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 Abstract—A simulation model of a continuous disc type 6.6kV
transformer winding was used to study the propagation
behaviour of partial discharge (PD) pulses. The model based on
multi-conductor transmission line theory uses a single turn as a
circuit element with the capacitance, inductance, and losses
calculated as distributed parameters. Transfer functions that
describe how the location of the PD source affects the current
signals measured at the terminals of the winding were
calculated. The paper shows how the position of the zeros in the
frequency response of the measured current signals can be used
to locate the source of the discharge. Sensitivity studies on the
parameters of the model were used to investigate the effect of
inaccuracies in the model on the position of the zeros and hence
the location of the discharge.

Index Terms—Losses, Modelling, Multiconductor
Transmission Lines, Partial Discharges, Power Transformers,
Sensitivity, Simulation, Skin Effect and Transfer Functions.

I.  INTRODUCTION

ARTIAL discharges (PD) are a major cause of insulation
failure in EHV power transformers. If PD activity is not

detected and ideally located before it develops into a full
discharge, catastrophic failure can result and the resulting
economic cost to the utility may be significant. The actual
cost depends on the location and importance of the
transformer, the availability and cost of alternative sources
and/or routes of power and the capital cost of repair or
replacement. On-line condition monitoring of EHV power
transformers is advisable and ideally this should include
immediate detection of increased PD activity and location of
the discharge. Depending on the severity and location of a
discharge the transformer will either be taken out of service
immediately or at a convenient time or will be kept in service
with increased monitoring. Early work [1] on PD location
assumed the transformer behaved like a capacitive network,
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but further studies [2] indicate this is only valid over a limited
frequency range and is inadequate for studying PD
propagation. A recent paper [5] modelled each section of the
winding as a lumped circuit that takes into account
capacitance, inductance and resistive and dielectric losses.
This was valid when the dominant PD frequencies are up to a
few hundred kHz, but is inadequate in the MHz region. This
paper describes how a model based on multi-conductor
transmission line theory can be used to simulate a transformer
winding over a frequency range from a few hundred kHz to a
few tens of MHz.

A wide frequency range is necessary because the spectra
needed to describe the various types of partial discharges
observed on a power transformer can extend from tens to
hundreds of kHz for a surface or interface type PD and from
hundreds of MHz to a few GHz for a small bubble void [6]. A
model suitable for the latter was beyond the scope of this
research because of the difficulties associated with the design
and experimental validation of such a model and also because
PD pulses of 1 - 100ns duration have minimal destructive
power and are of limited practical significance. As a
compromise, the model proposed in this paper is suitable for
simulating the propagation of PD pulses of duration 100ns-
10µs. This is appropriate for most practical cases.

Representing a transformer winding by a lumped circuit
model requires a resolution appropriate for the chosen
frequency. For example, previous research [5] has shown that
representing each disc in the winding by a lumped PI circuit
model is valid up to a few hundred kHz. To correctly model
the winding at higher frequencies requires that each turn in
the disc (and hence the entire winding) is modelled as a
circuit unit. The electrical parameters of the winding are
calculated on a per turn basis and the entire winding is
represented by distributed multiconductor transmission line
(MTL) model.

The transformer winding is considered as a single input
multiple output (SIMO) system, where the input is the PD
signal and the outputs are the current signals at the
measuring terminals. Transfer functions are calculated from
all possible PD locations to the line-end and neutral-end
measuring terminals using a simulation program developed in
Matlab. Simulation results show that the zeros in the
transfer functions contain information about the location of
discharge.
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II.  THE MULTI-CONDUCTOR WINDING MODEL
Fig.1 shows a transformer winding modelled by MTL. The

voltage (V) and current (I) vectors at any point x along a
multi-conductor transmission line can be expressed by wave
equations (1) and (2), where [Z] and [Y] are impedance and
admittance matrices of the line respectively, and [P] 2 =
[Z][Y], [Pt] 2

 = [Y][Z].
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Fig. 1.  Multi-conductor transmission line model

Equation (1) and (2) can be solved to find the voltage and
current vectors at a distance x from the sending end.
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In (3) and (4), V1 and V2 are voltage vectors to be determined
by the terminal conditions and [YO] = [Z]-1[P] = [Y][P]-1 is
the characteristic admittance matrix of the model.

With terminal conditions applied at the sending end ‘S’ and
the receiving end ‘R’ it is possible to express sending end and
receiving end currents in terms of voltages.
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Further, if matrix [P] has eigenvectors [Q] and eigenvalues
[γ], (5) can be written as
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where:
[A] = [Y][Q][γ]-1coth([γ]l)[Q]-1 and
[B] = [Y][Q][γ]-1cosech([γ]l)[Q]-1 are n × n matrices, and ‘n’
is the number of conductors in the model. IS, IR, VS and VR

are vector quantities representing the values in Fig. 1.

A.    PD injection
The transmission line model in Fig. 1 has terminal

conditions:
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If a PD current pulse IPD is injected into the kth turn of the
winding, (7) is modified when i=k-1:

(9)                                         )()1( PDSR IkIkI =+−
With this set of terminal conditions applied to (6), it is
possible to simplify it to the following form:
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where [Y] is a (n+1) × (n+1) matrix.
 If matrix [Y] is inverted and re-arranged, it is possible to get
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Hence, if the line-end voltage, the neutral-end current and
the PD current are known all other voltages and currents can
be calculated.

B.  Transformer terminal conditions
The bushing of transformer can be simulated by a

capacitance CB connected at the line-end. Then,

(12)                                            )1()1( SBS VCjI ω−=
If the neutral end is at earth potential,

 (13)                                                            0)( =nVR

C.  Transfer functions
With the above terminal conditions, the transfer function

from the PD source current to the line-end current (TFL) is
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where N=n+1. Similarly, the transfer function from the PD
source current to the neutral-end current (TFN) is
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III.  CALCULATION OF ELECTRICAL PARAMETERS

The transformer winding used in this calculation has
twenty-two (22) continuous disc type sections each having
thirteen (13) turns. The impedance and admittance matrices
in (1) and (2) can be expressed as

(17)                                             ][2][][
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where RS = resistance, [L] = inductance matrix, [G] =
conductance matrix, [C] = capacitance matrix, [In] = unit
matrix and f is the frequency.

A.  Capacitance
Capacitance calculation plays a major role in the accuracy

of this model since inductance is also based on the
capacitance value. Capacitance calculations are based on
geometry of the winding and permittivity of the insulation.
There are three components of capacitance: inter-turn (CIT),
inter-section (CID) and capacitance to low voltage winding
(CLV). CIT is calculated assuming two adjacent turns of the
winding form a parallel plate capacitor. In calculating CID
cross capacitance is also considered for more accuracy.
Formula for capacitance between two coaxial cylinders is
used in the calculation of CLV.

B.  Inductance
In evaluating inductance, it is assumed that the magnetic

flux penetration into the laminated iron core is negligible at
frequencies above 1 MHz [7]. The inductance is calculated by
assuming the winding consists of loss-less multi-conductor
transmission lines surrounded by a homogeneous insulator.
Hence [4]

(18)                                  ][]][[]][[ nILCCL µε==

where µ and ε are the permeability and permittivity of the
insulation and In is the unit matrix. If no high frequency
magnetic flux penetrates the iron core, the winding can be
regarded as a conductor in free space surrounded by
insulation. The inductance due to the flux external to the
conductor (Ln) can be calculated using [3]
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where [Cn] = capacitance without insulation, εr = relative
permittivity of insulation and c = velocity of light in free
space. At high frequencies, the flux internal to the conductor
also creates an inductance [4]
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where RS is the resistance due to the skin effect and f is the
frequency. The total inductance is given by
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C.  Resistance
In resistance calculation, the skin effect at high frequencies

is taken into account. The resistance per unit length of
conductor is given by
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where d1, d2 = cross-sectional dimensions of rectangular
conductor, µ = permeability of conductor, σ = conductivity
and f = frequency.

D.  Conductance
The conductance (G) is due to the capacitive loss in the

insulation. It depends upon the frequency f, the capacitance C
and the dissipation factor tan δ.

(23)                           tan]2] δπ Cf=
The tan δ for the Nomex paper insulation used in this
transformer satisfies
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IV.  SIMULATION RESULTS

The transfer functions between the PD source and the line-
end (TFL) and the neutral-end (TFN) are calculated for
different positions of the PD source along the winding. The
position of the PD source is determined in terms of the
number of turns from the line-end. The line-end terminal is
connected to the 1st turn and the neutral-end terminal to the
286th turn (22 sections x 13 turns). Fig. 2 shows the transfer
functions obtained for the line-end while Fig. 3 shows those
obtained for the neutral-end.

Fig. 2 and Fig.3 show that the crests (or poles) in the
transfer functions always occur at fixed frequencies and are
not affected by the location of the PD source. The locations of
poles in the transfer functions are listed in Table 1. It can be
also seen that the troughs (or zeros) in the line-end transfer
functions increase in frequency as the PD source moves away
from the line-end, whereas the troughs in the neutral-end
transfer functions decrease in frequency. The locations of
zeros in the line-end transfer-functions are listed in Table 2
while those in the neutral-end transfer functions in Table 3.

TABLE 1  POSITION OF POLES (P) IN KHZ
p1 p2 p3 p4 p5 p6 p7 p8

70 271 508 753 1005 1265 1534 1813
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Fig. 2.  Magnitudes of transfer functions (in dB) between PD source current and
line-end current, TFL (1 kHz ~ 2000 kHz)

Fig. 3.  Magnitudes of transfer functions (in dB) between PD source current and
neutral-end current, TFN (1 kHz ~ 2000 kHz)

TABLE 2  POSITION OF ZEROS (Z) OF TRANSFER FUNCTIONS TFL IN KHZ
PD (turn no.) z1 z2 z3 z4 z5 z6

26 275 520 765 1020 1280 1552
52 295 546 784 1030 1280 1542
78 321 572 792 996 1242 1510
104 358 624 730 954 1248 1550
130 419 975 1298 1585 1793 -
156 646 1036 1355 1454 1790 -
182 729 1488 1930 - - -
260 - - - - - -

TABLE 3  POSITION OF ZEROS (Z) OF TRANSFER FUNCTIONS TFN IN KHZ
PD (turn no.) z1 z2 z3 z4 z5 z6

26 244 - - - - -
52 172 1375 1505 1755 - -
78 141 860 1050 1150 - -
104 122 736 1496 1945 - -
130 109 654 1045 1354 1450 1795
156 99 432 981 1304 1585 1785
182 91 369 634 716 951 1250
260 74 287 524 768 1020 1282

V.  SENSITIVITY ANALYSIS

Sensitivity analysis is used to investigate the effect on a
system by varying one or more parameters in the system.
The system is the transformer-winding model while the
capacitance, inductance and losses are the parameters of the
system. In simulating PD propagation through a
transformer winding the transfer functions from the PD
source to either measuring terminal will depend upon the
location of the discharge. Hence, sensitivity analysis on the
transfer functions is not the most appropriate method of
analysis. It is preferable to consider the terminal impedance
of the winding as the ‘system’ used for sensitivity analysis.

The terminal impedance (ZS) can be derived using (11)
with IPD = 0 and VR(n) = 0, and is given by

26) (    
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A.  Effect of capacitance
The effect of the capacitance on the terminal impedance

of the winding when the capacitance is increased by 20% of
its primary value is shown in Fig.4. The upper characteristic
is the magnitude of ZS while the lower characteristic is the
phase angle.  As seen from Fig. 4, an increase in
capacitance will reduce all the significant frequencies and
the characteristic shifts leftwards.

Fig. 4.  Effect of capacitance on terminal impedance

B.  Effect of inductance
The effect on ZS when the inductance is increased by 20%

of its primary value is shown in Fig.5. An increase in
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inductance will have a similar effect to that of capacitance
with reduction in all significant frequencies.

Fig. 5.  Effect of inductance on terminal impedance

C.  Effect of resistance
The effect of resistance on the terminal impedance of the

winding is minimal in the frequency range f = 1kHz to
2000kHz. Fig. 6 shows the terminal impedance calculated
with the primary value of RS and with RS = 0. The effect is
negligible within this frequency band.

Fig. 6.  Effect of resistance on terminal impedance

D.  Effect of conductance
The effect of conductance on the terminal impedance is

shown in Fig. 7. It is clear that in the frequency range f =
1kHz to 2000kHz, conductance has negligible effect on the
terminal impedance.

Further sensitivity studies conducted at higher frequencies
(1kHz ~ 13MHz) showed that the behaviour of the terminal
impedance of the winding is mainly governed by the value of
the capacitance and the inductance. The effect of losses
(resistance and conductance) on the terminal impedance is
negligible. Since capacitance without insulation is used to
derive the inductance (19), capacitance is the most sensitive
parameter in the model.

Fig. 7.  Effect of conductance on terminal impedance

VI.  CONCLUSION

In a continuous disc type transformer winding, the transfer
function that describe the frequency characteristics between
the source of discharge and the line-end or neutral-end
measuring terminals can be used to detect and locate a
discharge. The frequency of each zero in the simulated
spectra increases as the discharge moves away from the
measuring terminal. The frequency location of the first zero is
a good indicator of where the PD is located. The poles only
give local oscillation frequencies and are not affected by the
position of PD source.
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