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Simulation modeling provides a powerful methodology for advancing theory and
research on complex behaviors and systems, yet it has been embraced more slowly in
management than in some associated social science disciplines. We suspect that part
of the reason is that simulation methods are not well understood. We therefore aim to
promote understanding of simulation methodology and to develop an appreciation of
its potential contributions to management theory by describing the nature of simula-
tions, its attractions, and its special problems, as well as some uses of computational
modeling in management research.

Managerial behaviors and organizational out-
comes increasingly are recognized to be the re-
sult of the interaction of multiple interdepen-
dent processes. Progress in understanding these
phenomena depends, in part, on the ability to
incorporate more complexity into management
theory and to conduct research on the conse-
quences of the resulting theory.

Traditional approaches to theory develop-
ment are limited in their ability to analyze mul-
tiple interdependent processes operating simul-
taneously. Even when the individual processes
are well understood, analyzing their interdepen-
dent behavior poses difficulties, because the
processes involved may interact in complicated
and unforeseen ways. And because the interac-
tions typically produce nonlinear system behav-
ior with feedback, empirical analysis using the
general linear model has limited value, espe-
cially when (as is typical) samples are sparse in
the regions of greatest interest.

In studying the complexities of managerial
and organizational behavior, a more systematic
methodology for theory development and anal-
ysis may prove useful. Specifically, we believe
that simulation or computational modeling has

unique advantages in this respect (Axelrod,
1997; Taber & Timpone, 1996). Well suited for the
study of complex behavioral systems, simula-
tions show greatest utility for gaining theoreti-
cal insight through developing theories and ex-
ploring their consequences (Cohen & Cyert,
1965).

Yet researchers in the academic field of man-
agement have been slow to take advantage of
simulation methods. Scholars in some related
social science disciplines, most notably psy-
chology, seem to be far ahead, and the applica-
tion of simulations by management practition-
ers to set policy and study organizational
problems is quite extensive (Carley, 2003). So
management theorists have the opportunity to
benefit by taking fuller advantage of simulation
methods.

Our aim in this article is to provide an expla-
nation and overview of simulation methodology.
By doing so, we seek to encourage management
scholars to become users of simulation methods
and to become better informed consumers of
simulation-based research. An understanding of
what simulations are and how they work is a
prerequisite for appreciating the potential con-
tributions of simulation analysis to manage-
ment theory, as well as for identifying problems
and shortcomings in simulation work.

We thank Xia Zhao for research assistance and the anon-
ymous AMR reviewers for helpful suggestions.
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We begin by providing some background on
the science of simulation. We then show that
simulation research in management has had
less impact than in other social sciences, at
least as indicated by publications in leading
journals. After addressing the benefits of formal
models in general, we consider simulation mod-
eling in detail. We discuss what simulations are
and how they work. We describe different types
of simulation models, discuss some common re-
search uses of simulations, and consider some
key issues and problems in the process of doing
simulation research. We conclude by summariz-
ing the benefits and limitations of simulation-
based work.

A BRIEF HISTORY OF COMPUTER
SIMULATIONS

Historically, scientific progress has relied on
two methodologies: (1) theoretical analysis or
deduction and (2) empirical analysis or induc-
tion. In the deductive form of science, a set of
assumptions is formulated and the conse-
quences of those assumptions are then deduced.
Often, the assumptions are stated as mathemat-
ical relationships, and their consequences are
deduced through mathematical proof or deriva-
tion. This strategy has led to some extraordinary
successes, particularly in physics—the general
theory of relativity being the prime example. A
major problem with this approach, however, is
that derivation can be mathematically intract-
able—mathematical techniques may be inade-
quate to determine the consequences of as-
sumptions analytically. This problem seems to
be common in the social sciences, perhaps be-
cause of the complexity and stochastic nature of
social processes, and it has led researchers to
choose assumptions (such as perfect rationality,
perfect information, and unlimited budgets) on
the basis of their usefulness for deriving conse-
quences rather than because they correspond to
realistic behavior. Even when elegant results
can be obtained in the form of mathematical
equations, these equations can sometimes be
solved only for special cases; for example, the
equations of general relativity can be solved for
the case of spherical symmetry, but no general
solutions are known.

In the inductive form of science, researchers
proceed by obtaining observations of variables
(data) and then analyzing the data to uncover

relationships among the variables. This ap-
proach has also been highly successful—an im-
portant example being the development of the
periodic table of the elements before atomic
structure was understood. A variant of this ap-
proach has been used to test the predictions of
theoretical analysis. A major problem with em-
pirical work, however, is the availability of data.
Variables may be unobservable (e.g., secret
agreements) or difficult to measure (e.g., the
power of organizational subunits); the problems
compound with the need for comparable mea-
sures across a sample and, in the case of dy-
namic analysis, across an extended time frame.
Consider the prospects for obtaining reliable
data on subunit power across a sample of orga-
nizations over a period of many years.

Computer simulation is now recognized as a
third way of doing science (Axelrod, 1997; Wal-
drop, 1992).1 It renders irrelevant the deductive
problem of analytic intractability—mathemati-
cal relationships can be handled computation-
ally using numerical methods. It also partially
overcomes the empirical problem of data avail-
ability, since a simulation produces its own “vir-
tual” data. Because of these features, computer
simulation can aid enormously in theory con-
struction. It allows theorists to make realistic
assumptions rather than to compromise with an-
alytically convenient ones, as is common in de-
ductive theory. Finally, a computer simulation
can be used to generate hypotheses that are
integrated and consistent (Carley, 1999).

While simulation can be distinguished from
deduction and induction, it does have similari-
ties to these other methods. Simulations resem-
ble deduction in that the outcomes follow di-
rectly from the assumptions made (without the
constraint of analytic tractability). Simulations
resemble induction in that relationships among
variables may be inferred from analyzing the
output data (although the data are generated by
simulation programs rather than obtained from
“real-world” observations).

The first well-known computer simulation in-
volved the design of the atomic bomb in the
Manhattan Project during World War II. The
complex systems of equations used in the de-

1 Physical scientists, who have used simulations for over
half a century, are now adding a fourth way of doing sci-
ence—data mining (Schechter, 2003).
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sign process could not be solved analytically,
and data were impractical; besides the un-
known risks of attempting to set off atomic ex-
plosions, there was not enough fissionable ma-
terial available at the time for even one test. The
atomic bomb simulations began before the ad-
vent of programmable digital computers and in-
volved a complex process of using punch card
sorters (Feynman, 1985; Gleick, 1992). The mod-
ern method for conducting simulations on pro-
grammable computers using Monte Carlo tech-
niques (described later in this article) was
developed by Stanislaw Ulam in 1946 in conver-
sations with John von Neumann and imple-
mented shortly thereafter when the digital com-
puter MANIAC arrived at Los Alamos (Ulam,
1991). Over the decades following the war, sim-
ulation became an accepted and widely used
approach in physics, biology, and other natural
sciences, with the social sciences lagging be-
hind.

In the social sciences the use of computer sim-
ulation methodology was pioneered by James
March and colleagues (Cohen, March, & Olsen,
1972; Cyert & March, 1963). Early computational
work played a central role in developing theo-
ries of organizations (Lomi & Larsen, 2001). But
during the 1970s and 1980s, computer simulation
“settled into a tiny niche, mostly on the periph-
ery of mainline social and organizational sci-
ence” (March, 2001: xi).

One reason for this may be accessibility; sim-
ulation is given short shrift in most social sci-
ence methodological training curricula, so many
researchers lack the background to evaluate
and interpret simulation studies. Many social
scientists—in contrast to most natural scien-
tists—may also be averse to the level of abstrac-
tion involved in simulations (as well as in math-
ematical modeling in general). In addition, the
development of simulation models requires a
theoretical grasp of underlying microlevel pro-
cesses, which are often better understood for
natural science phenomena than for social be-
havior.

Social simulation has gradually become more
accepted because of a variety of developments.
These include the spreading recognition of the
efficacy of simulation methods, the increasingly
sophisticated simulation infrastructure, the
growing base of researchers with simulation
training, and the development of specialized
journals supporting simulation work. But, in our

view, it still falls short of the methodology’s po-
tential for contributing to management theory.

THE IMPACT OF SIMULATION RESEARCH IN
MANAGEMENT

Although some simulation studies were pub-
lished in major management journals in the
1980s (e.g., Burton & Obel, 1980; Malone, 1986;
Masuch & LaPotin, 1989; Padgett, 1980), as well
as in books (e.g., Nelson & Winter, 1982), simu-
lation-based work did not begin to appear in
management and social science journals with
any regularity until the 1990s. To assess the im-
pact of simulation, we examined its use in man-
agement journal articles and compared that
with its use in journals of other social sciences.
Specifically, we calculated the proportion of
simulation-based articles appearing in leading
journals across various disciplines for the ten-
year period 1994 to 2003. We counted all those
articles using computer simulation methods, in-
cluding papers where simulation was used in
conjunction with other methods, such as exper-
iments and empirical analysis, but excluding
simulation-assisted human experiments, com-
ments, replies, and so forth. Our findings are
summarized in Table 1.

Table 1 shows that, in the leading manage-
ment and social science journals, about 8 per-
cent of the published papers used simulation
methodology. Among leading management jour-
nals, Management Science has published a sub-
stantial proportion of simulation papers. This is
somewhat misleading, however, since many of
these simulations do not address social or be-
havioral issues. Except for Management Sci-
ence, the rate for management journals is much
lower, varying from 3.7 percent in Organization
Science to 0.3 percent (only two papers in ten
years) for the Academy of Management Journal.

Among the social science journals, sociology
shows a low-frequency pattern similar to man-
agement. But simulations are more prevalent in
the other social science disciplines, led by psy-
chology’s Psychological Review, where, in some
years, more than half of the articles were simu-
lation papers. The results for economics may
actually understate the use of simulation in this
field, since these journals typically publish
more papers; for the ten-year period we exam-
ined, the American Economic Review published
118 simulation papers.
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It is unclear why management and sociology
lag behind psychology, economics, and political
science in simulation papers in leading jour-
nals. But the pattern implies that simulation
methods have made less of an impact in man-
agement than in most social sciences. While the
emergence of specialized simulation journals
(such as Computational and Mathematical Or-
ganization Theory, Journal of Artificial Societies
and Social Simulation, and Simulation Model-
ling Practice and Theory) has been a boon to
simulation work, the readership of these jour-
nals tends to be limited to simulation special-
ists. Publication in leading journals is necessary
for simulation research to disseminate to a
wider audience and to inform the development
of management theory more generally.

We believe that the field of management will
benefit from a better understanding of what sim-
ulations are and a broader recognition of what
they can contribute to theory development. We
further suggest that the payoffs are expected to
be especially high for research involving com-
plex interactive systems. By requiring formal

modeling, simulations also impose theoretical
rigor and promote scientific progress (Burton &
Obel, 1995). So before describing simulations
and their uses, we briefly discuss formal models
in general.

FORMAL MODELING

Simulations are based on formal models. For
our purposes, we define a formal model as a
precise formulation of the relationships among
variables, including the formulation of the pro-
cesses through which the values of variables
change over time, based on theoretical reason-
ing. The formalism may specify mathematical
relationships, such as equations, or sets of ex-
plicit rules, such as “when X occurs, then do Y,”
or a combination of the two. We find great value
in using formal models, although we would be
the first to admit that they provide only one of
several possible avenues for theory develop-
ment and are no substitute for substance and
insight.

Consider, for instance, the views of David
Kreps, a distinguished economist who is widely
considered a premier formal model builder. Ac-
cording to Kreps (1990: 6–7), the main advan-
tages of a good formal model are

• clarity (“It gives a clear and precise lan-
guage for communicating insights and con-
tributions”);

• ease of comparability (“It provides us with
general categories of assumptions so that
insights and intuitions can be transferred
from one context to another and can be
cross-checked between different contexts”);

• logical power (“It allows us to subject par-
ticular insights and intuitions to the test of
logical consistency”), and

• transparency (“It helps us to trace back from
‘observational’ to underlying assumptions
to see what assumptions are really at the
heart of particular conclusions”).

In a more casual vein, we would add that a
model provides a different perspective on a re-
search problem, and this fresh look often proves
insightful in and of itself.

Kreps’ list makes clear that model building
and models are tools of research, not ends unto
themselves. It is hard for us to understand why
anyone would object to the use of potentially
useful tools. This is not to say, of course, that
models will necessarily lead to Kreps’ outcomes,
or that such a list will always provide the only

TABLE 1
Proportions of Simulation Articles in Social

Science Journals, 1994–2003

Discipline Journal

Proportion
of
Simulation
Articlesa

Management Academy of Management
Journal

.003

Administrative Science
Quarterly

.022

Management Science .236
Organization Science .037
Strategic Management

Journal
.010

Sociology American Journal of
Sociology

.024

American Sociological
Review

.024

Psychology Psychological Bulletin .034
Psychological Review .378

Economics American Economic Review .073
Journal of Political Economy .074

Political
science

American Journal of Political
Science

.065

American Political Science
Review

.047

Total .079

a These numbers are ten-year averages.
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direction for today’s computational models,
which increasingly have been focusing on mul-
tilevel phenomena that are often mathemati-
cally intractable. The point is to evaluate what
can be gained from using the model, not the
model-building enterprise itself.

SIMULATION MODELING

What is a computer simulation? How is it
used? What special issues are associated with
its use? While experienced simulators may find
these questions unproductive, we believe it is
important to make simulation understandable
to researchers without extensive backgrounds
in computer programming or mathematical
analysis.

Simulations As Formal Models

As with any formal model, the development of
a simulation model constitutes an exercise in
theory development. Constructing a simulation
model involves identifying the underlying pro-
cesses thought to play key roles for the behavior
of an actor (or organizational system) and for-
malizing them as mathematical equations or
sets of computational rules. Determining the key
processes and how they interact is essentially a
theoretical endeavor; formally specifying the
operation of the underlying processes is also
such an endeavor, since previous research
rarely provides a formal specification of the pro-
cesses, necessitating the development of new
ideas. The resulting model not only is the out-
come of theoretical development but also is the
theory in the sense that it embodies the theoret-
ical ideas (Carley & Gasser, 1999; Cohen & Cy-
ert, 1965), just as the field equations embody the
theory of general relativity or the Black-Scholes
model embodies the theory of option pricing.
Hypotheses are not normally offered in simula-
tion research, since the consequences of the
complex interactions of the model’s components
are not logically obvious (if they were, a simu-
lation would not be necessary); instead, the
model’s consequences are determined computa-
tionally, and the findings may themselves be
regarded as hypotheses or theoretical conclu-
sions. In other words, the entire simulation pro-
cess constitutes a methodology for theory devel-
opment, starting with assumptions and model

construction and ending with predictions of the
theory (findings).

A strength of simulation is the theoretical
rigor introduced by formal modeling. A process
may appear to be well understood, but an at-
tempt to specify an equation for the operation of
the process over time often exposes gaps in this
understanding. Formalizing processes imposes
a discipline on theorizing, forcing researchers to
come to grips with thorny issues that have pre-
viously been dealt with only by handwaving, or
that have not even been recognized. At a mini-
mum, formalization promotes scientific ad-
vancement by forcing cloudy areas to be ad-
dressed, resulting in a clear specification that
can be subjected to analysis and subsequent
refinement.

What Is a Computer Simulation?

A computer simulation begins with a model of
the behavior of some system the researcher
wishes to investigate. The model consists of a
set of equations and/or transformation rules for
the processes by which the variables in the sys-
tem change over time. The model is then trans-
lated into computer code, and the resulting pro-
gram is run on the computer for multiple time
periods to produce the outcomes of interest.2

We focus here on computer simulations of or-
ganizational processes using formal simulation
models with discrete-time designs. While a few
simulations use or approximate continuous time
(Sastry, 1997), most simulations model time in
discrete intervals, where the simulation uses
predetermined time intervals (e.g., a simulation
day, month, or year), with the state of the simu-
lated system updated each time interval as the
simulation clock advances during the computer
run.

Simulation models may be either stochastic or
deterministic. Stochastic models contain proba-
bilistic components so that the behavior of a
model in any particular instance depends, to
some extent, on chance. Stochastic simulations

2 Actually, the model could consist of a single process,
although simulations are usually used to study systems in
which multiple processes operate simultaneously. Also, one
could use a static model—for example, to generate proba-
bility distributions for variables lacking analytic density
functions (as in Harrison & March, 1984)—but most simula-
tions in organizational research are dynamic.
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typically use Monte Carlo methods. Essentially,
a Monte Carlo approach relies on the idea that
the probabilistic components have distributions
that can be sampled to obtain values used as
inputs for the computations in a model, using
random number generators. Single draws from
these distributions may not, of course, produce
representative outcomes for the model. But by
repeating the process a large number of times, a
simulation produces sets of output values with
distributions that characterize the model’s be-
havior. Deterministic models have no probabi-
listic elements and produce the same outputs
each time, so they need to be run only once for a
given model.

To illustrate some simulation concepts, we
use Harrison and Carroll’s (1991, 2006) simula-
tion of cultural transmission in organizations.
This simulation model consists of three basic
processes. New members enter the organization
(first process), current organizational members
socially influence one another (second process),
and some members exit the organization (third
process). Although each of these three processes
has been investigated thoroughly, most re-
search on organizational culture has focused (at
least implicitly) on the socialization of current
organizational members. New insights into or-
ganizational culture can likely be gained by
studying an organizational system that includes
entry and exit as well as socialization. The sim-
ulation makes it possible to do this, including
understanding how the three basic processes
interact to generate the behavior of the organi-
zation’s cultural system.

This kind of investigation does not square
neatly with many social scientists’ ideas about
cumulative research programs. Many methods
textbooks state that successful development of
cumulative knowledge about a phenomenon
proceeds linearly and sequentially down a path,
from less structured qualitative approaches to
the highly structured approach of formal model-
ing. Ragin’s (1994) textbook, for example, claims
that qualitative research methods work best for
developing new theoretical ideas and making
interpretations of a theory or a phenomenon’s
significance; quantitative research is directed
toward identifying general patterns and making
predictions.

Our view is that the presumed linear se-
quence of cumulative knowledge development
from qualitative (and informal) to quantitative

(and formal) may be debilitating and even coun-
terproductive. Some phenomena are inherently
more difficult to measure, and although we ad-
mire attempts to do so, we do not believe that
theoretical progress needs to wait for break-
throughs in measurement technology. In partic-
ular, we see no reason why theoretical insights
from qualitative and other observations might
not be directly translated into formal models.
Indeed, we believe that doing so potentially im-
proves the theory in many ways and that formal-
ization efforts may, in turn, help empirical re-
searchers better target their efforts. For
instance, such a strategy has been pursued with
great success by researchers in organizational
ecology (see Carroll & Hannan, 2000).

Definition

Formally, we define a computer simulation as
a computational model of system behavior cou-
pled with an experimental design; the execution
of the design is sometimes called a “virtual ex-
periment” to distinguish simulation experi-
ments from traditional laboratory experiments.
The computational model consists of the rele-
vant system components (variables) and the
specification of the processes for changes in the
variables. The equations or rules for these pro-
cesses specify how the values of variables at
time t�1 are determined, given the state of the
system at time t. In stochastic models these
functions may depend partly on chance; the
equation for the change in a variable’s value
may include a disturbance term to represent the
effects of uncertainty or noise, or a discrete pro-
cess such as the turnover of an organizational
member may be modeled by an equation that
gives the probability or rate of turnover.

The model’s functions typically require the in-
vestigator to set some parameters so that com-
putations can be carried out. For example, in the
Harrison and Carroll (1991, 2006) simulation of
cultural transmission in organizations, one pro-
cess is the arrival of new members of the orga-
nization in each time period. These new mem-
bers arrive at a certain rate with certain
enculturation (fitness) scores. The arrival rate,
as well as the mean and standard deviation of
the enculturation scores of the pool from which
new members are selected, are all parameters
of the process.
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The experimental design consists of five ele-
ments: the initial conditions, the time structure,
the outcome determination, iterations, and vari-
ations. The computational model specifies how
the system changes from time t to time t�1, but
not the state of the system at time 0, so initial
conditions must be specified. For example, in
the cultural transmission simulation, initial con-
ditions include the number of members in the
organization at the beginning of the simulation
and their individual enculturation scores.

The time structure sets the length of each sim-
ulation time period and the number of time pe-
riods in the simulation run. The length of the
time period links the simulation to observation;
for example, it may be desirable for turnover
rates in a simulation to correspond the realistic
turnover rates for an organization. Once the time
period is determined, the number of time peri-
ods to be simulated can be set to obtain the
desired total duration of the simulation run, or a
rule may be established to stop the run once
certain conditions (e.g., system equilibrium) are
met.

The outcomes of interest are often some func-
tion of the behavior of the system and need to be
calculated from system variables. Outcomes
may be calculated for each time period or only
at the end of the run, depending on the simula-
tion’s purpose. In the cultural transmission sim-
ulation, the outcomes of interest are the mean
and standard deviation of the enculturation
scores of the organizational members and the
number of periods it takes the system to reach
equilibrium.

In stochastic models the simulation outcomes
will vary somewhat from run to run, depending
on the random numbers generated, so the re-
sults of one run may not be representative of the
average system behavior. To assess average
system behavior as well as variations in behav-
ior, multiple iterations are necessary—that is,
the simulation run must be repeated many times
(using different random number streams) to de-
termine the pattern of outcomes.

Finally, the entire simulation process de-
scribed above may be repeated with different
variations. Both the parameter values and the
initial conditions can be varied for two reasons.
First, the behavior of the system under different
conditions may be of interest; the examination
of such differences is often a primary reason for
conducting simulation experiments. In the cul-

tural transmission simulation, for example,
turnover rates of organizational members are
varied to examine differences in system behav-
ior under conditions of low turnover and high
turnover. This type of variation is analogous to
standard strategies for experimental design. In
both simulations and laboratory experiments,
the context can be controlled and manipulated
to assess the effects of variations (Burton, 2003).
Simulations obviously have disadvantages rel-
ative to laboratory experiments, since the “ac-
tors” are artificial agents rather than human
subjects. But they also have some advantages,
including perfect control (unobserved heteroge-
neity and unwanted influences are eliminated),
less constraint on sample size, the ability to
manage greater complexity in experimental de-
sign, and the ability to precisely track the be-
havioral steps leading to the outcomes of inter-
est (the computer’s memory is not subject to the
biases of subjects’ recollections and to other
problems of reconstructing causes of human
and organizational behavior). As with labora-
tory experiments, sound experimental proce-
dures are essential in designing simulation ex-
periments.

The second reason for introducing variations
involves examining how sensitive the behavior
of the system is to the choices of parameter
settings and initial conditions. If the behavior
does not change much with small variations in
conditions, then the system’s behavior is robust,
increasing confidence in the simulation process.
Alternatively, observing significant behavioral
changes when conditions vary slightly may in-
dicate discontinuities or bifurcation points due
to nonlinearities in the model’s behavior, war-
ranting further investigation and perhaps new
insights. This type of variation is called “sensi-
tivity analysis.”

After the simulation runs are completed, the
results may be subjected to further analysis.
Simulations can produce a great deal of data for
each variation, including the values of system
variables and outcomes for each time period
and summary statistics across iterations, as
well as the parameter settings and initial con-
dition settings. These data may be analyzed in
the same manner as empirical data, with some
caveats. Since interactive systems typically pro-
duce nonlinear behavior, as noted earlier, esti-
mation using the general linear model may not
be appropriate, except for comparing the model
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findings with empirical work using linear mod-
els. Instead, nonlinear statistical tools or graph-
ical analysis may be called for—and there is
much room for developing better techniques for
nonlinear data analysis. Because simulation
models can produce a wealth of data, statistical
measures take on a different meaning than they
do in the analysis of empirical data. For exam-
ple, when appropriate statistical techniques are
applied to simulated data, most variables in the
model are likely to yield statistically significant
coefficient estimates because of the large sam-
ple size. Accordingly, the usefulness of the esti-
mated coefficients is usually to show the direc-
tions of the effects of variables, and significance
tests mainly help in identifying variables that
make no behavioral contributions.

A Simple Example: Coin Tossing

A very simple example of how a simulation is
carried out may be instructive at this point. Sup-
pose you wish to use a simulation to find the
probability of getting first a head and then a tail
in two independent coin tosses. The processes of
the computational model are coin tosses. Vari-
able values are assigned by determining
whether a toss is a head or a tail. Computation-
ally, we can define a parameter p as the proba-
bility of getting a head and set it to some value
between 0 and 1 (not necessarily assuming that
the coin is “fair”). The simulation program can
then call a random number generator for the
uniform distribution, which will yield any num-
ber between 0 and 1 with equal probability, to
produce a number. If this number is less than p,
the program concludes that the toss was a head;
if otherwise, the toss was a tail. (To see why this
works, say we have a biased coin with p � 4; the
probability that the generator will produce a
number less than .4 is precisely .4, since all
numbers between 0 and 1 are equally probable.)

In the experimental design, no initial condi-
tions need be specified since the outcome of the
first toss depends only on the parameter p. The
time structure is two periods, one for each toss
(although in this example their length does not
matter). The program can determine the out-
come by examining the results of the run to see
whether the first toss was a head and the second
a tail. The run can be repeated many times with
different random numbers supplied by the gen-
erator—say, for 10,000 iterations—to determine

the percentage of head-then-tail outcomes. Fi-
nally, variations can be introduced by changing
the parameter p and repeating the entire pro-
cess. Further analysis could consist of plotting
the percentage of head-then-tail outcomes for
different values of p to produce a graph of the
relationship.

Comparison of Modes of Inquiry

Differences in the three forms of scientific in-
quiry can be illustrated with the simple coin
tossing example. The question can be ad-
dressed deductively by using probability theory
to derive the answer. It can be addressed empir-
ically by performing a coin toss experiment with
many trials; this procedure is simple for p � .5,
assuming that a normal coin is fair, but it may
be difficult in practice to obtain coins with dif-
ferent p values. Or a simulation can be used to
address the question computationally, as de-
scribed above.

Simulation is similar to theoretical derivation
or deduction in a very fundamental way. Both
approaches obtain results from a set of assump-
tions. The results are the logical and inevitable
consequences of the assumptions, barring er-
rors. If one accepts the assumptions, then one
must also accept the results; put another way,
the results are only as good as the assumptions.
So a simulation may be thought of as a numer-
ical proof or derivation.

Simulations differ from deduction in three sig-
nificant ways, however. We have already men-
tioned the first difference: simulations can ex-
amine the consequences of formal models
computationally when derivations cannot be
carried out because of analytical intractability.
This is the primary reason that simulation meth-
ods are particularly useful for studying complex
models.

The second difference is more subtle. As dis-
cussed above, good formal models generally
have four advantageous features (Kreps, 1990):
clarity, ease of comparability, logical power,
and transparency. The first three advantages
also apply to formal simulation models. But the
fourth advantage, transparency, may not. It
would seem that models must be analytically
tractable in order to trace the sequence of rea-
soning connecting assumptions with conclu-
sions, whether forward or backward. In simula-
tions the formal model may involve the complex
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interaction of multiple interdependent pro-
cesses where outcomes emerge from the inter-
active processes but cannot be predicted or de-
rived in advance. Even with the results in hand,
it may not always be possible to understand
how the sequence of process behaviors pro-
duced the results; this may be an intrinsic prop-
erty of truly complex systems. Although the pre-
cise manner in which the theoretical processes
specified in the model produce the results may
not be clear, simulations might still inform the-
ory and research by demonstrating a relation-
ship between model assumptions and compo-
nents on the one hand and system outcomes on
the other.

The third difference between simulation and
deduction involves the nature of the intuition of
the investigator that shapes the formal model. A
common misconception about mathematical de-
duction comes from the way formal derivations
are presented. In the usual presentation, defini-
tions and assumptions are laid out first, and
these are then used to derive lemmas and theo-
rems, suggesting a mechanical process
whereby insights follow from sterile assump-
tions. An alternative view, which more closely
resembles deductive work as we know it, holds
that the initial insights of the scientist are con-
tained in theorems (Lakatos, 1976). Once the the-
orem embodying the insight is specified, the
formalization enterprise then consists of at-
tempting to identify assumptions that might be
used to derive it. Because realistic assumptions
may lead to intractable models, the theorist
sometimes resorts to convenient but unrealistic
ones. The point is that although deductive work
is presented as a sequence of reasoning from
assumptions to theorems, the initial insight is
often contained in the theorem rather than in the
way the model is constructed.

The process of envisioning the result and then
figuring out how to produce it is unlikely to
succeed for many complex interactive models.
Instead, we believe that the intuition of simula-
tors is more likely to play a role in the model
construction phase—specifically, in identifying
the key processes thought to be relevant to the
behaviors under study and in determining the
form of interaction of these processes. To be
more precise, we believe that many good simu-
lations arise in contexts where the analyst has a
valid insight about how certain behavioral or
other processes interact with each other but can-

not trace through the impact of the interactions
because of the potential complexity. Of course,
simulators, like deductive theorists, can tinker
with model assumptions to try to get desired
results, but this is more difficult for simulations,
because it is less apparent how assumptions
may affect the complex behavior of interactive
processes.

Types of Simulation Models

While a number of typologies of simulation
models have been proposed (e.g., Burton, 2003;
Cohen & Cyert, 1965; Macy & Willer, 2002), it is
perhaps helpful to discuss three commonly used
types: (1) agent-based models, (2) systems dy-
namics models, and (3) cellular automata mod-
els. Although many current simulations in man-
agement theory use agent-based models, we
briefly describe the defining characteristics of
each type of model and provide a few examples.

Agent-based models. Agent-based models fo-
cus on modeling the behaviors of adaptive ac-
tors who make up a social system and who in-
fluence one another through their interactions
(Macy & Willer, 2002; Parunak, Savit, & Riolo,
1998); the behavior of the system is an emergent
property of the interaction of the agents. Exam-
ples include individuals interacting in an orga-
nizational system or organizations interacting
in an industry. For instance, in the organization-
al culture simulation (Harrison & Carroll, 1991,
2006), the agents consist of the members of an
organization who influence each other’s encul-
turation and turnover behavior through social
influence, and an emergent organizational prop-
erty is the cultural heterogeneity of the organi-
zation. March (1991) models the learning behav-
ior of individual and organizational agents to
examine the effects of exploration and exploita-
tion on organizational knowledge and competi-
tive advantage. Strang and Macy (2001) examine
cascades in the organizational adoption of fads
by modeling the manner in which organization-
al agents are influenced by one another to adopt
innovative practices. And Rivkin and Siggelkow
(2003) model the decision behavior of top man-
agement agents to examine the interdepen-
dence of organizational design elements, orga-
nizational search and stability, and decision
characteristics.

In agent-based models the model simulates
the behaviors of the actors (agents) who make
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up a social system—including, in particular,
how they interact to influence one another—and
the outcomes of interest typically are the conse-
quences of the agent behaviors for the social
system as a whole. The behavior of the social
system is not modeled directly; rather, the sys-
tem’s behavior emerges from the interactive be-
haviors of its constituent agents.

Systems dynamics models. Systems dynamics
models focus on modeling the behavior of the
system as a whole, rather than modeling the
behaviors of actors within the system (see For-
rester, 1961). At the system level these models
simulate the processes that lead to changes in
the system over time. Systems dynamics models
are typically presented in diagrams of variables
connected with arrows—including feedback
loops—that show the directions of influence of
variables on one another, and each influence
component is then formalized. For example, Sas-
try (1997) studied discontinuous or punctuated
organizational change by modeling organiza-
tional change as a function of organization-
environment fit and of trial periods following
reorientations during which the change process
is suspended. Repenning (2002) examined orga-
nizational implementation of innovations by
modeling the process whereby participants col-
lectively develop commitment to newly adopted
innovations.

Cellular automata models. Cellular automata
models are based on an n � n lattice, or grid, with
each square in the grid representing a cell.3 The
model specifies how each cell changes from being
occupied or not (i.e., either an actor occupies the
cell or it is vacant) in each time period as a func-
tion of the characteristics of neighboring cells; in
other words, influence is limited to local inter-
actions. Since individual cells change through
interaction with other cells, cellular automata
models can be seen as a special case of agent-
based models if cells are viewed as agents—but
they differ fundamentally from agent-based
models in that unoccupied or vacant cells still
exercise influence on their neighbors. The cellu-
lar automata approach has been popularized by
work on a wide range of topics at the Santa Fe
Institute. Lomi and Larsen (1996) used cellular
automata models to explore how localized com-

petition can be linked to founding and mortality
processes in an organizational population.

Agent-based models are usually specified us-
ing either equations or rules, or a combination of
the two. Systems dynamics models typically use
differential equations for their formalizations.
And cellular automata models tend to be rule
based. But there is no intrinsic reason for a par-
ticular type of model to be formalized using ei-
ther equations or rules. The choice of using
equations, rules, or both depends on the nature
of the processes being modeled and the prefer-
ences of the researcher.

THE USES OF SIMULATION MODELING

Once a simulation model has been developed,
it can be used for a variety of research purposes.
Axelrod (1997) identified three, as follows.

Prediction

Analysis of simulation output may reveal
relationships among variables. These rela-
tionships can be viewed as predictions of the
simulation model or hypotheses that can per-
haps be subjected to empirical testing. Even if
some variables in the computational model
cannot be easily observed, the output vari-
ables often can be. For example, in their com-
puter simulation, Carley and Lin (1997) theo-
rized about how organizations can design
effective structures to mitigate the impact of
information distortion. Empirical confirmation
of a simulation’s predictions provides indirect
support for the theory embodied in the model
of the underlying (unobserved) processes.

Proof

Axelrod discussed proofs in terms of “exis-
tence” proofs; a simulation can show that it is
possible for the modeled processes to produce
certain types of behavior. For example, Lant and
Mezias (1992) showed that a learning model of
organizational change can produce patterns of
punctuated equilibria in organizations. This
strategy can be used to examine the feasibility
of models and to demonstrate that the resulting
system behaviors meet certain conditions (such
as boundary conditions).

3 We discuss two-dimensional grids here, although higher-
dimensional (or one-dimensional) “grids” can also be used.

1238 OctoberAcademy of Management Review



Discovery

Simulations can be used to discover unex-
pected consequences of the interaction of sim-
ple processes. In a simulation of competition
between populations of organizations, Carroll
and Harrison (1994) discovered path-dependent
effects that sometimes made it possible for
structurally “weaker” populations to win out
over populations that were competitively supe-
rior.

In our view, Axelrod’s list can be comple-
mented by four additional uses for simulations.

Explanation

Frequently, behaviors are observed, but it is
not clear what processes produce the behaviors.
Specific underlying processes can be postulated
and their consequences examined with a simu-
lation; if the simulation outcomes fit well with
the observed behaviors, then the postulated pro-
cesses are shown to provide a plausible expla-
nation for the behaviors (Mark, 2002). A simula-
tion of R&D investment in innovation and
imitation (Lee & Harrison, 2001) shows that the
process of adaptive firm search over a stochas-
tic landscape for returns to innovation and imi-
tation can explain the emergence of strategic
groups in an industry under some conditions.
The explanatory use of simulations is related to
the use of simulation as existence proof, but it
typically goes beyond just showing that it is
possible for the model to produce certain out-
comes and also illuminates the conditions un-
der which such outcomes are produced.

Critique

Simulations can be used to examine the the-
oretical explanations for phenomena proposed
by researchers, and to explore more parsimoni-
ous explanations for these phenomena (Denrell,
2004). This is similar to the explanatory use of
simulation, except that, in this case, simulation
is used to assess preexisting explanations and,
possibly, to find simpler explanations. For ex-
ample, Levinthal (1991) demonstrated that a sim-
ple random walk over capital levels is capable
of producing declining age dependence in or-
ganizational mortality, without making any as-
sumptions concerning internal organizational
processes.

Prescription

A simulation may suggest a better mode of
operation or method of organizing. Many simu-
lations in operations research—queuing simu-
lations, for example—indicate more efficient
ways of organizing the work flow, which some-
times serve as a basis for changes in organiza-
tional procedures. Some prescriptive models
may also be associated with a set of manage-
ment wares, such as graphic user interfaces,
database management and accesses for input
and output, statistical analysis tools for the gen-
erated data, and output visualization tools.
These tools are not a core part of a simulation
model but are becoming critical to the useful-
ness of the model in many applications.

Empirical Guidance

The development of theories and models us-
ing simulation methods may also generate new
empirical strategies. Establishing a formal
model holds out the possibility of uncovering
systematic connections among previously un-
connected observables—a consequence of the
logic of the model. In other words, tracing
through and understanding the implied connec-
tions among variables may show an expected
covariation between two or more observable
variables that can be used as a hypothesis in
systematic empirical research. Further, by dem-
onstrating nonlinear relationships among ob-
servables, a simulation model may indicate the
inappropriateness of standard statistical testing
and suggest alternative empirical approaches.

Of course, it is possible for a simulation to
serve multiple purposes, as may be clear from
some of the above examples. Indeed, a simula-
tion project probably starts with one of these
purposes in mind, but, since the outcomes of
simulating complex systems may yield sur-
prises, it could end up serving other purposes.
For example, a simulation originally envisioned
as a critique could lead to a discovery. In using
their cultural transmission model to critique de-
mographic research linking the tenure (length of
service [LOS]) distribution to organizational out-
comes, Carroll and Harrison (1998), for example,
observed a “disruption effect” whereby em-
ployee entry and exit events frequently produce
substantial fluctuations in measures of LOS dis-
tribution heterogeneity that are weakly or even
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negatively correlated with changes in measures
of intraorganizational social process diversity.
This discovery showed that the widely used as-
sumption that heterogeneity in the LOS distribu-
tion tracks diversity effects based on social pro-
cesses is often invalid. So the seven research
purposes described above illustrate the variety
of ways in which simulations can be used, but
there could be overlap in the purposes of spe-
cific simulation studies.

The role of simulation modeling in manage-
ment research is summarized in Figure 1. We
have emphasized the link between complex
problems and simulation modeling as a theory
development process. Theory development and
model construction are informed, of course, by
previous theory and empirical research, and
new theory and research feed back into the pro-
cess. Model construction is also linked to com-
putational technology: technology provides the
means to implement and run the models, and it
also constrains computational possibilities be-
cause of limitations on computer speed, storage,
and programming features (constraints that are,
fortunately, loosening with technological ad-
vances).

SOME ISSUES IN SIMULATION RESEARCH

What special issues are raised in simulation
research? We address three sets of issues in-
volved in the simulation research process: the
degree of complexity in simulation models, em-
pirical grounding of simulations, and some
problems and limitations of simulation work.

Model Complexity

Construction of a simulation model involves a
tension between simplicity and elaboration.
When we give talks on our simulations, a fre-
quent (perhaps the most frequent) question we
get is “Why don’t you add variable X to the
model?” Undoubtedly, a model can be made
more realistic by adding more variables or pro-
cesses. At the same time, it usually becomes
more difficult to understand what drives the re-
sults in more complex models. The more elabo-
rate or realistic a model of an organization is
made, the more it comes to resemble a real or-
ganization, including aspects of the organiza-
tion’s incomprehensibility and indescribability
(Starbuck, 1976; Weick, 1969).

For theory development purposes, the objec-
tive is to construct a model based on a simpli-

FIGURE 1
The Interactive Process of Management Theory and Simulation Modeling
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fied abstraction of a system—guided by the pur-
pose of the simulation study—that retains the
key elements of the relevant processes without
unduly complicating the model (Burton & Obel,
1995). According to Nelson and Winter:

Willingness to recognize complexity is not an un-
mitigated virtue. Models in economics must be
greatly simplified abstractions of the situation
they are intended to illuminate; they must be
understandable and the logic must have certain
transparency. Artful simplification is the hall-
mark of skillful modeling (1982: 402).

Axelrod (1997) suggests the KISS principle: keep
it simple, stupid. The simpler the model, the
easier it is to gain insight into the causal pro-
cesses at work.

This is sound advice but more appropriate for
some simulation uses than for others. The find-
ings from simple models help in understanding
the phenomenon studied to the extent that the
focal processes play an important role in influ-
encing it. The downside of this approach is that
important elements may be inadvertently ex-
cluded from the model, including some elements
that interact with the simplified model in impor-
tant ways, thus limiting the usefulness of the
insights for understanding the system’s behav-
ior. Of course, it is not really possible in models
of complex interactions to determine what is
important without actually modeling and test-
ing the omitted processes. Deciding which pro-
cesses are relevant is part of the theoretical
exercise of model construction, and the intuition
and objectives of the modeler determine what is
included in the model. So the applicability of the
KISS principle depends, to some extent, on the
nature of the phenomenon under investigation
and on the investigator; in modeling multiple
interactive processes, a delicate balance must
be struck between keeping the model simple
and including enough elements to get adequate
leverage for understanding the behaviors of in-
terest. This might be considered part of the “art
of simulation.”

A simulation-based research program may
start with a simple model and then elaborate it.
This might be referred to as a building block
approach, which amounts to adding complexity
in a stepwise fashion. It enables the researcher
to understand the behaviors of simple models
and then to study the consequences of extend-
ing them. Research programs using the building
block approach often produce a series of arti-

cles; as with other forms of programmatic re-
search, a full understanding and appreciation of
later articles in the program may depend on
familiarity with the earlier ones, since complete
details of the program’s history cannot be re-
peated in each article. But as the complexity of
the underlying model increases, it becomes in-
creasingly difficult to interpret the findings.

Simulations sometimes have purposes other
than purely the development of theory. They
may seek to develop realistic models of behav-
ior that can be applied, for example, to policy
analysis or to prescriptions for managing orga-
nizational processes. These simulations tend to
use a building block approach. One example is
the virtual design team (VDT) platform (Jin &
Levitt, 1996; Levitt et al., 1994; Levitt at al., 1999),
which achieved high realism and has allowed
researchers to apply their work to a broad set of
real-world projects, including risk analysis for
the U.S. space shuttle program.

Model Grounding

Simulation experiments are artificial in that
they are based on computer models and their
data are generated by a computer program. Ar-
tificiality naturally prompts the question of how
the simulation relates to real-world behavior.
There are several possibilities. The model’s pro-
cesses could be based on empirical work; for
example, in a simulation of competing popula-
tions (Carroll & Harrison, 1994), both the model’s
functional forms and their parameter settings
were based on empirical studies. The only un-
grounded parameters were the competition co-
efficients, which were systematically varied to
demonstrate that the basic findings of the sim-
ulation did not depend on the specific settings.
In many cases formal models with empirical
estimates are not available, but empirical work
can still provide much information for model
construction, and variations and sensitivity
analysis can be used to examine the robustness
of the results.

Empirical grounding can also be established
through the results of the simulation. The results
can be compared to empirical work, as was the
case with Lin’s (2002) simulation of network ac-
tivation during crises. Alternatively, the simula-
tion results can serve as a basis for subsequent
empirical work to assess their correspondence
with observable behavior. Empirical feedback of
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this nature can also aid in determining an ap-
propriate level of model complexity.

The type of grounding may differ with the
purpose of the simulation. For a simulation used
for prescription, grounding of the processes in-
creases the likelihood that the results will lead
to useful applications. For predictive purposes,
empirical testing of the results is an appropriate
form of grounding. Still other uses may involve
grounding of both the processes and the results;
for example, Carley (1996) demonstrated the va-
lidity of her computer simulation model by ex-
ploring empirical evidence for both the pro-
cesses and the results.

In our opinion, however, simulation can be a
valuable research tool even when grounding is
not possible. Simulations can be used to explore
the consequences of theoretically derived pro-
cesses, for example, even if the outcomes cannot
be readily assessed empirically. This may be
viewed as a form of discovery and is character-
istic of much theoretical work in both the natural
and social sciences. For example, Wolfgang
Pauli predicted the existence of the neutrino in
1931 using theoretical methods, although there
was no realistic prospect at the time of observ-
ing this hypothetical particle. One would hope,
of course, that theoretical work would eventu-
ally lead to some empirical validation (indeed,
the neutrino was discovered in 1956 using ad-
vanced experimental methods, at which time
Pauli was awarded the Nobel Prize for his pre-
diction). Purely theoretical simulation work
should not be avoided simply because ground-
ing is not available; it is still a legitimate scien-
tific endeavor with the potential to make impor-
tant contributions to management theory (but
needs to be regarded as purely theoretical).

Problems and Limitations

Simulation-based research, like other re-
search methodologies, has problems and short-
comings. Obviously, simulation work can be
poorly done, articles can be poorly written, and
theoretical justifications can be inadequate. As
with formal modeling in general, simulation
models may not be specified in a way that con-
vincingly captures the essence of the underlying
theoretical reasoning. But simulations have
other problems and limitations that are particu-
larly salient for simulation research. Some of

these issues were addressed earlier; we take up
others here.

One issue involves presentation of the model.
In some articles the modeling and experimental
structures are not presented in sufficient detail
to provide understanding of what was actually
done, making it impossible to evaluate the work
and to develop any level of confidence in the
conclusions. In other cases the researcher may
have failed to conduct enough analysis to illu-
minate the relationships implied by the model.
Ideally, problems of this nature would be ad-
dressed in the review process. But when an ar-
ticle with inadequate description or analysis is
published, the reader must decide what, if any,
weight should be given to its claims.

A special set of issues emanates from the fact
that the consequences of the model are deter-
mined by writing and running computer pro-
grams. The most obvious problem is that program-
ming errors (bugs) can occur—management
simulators are as vulnerable to this problem as
the teams of computer scientists at NASA who
made errors in the software for one of the Mar-
tian probes. Bugs in the program may not be
obvious and can produce spurious results. Elim-
inating bugs is a major concern of simulators,
who may conduct a variety of tests to ensure
that the program is operating appropriately, but
some researchers are more conscientious than
others in this respect, and, as with other meth-
odologies, even the best researchers can still
make mistakes. The ultimate test is whether
other simulators can replicate the simulation
findings. This requires that the original re-
searchers provide sufficient detail of the simu-
lation—or make the actual computer code avail-
able—which is often not the case, and,
unfortunately, incentives to attempt replications
are lacking.

A related potential problem arises from the
translation of the formal model into computer
code. Even with a clearly specified formal
model, there may be choices regarding how the
code is written. For example, if three interdepen-
dent processes are involved in the model and
the computer executes instructions sequentially,
the order in which these three processes are
carried out in a given time period may make a
difference in the results. Different researchers
could conceivably write different code and get
different results using the same formal model.
Particularly for simulation work with important
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theoretical implications, it is risky to put too
much confidence in the findings of one article,
and independent verification is called for (as
with findings using other methodologies).

Independent verification has been attempted
for some important simulation work—for exam-
ple, Cohen et al.’s (1972) garbage can model and
Axelrod’s (1984) tit-for-tat work—with mixed re-
sults. Failure to replicate a finding does not
necessarily mean that it is wrong, however. It
may be that the original finding holds only un-
der certain conditions or only for certain ways of
operationalizing the formal model. So efforts of
this type can help to extend and refine theory, in
addition to weeding out errant results.

A final set of issues concerns the inferences
drawn from simulation findings. Simulation ex-
periments vary model parameters in an attempt
to assess the model’s behavior over a range of
conditions. While it can be tempting to general-
ize to other conditions, the simulation findings
are only demonstrated for the region of param-
eter space examined experimentally; generali-
zations beyond this space can at best be consid-
ered conjectures (while inferences based on the
parameter values studied can be considered hy-
potheses of the model). A further problem is as-
sociated with models of interdependent pro-
cesses; since the complexity of the interactions
may lead to nonlinear behavior, important ef-
fects such as discontinuities may be missed
even within the parameter space examined if
the parameter variations are not fine grained
enough (Kitts, 2003). Finally, it is difficult to
make inferences about the relative strengths of
the effects of different model components on the
outcomes. These effects depend, in part, on the
scaling of parameters and variables in the
model and on the range of values examined;
when these scales and ranges lack empirical
grounding—and at least some do in almost all
simulation work—the strengths of component
effects may not be comparable. With sufficient
variation, simulation experiments can sort out
which model effects matter and which do not,
but comparisons of the relative strengths of ef-
fects with observable impacts may lack a sub-
stantive foundation.

CONCLUSION

Computer simulation can be a powerful way
to do science. Simulation makes it possible to

study problems that are not easy to address—or
are impossible to address—with other scientific
approaches. Because organizations are complex
systems and many of their characteristics and
behaviors are often inaccessible to researchers,
especially over time, simulation can be a partic-
ularly useful research tool for management the-
orists.

Simulation analysis offers a variety of bene-
fits. It can be useful in developing theory and in
guiding empirical work. It can provide insight
into the operation of complex systems and can
explore their behaviors. It can examine the con-
sequences of theoretical arguments and as-
sumptions, generate alternative explanations
and hypotheses, and test the validity of expla-
nations. By relying on formal modeling, simula-
tion imposes theoretical rigor and promotes sci-
entific progress.

Simulation research, like any other research
method, also suffers from problems and limita-
tions. The value of simulation findings rests on
the validity of the simulation model, which fre-
quently must be constructed with little guidance
from previous work and can be prone to prob-
lems of misspecification. Simulation work can
be technically demanding and susceptible to
errors in computer programming. The data gen-
erated by simulations do not represent real ob-
servations, and techniques for their analysis are
limited. And it is risky to attempt generalizing
simulation findings to areas of the parameter
space not examined in the simulation. So claims
based on simulation findings are necessarily
qualified.

The role of simulation is not well understood
by much of the management research commu-
nity. Simulation is a legitimate, disciplined, and
powerful approach to scientific investigation,
with the potential to make significant contribu-
tions to management theory. Properly used and
kept in appropriate perspective, computer sim-
ulation constitutes a useful theoretical tool that
opens up new research avenues. The computer
simulations discussed in this article provide a
sample of a future direction in management re-
search, and many samples in future manage-
ment research are likely to be generated by
computer simulations.

Only in the 1990s did simulation-based re-
search begin to appear with any regularity in
leading management journals. With the increas-
ing acceptance of computer simulation as a le-
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gitimate research methodology, the rise in
simulation-based journal articles, and the ex-
panding number of newly trained scholars us-
ing simulation techniques, computer simula-
tion promises to play a major role in the future
of management theory.
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