
 Open access  Journal Article  DOI:10.1109/TVT.2020.2984878

Simulation Framework for Misbehavior Detection in Vehicular Networks
— Source link 

Joseph Kamel, Mohammad Raashid Ansari, Jonathan Petit, Arnaud Kaiser ...+2 more authors

Institutions: Institut de Recherche Technologique SystemX, Qualcomm

Published on: 03 Apr 2020 - IEEE Transactions on Vehicular Technology (IEEE)

Topics: Vehicular ad hoc network

Related papers:

 VeReMi: A Dataset for Comparable Evaluation of Misbehavior Detection in VANETs

 An effective misbehavior detection model using artificial neural network for vehicular ad hoc network applications

 VeReMi Extension: A Dataset for Comparable Evaluation of Misbehavior Detection in VANETs

 A Novel Framework for Misbehavior Detection in SDN-based VANET

 A data trust framework for VANETs enabling false data detection and secure vehicle tracking

Share this paper:    

View more about this paper here: https://typeset.io/papers/simulation-framework-for-misbehavior-detection-in-vehicular-
1yziogl9nu

https://typeset.io/
https://www.doi.org/10.1109/TVT.2020.2984878
https://typeset.io/papers/simulation-framework-for-misbehavior-detection-in-vehicular-1yziogl9nu
https://typeset.io/authors/joseph-kamel-53wrpvf9ur
https://typeset.io/authors/mohammad-raashid-ansari-1aaelw19od
https://typeset.io/authors/jonathan-petit-qtrhk5gi9r
https://typeset.io/authors/arnaud-kaiser-2iomae70at
https://typeset.io/institutions/institut-de-recherche-technologique-systemx-h9d2lzl7
https://typeset.io/institutions/qualcomm-3bgg35be
https://typeset.io/journals/ieee-transactions-on-vehicular-technology-7c070iou
https://typeset.io/topics/vehicular-ad-hoc-network-2hk6nnuo
https://typeset.io/papers/veremi-a-dataset-for-comparable-evaluation-of-misbehavior-1f3dy2kvxw
https://typeset.io/papers/an-effective-misbehavior-detection-model-using-artificial-5gb33oeh75
https://typeset.io/papers/veremi-extension-a-dataset-for-comparable-evaluation-of-3j86egexrw
https://typeset.io/papers/a-novel-framework-for-misbehavior-detection-in-sdn-based-5e3wz8sw2x
https://typeset.io/papers/a-data-trust-framework-for-vanets-enabling-false-data-2e4nypbls4
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/simulation-framework-for-misbehavior-detection-in-vehicular-1yziogl9nu
https://twitter.com/intent/tweet?text=Simulation%20Framework%20for%20Misbehavior%20Detection%20in%20Vehicular%20Networks&url=https://typeset.io/papers/simulation-framework-for-misbehavior-detection-in-vehicular-1yziogl9nu
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/simulation-framework-for-misbehavior-detection-in-vehicular-1yziogl9nu
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/simulation-framework-for-misbehavior-detection-in-vehicular-1yziogl9nu
https://typeset.io/papers/simulation-framework-for-misbehavior-detection-in-vehicular-1yziogl9nu


HAL Id: hal-02527873
https://hal.archives-ouvertes.fr/hal-02527873

Submitted on 1 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation Framework for Misbehavior Detection in
Vehicular Networks

Joseph Kamel, Mohammad Raashid Ansari, Jonathan Petit, Arnaud Kaiser,
Ines Ben Jemaa, Pascal Urien

To cite this version:
Joseph Kamel, Mohammad Raashid Ansari, Jonathan Petit, Arnaud Kaiser, Ines Ben Jemaa, et
al.. Simulation Framework for Misbehavior Detection in Vehicular Networks. IEEE Transactions on
Vehicular Technology, Institute of Electrical and Electronics Engineers, 2020, IEEE Transactions on
Vehicular Technology, 69 (6), pp.6631-6643. ฀10.1109/TVT.2020.2984878฀. ฀hal-02527873฀

https://hal.archives-ouvertes.fr/hal-02527873
https://hal.archives-ouvertes.fr


IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2020 1

Simulation Framework for Misbehavior Detection in

Vehicular Networks
Joseph Kamel∗†, Mohammad Raashid Ansari‡, Jonathan Petit‡, Arnaud Kaiser∗, Ines Ben Jemaa∗, and Pascal

Urien†

Copyright (c) 2015 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from

the IEEE by sending a request to pubs-permissions@ieee.org.

∗IRT SystemX, Palaiseau, France
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Abstract—Cooperative Intelligent Transport Systems (C-ITS)
is an ongoing technology that will change our driving experience
in the near future. In such systems, vehicles and Road–Side
Unit (RSU) cooperate by broadcasting V2X messages over the
vehicular network. Safety applications use these data to detect
and avoid dangerous situations on time. MisBehavior Detection
(MBD) in C-ITS is an active research topic which consists
of monitoring data semantics of the exchanged Vehicle-to-X
communication (V2X) messages to detect and identify potential
misbehaving entities. The detection process consists of performing
plausibility and consistency checks on the received V2X messages.
If an anomaly is detected, the entity may report it by sending a
Misbehavior Report (MBR) to the Misbehavior Authority (MA).
The MA will then investigate the event and decide to revoke
the sender or not. In this paper, we present a MisBehavior
Detection (MBD) simulation framework that enables the research
community to develop, test, and compare MBD algorithms. We
also demonstrate its capabilities by running example scenarios
and discuss their results. Framework For Misbehavior Detection
(F2MD) is open source and available for free on our github.

Index Terms—Cooperative Intelligent Transport Systems (C-
ITS), MisBehavior Detection, Simulation

I. INTRODUCTION

The field of Intelligent Transport Systems (ITS) is ad-

vancing at much faster pace in the last couple of years.

Autonomous vehicles are a reality now with vehicles gaining

up to level-4 driving capabilities i.e. without much human

intervention [1]. A plethora of technologies has been applied

and/or invented to support the future of ITS. Sensors such as

RADAR, LIDAR and camera are heavily used for applications

such as Advanced Driver Assistance System (ADAS), lane

keeping, forward collision warning, etc. However, the afore-

mentioned sensors only work in line-of-sight conditions. For

non-line-of-sight applications, technologies such as Dedicated

Short-Range Communication (DSRC) and Cellular Vehicle-to-

Everything (C-V2X) have been under research and develop-

ment.

DSRC and C-V2X support the next generation of vehi-

cles known as Connected Vehicle (CV). Connected Vehicles

broadcast their kinematic information (e.g., position, speed,

heading, etc.) on an ephemeral network known as Vehicular Ad

hoc NETwork (VANET). This enables CVs to “see” beyond

Manuscript received XXX, XX, 2019; revised XXX, XX, 2020.

the line-of-sight, but it also brings with it an attack surface.

An actively participating entity in a VANET can lie about

its kinematics, causing disruption in the network and in-

directly causing safety issues on the road. Such an action is

known as a misbehavior in VANETs. Misbehavior in VANETS

includes malfunctioning entities unintentionally sending faulty

information and malicious entities intentionally transmitting

false information in a V2X attack.

MisBehavior Detection (MBD) in VANETs is an active

field of research that concentrates on developing mechanisms

to detect anomalous behavior pertaining to vehicle move-

ment, transmission, etc. MBD algorithms could be sensor-

based or V2X-based. In this paper, we concentrate on V2X-

based MBD. In order to perform substantial research, these

techniques have to be implemented on a large scale, in dif-

ferent scenarios, with a variety of vehicle densities and many

other variations. Currently, there are only a few widespread

deployments of CVs [2], [3]. A variety of problems still

exist with these deployments such as the limited number of

use cases and the strict regulations on the generated data.

Obtaining raw, untouched data is difficult due to regulations

that require anonymization and stripping of information that

may be helpful in designing detection algorithms. Also, finding

a suitable subset of data for analysis warrants spending huge

amounts of time that could be used in actually designing MBD

algorithms. Hence, there is a crucial need to simulate VANETs

and evaluate MBD algorithms in those simulations.

Simulators such as VEhicles In Network Simulation

(VEINS) [4] provide a platform for MBD algorithm de-

velopment. In this paper we propose our Framework For

Misbehavior Detection (F2MD). F2MD provides a singular

framework with which one can:

• Implement a set of new V2X attacks,

• Implement several MBD algorithms for easy comparison,

• Evaluate effectiveness of attacks (we provide 6 attacks

and 9 faulty behaviors with our framework),

• Assess performance of MBD algorithms (we provide 15

algorithms with our framework), using 8 metrics,

• Visualize in real-time the MBD algorithms performance,

• Generate dataset to feed the common attack dataset
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VeReMi [5], [6],

• Evaluate multiple misbehavior report formats and global

MisBehavior Detection algorithms.

The structure of this paper is as follows. We discuss the related

work in Section II. In section III we detail the system model.

In section IV we explain our proposed framework in detail.

In section V, we run multiple examples with our framework

to demonstrate the extent of results one can get from it.

Section VI presents our conclusion and future work.

II. RELATED WORK

In this section we give an overview of the related work

about MBD techniques ranging from generic, physical layer

to machine learning based. We also discuss work related to

simulation of these techniques, the metrics used to evaluate

their performance, and attacks considered in each work.

Van der Heijden et al. [7] did a survey on MBD in C-ITS.

They provided a taxonomy of node-centric and data-centric

detection techniques, and compared them according to their

scope, security, privacy, ability to generalize and resources

required. The survey showed that no perfect techniques exist

yet. The survey concluded with open challenges: definition of

thresholds, protection against Sybil attack, and reporting to

back-end to name a few. The F2MD framework proposed here

aims at finding solutions to these open challenges.

Kamel et al. [8] investigated MBD algorithms feasibility

with respect to current standards, law compliance, as well

as hardware/software requirements. The authors showed that

some MBD algorithms do not comply with current regulations

(laws or standards). Most of the challenges discussed in

the study originated from privacy protection regulations. The

F2MD framework could help with finding privacy-preserving

MBD solutions by integrating various Pseudonym Change

Policies (PCP) (the current privacy solution for C-ITS). MBD

algorithms could thus be tested against different PCPs.

Sun et al. [9] explored verifying an attacker’s location

and mobility using features available at the application and

physical layer of Vehicle-to-Vehicle communication (V2V)

communication. In their attacker model, the attacker transmits

dubious locations inside the Basic Safety Messages (BSMs).

This attacker can be a ”lone-wolf” or can collude with other

attackers who will corroborate the false data. The authors

consider only a straight highway scenario with at least one

honest vehicle in the communication range of the ego vehicle.

They verify the attacker’s location and mobility information

using Angle of Arrival estimation (AoA), Doppler Speed

measurement (DS), extended Kalman filter (EKF) and input

from neighboring vehicles. They evaluate their mechanism in

terms of true-positive rate, false-positive rate, true-negative

rate and false-negative rate. The authors implemented their

framework in MATLAB and performed evaluation in the same

environment.

In [10], the authors proposed an MBD mechanism based on

a support vector machine (SVM) and Dempster-Shafer theory

(DST) of evidence to detect false message injection. The

SVM-based classifier is used to detect false messages based on

message content and vehicle attributes. Another SVM-based

classifier is used to evaluate whether the vehicle is credible

based on its behavior in terms of message propagation. Then,

DST is used by a trusted third party, which aggregates multiple

trust assessment reports about the same vehicle and derives a

comprehensive trust value. The authors evaluate their system’s

performance based on true-positive rate, false-positive rate,

and accuracy. They performed their simulations in VEINS.

Putting their proposal into our framework, the DST would be

part of the MA. Our F2MD contains a stress attack on the

MA that generates a large number of fake reports. As noted

by the author, this type of attack would be helpful to test and

improve this DST algorithm.

So et al. [11] proposed a framework to use plausibility

checks as feature vector for evaluating two machine learning

models (SVM and KNN). They evaluated the performance

of these models in terms of their classification accuracy

and precision-recall characteristics. They scored their loca-

tion plausibility, movement plausibility and other quantitative

features to feed into SVM and KNN models. The authors

considered location spoofing attacks from the VeReMi dataset

[5]. The attacks and detection were performed on the LuST

scenario [12]. Their simulation data was generated using

VEINS and evaluation was performed in MATLAB. Although,

their study was comprehensive, the attack type was limited to

location spoofing attacks.

It is safe to assume that simulations are a crucial part

of evaluation of MBD algorithms. For V2V simulations, a

simulator should consist of network and mobility models

that simulate real-world V2V scenarios. Simulators such as

NS3 and OMNET++ provide feature-rich environments for

network simulations. However, these simulators do not sim-

ulate a crucial aspect of VANETs, a vehicle’s mobility model.

Simulations performed in MATLAB require a readily available

dataset on which MBD algorithms can be run for conducting

evaluations.

In C-ITS research, one commonly used network and mo-

bility simulator is VEINS [4]. VEINS combines OMNET++

and SUMO (traffic mobility simulator) to create a layer for

V2X simulation. VEINS provides APIs to create custom

applications that run locally on a vehicle. These applications

can react on receiving a beacon from another vehicle and/or

on changing its own position among other features. VEINS

also provides the capability to generate custom datasets for

different road networks. However, it does not include MBD

algorithms or the capability to evaluate them.

To the best of our knowledge, there is only one simulation

framework that allows evaluation of MBD algorithms in

VANET, namely Vehicular Reference Misbehavior (VeReMi)

[5]. VeReMi is an extension to VEINS and consists of two

main components: (i) a dataset containing transmission data

from misbehaving and genuine vehicles for evaluation of MBD

algorithms offline; (ii) five position-based attacks and four

basic MBD algorithms.

In this paper, we introduce our proposed simulation frame-

work F2MD which is also based on VEINS and consists of a

comprehensive list of feature sets, from basic to advanced as

discussed in Section IV. F2MD allows conducting studies on

a large set of vehicles simulated in a large road network [12].
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These road networks can be switched for evaluations on

different types of road networks. Attacks can be programmed

into attacker vehicles in F2MD, this feature makes sure of no

bias in the attacks. It contains a comprehensive list of position-

based and mobility-based attacks. It provides MBD algorithms

ranging from basic plausibility checks to advanced algorithms

based on thresholds, value aggregation and behavioral analy-

sis. F2MD also supports addition of machine learning models

for MBD. All MBD algorithms can be extended for further

enhancements or new ones can be easily added to the F2MD

framework. F2MD gives the ability to generate misbehavior

reports to be sent to an MA. These reports can be chosen to

range from a basic report to a report with evidence included

to help the MA in its decision. Finally, F2MD provides a

visualization feature that generates graphs online and in real-

time to analyze the performance of MBD algorithms.

In conclusion, each aforementioned related work uses var-

ious methods for evaluating performance of their MBD al-

gorithms and are hardly comparable. F2MD offers a free

and open-source unified platform to implement attacks on

VANETs, implement MBD algorithms and evaluate their per-

formance using common metrics.

III. SYSTEM MODEL

A. C-ITS System Model

Cooperative Intelligent Transport Systems (C-ITS) are com-

posed of mobile (e.g. passenger vehicle, trucks, aftermar-

ket device, hand-held devices) and static entities (e.g. Road

Side Unit (RSU), electric vehicle charging station, traffic

management center). Each vehicle is equipped with an On-

Board Unit (OBU) that enables it to broadcast mobility data

(e.g. telematics, motion, maneuvers) to neighboring entities

or to the Internet for cloud-based services. The primary goal

is to improve road safety by broadcasting frequently (i.e.

up to 10Hz as described in the American standard [13])

local beacons (called Basic Safety Message (BSM) in US,

or Cooperative Awareness Message (CAM) in Europe). The

BSM/CAM contains location, speed, acceleration, brake status

and other optional fields [13], [14]. Receiving vehicles will use

the BSM/CAM to understand the scene (by fusing its sensor

data in the context of automated vehicle) and act upon it (e.g.

notify operator, perform maneuver).

One example of safety application using BSM/CAM is the

Emergency Electronic Brake Light (EEBL). In EEBL [15],

vehicles performing an emergency brake (i.e. decelerating at a

level greater than 0.4g) broadcast messages with correspond-

ing fields indicating its greater deceleration (e.g. field in BSM).

On the receiver side, the EEBL application warns the driver in

the case of a hard-braking event by a vehicle that is ahead and

in the same lane or in an adjacent lane. The EEBL application

is expected to function in both straight and curved roadway

geometries. The C-ITS safety applications are put in place to

improve the road safety and prevent fatal accidents. Therefore,

attacks that result in failure of such systems could lead to

catastrophic results. The C-ITS system could be subject to

external and internal attacks. However, a security architecture

is put in place to mitigate the effects of both these attacks.

B. C-ITS Security Architecture

In the current C-ITS system, two types of attackers are

possible: External attackers (i.e. without valid credentials) and

insider attackers (i.e. with valid credentials). External attacks

are treated with a Public Key Infrastructure (PKI) whereas

insider attacks are mitigated by a MisBehavior Detection

system. Figure 1 shows the various stages of the C-ITS

security architecture.

Fig. 1. C-ITS security architecture

External C-ITS attackers, i.e. without valid credentials, are

prevented by authenticating every message sent on the medium

using digital signature as specified in [16], [17]. Indeed, device

authentication relies on a PKI that manages cryptographic

material (i.e. generation, provisioning, update, revocation). In

the US, the PKI is called the Security Credential Manage-

ment System (SCMS) [18] and uses asymmetric cryptography,

namely ECDSA, as the authentication algorithm. Moreover, to

reduce a vehicle’s trackability, each vehicle uses short-term

cryptographic credentials–called pseudonyms–and regularly

changes it [19]. Therefore, as discussed in the next section,

we assume that cryptographic verification will take care of

external attacker and focus on insider attacker.

Insider attackers in C-ITS are handled by a MisBehavior

Detection mechanism. As we demonstrate in this paper, the

MisBehavior Detection process is divided into four steps:

1) Local MisBehavior Detection: Every C-ITS entity will

have to run a MisBehavior Detection system in order to

cope with insider attackers.

2) Misbehavior reporting: After detection, the entity will

have the opportunity to signal the misbehavior by sending

a report to a MA.

3) Global MisBehavior Detection: The MA will investi-

gate the event and potentially trigger revocation of the

misbehaving entity.

4) Misbehavior reaction: The MA will issue the appropri-

ate reaction to protect the system (e.g. perform certificate

revocation request to the PKI).
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C. Attacker Model

In this paper, we consider the following attacker model:

1) Insider: The attacker has the required cryptographic

credentials to communicate in a C-ITS.

2) Active: The attacker actively participates in C-ITS com-

munication and sends bogus data.

3) Message payload modification: We assume that the at-

tacker can modify any fields in its outgoing BSMs/CAMs.

This is possible if an attacker has complete access to his

vehicle’s CAN bus. The attacker can mount a man-in-the-

middle attack and modify any sensor data.

4) Transmission rate modification: We assume that the

attacker can modify the transmission rate of her on-

board unit. We assume that the attacker has modified the

on-board unit in his vehicle, allowing faster or slower

transmission rate depending on the type of attack.

5) Pseudonym certificates access: We assume that the at-

tacker has complete access over the usage of pseudonym

certificates. We use the same premise as above that

the attacker has modified her on-board unit. It should

allow the usage of pseudonym certificates as the attacker

pleases. This would enable mounting Sybil attacks.

The attacker will performs attacks described in Section IV-F.

Following the EEBL example presented in Section III-A, an at-

tacker would send wrong deceleration value (potentially along

with corresponding mobility data) in order to force sudden

braking by the victim(s). Attacker without valid credentials

won’t be able to properly sign the message, and verification

will fail at the receivers. However, an internal attacker will

send authenticated messages and the only way to not be fooled

by them is to perform MBD algorithms.

IV. FRAMEWORK

In this section we describe the different components of

F2MD. All parts of the framework that are described in the

following section are also available for download in open

source format [20].

A. General Framework Characteristics

This framework provides complete solution for real time

simulation and evaluation of an MBD system. It extends

VEINS with a large panel of MBD, evaluation and other

general C-ITS modules. One of the main characteristics of

F2MD is its modularity. The architecture is organized in

several functional levels: input data, local detection, local

visual output, report data output and global detection. Ac-

cording to the misbehavior evaluation level, the complexity

of the scenario, the attacks and the detection method may be

chosen. Additionally, F2MD is extensible. Besides the imple-

mented MBD mechanisms and attacks, it offers the possibility

to extend the framework with additional modules through

the existing API. A key characteristic of our framework is

its integration with non-simulated modules such as external

Machine Learning modules for advanced MBD and external

packet reporting logging. Figures 2 and 3 summarizes this idea

while showing the different modules of the architecture. These

modules are detailed in Sections IV-C to IV-H.

Data	Output

Local	Detection

Misbehavior Report 

Input	DataSet

Real-Time Simulation

Input

Base Report Beacon Report

Evidence Report Protocol Report

Local Misbehavior Detection Applications (Node-Centric)

Fixed Algorithms

Threshold App Aggregation App Behavioral App Additional ....

Learning Algorithms

SVM MLP

Basic Plausibility Consistancy Module (Data-Centric)

Legacy Module Error Tolerant Module

Additional ....

Position Plausibility

Position Consistency

Speed Plausibility

Speed Consistency

Range Plausibility

Intersection

Sudden Appearance

P-H Consistency

P-S Consistency

Local	Visual	Output

Real Time Display

Evaluation Metrics Plots

Attack Display (Sumo GUI)

Global	Detection

Misbehavior Authority

Data Collection and Format

DataBase Storage Filter Similarities Additional ....

Analysis and Decision

Reports Number Threshold

Reaction

Reaction

Global	Visual	Output

Web App Server

Evaluation Metrics Plots

Additional ....

No Reaction Warning Message Point Deduction

Passive Revokation Active Revokation Additional ....

LSTM Additional ....

Kalman Filter Position Speed Prediction

Fig. 2. Diagram representation of the main modules



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2020 5

Support	Modules

Beacons History Detection History

Additional ...

Sensor Uncertainty

Normal
Distribution

Relative 
Distribution

Fixed Time

Disposable Random

Additional ...

Fixed Dist

Misbehavior Inducing Modules

Faulty Behavior

Fixed Pos Fixed Pos 
Offset

Rand Pos Rand Pos 
Offset

Fixed Speed Fixed Speed 
Offset

Rand Speed Rand Speed
Offset

Additional ...

Data Replay

Disruptive

Additional ...

Eventual
Stop

Stale
Messages

Dos Dos
Disruptive

Congestion
Sybil

Stale Messages

MA Stress

Reports History

Data Replay
Sybil

Car2Car

Storage Mechanism

Pseudonym Policies

Attacks

Fig. 3. Diagram representation of the secondary modules

B. Framework Input Data

The first input required for the framework is a sumo

scenario. We do provide two scenarios out-of-the-box. The

first scenario is from Paris-Saclay area. This network combines

some suburban-like grid and some organic network properties.

It is a relatively small network for which we generate a vari-

able vehicle density. We use it as our test bench for calibration

and fine tuning since it provides fast and predictable results.

The second scenario is the LuST SUMO network [12]. This

scenario is a SUMO network based on population census

data and a real traffic information of Luxembourg. This

scenario is much slower to run but is more valuable for

final simulation results. In addition to SUMO scenario, the

VEINS simulation requires an OMNeT++ configuration. The

OMNeT++ configuration includes beacon parameters such as

the header bit length and the beacon interval. It also includes

the Network Interface Card (NIC) settings such as the txPower,

bitrate, Recall and thermalNoise. We strongly recommend

leaving these settings as the VEINS defaults. The values could

be found in the OMNeT++ configuration file on our github.

Finally, our framework requires specific inputs like the attack

types, the attacker density, the report format and the PCP.

This list is not exhaustive but gives a general idea of what

types of input is expected. Some inputs are even specific to

the type of attack or the PCP. For example, if we choose a

periodical pseudonym change, then we have to set the mean

change period. A full list of inputs is included in our github.

C. Local Detection

In this framework, we provide a rich module for local

MBD. This module provides simple methods to customize

and test different algorithms using a simple methodology.

The local detection logic goes as follows. The system runs

basic plausibility and consistency checks on every received

message. The results are transmitted to the local misbehavior

application that decides whether or not to send a report to

the MA. Therefore, the local detection could be customized

in two locations: the basic plausibility (often called detectors)

and the more intelligent detection application (often referred

to as data fusion). For this reason, we have implemented

multiple versions of the basic checks and multiple misbehavior

applications. We also provide a method for real-time machine

learning based MBD applications.
1) Plausibility Checks: Inspired by the literature, we ex-

tracted a set of basic MBD checks. The following checks or

detectors were implemented in their legacy version and in

an Error-Tolerant (ET) version. The legacy version is much

faster to compute the plausibility checks and returns a binary

output to show whether a certain aspect of the message

is plausible or not. The ET version is generally slower to

compute the plausibility checks but returns an uncertainty

factor that reflects the scale of the message implausibility [21].

Here is the list of all the local plausibility checks that are

implemented:

• Range plausibility: Check if the position of the sending

ITS Station (ITS-S) is inside of the ego ITS-S maximum

range (predefined value mapped on the ego ITS-S maxi-

mum radio coverage).

• Position plausibility: Check if the position of the sending

ITS-S is at a plausible place (e.g. on a road, no overlaps

of physical obstacles, etc.).

• Speed plausibility: Check if the speed advertised by the

sending ITS-S is less than a predefined threshold.

• Position consistency: Check if two consecutive beacons

coming from a same ITS-S have plausible separating

distance.

• Speed consistency: Check if two consecutive beacons

coming from a same ITS-S have plausible acceleration

or deceleration.

• Position speed consistency: Check if two consecutive

beacons coming from a same ITS-S have consistent speed

and separating distance.

• Beacon frequency: Check if the beacon frequency of a

sending ITS-S is compliant with the standards.

• Position heading consistency: Check if the positions

in two consecutive beacons coming from a same ITS-S

correspond to the heading advertised by that ITS-S.

• Intersection check: Check if no two beacons coming

from two different ITS-S have overlapping locations (i.e.

both ITS-S overlap each others).

• Sudden appearance: Check if no ITS-S suddenly ap-

peared within a certain range.

• Kalman filter tracking: Check if the ITS-S advertised

information is within a plausinle range of the Kalman

filter predicted values. This check is proposed in [22].

2) Advanced MisBehavior Detection: The MBD applica-

tions are the decision making part of the detection logic.

They are also referred to as fusion applications since the

decision is often based on fusion of multiple factors (the

results of the plausibility checks, the node history, etc.). We

implemented multiple simple examples. Some of them use a
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fixed algorithms and others are based on artificial intelligence.

The fixed algorithms were implemented directly into VEINS

while the learning applications were implemented in python

and accessed through a specific API. The followings are the

applications based on fixed algorithms:

• Threshold App: A node is reported if a certain message

fails at least one of the plausibility checks. A fail is

determined if the result of the check falls below a certain

threshold.

• Aggregation App: This application is based on the

node history. The checks results of certain messages are

aggregated with the last n results. A node is reported if

the aggregated results falls below a certain threshold.

• Behavioral App: This application is based on the gravity

of the misbehavior event. According to the gravity of the

misbehavior, the node is put in timeout and all the data

it sends are reported to the MA. The gravity is deduced

from the results of the basic plausibility checks.

Fig. 4. Python-C++ interface for machine learning modeling

3) Python-C++ Interface for Machine Learning Modeling:

One of the most used programming ecosystems for Machine

Learning (ML) and Deep Learning (DL) is Python. We de-

signed this part of the framework such that anyone could

extend the framework with their own ML/DL models. We have

developed an interface between Python and C++ parts of our

framework. This interface allows any developer to implement

their ML models in Python and let the core framework calls

their models during simulations.

Figure 4 represents the Python-C++ interface design. The

interface is designed around a typical ML model development

process. As shown in Figure 4, the interface is divided into

offline and online phases. All files are represented as separate

modules in the figure. This means that an ML model is divided

into two files. One file for each phase.

In the offline phase, a developer can design, train and save

her ML model. We support scikit-learn [23] for ML modeling

and the joblib library [24] for saving ML models. joblib is

much more efficient in saving ML models that use NumPy

[25] than Python’s built-in module pickle.

In the online phase, the ML model runs inside an HTTP

server (PyMLServer) listening on a user-defined port. The

simulation core (written in C++) calls the ML model (written

in Python). As shown in Figure 4, the simulation core sends

data to be tested against the ML model in an HTTP request.

PyMLServer calls the ML prediction script which performs

operations as follows:

• Load the data from HTTP request that needs to be

processed for prediction.

• Load the ML model saved during offline phase. We use

joblib again to load the ML model.

• Respond to the HTTP request with prediction from the

ML model.

• Optionally, the prediction script could update the ML

model and save it back to the loaded model. Models that

use back-propagation may need such functionality.

Finally, simulation core reads the prediction output from the

HTTP response to perform further investigation. Based on the

previous interface we implemented the following techniques:

• Support Vector Machines (SVM) Classifier: A two-

class SVM model was trained on features extracted from

the plausibility checks similarly to [11] and as described

in previous sections. This SVM classifies Genuine ve-

hicles from Misbehaving ones with accuracy largely de-

pendent on the scenario (Network, Density, Attacks, etc.).

For extended results on supervised machine learning, we

refer the reader to [11].

• Multi-Layer Perceptron (MLP) Classifier: An MLP

based neural network was trained on the same data as for

SVM. We found the MLP’s accuracy is generally better

than SVM. However, remember that the comparison of

techniques is not the objective of this paper.

• Long Short-Term Memory (LSTM) Classifier: An

LSTM was also trained on the same data as for SVM.

LSTM is part of the Recurrent Neural Network (RNN)

family of ML algorithms adequate for the treatment of

time dependent data. LSTM’s accuracy was generally the

best out of the tested algorithms. However, it is also the

slowest algorithms to compute.

D. Reporting

One important goal of the local MBD is to send a report

to a central MA for post-processing. In this framework, the

MBD algorithm could decide to generate a misbehavior report.

The reports are pushed to a global MA via HTTP connection.

Additionally, the reports can be collected in json or xml format

in a local folder.

We propose a misbehavior report inspired by the protocol

described in [26]. The report is composed of three containers:

Header Container, Source Container and Evidence Container.

The Header Container contains the basic information that

should be included in every report: generation time, sender

id, reported id and report type. The Source Container consists

of the results of the plausibility and consistency checks on

the reported beacon, granted that a vehicle is reported only

after a received beacon shows some implausibilities. The

Evidence Container should help the MA in its investigation

and to support its conclusion. The Evidence Container can be

composed of messages from the reported or the reporter or any

neighboring vehicles if deemed helpful. It could also include

some other data like a Local Dynamic Map (LDM), or direct

sensor data from the reporter. The Evidence required by the

MA is further detailed in [26].

The report format is however not yet standardized and is

still a subject of scientific research. For this reason, we deemed
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useful to provide multiple formats of the misbehavior report

to facilitate further investigation and testing. The following

versions are implemented in the framework:

• Base Report: This format includes only the Header

Container and the Source Container with no evidence.

• Beacon Report: This version includes a base report and

the reported beacon in the Evidence Container.

• Evidence Report: This version contains a more complete

Evidence Container depending on the type of plausibility

checks failure. For example, if the vehicle failed the

Speed Consistency, we include both inconsistent beacons

as evidence.

In the current state of the framework, every message

flagged as misbehaving is reported. However, not every mes-

sage should be reported individually. This would generate a

significant network overhead especially when the vehicle is

misbehaving because of a faulty component in its system.

Consequently, the report format allows for omitted reports,

which means that the vehicle is not constantly reported for

the same behavior. Instead of that, the local vehicle refrains

from reporting the same behavior after a certain time while

collecting evidence. The evidence is then sent to the MA in

a single report. This protocol assumes an intelligent MA that

prioritizes the content of the received reports instead of their

number.

E. Global MisBehavior Detection

The Misbehavior Authority (MA) is the global entity that

receives the reports sent by the vehicles. The MA should then

decide on the suitable reaction to make. We defined three main

components of the MA:

• Collection and Format: The collected report is added

to a database. This action would enable to access reports

using certain criteria. For example, we can get all the

reports accusing a certain pseudonym or all the reports

from a certain region. Those requests could be helpful

in the analysis phase. We also have a filtering system,

if enabled, that could aggregate all reports signaling the

same implausibly (e.g. sets of two messages with a speed

inconsistency).

• Analysis and Decision: The MA analyzes the reports

and outputs the correct level of reaction. We have im-

plemented a simple non intelligent method that has a

threshold on the number of reports for every reaction

level. The number of reports required to reach every level

is modifiable. We set the output as levels so it would

be compatible with our reaction mechanism. However,

other outputs could be developed. Please note that this

component will evolve into a more complex element in

future versions of the framework.

• Reaction: The misbehavior reaction is still a widely

debated subject. We propose a level-based solution with

5 levels of reaction:

– level 0: no reaction

– level 1: a warning message is sent to the vehicle

– level 2: a warning point is deducted from the vehicle’s

score

– level 3: passive revocation where the vehicle cannot

request more certificates

– level 4: active revocation where the current certificates

of the vehicle are revoked.

Currently, the reactions do not cause a change in the

behavior of the vehicle, however we expect to have a more

intelligent system where the vehicle would change its behavior

according to the reaction level (e.g. a vehicle with a faulty

sensor would re-calibrate upon a warning from the MA).

F. Misbehavior Mechanisms

In order to assess the quality of different detection methods

we need to generate misbehavior into the system. For this

reason, we implemented two categories of misbehavior: Faulty

behavior and Attacks. Faulty behavior acts on one sensor

data, and Attacks are more elaborate schemes. The framework

inserts a predefined percentage of misbehaving vehicles. These

vehicles could all present one type of misbehavior or could

mix multiple types. Details of all the implemented misbehavior

mechanisms are presented below.

1) Faulty Behavior: Each vehicle should include an on-

board treatment of the data to ensure plausibility before

transmission. However, this preventive system could possibly

lack some use cases and is prone to failure, especially in the

case of budget vehicles. Here, we consider the case where

such an on-board data pre-treatment system fails. We extracted

from the literature a set of possible faulty behaviors [27].The

following set was implemented in the framework:

• Fixed Position: The vehicle broadcasts the same position

(X,Y) each beacon.

• Fixed Position Offset: The vehicle broadcasts its real

position with a fixed offset (∆X,∆Y).

• Random Position: The vehicle broadcasts a random

position from the playground.

• Random Position Offset: The vehicle broadcasts its real

position with a random offset limited to a max value

(∆(0 7→ Xmax),∆(0 7→ Ymax).

• Fixed Speed: The vehicle broadcasts the same speed (Vx)

each beacon.

• Fixed Speed Offset: The vehicle broadcasts its real speed

with a fixed offset (∆VX ).

• Random Speed: The vehicle broadcasts a random speed

with a upper limit (0 7→ Vmax) .

• Random Speed Offset: The vehicle broadcasts its real

speed with a random offset limited to a max value

(∆(0 7→ Vmax)).

• Stale Messages: The vehicle broadcasts its real informa-

tion after adding a predefined delay (∆t).

2) Attacks: Our attack schemes vary in complexity. The

following list details what is currently implemented in our

framework:

• DoS: In order to deny the other vehicles access to the

network, the attacking vehicle increases the beaconing

frequency by a certain factor. In our implementation

the vehicle could also choose to send valid message or

random data. The attacker could also choose to more
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frequently change and alternate between his pre-loaded

pseudonyms in order to avoid detection.

• Disruptive: This attack aims to disrupt the system by

flooding the network with old beacons data. The attacker

chooses a random beacon from the received history and

replays its data. Simultaneously, the attacker is able to

increase the beaconing frequency to maximize the effect.

It is worth noting that the data was originally generated

by genuine vehicles, thus making it plausible on some

levels. As a result, this attack severely deteriorates the

quality of the C-ITS. Similarly to the DoS Attack, the

attacker could also choose to alternate between his pre-

loaded pseudonyms.

• Data Replay: The attacker chooses a target and replays

its data with a certain delay. Consequently, it could seem

to an observer that there are two vehicles following each

other. The attacker could chose to change his pseudonym

when changing the target vehicle to avoid detection.

• Eventual Stop: After a certain random delay, the attacker

stops updating the beacon position and sets the speed to

zero, thus simulating a sudden stop.

• Congestion Sybil: One type of Sybil attack consists

of generating ghost vehicles. To this end, the following

actions are performed:

– The position, speed and heading of the ghost vehicles

are calculated according to the data of the attacking

vehicle or a chosen target vehicle.

– A list of pseudonyms is generated and maintained, one

pseudonym per ghost vehicle.

– The beaconing frequency of the attacker is increased

according to the number of ghost vehicles.

– The ghost vehicles beacons are multiplexed such that

every vehicle is sending one beacon per cycle.

This attack demonstrates the ability to use the framework

to (i) manipulate pseudonyms, (ii) increase the beacon

frequency on-the-fly and (iii) intelligently calculate the

data to serve a specific objective.

• MA Stress: This attack does not target local vehicles.

Instead, it targets the global entity (i.e. the MA) by send-

ing a large number of fake reports. The reports contain

the identities of the attacker’s neighboring vehicles. The

attacker could choose to change its identity for every

report. The attacker could also increase the frequency by

which the reports are sent to the MA.

G. Privacy

The use of pseudonyms have been included in the IEEE

and ETSI standards [16], [19], [28]. However, when and how

a pseudonym change happens is still a research challenge. Sci-

entific studies have suggested multiple methods to determine

the location and rate of change of pseudonyms [29].

Node-centric MBD mechanisms rely on a consistent identity

of the treated vehicles. This approach is greatly affected by

privacy-preserving mechanisms based on pseudonyms. For

this reason, we have implemented the following Pseudonym

Change Policies (PCP) in our framework:

TABLE I
DEFINITION OF POSITIVE / NEGATIVE

Misbehaving Genuine

Detected True Positive (TP) False Positive (FP)

Undetected False Negative (FN) True Negative (TN)

• Periodical: The vehicle changes its pseudonym after a

predefined period of time.

• Distance: The vehicle changes its pseudonym after pre-

defined number of kilometers.

• Disposable: The pseudonym is used for a fixed number

of messages (including beacons and warnings).

• Random: The pseudonym has predefined chance of

change at every sent message.

H. Evaluation and Visualization

In a given scenario, a vehicle transmitting messages could

be misbehaving or genuine, and a local detection mechanism

could classify messages as misbehaving or genuine. Therefore,

as illustrated in Table I, the evaluation of detection mecha-

nisms starts by deciding what is true positive / negative, and

false positive / negative.

The Recall (1) measures the proportion of correctly identi-

fied misbehaving messages out of all received misbehaving

messages. The Precision (2) measures the proportion of

messages correctly flagged as misbehaving out of all flagged

messages. The F1score (3) is the harmonic mean of Recall

and Precision. It could be used as a single metric to

evaluate the system’s performance if we attribute the same

importance to the Recall and Precision. If needed, we can

attribute more weight to one metric by calculating an Fβscore.

This metric could be interesting since one could argue that

Recall is more important than Precision in some cases.

The Accuracy (ACC) (4) is the rate of positive agreement,

which in our case refers to the ratio of true detection in the

system. The Bookmaker Informedness (BM) (5) characterizes

the probability of an informed decision. It shows how much

the decision of this system is better than a random guess.

The Markedness (6) is the probability that the detection is

ascertained by the classification as opposed to by chance . The

Matthews Correlation Coefficient (MCC) (5) is the geometric

mean of the Informedness and the Markedness. It is especially

useful when the measured classes are of very different sizes,

which is often the case with C-ITS attackers. Cohen’s kappa

(κ) (8) is a measure of the positive agreement, similar to the

Accuracy, but where we substract the agreement by chance.

Recall =
TP

TP + FN
(1)

Precision =
TP

TP + FP
(2)

F1score = 2×
Recall × Precision

Recall + Precision
(3)

ACC =
TP + TN

TP + FP + TN + FN
(4)
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BM =
TP

TP + FN
+

TN

TN + FP
− 1 (5)

MK =
TP

TP + FP
+

TN

TN + FN
− 1 (6)

MCC = TP×TN+FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

(7)

κ =
ACC −

(TP + FP )× (TP + TN) + (TN + FP )× (TN + FN)

(TN + TP + FP + FN)2

1−
(TP + FP )× (TP + TN) + (TN + FP )× (TN + FN)

(TN + TP + FP + FN)2

(8)

One of the goals of our framework is to facilitate the

evaluation of any detection mechanisms or any changes that

could affect the detection rate. In order to achieve that, the

simulator writes a snapshot of the current state of the running

mechanisms at every time interval. Then, a script parses

the data, calculates, and plots the aforementioned evalua-

tion metrics in real-time. To further facilitate the evaluation

and comparison of mechanisms, the simulator and the script

support running two simultaneous mechanisms on the same

system. Figure 5 shows a real-time comparison between the

Threshold App running on binary basic plausibility checks and

the Behavioral App running on the Error-Tolerant plausibility

module.

Fig. 5. F2MD GUI: Real-Time Evaluation Metrics Plots (Data Points, TP,
FP, Density, Recall, Precision, Accuracy, F1score, BM, MK, MCC, κ)

However, the visualization is not limited to the detection

results. The attacks and detection system are also visualized

in SUMO’s GUI. The simulator uses SUMO’s Traffic Control

Fig. 6. Sumo GUI with F2MD Vehicle Color Profiles

Interface (TraCI) [30] to color the vehicles according to the

intended role as specified in Figure 6.

Finally, since the MA is implemented as an HTTP server,

we provide a web interface. The web interface runs in real time

and serves as a display of different metrics and evaluations on

the current state of the MA (Figure 7). We currently display

three metrics:

• Cumulative and instantaneous prediction accuracy,

• Number of received reports per pseudonym for some of

the most relevant identifiers,

• Radar chart of the cumulative percentage of the issued

reactions.

Fig. 7. Misbehavior Authority Web Interface

V. EXAMPLES

In order to demonstrate the capabilities of the framework,

we run multiple example scenarios. Each example is based on

showcasing the capabilities of a different module of the frame-

work. In the following scenarios we use our benchmarking

network described in Section IV-B. We introduce misbehaving

entities with an density of 0.1. Each misbehaving vehicle

introduced to the system chooses its type of attack as detailed

in Section IV-F2. The following results are reproducible using

the implementation and scenarios provided on our Github [31].
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ET 0.1
ET 0.2
ET 0.3
ET 0.4
ET 0.5
ET 0.6
ET 0.7
ET 0.8
ET 0.9
Binary

Misbehavior

Types

Evaluation Metrics

Rec Pre F1s Acc BM MK MCC K

ET 0.1 0.36 1.00 0.53 0.89 0.36 0.88 0.56 0.35

ET 0.2 0.39 0.99 0.56 0.90 0.39 0.88 0.59 0.37

ET 0.3 0.42 0.98 0.59 0.90 0.42 0.88 0.61 0.40

ET 0.4 0.47 0.96 0.63 0.91 0.46 0.86 0.63 0.42

ET 0.5 0.49 0.91 0.64 0.91 0.48 0.82 0.63 0.42

ET 0.6 0.52 0.85 0.64 0.90 0.50 0.76 0.62 0.40

ET 0.7 0.61 0.62 0.62 0.87 0.54 0.54 0.54 0.21

ET 0.8 0.76 0.34 0.47 0.72 0.47 0.28 0.36 -0.35

ET 0.9 0.96 0.18 0.30 0.24 0.07 0.11 0.08 -0.08

Binary 0.48 0.92 0.63 0.91 0.47 0.82 0.62 0.41

Fig. 8. Variable threshold evaluation plot

A. Plausibility detectors example

As discussed earlier, we implemented two versions of the

detectors. The legacy version outputs a binary value while

the ET version assigns a factor in uncertain scenarios. The

plausibility factor is a score assigned to the each plausibility

check done on the message. This score is calculated using the

value and the error range advertised for each field in a certain

message. The score varying between completely implausible

(0) and definitely plausible (1).

To better understand the effect of this value, we run

both versions of the detectors simultaneously coupled with

a threshold-based detection application. We vary the threshold

between 0.1 and 0.9. As we can see in Figure 8, we can

see a clear trade-off between precision and recall for the ET

version of the detectors. This validates our hypothesis that

the uncertainty factor quantifies the plausibility of a certain

message.

The plausibility factor thus provides a more informative

view of the implausible scenario. This could prove useful to

an intelligent application trying to detect an attack. Therefore,

for the same previous scenario, we trained an Multi-Layer

Perceptron (MLP) to classify a single message plausibility

check result. Table II shows that the ET model have better

results than the Binary one.

However, this improvement comes at the cost of higher

processing time. In fact the binary detectors are 8 times faster

than their ET counterparts as shown in Table III.

B. Local application example

Next, we demonstrate the capabilities of the MBD applica-

tions module. We tested all the applications provided with our

TABLE II
COMPARING ET AND BINARY DETECTORS USING AN MLP

Misbehavior
Types

Evaluation Metrics

Rec Pre F1s Acc BM MK MCC κ

Binary 0.48 0.92 0.63 0.91 0.48 0.83 0.63 0.42
ET 0.64 0.93 0.76 0.93 0.63 0.86 0.73 0.56
∆ +31% +1% +19% +3% +32% +4% +17% +32%

TABLE III
PROCESSING TIME OF MLP USING BINARY OR ET

Detector Version Binary ET
Time (µs) 17.117 140.581

framework. Our fixed algorithm apps: Threshold, Aggregation

and Behavioral Analysis. Our machine learning models: SVM

and MLP. The results of the plausibility checks are used as

the input features for the learning models. We also created

models with multiple plausibility check results as features.

We call the number of checks used to create the features: the

depth of the model. We show here models trained with a depth

of 5 and 20 messages, marked by D5 and D20 accordingly.

Figure 9 shows the evaluation metrics of the different detection

scenarios. These metrics are collected from plots of the GUI

described in Section IV-H.

Although the detection rate is important, the local applica-

tion has to also be light on resources. Arguably, the main goal

of a local detection application is to alert a global entity. This

means a trade-off of lower detection rate for faster processing

could be considered. For this reason we also provide the

mean processing time of every application. The application

processing time for the previous scenarios is shown in Ta-

ble IV. Looking at the evaluation metrics and the processing
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Threshold
N-CTB
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MLP-T10

LSTM

Misbehavior

Types

Evaluation Metrics

Rec Pre F1s Acc BM MK MCC K

Aggre 0.35 0.99 0.52 0.89 0.35 0.88 0.56 0.34

Thre 0.49 0.91 0.64 0.91 0.48 0.82 0.63 0.42

SVM 0.51 0.95 0.66 0.91 0.50 0.86 0.66 0.46

MLP D1 0.64 0.93 0.76 0.93 0.63 0.86 0.73 0.56

MLP D5 0.70 0.94 0.80 0.94 0.69 0.88 0.78 0.63

MLP D20 0.74 0.97 0.84 0.95 0.74 0.92 0.82 0.69

Behav 0.78 0.94 0.85 0.95 0.77 0.90 0.83 0.70

Fig. 9. Detection evaluation by local app
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TABLE IV
MEAN PROCESSING TIME

App Version Aggre Thre SVM MLP Behav
Time (µs) 4.86 1.13 373.1 233.7 1.99

time, one could conclude that the Behavioral Analysis app

is the best choice overall. This application assigns a trust

value for every pseudonym and updates this value over time.

Theoretically, this approach would be strongly affected by

changing pseudonyms. However, the scenarios tested here have

the pseudonym change disabled.

C. Attacks example

Until now, our evaluations were based on an even mix of

misbehavior types. However, the detection rate is strongly

dependent on the type of misbehavior. To demonstrate this

fact, we tested the ability of the MLP, trained with a depth

of 20 messages, to detect individual attacks. Figure 10 shows

that the stale messages misbehavior type is somewhat hard

to detect with our detectors. This result is in line with our

expectations since the messages transmitted here are plausible

and just sent a few seconds later. Therefore the stale messages

do not have many implausible features. One should note that

the SAE J2945/1 [15] specifies that BSM generated 30 seconds

in the past (and in the future) pass time relevance check. On

the other hand, we see that the Disruptive attack is the easiest

to detect. That is due to the fact that this type of attack replays

a mass of messages without data consistency. Consequently,

there is a large amount of implausible features that were easily

fingerprinted by the neutral network.
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StaleMessages
DataReplay

Sybil
ConstPosOffset

ConstSpeed
Disruptive

Misbehavior

Types

Evaluation Metrics

Rec Pre F1s Acc BM MK MCC κ

StaleMessages 0.05 0.46 0.09 0.90 0.04 0.36 0.13 -0.01

DataReplay 0.38 0.79 0.51 0.93 0.37 0.73 0.52 0.27

Sybil 0.65 0.96 0.77 0.85 0.63 0.76 0.69 0.54

ConstPosOffset 0.74 0.93 0.82 0.97 0.73 0.90 0.81 0.66

ConstSpeed 0.88 0.94 0.91 0.98 0.87 0.92 0.90 0.81

Disruptive 0.94 0.93 0.93 0.99 0.93 0.92 0.93 0.85

Fig. 10. Detection evaluation by attack

D. Reporting and global detection example

Finally, we demonstrate the reporting and the global detec-

tion of the framework. We start by examining the different

TABLE V
AVERAGE REPORT SIZE COMPARISON

Report
Type

Report Size (Bytes)
Uncompressed lzma Compressed

Base 512.45 313.27
Beacon 1090.00 479.73
Evidence 1979.84 545.89

type of reports. Our different report formats have different

containers and should vary in size. Using the same scenario as

in Section V-C, we measure the size of the reports transmitted

to the MA in JSON. This measurement is done for each of

the formats described in Section IV-D. Table V shows the

average sizes of the different reports. We can see that the sizes

are consistent with the reports format, and the differences are

smaller when the information is compressed. Please note that

the sizes are only used for comparison purposes, however,

these are not to scale with a real eventual report. All C-ITS

messages of European Telecommunications Standards Institute

(ETSI) and Institute of Electrical and Electronics Engineers

(IEEE) have a security header a signature and multiple other

layer that are not included here [13], [17].

for the global detection, our current simple MA is still

based only on the number of received reports for a certain

pseudonym. Consequently, a PCP would dramatically affect

the result. To show this effect, we enable a periodical PCP.

We then simulate the same scenario with multiple pseudonym

change periods. Figure 11 shows the average number of reports

received by the MA for genuine and misbehaving nodes

per pseudonym. We can see that the number of reports is

significantly affected by more frequent pseudonym change.

Indeed, the MA does not receive enough reports with the same

reported ID, certainly affecting the detection quality.

In order to mitigate this effect, the MA can analyze the

contents of the report. A report with Evidence Container is

advantageous for this process. Additionally, currently proposed

reporting protocols do not send a report for each message [26].

Instead, to reduce overhead, the vehicle collects evidence and

then sends a more complete report. This process would make

the global detection based on the number of reports obsolete.

The need for an intelligent MA is therefore paramount.
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Fig. 11. Average number of reports by pseudonym received by the MA for
different pseudonym change period
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VI. CONCLUSION

Cooperative Intelligent Transport Systems are susceptible to

false data injection attacks that could jeopardize road users

safety. In this paper, we proposed a simulation framework

and source code called F2MD, which enables the research

community to develop, test, and compare MBD algorithms.

We implemented in the framework (i) a comprehensive list of

attacks, (ii) a extensive set of basic and advanced detection

algorithms, (iii) a Python/C++ bridge to allow import of

artificial intelligence algorithms, (iv) basic Pseudonym Change

Policies, (v) a visualization tool to analyze real-time perfor-

mance of the MBD system, and (vi) a Misbehavior Authority

and Misbehavior Report formats. We demonstrated its full

capabilities by running example scenarios and discussed their

results.

As future work, we are planning to expand the pseudonym

change strategies (e.g. addition of a silent period [32]), attacks

and detectors. The framework will also be extended with a

intelligent Misbehavior Authority in order to evaluate global

misbehavior investigation (and the effects of misbehavior

reporting policies and its report format), and detection perfor-

mance at the MA. We will also extend the attacker model by

considering colluding attackers and false misbehavior report

injection. The addition of a Public Key Infrastructure module

is also considered.
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