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The Computational Physics Section publishes articles that help students and their instructors learn about the

physics and the computational tools used in contemporary research. Most articles will be solicited, but inter-
ested authors should email a proposal to the editors of the Section, Jan Tobochnik (jant@kzoo.edu) or Harvey

Gould (hgould@clarku.edu). Summarize the physics and the algorithm you wish to include in your submission
and how the material would be accessible to advanced undergraduates or beginning graduate students.
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An optically trapped Brownian particle is a sensitive probe of molecular and nanoscopic forces. An

understanding of its motion, which is caused by the interplay of random and deterministic

contributions, can lead to greater physical insight into the behavior of stochastic phenomena. The

modeling of realistic stochastic processes typically requires advanced mathematical tools. We

discuss a finite difference algorithm to compute the motion of an optically trapped particle and the

numerical treatment of the white noise term. We then treat the transition from the ballistic to the

diffusive regime due to the presence of inertial effects on short time scales and examine the effect

of an optical trap on the motion of the particle. We also outline how to use simulations of optically

trapped Brownian particles to gain understanding of nanoscale force and torque measurements, and

of more complex phenomena, such as Kramers transitions, stochastic resonant damping, and

stochastic resonance.VC 2013 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4772632]

I. INTRODUCTION

Randomness is present in most phenomena, ranging from bio-
molecules and nanodevices to financial markets and human
organizations.1 It is not easy to gain an intuitive understanding of
stochastic phenomena, because their modeling typically requires
advanced mathematical tools. A good pedagogical approach is to
start with some simple stochastic systems. Experience can be
gained by doing numerical experiments, which are inexpensive
and within the reach of students with access to a computer.

One of the simplest examples of a stochastic system is a
Brownian particle, which is a microscopic particle suspended
in a fluid.2 Brownian particles are often used to study random
phenomena, because their motion due to thermal agitation
from collisions with the surrounding fluid molecules pro-
vides a well-defined random background dependent on the
temperature and the fluid viscosity.3 By introducing optical
forces to induce deterministic perturbations on the particles,4

it is possible to study the interplay between random and
deterministic forces. Optically trapped particles have been
used as a model system for statistical physics, and have a
wide range of applications, including, for example, the mea-
surement of nanoscopic forces5–8 and torques.9–11

The motion of an optically trapped Brownian particle in
one dimension can be modeled by the Langevin equation

m€xðtÞ
|fflffl{zfflffl}

inertia

¼ �c _xðtÞ
|fflfflffl{zfflfflffl}

friction

þ kxðtÞ
|ffl{zffl}

restoring force

þ
ffiffiffiffiffiffiffiffiffiffiffiffi

2kBTc
p

WðtÞ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

white noise

; (1)

where x is the particle position, m is its mass, c is the friction
coefficient, k is the trap stiffness,

ffiffiffiffiffiffiffiffiffiffiffiffi
2kBTc

p
WðtÞ the fluctuat-

ing force due to random impulses from the many neighbor-
ing fluid molecules, kB is Boltzmann’s constant, and T is the
absolute temperature. Equation (1) is an example of a sto-
chastic differential equation,12 a common tool used to
describe stochastic phenomena and is obtained by the addi-
tion of a white noise term to an ordinary differential equation
(ODE) describing an overdamped harmonic oscillator.
Unlike ODEs, which are routinely taught in undergraduate

courses, stochastic differential equations are complex, mostly
because the white noise is almost everywhere discontinuous
and has infinite variation.12 The numerical integration of sto-
chastic differential equations requires advanced mathematical
tools, such as r-algebras, the Itô formula, and martingales,12

which are far beyond the level of most undergraduate courses.
The numerical solution of stochastic differential equations is
usually not straightforward.13

In the following, we will explain how to solve Eq. (1)
numerically using a simple finite difference algorithm. First,
we will explain how to simulate a random walk and, in
particular, how to treat the white noise term within a finite
difference framework. We will then describe how to simulate
the free diffusion of a Brownian particle and study its transi-
tion from the ballistic to the diffusive regime due to the pres-
ence of inertial effects at short time scales. Subsequently, we
will examine the effect of the optical trap on the motion of
the particle. Finally, we will give some suggestions on how
to simulate the behavior of an optically trapped particle in
the presence of external forces or torques, and on how to
employ optically trapped Brownian particles to address more
complex phenomena, such as Kramers transitions,14 stochas-
tic resonant damping,15 and stochastic resonance.16
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Simulations can also complement the use of optical tweezers
in undergraduate laboratories.17–19 The associated MATLAB

programs are freely available.20 These MATLAB programs can
be straightforwardly adapted to the freeware SCILAB.21

II. SIMULATION OFWHITE NOISE

Finite difference simulations of ODEs are straightforward:
the continuous-time solution x(t) of an ODE is approximated
by a discrete-time sequence xi, which is the solution of the cor-
responding finite difference equation evaluated at regular time
steps ti ¼ iDt. If Dt is sufficiently small, xi � xðtiÞ. A finite
difference equation is obtained from the ODE by replacing x(t)
by xi; _xðtÞ by ðxi � xi�1Þ=Dt, and €xðtÞ by

ðxi � xi�1Þ=Dt� ðxi�1 � xi�2Þ=Dt
Dt

¼ xi � 2xx�1 þ xi�2

Dt2
:

(2)
The solution is obtained by solving the resulting finite dif-

ference equation recursively for xi, using the values xi�1 and
xi�2 from previous iterations. This first-order integration
method generalizes the Euler method to stochastic differen-
tial equations. Higher-order algorithms can also be employed
to obtain faster convergence of the solution.13

All the terms in Eq. (1) can be approximated as we have
described except for the white noise term W(t). W(t) is char-
acterized by the following properties:12 the mean hWðtÞi ¼ 0
for all t; hWðtÞ2i ¼ 1 for each value t; and Wðt1Þ and Wðt2Þ
are independent of each other for t1 6¼ t2. Because of these
properties, white noise cannot be treated as a standard func-
tion. In particular, it is almost everywhere discontinuous and
has infinite variation. Thus, it cannot be approximated by its
instantaneous values at times ti, because these values are not
well-defined (due to the lack of continuity) and their magni-
tude varies wildly (due to the infinite variation).

To understand how to treat W(t) within a finite difference
approach, consider the equation

_xðtÞ ¼ WðtÞ; (3)

which is the simplest version of a free diffusion equation and
whose solution is usually called a random walk. We need a

discrete sequence of random numbers Wi that mimics the
properties of W(t). Because W(t) is stationary with zero
mean, Wi are random numbers with zero mean. We also
impose the condition that hðWiDtÞ2i=Dt ¼ 1 so that the Wi

have variance 1=Dt, where h � � �i represents an ensemble av-
erage. Because W(t) is uncorrelated, we assume Wi and Wj to
be independent for i 6¼ j; that is, we use a sequence of uncor-
related random numbers with zero mean and variance 1=Dt.
Some languages have built in functions that directly generate
a sequence wi of Gaussian random numbers with zero mean
and unit variance. Alternatively, it is possible to employ vari-
ous algorithms to generate Gaussian random numbers using
uniform random numbers between 0 and 1, such as the Box-
Muller algorithm or the Marsaglia polar algorithm.13 We
then rescale wi to obtain the sequence Wi ¼ wi=

ffiffiffiffiffi

Dt
p

with
variance 1=Dt. Figures 1(a)–1(c) show how the values of Wi

increase and diverge as Dt ! 0.
The finite difference equation corresponding to Eq. (3) is

xi � xi�1

Dt
¼ wi

ffiffiffiffiffi

Dt
p ; (4)

or

xi ¼ xi�1 þ
ffiffiffiffiffi

Dt
p

wi: (5)

Some examples of the resulting free diffusion trajectories xi
are plotted (lines) in Figs. 1(d)–1(f) for Dt ¼ 1:0, 0.5, and 0.1,
respectively. The numerical solutions become more jagged as
Dt decreases. The solutions shown in Figs. 1(d)–1(f) differ
because they are specific realizations of a random process, but
their statistical properties do not change, as can be seen by
averaging over many realizations. The shaded areas in Figs.
1(d) and 1(f), which represent the variance around the mean
position of the freely diffusing random walker obtained by
averaging over 10,000 trajectories, are roughly the same, inde-
pendent of Dt. (The small differences are due to the finite
number of trajectories used in the averaging.)
The time step Dt should be much smaller than the charac-

teristic time scales of the stochastic process to be simulated.
If Dt is comparable to or larger than the smallest time scale,
the numerical solution will not converge and typically shows

Fig. 1. As the time step Dt decreases, we must employ larger values of the Gaussian white noise Wi to approximate the solution of the free diffusion equation

[Eq. (3)] accurately. (a) Dt ¼ 1, (b) 0.5, and (c) 0.1. The corresponding solutions of the finite difference free diffusion equation [Eq. (5)] in (d)–(f) for xi (lines)

behave similarly. Although these solutions differ because they are specific realizations of a random process, their statistical properties do not change, as can be
seen by comparing the shaded areas, which show the regions within one standard deviation of the mean of 10,000 realizations.
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an unphysical oscillatory behavior or divergence. The case
of free diffusion treated in this section is special because
there is no characteristic time scale, as can be seen from the
fact that Eq. (3) is self-similar under a rescaling of the time,
and therefore there is no optimal choice of Dt.

III. FROM BALLISTIC MOTION TO BROWNIAN

DIFFUSION

We now consider the Brownian motion of real particles. A
microscopic particle immersed in a fluid undergoes diffusion
because of the collisions with the surrounding fluid mole-
cules such that each collision alters the velocity of the parti-
cle, which then drifts in a random direction until the next
collision. After a large number of such events the direction
and speed of the particle are effectively randomized. These
collisions also limit the particle’s average kinetic energy to
kBT=2 for each degree of freedom in accordance with the
equipartition theorem.22 The diffusion and friction coeffi-
cients, D and c, respectively, are closely related to the aver-
age kinetic energy by the Einstein relation cD ¼ kBT. The
Langevin equation describing the resulting motion is Eq. (1)
without the force term:

m€xðtÞ ¼ �c _xðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffi

2kBTc
p

WðtÞ: (6)

Equation (6) can be solved numerically by considering the
corresponding finite difference equation,

m
xi � 2xx�1 þ xi�2

ðDtÞ2
¼ �c

xi � xi�1

Dt
þ

ffiffiffiffiffiffiffiffiffiffiffiffi

2kBTc
p 1

ffiffiffiffiffi

Dt
p gi:

(7)

The solution for xi is

xi ¼
2þ Dtðc=mÞ
1þ Dtðc=mÞ xi�1 �

1

1þ Dtðc=mÞ xi�2

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2kBTc

p

m½1þ Dtðc=mÞ� ðDtÞ
3=2

wi: (8)

The ratio s ¼ m=c is the momentum relaxation time—the
time scale of the transition from smooth ballistic behavior to
diffusive behavior. The time s is very small, typically on the
order of a few nanoseconds.2,23

We will consider a silica microparticle in water with radius
R¼ 1lm, massm¼ 11pg, viscosity g¼0:001Ns=m2; c¼6pgR,
temperature T¼300K, and s¼0:6ls. We remark that s is
orders of magnitude smaller than the time scales of typical
experiments. Only since 2010 has it been possible to experi-
mentally measure the particle position sufficiently fast to
probe its instantaneous velocity and the transition from the
ballistic to the diffusive regime.24 Thus, it is often possible to
drop the inertial term (i.e., set m¼0) and obtain from Eq. (6)

_xðtÞ ¼
ffiffiffiffiffiffi

2D
p

WðtÞ: (9)

In terms of the finite differences, Eq. (9) becomes

xi ¼ xi�1 þ
ffiffiffiffiffiffiffiffiffiffiffi

2DDt
p

wi: (10)

Equation (10) is a very good approximation to Brownian
motion for long time steps (Dt � s) but it shows clear devia-

tions at short time scales (Dt� s). In Figs. 2(a) and 2(b), we
compare two trajectories with and without inertia using the
same realization of the white noise. For short times [see Fig.
2(a)], the trajectory of a particle with inertia (solid line)
appears smooth with a well-defined velocity which also
changes smoothly, while in the absence of inertia (dashed line)
the trajectory is ragged and discontinuous with a velocity
which is not well-defined. Note how the non-inertial trajectory
changes direction at every time step and appears to be a series
of broken line segments, while the inertial trajectory is smooth.
For long times [see Fig. 2(b)] both the trajectory with inertia
(solid line) and without inertia (dashed line) show behavior
typical of the diffusion of a Brownian particle—they appear
jagged because the microscopic details are not resolvable.
To better understand the free diffusion of a Brownian par-

ticle and the differences between the inertial and non-inertial
regimes, we analyze some statistical quantities that are
derived from the trajectories, namely, the velocity autocorre-
lation function and the mean square displacement of the par-
ticle position. The velocity autocorrelation function provides
a measure of the time it takes for the particle to “forget” its
initial velocity and is defined as

CvðtÞ ¼ vðt0 þ tÞvðt0Þ; (11)

where the bar represents a time average. From the simula-
tions Cv becomes the discrete function

Fig. 2. (a) For times smaller or comparable to the inertial time s the trajec-
tory of a particle with inertia (solid line) appears smooth. In contrast, in the

absence of inertia (dashed line) the trajectory is ragged and discontinuous.

(b) For times significantly longer than s both the trajectory with inertia (solid
line) and without inertia (dashed line) are jagged, because the microscopic

details are not resolvable. These trajectories are computed using Eqs. (8)
and (10) with Dt ¼ 10 ns and the same realization of the white noise so that

the two trajectories can be compared. (c) The velocity autocorrelation func-
tion [Eq. (12)] for a particle with inertia (solid line) decays to zero with the

time constant s, while for a particle without inertia (dashed line) it drops im-

mediately to zero demonstrating that its velocity is not correlated and does
not have a characteristic time scale. (d) A log-log plot of the mean-square

displacement [Eq. (14)] for a particle with inertia (solid line) shows a
transition from quadratic behavior at short times to linear behavior at long

times, while for a particle without inertia (dashed line) it is always linear.
The particle parameters are R¼ 1lm, m¼ 11 pg, g¼0:001Nsm�2;c¼6pgR,

T¼300K, and s¼m=c¼0:6ls are used here and for the numerical solutions

shown in the following figures.
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Cv;n ¼ viþnvi ; (12)

where vi ¼ ðxiþ1 � xiÞ=Dt. The solid line in Fig. 2(c) depicts
the velocity autocorrelation function for a Brownian particle
with inertia and shows that CvðtÞ decays to zero with the time
constant s, demonstrating the time scale over which the veloc-
ity of the particle becomes uncorrelated with its initial value.
The dashed line in Fig. 2(c) represents CvðtÞ for a trajectory
without inertia, which drops immediately to zero demonstrating
that, in the absence of inertia, the velocity is uncorrelated over
all times and thus does not have a characteristic time scale.

The mean square displacement quantifies how a particle
moves from its initial position. For ballistic motion, the
mean square displacement is proportional to t2, and for diffu-
sive motion it is proportional to t.24 The mean square dis-
placement is defined as

hxðtÞ2i ¼ ½xðt0 þ tÞ � xðt0Þ�2 (13)

and can be calculated from a trajectory as

hx2ni ¼ ½xiþn � xi�2 : (14)

The fact that the ensemble average and the time average coin-
cide is a consequence of the ergodicity of the system. The
solid line in Fig. 2(d) shows the mean square displacement in
the presence of inertia. At short times ðt� sÞ hxðtÞ2i is quad-
ratic in t, and for longer times ðt � sÞ hxðtÞ2i becomes linear.
This transition from ballistic to diffusive motion occurs on a
time scale s. In the absence of inertia (dashed line), hxðtÞ2i is
always linear.

IV. OPTICAL TRAPS

In many cases, it is useful to hold some Brownian particles
in place. In this way, for example, it is possible to study the
physical and chemical properties of cells and biomolecules8

and to use inert microscopic particles as force nanotrans-
ducers.25 One of the most effective ways of holding Brownian
particles is by means of optical traps, or optical tweezers.4 An
optical trap is formed in the proximity of the focal spot of a
highly focused laser beam and is due to the momentum transfer
from the light to the particle. Because the light is bent when it
passes through the particle, it experiences a change in its
momentum and therefore produces a recoil of the particle.
Under the appropriate conditions, the particle can be
trapped in three dimensions as the focused laser beam pro-
duces three independent harmonic traps in the three orthog-
onal spatial directions.26

A Brownian particle in an optical trap is in dynamic equi-
librium with the thermal noise pushing it out of the trap and
the optical forces driving it toward the center of the trap. The
time scale on which the restoring force acts is given by the
ratio / ¼ c=k and is typically much greater than s. To study
the dynamics of the Brownian particle in the trap, it is often
convenient to employ the non-inertial approximation to
Brownian motion so that the only relevant time scale is /, so
that we can employ a relatively large time step Dt > s. The
time step Dt should still be significantly smaller than /,
because, if Dt�/, the numerical solution does not converge
and typically shows an unphysical oscillatory behavior or
divergence. We encourage readers to explore the numerical
solutions for this case to see what happens.

The motion of the particle is described by a set of three inde-
pendent Langevin equations such as Eq. (1), where the inertial
term is dropped (i.e., m¼ 0). This equation can be written as

_~rðtÞ ¼ � 1

c
~k �~rðtÞ þ

ffiffiffiffiffiffi

2D
p

~WðtÞ; (15)

where~r ¼ ½x; y; z� represents the position of the particle, ~k ¼
½kx; ky; kz� is the stiffnesses of the trap, and ~W ¼ ½Wx;Wy;Wz�
is a vector of white noise. The corresponding finite differ-
ence equation is

~r i ¼~r i�1 �
1

c
~k �~r i�1Dtþ

ffiffiffiffiffiffiffiffiffiffiffi

2DDt
p

~wi; (16)

where ~r i ¼ ½xi; yi; zi� represents the position of the particle at
time ti and ~wi ¼ ½wi;x;wi;y;wi;z� is a vector of Gaussian ran-
dom numbers with zero mean and unit variance.
The line in Fig. 3(a) shows a simulated trajectory of

a Brownian particle in an optical trap with kx ¼ ky
¼ 1:0� 10�6 fN=nm and kz ¼ 0:2� 10�6 fN=nm, where
1 fN ¼ 10�15 N. The fact that the trapping stiffness along the
beam propagation axis (z) is smaller than in the perpendicu-
lar plane is commonly observed in experiments and is due to
the presence of scattering forces along z.26 Thus, the particle
explores an ellipsoidal volume around the center of the trap,
as shown by the shaded area, which represents an equiprob-
ability surface. In Figs. 3(b) and 3(c), we show the probabil-
ity distribution of finding the particle in the z- and y-planes,
respectively.
It is possible to increase the stiffness of the trap by

increasing the optical power, thereby improving the confine-
ment of the particle.27 The stiffness can be quantified by
measuring the variance r2xy of the particle position around
the trap center in the y-plane. In Fig. 4(a), the variance r2xy is
shown as a function of kx. It is seen that r2xy / 1=kxy. In Figs.

Fig. 3. (a) Trajectory of a Brownian particle in an optical trap (kx ¼ ky
¼ 1:0� 10�6 fN=nm and kz ¼ 0:2� 10�6 fN=nm). The particle explores an
ellipsoidal volume around the center of the trap, as evidenced by the shaded

area which represents an equiprobability surface. (b) and (c) The probability
distributions of finding the particle in the z- and y-planes follow a two-

dimensional Gaussian distribution around the trap center.
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4(b)–4(d), the position distributions in the y-plane are
observed to shrink as the stiffness is increased.

The time scale /, which characterizes how the particles
fall into the trap, can be seen in the position autocorrelation
function [see Fig. 5(a)]

CxðtÞ ¼ xðt0 þ tÞxðt0Þ: (17)

As the stiffness increases, the particle undergoes a stronger
restoring force and the correlation time decreases, because

the particle explores a smaller phase-space. Unlike the free
diffusion case, the mean square displacement [see Fig. 5(b)]
does not increase indefinitely but reaches a plateau because
of the confinement imposed by the trap. The transition from
the linear growth corresponding to the free diffusion behav-
ior and the plateau due to the confinement occurs at about /.

V. FURTHER NUMERICAL EXPERIMENTS

By following the approach we have discussed, readers can
study other phenomena where more complex forces act on
the particle. Equation (1) can be generalized to

_xðtÞ ¼ 1

c
FðxðtÞ; tÞ þ

ffiffiffiffiffiffi

2D
p

WðtÞ; (18)

where F(x(t), t) represents a force acting on the particle that
can vary both in space and time. For example, for a simple
optical trap, F(x(t), t)¼ – kx(t), and we obtain Eq. (1).
We now consider one of the simplest cases and add a con-

stant force Fc that acts on the particle from time t¼ 0, that is,
FðxðtÞ; tÞ ¼ �kxðtÞ þ FcðtÞ hðtÞ where hðtÞ is the Heaviside
step function. This force results in a shift of the equilibrium
position of the particle within the trap, as shown in Fig. 6(a),
where the probability distribution of the particle for t < 0 is
represented by the black histogram and the one for t > 0 by the
grey histogram. By measuring the shift of the average position
Dx and using the knowledge of k, it is possible to measure
Fc ¼ kDx (Hooke’s law). This experimental technique, known
as photonic force microscopy, has been widely employed to
measure nanoscopic forces exerted by biomolecules.25

Fig. 4. (a) As the trap stiffness kxy increases, the particles become more and more confined as shown by the theoretical (solid curve) and numerical (symbols)

variance rxy of the particle position around the trap center in the y-plane and, in particular, by the probability distributions corresponding to (b)
kxy ¼ 0:2 fN=nm, (c) kxy ¼ 1:0 fN=nm, and (d) kxy ¼ 5:0 fN=nm.

Fig. 5. (a) The position autocorrelation function of a trapped particle [Eq.

(23)] gives information about the effect of the trap restoring force on the par-
ticle motion. As the trap stiffness and, therefore, the restoring force are

increased, the characteristic decay time of the position autocorrelation func-
tion decreases. (b) The mean square displacement, unlike for the free diffu-

sion case, does not increase indefinitely but reaches a plateau, which also
depends on the trap stiffness—the stronger the trap, the sooner the plateau is

reached.
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It is possible to introduce non-conservative forces in two
dimensions. The simplest case is a simple rotational force
field such as

~Fðx; yÞ ¼ � k cX

�cX k

� �
x

y

� �

; (19)

where X represents the rotational component. It is interesting
to see how the motion of the particle changes from a situation
where the rotation is clearly visible for large X to a situation
where it is hardly visible for small X. An intermediate situa-
tion is plotted by the line in the inset in Fig. 6(b).7,11,28,29 Such
a force induces a cross-correlation between the motion in the
x- and y-directions [black line in Fig. 6(b)], defined by

CxyðtÞ ¼ xðt0 þ tÞyðt0Þ: (20)

As the particle moves (on average) around the origin, CxyðtÞ
oscillates [grey line in Fig. 6(b)].
It is also possible to study several statistical phenomena.

For example, consider a double-well potential such as
UðxÞ ¼ ax4=4� bx2=2, which produces the force

FðxÞ ¼ �ax3 þ bx: (21)

Such a force has been experimentally realized using two close
optical traps.14 There are two equilibrium positions located at
the potential minima and separated by a potential barrier
between which the Brownian particle can jump (Kramers tran-
sitions), as shown by the trajectory shown in Fig. 6(c). Read-
ers can explore the statistics of the residence times in the two
potential wells and their variation as a function of the height
of the potential barrier and the temperature. As the potential
barrier decreases and/or the temperature increases, the jumps
become more frequent. Because the double-well potential is
symmetric, the residence times are equal for the two equilib-
rium positions. Another interesting problem is to study how
the residence times vary in an asymmetric potential well,
which can be obtained by adding a constant force to Eq. (21).
It also is possible to introduce time-varying potentials and

study phenomena such as stochastic resonant damping and
stochastic resonance. Stochastic resonant damping15 occurs
as the equilibrium position of a harmonic trap is made to
oscillate with a frequency f and an amplitude xc, such that

FðxðtÞ; tÞ ¼ �k½xðtÞ � xcsinð2pftÞ�: (22)

For some conditions, namely, when the magnitudes of f
and /�1 are comparable, such an oscillation leads to the
counterintuitive result that the variance of the particle posi-
tion increases as the trap stiffness increases.
Stochastic resonance16 occurs in the presence of a double-

well potential subject to an oscillating force of magnitude c
and frequency f, such that

FðxðtÞ; tÞ ¼ �ax3 þ bxþ csinð2pftÞ; (23)

where the force oscillation modulates the height of the poten-
tial barrier that the particle must overcome to jump to the
other potential well. If f is comparable to the Kramers jump
frequency, there can be a partial synchronization of the
jumps with the oscillating force. This synchronization
strongly depends on the temperature of the system. At low
temperatures, the particle cannot jump over the potential bar-
rier because the intensity of the noise is not large enough. At

Fig. 6. (a) The probability distribution of an optically trapped particle

shifts in response to an external force. The black histogram shows the ini-

tial distribution and the grey histogram represents the distribution after the
application of a constant external force Fc ¼ 200 fN. (b) The position auto-

correlation function of the trapped particle [black line, Eq. (23)] and posi-
tion cross-correlation function [grey line, Eq. (20)], are modulated in the

presence of a rotational force field such as the one in Eq. (19) with
X ¼ 132:6 s�1. This modulation demonstrates the presence of the rota-

tional force field even though it is not clear from the trajectory (the inset

shows a trajectory during a time interval equal to 0.1 s). (c) Dynamic tran-
sitions between the two equilibrium positions in a double-well potential

(Kramers transitions) with a ¼ 1:0� 107 N=m3 and b ¼ 1:0� 10�6 N=m
[Eq. (21)].
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high temperatures, the particle is not significantly affected
by the force modulation. Hence, there is an optimal tempera-
ture at which the synchronization occurs. A good problem is
to find this temperature numerically.
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