
Center for Turbulence Research
Annual Research Briefs 2007

241

Simulation of a lean direct injection combustor for
the next high speed civil transport (HSCT)

vehicle combustion systems

By H. El-Asrag, F. Ham AND H. Pitsch

1. Motivation and objectives

Designing commercially viable propulsion systems for supersonic aircraft is a major
challenge. All modern combustors must balance the need for stability and performance
with the goals of efficiency and cleanliness. These competing demands, however, are ex-
acerbated in supersonic situations where the operating conditions are much more severe.
Supersonic transport aircrafts usually fly in the stratosphere, at cruising altitudes around
60,000 − 65,000 ft. The engine emissions produced at such high altitude contribute to
depleting the ozone layer. In addition, the high fuel consumption increases the overall
cost of operation. For example, the Concorde was powered by turbojet engines that made
use of afterburner, a very inefficient combustion system. Next-generation high speed civil
transport (HSCT) vehicles will likely be based on low-bypass turbofan, afterburner-free
technology. In addition to the foregoing improvements, if the engine emission character-
istics and performance are further enhanced, supersonic vehicles may become part of the
world’s air transportation system.

In this report we focus first on the choice of the engine design and validating our
code and initial mesh against LDV data. Many design concepts exist for gas turbine
engines. The most well known are the Rich burn-Quick Quench-Lean Burn (RQL), Lean
Premix-Prevaporized (LPP), and the Lean-Direct-Injection (LDI) engine. The RQL is
designed to operate at ultra-low NOx emissions. First fuel is burned, under highly rich
environment, then quickly quenched with cold air, then finally burned very lean. However,
some technical difficulties usually rise with such configurations. If the mixing is not rapid
enough, a lot of heat is transferred to the walls, which may cause material problems.
In addition, if mixing is not rapid enough, a lot of soot and carbon monoxide (CO)
will be emitted at the exhaust of the burner. LPP and LDI on the other hand focus on
operating the engine at the near premixed regime, which results in very flow NOx, soot
and CO emissions. The air and the fuel droplets are mixed and atomized completely
and then premixed in a long tube in the LPP design. The mixing and uniformity of
the flow reduce the NOx emissions but might generate undesirable flame instabilities.
Here, a single element LDI configuration is chosen as a precursor for the HSCT engine
(Tacina et al. (2001); Jun et al. (2005); Yang et al. (2003)). The air is injected in a
swirler of 60 degree vanes, where it mixes, with the fuel droplets to atomize, breakup
aerodynamically and partially premix in a venturi nozzle before entering the combustor.
The combination of the swirl and the venturi has proven to maximize the atomization
performance and minimize the pressure drop across the injector (Im et al. (1998)). The
venturi nozzle also provides the suitable residence time for the fuel droplets to vaporize
and mix uniformly with the swirled air droplets. In the current paper, the single element
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LDI will be simulated using an unstructured mesh. The results will be compared to the
non-reactive experimental LDV data.

2. Numerical method

The simulation is performed by the unstructured LES code CDP. CDP is a set of
massively parallel unstructured finite volume flow solvers developed specifically for large
eddy simulation by Stanford’s Center for Integrated Turbulence Simulations as part of the
Department of Energy’s ASC Alliance Program. The specific solver used to perform the
simulations reported in this brief was the node-based incompressible flow solver cdp if2,
which solves the filtered incompressible Navier-Stokes equations:

∂ui

∂xj
= 0.0

∂ui

∂t
+

∂uiuj

∂xj
= −

∂P
∂xi

+ ν ∂ui

∂xi∂xj
+

τij

∂xj

(2.1)

where τij is the residual stress modeled by the dynamic Smagorinsky model Germano
et al. (1991). The velocity ui and the kinematic pressure p are collocated at the nodes.
Time advancement uses a collocated fractional step method that implicitly introduces
a 4th-order pressure dissipation to ensure proper velocity-pressure coupling. All other
aspects of the discretization involve symmetric discretizations and are free from numer-
ical dissipation. Details of the operators and the importance of minimizing numerical
dissipation for LES can be found in Ham et al. (2006); Ham & Iaccarino (2004); Mahesh
et al. (2004).

3. Numerical setup

The experimental setup and data is provided by Farhad et al. (2006). The geometry
of the single element combustor is shown in Fig. 1 . Liquid fuel is injected through the
center (currently closed), while air is injected through a swirler with downstream vane
angles of 60 degree. The swirler is composed of six helical vanes with an effective area
of 870 mm2. The fuel droplets from the centerline and the swirled air are mixed in a
converging-diverging venturi nozzle.

An inflow bulk velocity of 20.14 m/sec is provided through a tube upstream of the
swirl injector. For the non-reactive case, the inflow air is at temperature To= 294 K
and pressure of 1 atm. The helical air swirler has an inside diameter of 9.3 mm and an
outside diameter of 22.1 mm. The combustor has a square cross-sectional area of 44.2
mm. The mesh uses 1072,640 hexahedron elements, which is slightly above the 861, 823
elements mesh used by Farhad et al. (2006). The unstructured mesh is shown in Fig.
2. The mesh distribution along the Z=0.0 plane and in the vanes is shown in Fig. 2-(a),
while the Y − Z plane grid distribution is in Fig. 2-(b). The mesh cells are clustered
toward the centerline and toward the walls of the combustor. To achieve realistic inflow
turbulence, the inflow cross section is extended three diameters upstream of the swirler,
then the flow is cycled to the inlet from a cross-sectional area close to the swirlers. This
procedure allows for a fully developed turbulent flow at the injector inlet with realistic
inflow turbulence. The inflow mean and rms profile at the inflow section are shown in
Fig. 3. The high, steep rms values close to the walls indicate the fully developed turbulent
boundary layer.
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Figure 1. LDI single element geometry.

(a) The LDI mesh in the vanes and the
venturi cross-section

(b) Y-Z mesh plane

Figure 2. The LDI unstructured hexahedron mesh.
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Figure 3. Inflow profile at the inlet of the vanes.
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4. Results

In this section a comparison will be shown between the experimental LDV data and
the LES results. The statistics are collected over 0.167 seconds. This is equivalent to
11 flow through times based on the inlet bulk velocity and the chamber length. Eight
experimental locations are chosen for comparison. Some flow features will be shown first,
then linear plots will be presented, followed by 2-D contour plots for the Z − Y plane at
each X location.

Figure 4 shows the mean axial velocity spectrum at different Y −Z planes along the X-
axis combined with the cut plane at Z = 0.0 for the axial velocity contours. The contour
lines along the Z plane show that the accelerated flow in the convergent nozzle emerges
with a very high spread cone angle and then expands toward the wall. The recirculation
zone (RZ) established (discussed later) in the middle acts like a blockage, where the flow
expands around it. This high spread rate will enhance the atomization process by collision
of the high speed swirled air with the liquid particles emitted from the central jet (closed
in this run). The jet collides with the walls and forms three recirculation zones: a big
recirculation zone in the middle that extends radially about twice the chamber radius,
another RZ at the corners and one close to the wall of the venturi. These three RZs are
shown in Figs. 5 (a,b and c).

The middle recirculation zone length is shown numerically by comparing the center-
line mean axial velocity in Fig. 5 (d) with the experimental results. Knowing that the
error bar is on average ± 5 m/sec (see Farhad et al. (2006)), good agreement with the
experimental results is observed. The RZ starts just downstream from the face of the
injector and extends downstream of the venturi up until X = 100 mm. This long re-
circulation zone will anchor the flame, providing a strong static stability mechanism for
combustion. The swirling flow merging from the venturi causes the shear stress between
the particles to increase, which raises the adverse pressure gradient and establishes the
RZ. The interaction between these recirculation zones will increase the flow unsteadiness
and consequently will affect the ability to achieve the steady state in this region.

A zoom on the venturi area is shown in Fig. 6(a,b and c) and Fig. 7(a and b). Figures 6
shows the mean UY component at different cross sections from the vanes to just outside
the venturi, while the axial component is shown in Fig. 7. The vanes rotate the flow in a
counterclockwise wise direction (viewed from the exit side). The upper three vanes rotate
the flow to the left and the lower three vanes rotate the flow to the right as shown in Fig.
6(a). Just downstream of the vanes in Fig. 6(b and c); inside the convergent divergent
nozzle, the flow shows a complete solid body rotation in the counter-clockwise direction.
As the flow passes, the convergent-divergent nozzle, the rotational packets are separated
by a middle uniform flow and expand in the radial direction as shown in Fig. 6(d).

The flow inside the venturi and after the dump plane is presented in Fig. 7. The flow
accelerates in the convergent part then eventually expands in the divergent part and
after the dump plane around the RZ. The presence of the middle recirculation zone acts
as a bluff body blockage where the flow expands around it. The swirl vanes cause the
generation of six circumferential high-speed flow structures close to the wall followed by
another six higher-speed smaller fluid packets in the radial direction toward the center
and finally a central recirculation zone as shown in Fig. 7(a). The middle high speed
structures are caused by the flow compression between the wall and middle recirculation
zone. The outer high-speed structures are generated by the six vanes, which convect
the flow in the axial direction while swirling it at the same time. These flow structures
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Figure 4. Mean axial velocity UX along different Y − Z planes and the middle Z plane.

merge together to form a single ring around the recirculation zone just downstream of
the venture as in Fig. 7(b).

The mean axial velocity for the plane Y =0.0 is shown in Fig. 8. Considering the range
of confidence interval, the LES data shows good results in general. However, around X

= 3 mm, the LES results shows wider shear layer, than the experiment. The peak shift is
around 5 mm toward the wall. The flow at this location is highly unsteady with relatively
high rms values (shown later). Slight over-prediction is also shown at the centerline as
we go downstream at locations X = 12 mm, X= 15 mm, X= 24 mm and X =36 mm.
This over-prediction around Z = 5 mm is compensated by the under-prediction in the
transverse speed (shown later).

The UZ velocity component along the Z=0.0 plane is shown in Fig. 9. Good results are
achieved at the different axial locations. The high transverse velocity shows the strong
swirling effect of the air coming from the injector. The flow is rotated and swirled inside
the RZ; this will enhance mixing and combustion. However, as shown experimentally, at
the first three locations there are two flow packets that are rotating around the centerline.
These packets expand slightly toward the centerline and then start to rotate around it.
This behavior is due to the existence of the inner simplex injector at the inflow, which
creates a low momentum flow area around the centerline, which represents the core of the
RZ as shown in Fig. 8. The two rotating fluid pockets start by rotating around this core,
then expand toward the centerline around X = 6 mm. After X = 6 mm the rotational
speed is not gaining any more strength other than expanding toward the wall. At X =
48 the flow close to the wall gains higher rotational speed from the inner flow and the
whole cross-sectional area is rotating around the centerline. The data also has slight flow
deviation at Y = -5 mm and Y =10 mm; this indicates that the two flow rotational packets
are rotating with higher speed than the experiment around the centerline. However, the
rotational velocity of the fluid particles inside these packets are well predicted as shown in
Fig. 10. Figure 10 shows the cross-stream velocity at the Y = 0.0 plane. At the locations
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(a) Centerline recirculation zone (b) Corner recirculation zone

(c) Venturi recirculation zone
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Figure 5. The LDI recirculation zones and centerline profile. (Experimental data •,
computational −).

where the UZ velocity is over-predicted in Fig. 9, the cross-stream velocity UY is under-
predicted. This makes sense from the continuity point of view as shown in Eq. (2.1). The
decrease in the cross-stream velocity balances the overprediction in the axial velocity.

Since some discrepancy is noticed, especially at the location X = 3 mm, the rms
profiles for the axial velocity are compared against experiment in Fig. 11. The rms values
are very high at the first two locations, almost twice the mean values. This high rms
reflects the high flow unsteadiness. The rms values at X=3 mm indicate that the shear
lay4er predicted in LES is shifted radially about 4-3 mm in the wall direction, which
explains the over-prediction seen in Fig. 8. The wider shear layer might be due to the
grid stretching effect toward the wall. This wider shear layer can be explained by two
means, the first is due to the merging of the six rotating flow packets shown earlier to
form a more coherent structure than the experiment, and the second is the merging of
the small shear layer generated at the tip of the dump exit and the shear layer at the
outer edge of the RZ. This might need more grid resolution to be well captured. This also
explains the inability to capture the shear layer growth toward the wall at the locations
X=15 and X=24. As a result, the inflow from the venturi will have higher transverse
and spanwise velocity as shown in Figs 9 and 10. As the fluid particles expand from
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(a) Inside the vanes (b) At the throat

(c) At the end of the venturi (d) Just downstream of the dump
plane

Figure 6. The mean UY velocity component in the venturi area.

the nozzle toward the wall, they experience smaller area passage than the experiment,
and fluid particles are rotated with higher speed to compensate for the loss in the axial
momentum. Another possible source of deviation is the blade thickness and orientation.
While the orientation is adjusted to match the experiment as shown in Fig. 12, the blade
thickness is harder to check, since no data is provided for the actual profile of the blade.

Figures 13, 14, and 15 compare the LES iso-contours of the mean axial velocity with
the experimental LDV data at X = 3 mm, X = 5 mm, and X = 12 mm respectively. At
X= 3 mm, the shear layer is wider than the experiment as previously explained. The six
high-speed pockets are still represented in the experiment, while in LES they are smaller
and nearly merged together. However, the inner RZ size and diameter compares well
with the LDV data. In addition, the LES data shows more perturbations and smaller
flow structures close to the chamber walls. The high flow unsteadiness at the locations
close to the injector will promote the mixing process and will help achieve complete
combustion by mixing the air and the atomized spray droplets. At X = 5 mm the flow
features towards the wall are not well captured as previously mentioned. However, the
shear layer growth rate looks similar to the experiment. The effect of the flow unsteadiness
on the collected statistics diminishes at X = 12 mm, where the flow is more uniform in
the radial direction and shows comparable results to the LDV data.

Finally, the mean radial velocity component is shown in Figs. 16, 17, and 18 respec-
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(a) The mean axial velocity inside the venturi (b) The mean axial velocity just downstream
of the venturi

Figure 7. The mean axial velocity across the venturi area.
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Figure 8. Comparison between the experimental (•) and the LES computational results − for
the mean axial velocity at the middle Y =0.0 plane.

tively. At X= 3 mm, LES shows smaller rotating flow structures than the LDV data,
with a middle uniform flow. This rotational flow is generated by the swirling vanes of the
injector as previously mentioned. Further downstream, the rotational speed decreases.
At the location X= 5 mm the two solid-body rotations generated by the swirler expand
in the radial direction, to finally form two large rotating structures near the lower and
upper walls at X = 12 mm. Both LES and LDV data shows zero rotational flow at
the centerline, which expands toward the walls as the rotational speed becomes higher
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Figure 9. Comparison between the experimental (•) and the LES computational results − for
the mean transverse velocity UZ at the middle Z=0.0 plane.
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Figure 10. Comparison between the experimental (•) and the LES computational results −

for the mean cross-stream velocity UY at the middle Y =0.0 plane.

toward the wall. The uniformity of the flow after this location is necessary to achieve a
uniform temperature profile at the combustor exit, when ignition occurs.
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(a) Experimental setup. (b) LES setup.

Figure 12. Comparison of the swirler orientation.

5. Future work

The same test case will be implemented on a structured code using the immersed
boundary technique. Since the numerical scheme is staggered in space and time, sec-
ondary conservation is guaranteed and higher-order accuracy can be achieved. Following
that, more effort will be devoted to combustion multi-phase modeling and the develop-
ment of more accurate and physical models to capture the flame/turbulence interaction
and the flow physics in LES framework.



Modeling of supersonic propulsion systems 251

(a) LES mean axial velocity (b) Experimental LDV data

Figure 13. Comparison of the mean axial velocity (UX) isocontours at X = 3mm.

(a) LES mean axial velocity (b) Experimental LDV data

Figure 14. Comparison of the mean axial velocity (UX) isocontours at X = 5mm.
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