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Abstract-This study addresses the simulation of a class of non-normal processes based on 

measured samples and sample characteristics of the system input and output. The class of non- 

normal processes considered here concerns environmental loads, such as wind and wave loads, and 

associated structural responses. First, static transformation techniques are used to perform simula- 

tions of the underlying Gaussian time or autocorrelation sample. An optimization procedure is 

employed to overcome errors associated with a truncated Hermite polynomial transformation. This 

method is able to produce simulations which closely match the sample process histogram, power 

spectral density, and central moments through fourth order. However, it does not retain the specific 

structure of the phase relationship between frequency components, demonstrated by the inability to 

match higher order spectra. A Volterra series up to second order with analytical kernels is employed 

to demonstrate the bispectral matching made possible with memory models. A neural network 

system identification model is employed for simulation of output when measured system input is 

available, and also demonstrates the ability to match higher order spectral characteristics. Copy- 

right c~ 1996 Elsevier Science Ltd. 

Keywords: non-normal, simulation, random processes, neural networks, higher order statistics, 

bispectrum wind pressure, ocean waves 

INTRODUCTION 

The complete analysis of dynamic system reliability necessarily includes a statistical analysis of 

extreme response. Often, the response of a system under consideration is non-Gaussian due to 

non-normal input, non-linear system properties, or a combination of both. The presence of 

non-linearities leads to extreme response statistics that no longer resemble those extreme 

models based on Gaussian processes. The importance of the extreme response to system 

reliability has prompted much research in the development of techniques to predict these 

extreme statistics (e.g. solution strategies for Volterra systems). In order to validate these 

extreme prediction models, time domain response simulation is attractive, since the equations of 

motion may be integrated directly to include the full non-linearities. The simulation of Gaussian 

random processes is well established [l-4]. Progress in the simulation of non-Gaussian 

processes has been elusive, but necessary for time domain simulation of system response to 

non-Gaussian input (e.g. large amplitude waves on offshore platforms, and wind pressure 

fluctuations on cladding components). This work considers several techniques to simulate 

non-Gaussian stationary random processes concerning wind and wave related processes [S, 61. 

The focus in this work is on the transformation of Gaussian simulations to non-normal 

processes, based on information provided in samples of the desired non-Gaussian process. 

We concentrate on the class of non-Gaussian processes typical of localized wind pressures 

as well as that associated with the response of non-linear offshore systems to wind and wave 

fields. There may exist practical classes of non-Gaussian processes for which the tools 

presented herein are not necessarily appropriate. 

STATIC TRANSFORMATION METHODS 

Probability transformation 

Static transforms relating a non-Gaussian process with its underlying Gaussian process 

have been the basis of a variety of non-normal process simulation techniques. A sample of 

*Author to whom correspondence should be addressed. 
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static transformation techniques can be found in refs [7-lo]. The few studies in this context 

have looked at simulation based on a target power spectral density and target probability 

density function [ll, 121. A summary of several techniques including the use of filtered 

Poisson h-correlated processes and z-stable processes is found in a recent book by Grigoriu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c131. 
An approach used by Yamazaki and Shinozuka [12] begins with the simulation of 

a Gaussian process u(t) which is then transformed to the desired non-Gaussian process y(t) 

through the following mapping: 

y(t) = F; ‘{aqu)). (1) 

A similar concept utilizing the translation process has been introduced by Grigoriu 

[7]. Yamazaki and Shinozuka use an iterative procedure to match the desired 

target spectrum by updating the spectrum of the initial Gaussian process, since the 

non-linear transformation in eqn (1) also modifies the spectral contents. This 

iterative procedure does not guarantee convergence for all classes of non-linear processes. 

For some y(t) there may be no corresponding Gaussian form u(t) with a matching 

spectrum. 

Correlation distortion 

The necessity for an iterative procedure may be eliminated if one begins with the target 

spectrum or autocorrelation of the non-Gaussian process and transforms it to the underly- 

ing correlation of the Gaussian process. This approach is referred to as the correla- 

tion-distortion method in stochastic systems literature [lo, 14,151. For a given static 

single-valued non-linearity x = y(u), where u is a standard normal Gaussian process, the 

desired autocorrelation of x in terms of y can be expressed as [lo]: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

k=O 

where pXX is the normalized autocorrelation of the non-Gaussian process, and Hk(U) is the 

kth Hermite polynomial given by 

Hk(a) = (- l)*exp($)$[exp (-;)I. 

An alternative to the preceding approach is to express x as a function of a polynomial 

whose coefficients are determined by a minimization procedure, e.g. Ammon [ll]. 

Alternatively one may use translational models involving Hermite moment transforma- 

tion models described earlier. In this study, we utilize a Hermite model for its conveni- 

ence and availability in the literature. A simulation based on the schematic shown in 

Fig. 1 would eliminate the spectral distortion caused by the non-linear transformation, 

since its inverse is employed to reverse the distortion. The simulation algorithm 

is as follows: (i) estimate the auto-correlation of the mean-removed normalized sample 

non-Gaussian process to be simulated (R,,(z)); (ii) t ransform to the autocorrelation 

of the underlying Gaussian process (R,,(z)) by solving for R,,(z) [S] in the following 

equation: 

R,,(z) = a2CR,,(r) + 2fi:R:,,(r) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6@Ri,(41, (4) 

Fig. 1. Schematic of the correlation distortion method 
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Fig. 2. Measured wind pressure signal (top left), a correlation distortion simulation (top right), and 

power spectral density and pdf of the measured data and ensemble of 100 simulations. 

where 

h, Y3 L 4 =;I + w, - 1 1 = 

4+2Jm’ 18 

’ Cd= 

J1 + 2ff: + 6K; ’ 

and y3 and y4 are the skewness and kurtosis of the fluctuating process; (iii) simulate 

a Gaussian process using the spectrum, G,=(w), associated with R,,(T); (iv) transform this 

simulated process u, back to a non-Gaussian process using 

x = a[u + &(u2 - 1) + h4(u3 - 3u)]; (5) 

(v) replace the mean and variance of the original parent process to produce a simulation, 

x, of the original non-Gaussian process x. 

Figure 2 compares a measured wind pressure signal with a single realization of a correla- 

tion distortion simulation of that signal in the top left and right figures, respectively. Note 

the undesirable positive extreme behavior in the simulation that is not seen in the sample. 

The bottom figures compare the power spectral density and PDF of the measured data with 

that from the ensemble average of 100 correlation distortion simulations. The statistical 

moments of the standardized original signal are compared with the average moment 

statistics of the 100 realizations in Table 1. The higher positive kurtosis in the simulations 

can be observed in both the time history and the PDF comparison. Unless otherwise noted, 

the comparison of the statistical properties of the simulation with those of the sample 

process is made using an ensemble of 100 realizations for the sake of expedience. Ensembles 
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Table 1. Statistics ofmeasured wind pressuredata and ensemble averaged simulated data 

Standard Coefficient of 

deviation skewness 

Coefficient of 

kurtosis 

Measured wind data 

Ensemble of 100 correlation 

distortion simulations 

Ensemble of 100 modified direct 

transformation simulations 

1.0 - 0.8309 4.9940 

0.9927 - 0.7960 5.6711 

0.9960 -0.8120 4.7676 

of up to 1000 were used in the initial phases of this work, and showed little difference in the 

results. A later example using 2000 realizations will be shown to add nothing to the 

qualitative conclusions based on 100 realizations. 

There are several restrictions on the application of the correlation distortion method. The 

static transformation suggested in equation (4) is appropriate for processes in which the 

non-Gaussian behavior can be adequately limited to a non-zero skewness and a kurtosis 

not equal to three. For processes for which moments beyond fourth order are necessary 

to adequately describe the non-Gaussian behavior, the method loses accuracy, as this 

higher order information is distorted through the inverse and forward transformations. 

Further, the solution of equation (4) for R,,(z) is not guaranteed to be positive definite for all 

L(r). 

Direct transformation 

An alternative to the correlation-based approach is to begin with a sample of a non- 

Gaussian time history rather than its autocorrelation. The schematic in Fig. 3 then provides 

simulations of the sample process. The non-Gaussian sample process, x(t), is transformed to 

its Gaussian underlying form, u(x), through 

U(X) = [Jm + i'(~)l"~ - [Jm - K$1"3 - a, 

where 

63 

“=3fi, 

b=+ c = (b - 1 - a2)3, (6) 
4 

and the other parameters are defined after equation (4). Subsequently, linear simulations 

created through standard techniques based on the target spectrum of the Gaussian process, 

G,,(W), are transformed back to the non-Gaussian parent form through eqn (5). 

The shortcoming of this direct transformation technique is that the simulated non- 

Gaussian signal power spectrum does not match the sample non-Gaussian spectrum to 

a satisfactory degree for the example sample processes we have used in subsequent 

examples. This distortion may stem from the inability of the truncated Hermite moment 

transformation in eqn (6) to produce a Gaussian signal for cases when the parent signal is 

highly non-Gaussian. Specifically, non-Gaussian behavior requiring moments beyond 

fourth order for characterization are not addressed, and their presence distorts the static 

transformation from non-Gaussian to Gaussian. The linear simulation is then based on 

a target spectrum derived from a process which is assumed Gaussian, but is not. It is at this 

point, indicated in Fig. 3 by the dashed box, where the frequency information is distorted, 

and results in poor simulations. One option for improving results is to add terms to the 

Hermite series until a Gaussian transformation is achieved. This may require a different 

number of terms to achieve accuracy for varying input sample signals, and leads to a very 

complex solution for U(X) in the higher order equivalent of equation (6). 

An example of the potential for distortion using the direct transformation method is seen 

in Fig. 4. The top figures compare the same measured wind pressure signal seen in Fig. 

2 with a direct transformation simulation of the signal. The power spectral density and PDF 
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Fig. 3. Schematic of the direct transformation method 

Fig. 4. Measured wind pressure signal (top left), a direct transformation simulation (top right), and 

power spectral density and pdf of the measured data and ensemble of 100 simulations. 

of the measured data are compared with an ensemble of 100 realizations in the lower figures 

and show poor agreement. Clearly, this method is not applicable to this sample process. 

Modi$ed direct transformation 

A modification is now suggested, shown in Fig. 5, to remove this distortion in the direct 

transformation method. Referring to equation (6) it can be seen that the governing 

parameters L3, &, a, b, c, I, and thus u(x), are dependent on the skewness and kurtosis, 

y3 and y4. Since it is required that the process, u(x), be Gaussian in order to avoid the 

distortion effects discussed above, y3 and y4 may be treated as adjustable input parameters 

in order to force the transformed process, u(x), to be Gaussian in terms of the third and 

fourth moments. Optimization of these two parameters is based on the minimization of the 

function 

min(& + Y:.), (7) 
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Fig. 5. Schematic of the modified direct transformation method 

- measured data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

12 3 0 

Fig. 6. Measured wind pressure signal (top left), a direct transformation simulation (top right), and 

power spectral density and pdf of the measured data and ensemble of 100 simulations. 

where y3., y4_ are the skewness and kurtosis of the transformed process U(X). The optimized 

input parameters y3 and y4 now provide a Gaussian process in terms of third and fourth 

moments, and the linear simulations do not contain distortion of the frequency content. The 

same parameters are used to transform back to a non-Gaussian simulation whose PDF and 

power spectral density closely match those of the sample process. This correction is 

essentially a quantification of the error in truncating the Hermite series after the third term. 

An example of the improvement afforded by the modified direct transformation method 

is demonstrated in Fig. 6. Again the measured pressure trace in the top left is simulated and 

displayed in the top right. The power spectral density and PDF of the data and simulations 

are shown in the bottom figures. Table 1 shows an improved abihty to match higher order 

statistics compared with the correlation distortion method. By observing the positive and 
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Fig. 7. Measured TLP response, modified direct transformation and direct transformation simula- 

tions. 
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Fig. 8. Power spectral density and pdf of measured TLP response signal and ensemble of 2000 

realizations. 

negative extreme behavior, as well as fluctuation amplitude close to the mean, the modified 

direct simulation can be seen to emulate the characteristics of the measured process better 

than correlation distortion. This behavior is quantified by the kurtosis and standard 

deviation, which match well with the data (Table 1). 

A second example further demonstrates the performance of the modified direct trans- 

formation. In this case the sample process to be simulated is the measured response of 

a model tension leg platform (TLP) under a random wind and wave field in a test facility. 

The response is highly non-Gaussian and has two dominant frequencies. Figure 7 shows 

a portion of the sample measurement, a simulation using modified direct transformation, 

and a direct transformation simulation in the top, middle, and bottom plots, respectively. 

Figure 8 is a comparison of the PDF and power spectral density of the sample and 2000 
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Table 2. Statistics of measured TLP response data and ensemble averaged simulated data, # = 100 

realizations, and (#) = 2000 realizations 

Standard Coefficient of 

deviation skewness 

Coefficient of 

kurtosis 

Measured TLP data 

Ensemble of 100 and (2000) 

modified direct simulations 

Ensemble of 100 and (2000) 

direct transformation simulations 

1.0 0.5165 3.7455 

0.9720 (0.9690) 0.8187 (0.8298) 4.2127 (4.2650) 

0.9633 (0.9672) 0.8419 (0.7546) 7.4672 (7.1469) 

realizations of the simulations. Table 2 lists statistics from the data, an ensemble of 100 

realizations, and an ensemble of 2000 realizations in parentheses. The direct transforma- 

tion provides simulations whose skewness characteristics adequately match the sample 

(Table 2). However, large negative excursions in the realization are not observed in the 

sample, and lead to a significantly higher kurtosis (Table 2) as well as a poor fit of the PDF 

to the data, most importantly in the negative tail region. The modified direct transformation 

provides realizations which match the sample PDF well, particularly in terms of positive 

and negative extreme behavior. 

The modified direct transformation method, for the two sample processes considered, is 

able to provide simulations which match the PDF and power spectral density of the sample 

process, and match the scalar representations of higher order statistics (skewness and 

kurtosis) through fourth order. Later, an example will be presented where these compari- 

sons are not as favorable. 

The shortcoming of any static transformation is its inability to retain the phase inter- 

action among related frequency components. The bispectrum is a representation of 

the quadratically phase coupled frequency components. Just as the power spectral density is 

the distribution of the variance of a signal with respect to frequency, the bispectrum is the 

distribution of skewness with respect to frequency pairs. Although the modified direct 

transformation is able to replicate the volume under the bispectrum, i.e. the skewness, it 

is not able to correctly match the distribution of skewness with respect to frequency. 

Figure 9 compares the bispectrum contour of the sample TLP response process with that of 

the direct and modified direct transformations. Neither simulation is able to adequately 

match the shape of the sample bispectrum. The non-linear processes considered in this 

study can be described by a quadratic form [6,16,17]. Although higher-order spectra 

beyond the bispectrum may be calculated, it is only necessary to show the existence of the 

bispectrum to demonstrate the non-Gaussian behavior of quadratic processes. 

When the only available information is a sample of the final process to be simulated (e.g. 

wind pressure on a building face), this static transformation method is quick and promising. 

However, if more information is available (e.g. the upwind wind velocity), it is possible to 

better simulate the desired process by establishing a system identification model between, in 

this case, velocity and pressure. The limitation of static transformation techniques is 

overcome by the application of memory-based system identification models. 

TRANSFORMATIONS WITH MEMORY 

When input and output are available, the non-linear relationship between current time 

output and previous time input and output may be modeled through a variety of system 

identification techniques. A model that relates Gaussian input to non-Gaussian output may 

easily be applied to the simulation of the output process by passing simulations of the 

Gaussian input through the model. The important phase characteristics of the output are 

then retained in the simulation through the memory transformation, assuming the model is 

accurate. Here we consider the application of a Volterra series formulation for polynomial 

non-linear systems, as well as the empirical development of discrete non-linear differential 

models through NARMAX (non-linear autoregressive moving average models with 

exogenous inputs) and neural network models. Examples are provided using a two-term 

Volterra series with analytical kernels, and an empirical neural network model. 
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Fig. 9. Contours of the bispectrum of the measured TLP response and the bispectrum of an 

ensemble of 2000 simulations using the modified direct, and the direct transformation methods. 

System identification models for non-Gaussian input and non-Gaussian output are 

readily available, but are not easily adaptable for simulation purposes. We wish to use 

transformations to relate easily attained Gaussian simulations to the desired non-Gaussian 

process. The inability to easily simulate non-Gaussian system input is addressed by the 

hybrid application of a static transformation in combination with a neural network. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Volterra series model 

In the Volterra series formulation, the input-output relationship may be expressed in 

terms of a hierarchy of linear, quadratic and higher-order transfer functions or impulse 

response functions [17-191. These transfer functions can be determined from experimental 

data or from theoretical considerations. For example, a non-linear system modeled by 

Volterra’s stochastic series expansion is described by 

+ h,(r,, z2, ~+(t - z,)x(t - ~~)x(t - z,)drI dT2 drs + 3 . . , (8) 
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where h,(r), hz(rl, r2) and h3(r1, r2, r3) are the first, second and third-order impulse re- 

sponse functions. 

The Fourier transform of the Volterra series expansion in equation (8) gives the response 

in the frequency domain as 

Y(h) = ffl(fi)X(h) + c ~2(flLf2)x(.fl)x(f2) 
fl+f2=f; 

+ c ~3(fl,f2,f3)X(fl)X(f2)xo + . ‘. (9) 
fl+f2+ls=f, 

The Volterra series model in the frequency domain [equation (9)] lends itself to the 

simulation of non-linear processes for which the Volterra kernels are available or may be 

estimated. A non-Gaussian signal resulting from a quadratic transformation of a Gaussian 

process may be simulated by the addition of second-order contributions to the complex 

spectral amplitude components at the appropriate sum and difference frequencies before 

inverse Fourier transforming the sequence to the time domain. These second-order contri- 

butions are formed from the products of pairs of linear Fourier components with the 

quadratic transfer function (QTF) in the frequency domain, and correlate the phase between 

various frequency components to a degree weighted by the QTF. The memory retained by 

convolution with the QTF facilitates the simulation of processes that are able to match not 

only the power spectrum and PDF of the parent process, but the bispectrum as well, e.g. 

Peinelt and Bucher [20]. 

The estimation of the higher-order transfer functions in equation (9) requires the calcu- 

lation of the cross-bispectrum and cross-trispectrum of the input and output processes. As 

examples of the utility of bispectra and trispectra in frequency domain analyses, consider 

two types of non-linear functions of a zero-mean, Gaussian random process, u(t). Functions, 

g(u(t)), for which all odd-order moments vanish, will be considered statistically symmetric 

non-linearities, while those for which, in general, all moments are non-zero will be con- 

sidered statistically asymmetric non-linearities. For instance, g(u(t)) = n3(t) is a statistically 

symmetric non-linearity, whereas g(u(t)) = Us is statistically asymmetric. In the statistical 

characterization of the statistically asymmetric non-linearity, we expect non-Gaussianity in 

the form of non-zero skewness, which we can characterize in terms of frequency pairs via the 

bispectrum. Indeed, for some cases, we can successfully employ a technique known as 

equivalent statistical quadratization, which retains memory by employing a Volterra series 

approach in the frequency domain, to approximate a more complicated statistically asym- 

metric non-linearity as a quadratic polynomial for the determination of higher-order 

statistics [l&21]. On the other hand, for the case of a statistically symmetric non-linearity, 

we expect the skewness to vanish and with it, the bispectrum. Hence, we must turn to the 

trispectrum, the tri-variate frequency domain representation of the kurtosis, to gain any 

higher-order statistical information about the non-linear process. While the trispectrum 

would supplement the statistical evidence of the non-Gaussianity of an asymmetric non- 

linearity, it is not necessary in such a case as it is in the case of a symmetric non-linearity. 

Again, under certain circumstances, we may approximate more complex symmetric non- 

linearities in polynomial forms containing only linear and cubic terms via equivalent 

statistical cubicization. Implementing the Volterra framework as described above, we can 

approximate higher-order statistics in situations involving symmetric non-linearities as 

well. 

When the input x(n) and output y(n) of a system is available, the information can be used 

to estimate the Volterra kernels in equation (9) directly. The first and second order transfer 

functions are given by 

H (f,) = <y(h)x*m> 
1 I 

(IXLfP> 
and 

1 (x*(fl)x*u2) Y(fl +f2)) 
ff2(flJ-2) = j 

<IX(fl)X(f2)l”) ’ 

(10) 

(11) 
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where ( ) is the expected value operator. Equation (9) is then applied to simulate y(n) based 

on linear simulations of x(n). The formulation for the QTF given in equation (11) is under 

the assumption of a Gaussian input process X(f). The linear and quadratic transfer 

functions can also be estimated for a general random input, i.e. without assuming 

particular statistics of the input [23325]. For systems where the governing differential 

equation is known, several methods of analytically approximating the Volterra kernels 

are available, including variational expansion, harmonic probing, and successive approxi- 

mation [26]. 

Conceptually the Volterra series may easily be extended to the simulation of non-linear 

processes beyond second order [equation (9)], although considerable computation time 

is added by convolution of the Fourier components with transfer functions beyond 

quadratic. Also, the acquisition of higher-order transfer functions from measured data 

becomes difficult and the number of parameters necessary to describe them becomes 

prohibitive. 

NARMAX model 

When the system is not yet described, system identification techniques may be used to 

approximate the Volterra kernels directly, or to develop a discrete governing differential 

equation. For the latter, NARMAX model algorithms have been developed to identify 

non-linear systems [27]. The Volterra kernels may then be developed from the parametric 

NARMAX model through harmonic probing, etc. [24]. 

The discrete differential equation provided by the NARMAX model may be used as the 

stand-alone representation of the system. Convenient algorithms are available that use 

input/output data to define a polynomial model. These algorithms identify the relevant 

terms in an initial model consisting of all possible combinations of input, output, and noise 

terms up to a user-specified polynomial order and maximum lag. For example, a model 

specified as second-order with two delays begins as 

Y(n) =f(Y(n - I), Y(n - 2), x(n - l), x(n - 2), e(n - l), e(n - 2)), (12) 

wheref( ) is the sum of all first and second order combinations of the arguments. 

Discussions on NARMAX theory are available in the literature, and a sampling of 

practical and efficient algorithms may be found in Chen et al. [28], and Billings and Tsang 

[24]. NARMAX provides a more flexible representation of a non-linear system, and 

generally requires fewer parameters than a Volterra model. 

Neural network model 

Another recently developed approach to non-linear system identification is the applica- 

tion of neural networks. A multi-layered set of processing elements receives input informa- 

tion and uses the desired final output information to adjust a weighting factor between each 

of the elements. Figure 10 shows such a network with three weighting layers 

Wij(m), m=1...3, where i=l...N,, j=l...N,_r, and N, and N,-r are the 

number of elements in the mth and the m - lth layers, respectively. The network in Fig. 10 

has two hidden element layers ai and a;(2) between the input and output layers ai and 

a;(3). In this example the input layer consists of the input occurring at the same time as the 

current output from a,(3), and the two inputs preceding this lead input (a two delay input 

system). Wi,Jm) then represents the weighting of the output from the element aj(m - 1) 

before its input to element ai( The output of each element is a non-linear function of the 

weighted linear sum of the output from each of the elements in the previous layer as in 

Kung [29]: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

bi(nZ) = ‘2’ Wij(F?l)Llj(m - 1) + @i(m); (13) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
j=l 

ai(m)=f(bi(m)) 1 di<N,; l<m<3, (14) 
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wij C3) 

wj, (2) 

Wi,(l) 

output layer 

hidden layer 

hidden layer 

input layer 

Fig. 10. Multilayer neural network with three weighting layers and two hidden layers (adapted from 

Kung [29]). 

0 5 10 15 20 25 30 35 40 

15 16 17 18 19 20 21 22 23 24 25 

Fig. 11. Measured TLP response signal, trained and predicted neural network output, and a close 

up of the training section. 

where 0,(m) is a threshold value fixed for each ai( Various non-linear functions may be 

applied at the elements, under the restriction that the output must be limited to 0 df(bi) 

d 1. One commonly applied function is the sigmoid function: 

(15) 

where (T is a parameter to control the shape Off(bi). 

The element weights in the neural network are adjusted iteratively, commonly with 

a back propagation scheme, which minimizes the error between the resulting and desired 

final output. This is known as the training phase, in which the optimum model parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Wij(?ll.), m = 1 . . . M are identified, where M is the number of network layers, and M = 3 

for the example in Fig. 10 [29]. 

An example of the development of a neural network is shown in Fig. 11. The measured 

TLP response data in Fig. 7 is used as the input to a non-linear difference equation, and 
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a neural network is used to identify this input/output system. The neural network was 

trained on a 10 s span of input/output from 15 to 25 s as identified in the top figure, and 

shown alone in the bottom figure in Fig. 11. The actual desired system output and the 

neural network estimate are both in the figures, and coincide almost exactly. The entire 40 s 

input record is then passed through the model, and is shown in the top figure to predict the 

actual output from the non-linear difference equation extremely well. This accurate predic- 

tion capability will be used later for simulation purposes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Applications 

When the convenience of having measured input and output is available, the Volterra, 

NARMAX and neural network models discussed in the previous section may be used as 

simulation tools when the input is Gaussian. The input is simulated and passed through the 

prediction model to produce a non-Gaussian simulation. This technique is much more time 

consuming than simply applying a static transformation technique to the output alone, but 

has the advantage of memory built into the model. 

A sample of a non-linear simulation using a Volterra series model is shown in Fig. 12. 

This realization is the surface elevation of gravity waves, with the non-Gaussian train 

showing the characteristic high peaks and shallow troughs. In this case the second-order 

Volterra kernel is analytically derived [3&33] and referred to as a non-linear interaction 

matrix (NIM). The NIM relates a quadratic non-Gaussian process to its underlying 

Gaussian process. In terms of equation (9) Y(f) is the desired non-Gaussian wave 

elevation, X(f) is the underlying linear sea state, and H,(f) is unity. X(f) is first simulated, 

then used to generate the second-order contributions. The matching of the realizations with 

the desired target QTF is shown in Fig. 13, where the recovered QTF is an ensemble of 1000 

realizations. 

A non-linear transformation of Gaussian wave elevation is used for a neural network 

example. The system input is a linear wave train simulated based on a JONSWAP spectrum 

with a peakedness of 5, and a peak frequency of 0.05 Hz. The non-linear output, F(n), is 

generated from the linear wave train, q(n), by a generic non-linear function: 

F(n) = O.lq(n - 2) + 0.4$(n - 2) + O.ly(n - 1) + 0.5y2(n - 1) 

+ 0.2y(n) + 0.6$(n). (16) 

-2’ I I I I I I I I I I 

0 10 20 30 40 50 60 70 80 90 100 

Fig. 12. Realization of a Gaussian and non-Gaussian wave height generated by Volterra series using 

a non-linear interaction matrix. 
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target QTF 

0.6, 

0.4, recovered QTF 

Fig. 13. Comparison of target QTF applied in Fig. 12, and the recovered QTF from a 1000 

realization ensemble. 

Table 3. Statistics of measured non-linear wave process and ensemble averaged 

simulated data 

Standard Coefficient of Coefficient of 

skewness kurtosis 

Measured wave data 

Ensemble of 10 modified direct 

transformation simulations 

Ensemble of 10 neural network 

simulations 

0.4950 2.2800 9.8329 

0.3948 1.8911 8.5284 

0.4692 2.1256 8.6640 

Sample Output 
/ I I I I I 

neural network Simulation 

I I I I I 

I I I I I I / I 

0 500 1000 1500 2000 2500 3000 3500 4000 

Modified Direct Transformation Simulation 

41 I I I I I I I I 

I I I I I I I I 1 
0 500 1000 1500 2000 2500 3000 3500 4000 

Fig. 14. Sample output from Gaussian sea state input using equation 16 (top), a simulation using 

a neural network trained on the sample input/output (middle), and a simulation using modified 

direct transformation. 
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bispectrum of sample output 

0.2 

bispectrum of modified direct simulation 

0.21 I 

bispectrum of neural network simulation 

-0.21 : I 

-0.2 -0.1 0 0.1 0.2 

freq. (Hz) 

-0.2 : 
-0.2 -0.1 0 0.1 0.2 

Fig. 15. Bispectrum contour of equation 16 output (top left), bispectrum contour of 10 neural network 

realizations (top right), and bispectrum contour of 10 modified direct transformation realizations. 

bispectrum of sample output bispectrum of neural network simulation 

freq. (Hz) 

bispectrum of modified direct simulation 

Fig. 16. Isometric view of Fig. 15. Bispectrum of equation 16 output (top left), bispcctrum of 10 neural 

network realizations (top right), and bispectrum of 10 modified direct transformation realizations. 

A neural network with two delays is trained to model the input/output from 4096 data 

points. This model is then used to simulate realizations of the output in equation (16) by 

passing Gaussian simulations of the input, if, through it. The modified direct transformation 

is also used to simulate the output directly, without knowledge of the input. A comparison 
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of statistical results is presented in Table 3, where it can be seen that the modified direct 

transformation does not match the statistics as well as in previous examples. 

Figure 14 presents the original sample output in the top figure, and a neural network and 

modified direct transformation realization in the next two, respectively. The process being 

considered is a quadratic transformation of a Gaussian process. In order to demonstrate its 

non-Gaussian nature it is sufficient to consider the bispectrum. Figure 15 shows a contour 

representation of the bispectrum of the sample output process, and of an ensemble average 

of 10 realizations using the neural network and modified direct transformation models. At 

first glance, the modified direct transformation simulation bispectrum contour appears only 

slightly different from that of the neural network simulation and the sample, which are 

almost identical. However, the bispectrum from the modified direct transformation is 

significantly different, as seen in an isometric view of the bispectra in Fig. 16. This figure also 

shows the neural network bispectrum to closely resemble that of the original sample, due to 

the memory retention. 

CONCLUSIONS 

A class of non-normal processes are simulated based on information from the sample of 

a process. Static transformation techniques are applied to perform simulations of the 

underlying Gaussian time or autocorrelation sample. An optimization procedure is used to 

overcome errors associated with the truncation of static transformations. Several examples 

are presented to demonstrate the utility of this method. The inability of static transforms to 

retain the specific structure of the phase relationship between frequency components is 

addressed by the application of memory models. A Volterra series up to second order with 

analytical kernels is employed to simulate a non-Gaussian sea state. A neural network 

system identification model is utilized for simulation of output when system input is 

Gaussian wave elevation. This process is also simulated by the modified direct static 

transformation method using only the output sample process. It is demonstrated that the 

memory model is better able to achieve the shape and magnitude of the bispectrum of the 

original sample. 
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