objective space comprises the 
vectors [f1 k1 k2]T. The geometry parameter lower and upper 
bounds are: l = [30 5.0 20 5.0 15 0.2 0.2 0.2 0.2 0.2]T, and u = 
[50 15 30 15 21 2.2 4.2 2.2 4.2 2.2]T, respectively. Table 5 
gathers the modelling errors for the proposed and benchmark 
frameworks. 

As in the previous cases, the design utility of the proposed 
surrogate has been demonstrated by applying the model for 
antenna optimization. The results obtained by the surrogate 
constructed using 50 training samples for four different sets of 
the target operating frequencies are provided in Figure 10 and 
Table 6. Figure 10 presents the EM-simulated initial and 
optimized responses of Antenna III. The results corroborate 
suitability of the proposed both PCA- and feature-based 
modeling framework for antenna design purposes. Despite 
using such a low number of training data samples, the 
surrogate yields the optimized designs of acceptable quality 
with the target operating frequencies allocates according to the 
design specifications, which is corroborated by the full-wave 
simulations. In this case, the operating frequencies of the 
initial designs are not accurately allocated, yet, the optimized 
designs meet the requirements.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

FIGURE 10. EM-simulated antenna responses of Antenna III: initial designs 
(…..) yielded by the proposed PCA-and feature-based surrogate, and the 
optimized designs (—). Vertical lines mark target operating frequencies: 
(a) f1 = 1.6 GHz, k1 = 1.6, k2 = 1.4 (f2 = 2.56 GHz, f3 = 3.58 GHz), (b) f1 = 1.8 GHz, k1 = 
1.3, k2 = 1.5 (f2 = 2.34 GHz, f3 = 3.51 GHz), (c) f1 = 2.1 GHz, k1 = 1.4, k2 = 1.4 (f2 = 2.94 
GHz, f3 = 4.12 GHz), (d) f1 = 2.4 GHz, k1 = 1.4, k2 = 1.5 (f2 = 3.36 GHz, f3 = 5.04 GHz). 

IV.  CONCLUSION 
The paper proposed a novel technique for reliable surrogate 
modelling of antenna structures. Our approach combines the 
nested kriging technique with explicit dimensionality reduction 
through principal component analysis with the response feature 
technology. Conducting the modelling process at the level of 
the feature points of the antenna responses while operating 
within the constrained domain of reduced dimensionality 
requires remarkably smaller training data sets—as compared 
to benchmark methods—to ensure usable predictive power 
of the surrogate. The formulation of the proposed technique 
incorporates the mechanisms for efficient design of 
experiments, and for expedited surrogate model 
optimization. Our methodology has been comprehensively 
validated based on the three microstrip antennas described 
by six to ten parameters. Thorough benchmarking against 
two conventional data-driven modeling techniques and three 
variations of the performance-driven surrogates constructed 
within constrained domain corroborate reliability of our 
approach. Design utility of the proposed surrogate has been 
demonstrated through design optimization of the considered 
structures for various combinations of performance figures.  
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Admittedly, restricting the modelling process to selected 
characteristic points, rather than handling the entire responses, 
leads to a loss of information carried by the surrogate. 
Nevertheless, it allows for a dramatic reduction of the number 
of EM analyses required to secure usable accuracy of the 
model, therefore, it is highly desirable from the point of view 
of computational efficiency. At the same time, the information 
contained in the model is sufficient to employ it for design 
purposes, which is ensured by the appropriate definition of the 
characteristic points of the antenna responses. The technique 
presented in the paper can be viewed as an alternative to 
conventional modelling methods particularly in the situations 
when construction of low-cost surrogates for design tasks such 
as parameter tuning or dimension scaling is of interest. The 
primary application areas of the proposed framework would 
be a construction of re-usable models for rapid re-design of 
antenna structures (e.g., with respect to the operating 
frequencies and/or material parameters of the dielectric 
substrate), multi-objective optimization, expedited parameter 
tuning over broad ranges of operating conditions, as well as 
robust design. Furthermore, the technique can be applied to 
other classes of high-frequency structures, in particular, 
compact microwave components such as couplers, impedance 
matching transformers, or filters. In order to improve the 
versatility of the technique, the future work will be focused on 
the development of a generalized definition of response 
features that is less dependent on a particular structure of the 
antenna response, thereby allowing us to retain the consistency 
of the feature set across the parameter space. Generalization of 
this sort will enable utilization of the approach discussed in 
this work to a wider class of antenna systems. 
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