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1. Introduction 

The use of the computer simulation not only in 

the control engineering grows rapidly 

nowadays with the increasing speed of the 

computers and low prices of the hardware. 

Furthermore, the simulation is very often used 

at present as it has many advantages over an 

experiment on a real system, which is not 

feasible and can be dangerous, time and money 

demanding. A modelling of the system usually 

precedes the simulation [1]. The mathematical 

model is a kind of abstract representation of the 

process which uses input, state or output 

variables, relations between these variables 

collected in the set of mathematical equations 

[1] and [2]. Some simulation and modelling 

examples can be found also in [3] and [4]. 

It is known, that almost all processes in the 

nature have a nonlinear behaviour [1], [5] and 

our goal is to cope with this nonlinearity. 

Typical examples of nonlinear systems are 

chemical reactors. A chemical reactor is a 

vessel or pipe which is used for the production 

of chemicals used in chemical, biochemical, 

drug and other industries through a specific 

reaction inside [6]. The controlled system here 

is represented by a Continuous Stirred-Tank 

Reactor (CSTR) as a typical member of a group 

of nonlinear systems used not only in the 

chemical industry. The mathematical model of 

the plant is described by the set of two 

nonlinear Ordinary Differential Equations 

(ODE) [7]. 

The thorough analysis of the system usually 

precedes the controller design. Steady-state and 

dynamic analyses as a typical simulation tools 

gives overview of system’s behavior especially 

for chemical reactors [5], [8], [9] etc. The 

methods used here was a Simple iteration 

method [10] and a Runge-Kutta’s standard 

method  for the numerical solving of set of 

ODE. Big advantage of both methods is that 

both are easily programmable or even build-in 

functions in popular mathematical software, 

such as MATLAB [11], Mathematica etc. 

The idea of an adaptive control [12] comes 

from the nature where every organism even 

humans try to “adapt” for the current 

environment. Transformed to the control 

theory, the controller also adapts parameters, 

structure etc. to the actual state of the 

controlled plant or desired course of the output 

signal [13]. The adaptive approach here is 

based on the approximation of the nonlinear 

system by the appropriate linear model, 

parameters of which are estimated online.  

The structure of the controller uses the 

polynomial synthesis [14] with Linear 

Quadratic (LQ) theory [15]. Resulted controller 

fulfills basic requests for the control loop such 

as stability, reference signal tracking and 

disturbance attenuation – [14] and [16]. 

Although there could be found a lot of 

contributions dealing with the simulation of 

control, the goal of this contribution is to 

describe the procedure from the steady-state 

and dynamic analyses to the design of the 

hybrid adaptive controller for temperature 

control inside the CSTR as a typical member of 

the nonlinear processes. This method could be 

applied to similar nonlinear processes which 

are described also by the mathematical model. 

Simulation of Adaptive LQ Control of Nonlinear Process

Jiri Vojtesek, Petr Dostal 
Department of Process Control, Faculty of Applied Informatics, 

Tomas Bata University in Zlin, 

nam. T. G. Masaryka 5555, Zlin, 760 01, Czech Republic, 

vojtesek@fai.utb.cz, dostalp@fai.utb.cz 

Abstract. The contribution is focused on the adaptive control of the nonlinear system represented by the continuous 

stirred-tank reactor with the spiral cooling in the jacket. The mathematical model of this reactor is described by two 

nonlinear ordinary differential equations which were solved numerically. The adaptive controller is based on the 

choice of the external linear delta model of the originally nonlinear process, parameters of which are identified 

recursively and parameters of the controller are recomputed too. The structure of the controller was constructed with 

the use polynomial synthesis together with linear-quadratic approach. The resulted controller fulfills basic control 

requirements and it can be used for system with negative control properties. All experiments were made by simulations 

in the MATLAB environment. 

Keywords: Adaptive control, External linear model, Recursive identification, Polynomial synthesis, Linear quadratic 

theory, Continuous stirred-tank reactor, Nonlinear system. 



http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 3, September 2012 316 

The contribution is divided into six main parts. 

The second section after this introduction 

describes the mathematical model of the 

controlled plant (CSTR) and the results of 

steady-state and dynamic analyses. Then, the 

third part describes theoretical background to 

the adaptive control with recursive 

identification and the LQ approach and 

polynomial synthesis of the controller. The 

fourth part is dedicated to various simulation 

experiments of the proposed controller on the 

mathematical model. After that, the last part 

before conclusion presents usability of the 

controller to the real plant followed by the final 

conclusion and future work. 

All experiments were done by the simulations 

on the mathematical software MATLAB, 

version 7.0.3. 

2. Model of the Plant 

The model under the consideration is a 

Continuous Stirred-tank Reactor (CSTR) with 

the spiral cooling in the jacket – see Figure 1.  

The mathematical description of the process 

uses material and heat balances inside the 

reactor. Full description of the process is, of 

course, very complex because of number 

variables. There must be introduced some 

simplifications to reduce this complexity – we 

expect that reactant is perfectly mixed and 

reacts to the final product with the 

concentration cA(t). Furthermore we also 

assume that volume, heat capacities and 

densities are constant during the control. 

 

 

Figure 1. Continuous Stirred-Tank Reactor (CSTR) 

The mathematical model in the form of 

Ordinary Differential Equations (ODE) with all 

these simplifications has then form [7]: 
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The variable t in the previous equations denotes 

time, T is used for temperature of the reactant, 

V is volume of the reactor, cA represents 

concentration of the product, q and qc are 

volumetric flow rates of the reactant and 

cooling respectively. Indexes (·)0 denote input 

values of the variables, (·)c  is used for variables 

related to the cooling and variables without 

index are connected with the reactant. 

The main nonlinearity of this model can be 

found in the reaction rate, k1, as a nonlinear 

function of the reactant temperature, T, which 

also state variable in (1). This reaction rate is 

computed via Arrhenius law, e.g.  

1 0 e

E

R Tk k


   (3) 

where k0 is the reaction rate constant, E denotes 

an activation energy and R is a gas constant. 

The mathematical model in (1) together with 

constants (2) and variable k1 in (3) defines a 

nonlinear system with lumped parameters. 

There could be several input variables but from 

the practical point of view, only volumetric 

flow rates of the reactant, q, and the cooling, qc, 

were chosen as input variables. The output 

variables are the temperature of the reactant, T, 

and the concentration of the product, cA. The 

fixed parameters of are shown in Table 1 [7]: 
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Table 1. Fixed parameters of the reactor 

Name of the variable Value  

Reactant’s flow rate  

Reactor’s volume 

Reaction rate constant 

Activation energy to R 

Reactant’s feed temp. 

Reaction heat 

Specific heat of reactant 

Specific heat of cooling 

Density of the reactant 

Density of the cooling 

Feed concentration 

Heat transfer coef. 

q = 0.1 m3.min-1 

V = 0.1 m3 

k0 = 7.2·1010 min-1 

E/R = 1·104 K 

T0 = 350 K 

ΔH = -2·105cal.mol-1 

cp = 1 cal.g-1.K-1 

cpc = 1 cal.g-1.K-1 

ρ = 1·103 kg. m3 

ρc = 1·103 kg. m3 

cA0 = 1 kmol. m3 

ha=7·105cal.min-1.K-1 

Analyses inside the reactor are the next step 

after the developing of the mathematical model. 

There were used steady-state and dynamic 

analysis to obtain information about the type 

and behaviour of the system. 

Steady-state Analysis 

Steady-state analysis for stable systems 

involves computing values of state variables in 

time t  ∞, when changes of these variables 

are equal to the zero. That means that all 

equations which consist of derivations with 

respect to the time in (1) have these derivations 

equal to the zero, e.g. d(·)/dt = 0. The 

mathematical model (1) is then transformed to 

the set of nonlinear equations: 
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(4) 

The simple iteration method [10] was used for 

solving of this set of equations (4). 

The heat balance of the reactor shows 

interesting thing about this reactor – it has 3 

steady-states. The Qr in Figure 2 is used for 

heat of the reactant and Qc denotes heat of the 

coolant. It holds, that Qr = Qc in the steady 

state which means that this type of reactor has 

two stable (S1 and S2) and one unstable (N1) 

steady-states. 
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Figure 2. Heat balance inside the reactor 
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Although it seems that the second steady-state 

S2 has better efficiency (95.6% of the reactant 

reacts), the steady-state temperature of the 

reactant is very high which in some case means 

that this point is only theoretical and not 

practically feasible. That is why the first 

steady-state S1 was used in this work.  

The steady-state analysis here was done for 

different input volumetric flow rates q and qc 

and results are shown in the following figures 

where Ts denotes steady-state value of the 

reactant’s temperature and cA
s is steady-state 

value of the product’s concentration. 
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Figure 3. Steady-state values of the temperature Ts 

for different volumetric flow rates q and qc 

Graphs have shown nonlinearities in both 

product’s concentration and temperature. The 

steady-state analysis usually results in the 

optimal working point. From the practical and 

mainly cost point of view is good to choose 

volumetric flow rates as low as possible. The 

working point is then characterized by the pair 

of volumetric flow rates qc = 0.08 m3.min-1 and 

q = 0.10 m3.min-1. 



http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 3, September 2012 318 

0.10

0.12

0.14
0.16

0.18
0.20

0.02

0.04

0.06
0.08

0.10

0.95

0.96

0.97

0.98

 q
c  [m 3

.m in -1
]

c
s A
 [
k
m

o
l.
m

-3
]

q  [m
3 .m

in
-1 ]

 

Figure 4. Steady-state values of the concentration 

cA
s for different volumetric flow rates q and qc 

Steady-state values of state variables T and are 

cA for this working point are Ts = 354.26 K and 

cs
A = 0.9620 kmol.m-3. 

Dynamic Analysis 

The dynamic analysis is usually the next step 

after the steady-state analysis. The dynamic 

analysis observes behavior of the system after 

the step change of the input variable. The 

mathematical interpretation of this analysis is 

the numerical solving of the set of ODE in 

equations (1). The standard Runge-Kutta‘s 

method [10] was used in this work. This 

numerical method belongs to the class of high-

order methods, it can be used for computation 

of the initial values or for the final result too 

and they are easily programmable. It can be 

also found as a build-in function in various 

mathematical simulation software, such as 

Matlab (functions ode23, ode43 etc.) [11], 

Mathematica (function NDSolve) etc. 

As there were chosen two volumetric flow rates 

of the reactant and the cooling as input 

variables, several changes of both recomputed 

to % were examined in the following 

simulations. Input variables are then: 
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Results of dynamic analyses for several step 

changes of the input variables u1 and u2 are 

shown in following Figure 5 – Figure 8. 

Steady-state values of the state variables Ts and 

cA
s are used as a initial conditions for the 

dynamic which also means that the course of 

output variables starts from these values. 
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Figure 5. Time responses of the product’s 

temperature, T(t) to the step change of the 

volumetric flow rate of the coolant, u1 
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Figure 6. Time responses of the product’s 

concentration, cA(t) to the step change of the 

volumetric flow rate of the coolant, u1 
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Figure 7. Time responses of the product’s 

temperature, T(t) to the step change of the 

volumetric flow rate of the reactant, u2 
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Figure 8. Time responses of the product’s 

concentration, cA(t) to the step change of the 

volumetric flow rate of the reactant, u2 

Step responses for both input variables u1 and 

u2 show dynamical behaviour of the examined 

system. All outputs of the nonlinear system 
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could be from the control point of view 

described by the second order transfer function 

with relative order one in the polynomial form: 
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3. Control of the Plant 

The adaptive control [12] was used here as a 

control strategy. The basic idea of adaptive 

control is that parameters or the structure of the 

controller are adapted to parameters of the 

controlled plant according to the selected 

criterion [13]. The adaptive approach in this 

work is based on choosing an External Linear 

Model (ELM) (7) of the original nonlinear 

system whose parameters are recursively 

identified during the control. Parameters of the 

resulted controller are recomputed in every step 

from the estimated parameters of the ELM.  

External Linear Model 

In our case, the ELM has form of the Equation 

(7). It means that variables must be identified in 

continuous-time (CT) which is problem 

especially from the technical point of view. The 

other type of ELM is discrete-time (DT) model 

where input and output variables are read in the 

defined time intervals and parameters are 

estimated in these intervals too. Disadvantages 

of this model can be found on the choice of the 

sampling period – there is no general tool or 

advice to the right choice of this interval. 

Somewhere between these two types of ELM 

are the delta (-) models that belongs to the DT 

models but its parameters are close to the 

continuous ones for very small sampling period 

as it proofed in [17].  

The CT model (7) could be also described in 

the general form and the use of input and 

output variables as: 

( ) ( ) ( ) ( )a y t b u t   (8) 

Where a and b are polynomials from (7) and  

is the differentiation operator. If we want to use 

δ–model we must introduce a new complex 

variable γ computed as [18]: 
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and we can obtain infinitely many models for 

optional parameter  from the interval 0 ≤  ≤ 1 

and a sampling period Tv. A forward δ-model 

was used in this work. The γ operator is then 

1
0

v

z

T
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The continuous model (8) is then rewritten to 

the form 

       a y t b u t     (11) 

where polynomials a and b are discrete 

polynomials and their coefficients are different 

from those of the CT model a(s) and b(s). Time 

t' is discrete time and with the new substitution  

t‘ = k – n for k ≥ n the -model for this concrete 

transfer function would be: 
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It means that the regression vector  is then 
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where y and u denotes the recomputed output 

and input variables to the -model and 
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The computed vector of parameters              
is generally 

  1 0 1 0, , ,
T

k a a b b      δθ  (15) 

and parameters of this vector are computed by 

the on-line identification.  

Finally, the differential equation (12) has the 

vector form: 

       1Ty k k k e k    δ δθ φ  (16) 

where e(k) is a general random     

immeasurable component. 
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Recursive Identification 

The Recursive Least-Squares (RLS) method is 

used for the on-line estimation of the vector of 

parameters  in (15). This method is well-

known, easily programmable and widely used 

for the parameter estimation. It is usually 

modified with exponential or directional 

forgetting because parameters of the identified 

system can vary during the control which is 

typical for nonlinear systems and the use of 

some forgetting factor could result in better 

output response.  

As an example, the RLS method with changing 

exponential forgetting used here is described by 

the set of equations: 
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where the changing forgetting factor 1 is 

computed from the equation 

     2
1 1k K k k       (18) 

and K is small number, in our case K = 0.001. 

Control Synthesis 

The last theoretical step is the design of the 

controller. The polynomial approach [14] and 

[16] was used in this work. This method is 

based on the input-output model of the 

controlled system or its transfer function. It can 

be classified as an algebraic method and it is 

based on algebraic operations in the ring of 

polynomials. One of the biggest advantages of 

the polynomial method compared to the 

conventional method is that it provides not only 

relations for computing of the controller's 

parameters but the structure of the controller 

too. This structure fulfils general requirements 

for control systems and input signals (reference 

signal and disturbance) and it can be used for 

controlling of the systems with negative 

properties from the control point of view, such 

as non-minimum phase systems or unstable 

systems. Another advantage is that the resulted 

relations are easily programmable. 

The configuration with one degree-of-freedom 

(1DOF) was used here – see Figure 9. 

 

Figure 9. 1DOF control configuration 

The block G represents the transfer function of 

the plant (7), w is the reference signal (the 

wanted value), e stands for the control error  

(e = w - y), v is a disturbance, u is used for the 

control variable and y denotes the controlled 

output. Block Q is a transfer function of the 

controller which ensures three basic control 

conditions – (I.) stability, (II.) asymptotic 

tracking of the reference signal and (III.) load 

disturbance attenuation and it can be described 

by the polynomials in s-plain as 

   
 

q s
Q s

s p s


 
 (19) 

where degrees of the polynomials are  

computed from  

       deg deg , deg deg 1q s a s p s a s   (20) 

and parameters of the polynomials  p s  and 

q(s) are computed from a Diophantine eq. [14]: 

         a s s p s b s q s d s      (21) 

Polynomials a(s) and b(s) are known from the 

recursive identification and the polynomial d(s) 

on the right side of (21) is an optional stable 

polynomial. Roots of this polynomial are called 

poles of the closed-loop and their position 

affects quality of the control. One method for 

designing of this polynomial is a Pole-

placement method [19]. Disadvantage of this 

method is the uncertainty – there is no rule for 

the choice of this root. The second method used 

in this work uses Linear Quadratic (LQ) 

approach [15] which is based on the 

minimization of the cost function 

    2 2

0

LQ LQ LQJ e t u t dt 


      (22) 

where φLQ > 0 and μLQ ≥ 0 are weighting 

coefficients, e(t) is control error and 

 u t denotes difference of the input variable. 
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The polynomial d(s) is then divided into two 

polynomials n(s) and g(s), i.e. d(s) = g(s) · n(s), 

where polynomial n(s) is connected to the 

controlled system via the spectral factorization 

of the polynomial a(s) and g(s) comes from the 

solution of the equation (22) again with the use 

of the spectral factorization. Both factorizations 

are shown in the following equation: 

 * * *

* *

LQ LQa f a f b b g g

n n a a

         

  
 (23) 

The polynomial f(s) for control variable u(t) 

and disturbance v(t) from the ring of step 

functions is equal to s, i.e. f(s) = s. The resulted 

controller is strictly proper and the degree of 

d(s) together with degrees of the controller‘s 

polynomials q(s) and  p s  from (20) are then 

 deg deg 2deg 1 5

deg deg 2; deg deg 1 2

d g n a

q a p a

    

    
 (24) 

which means that the transfer function of the 

controller (19) is  
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  (25) 

Finally, parameters of n(s) and g(s) are 

practically computed from Equation (23) as 
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We can say, that the resulting controller is 

“hybrid” because the polynomial synthesis is 

made for continuous-time but recursive 

identification runs on the -model, which 

belongs to the class of discrete-time models. 

This simplification can be introduced with the 

assumption that the parameters of the -model 

are close to the continuous one, i.e. a ≈ a     

and b ≈ b.  

4. Simulation Results 

The usability of the proposed controller from 

the previous part was examined by simulations 

on the mathematical model of the reactor from 

the chapter 2. All simulations were done on the 

mathematical software MATLAB. Common 

values for all simulations are the sampling 

period Tv = 0.3 min, the initial vector of 

parameters used for identification  

T(0) = [0.1 0.1 0.1 0.1] and the initial 

covariance matrix Pii(0) = 1·107 for i = 1,..,4. 

The input variable was limited in the interval 

u(t) = ± 80% due to physical reasons. The 

change of the input volumetric flow rate of the 

reactant u2 was chosen as a control input and 

the temperature of the reactant as a controlled 

output, i.e. y(t) = T(t). 

The first simulation analysis examines behavior 

of the controlled output for the changing 

weighting factor φLQ from (22) - φLQ = 0.1, 1 

and 3. On the other hand, the second parameter 

was μLQ = 1 for all simulations.  
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Figure 10. The course of the output variable y(t) 

and the reference signal w(t) for various values of 

the factor φLQ 
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Figure 11. The course of the input variable u(t) for 

various values of the factor φLQ 

Results presented in Figure 10 and Figure 11 

clearly show effect of the weighting factor φLQ 

– decreasing value of this parameter results in 

the quicker output response but also very quick 

changes of the input variable. This change 

could cause some problems from the practical 

point of view where this value represents for 

example twist of the valve in the input pipe to 

the reactor and quick and often changes could 

destroy the valve. Anyway, the controlled plant 

produced very good control results except very 

beginning of the control. This inaccurate course 

was caused by the recursive identification 

which did not have enough information about 

the system behaviour at the beginning – note 
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that all simulations starts from the general 

values of T(0) and Pii(0) and controller needs 

some time for adapting to the system.  
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Figure 12. The course of the identified parameter 

a1
 during the control 
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Figure 13. The course of the identified parameter 

a0
 during the control 
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Figure 14. The course of the identified parameter 

b1
 during the control 
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Figure 15. The course of the identified parameter 

b0
 during the control 

This is illustrated also in Figure 12 – Figure 15 

where courses of identified parameters are 

displayed. This adaptation phase takes about 50 

min and the course after this initial time is 

again very smooth which mirrors in the course 

of the output variable too. Results also show 

fulfillment of first two control conditions – the 

stability of the control loop and the reference 

signal tracking. The third condition, 

disturbance attenuation, was tested in the 

second analysis for three disturbances – two of 

them were inserted on the input to the system 

(change of the input reactant temperature T0 

and input concentration cA0) and one 

disturbance on the output from the reactor 

(change of the temperature T), i.e. v1(t) = -8% 

step change of the input concentration cA0 for 

time t = <400; 1000> min, v2(t) = +1 K  step 

change of the input reactant’s temperature T0 

for time t = <600; 1000> min, v2(t) = -0.5 K  

step change of the output product’s temperature 

T for time t = <800; 1000> min.   

The weighting factor was φLQ = 0.25 and one 

step change of the reference signal, w(t), was 

done before disturbance injection due to 

inaccurate results caused by the recursive 

identification at the beginning of the control.  
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Figure 16. The course of the output variable y(t) 

and the reference signal w(t) for the simulation with 

three disturbances 

0 200 400 600 800 1000
-80

-60

-40

-20

0

20

40

60

80

u
(t

)[
%

]

t [min]  

Figure 17. The course of the input variable u(t) for 

the simulation with three disturbances 

It is clear from Figures 16 and 17 that proposed 

controller copes with these disturbances 

sufficiently even though the reactor is affected 

by all three disturbances from time 800 min to 

the end of the simulation. 

5. Verification of the Simulation 

As it is written at the beginning, all results 

presented here are results of computer 

simulations. The problem with the simulation is 

that it is always question of the reliability if the 
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proposed mathematical model provides 

sufficient description of the real system or it is 

too simple. This could be proofed only by the 

verification on the real system.  

The advantage of the control strategy presented 

here is that not only simulation of the 

mathematical model’s behaviour, but also the 

computation of controller’s parameters are 

easily programmable. Both blocks in Figure 9 

representing the controlled plant (block G) and 

the feedback controller (Q) form different parts 

of the M-file in MATLAB which makes the 

controller more universal. The part of the 

simulation program which represents 

mathematical model of the system (G) could be 

replaced by the MATLAB’s Real-Time toolbox 

routines which reads output from the controlled 

system, generally y(t), and send signals to the 

system according computed output from the 

controller u(t). 

One example can be found in our previous 

article [19], where we use the same controller 

for conductivity control inside the real model of 

CSTR as a part of the Multifunctional Process 

Control Teaching equipment PCT40 from 

Armfield – see schematic representation of 

PCT40 in Figure 18.  

 

Figure 18. Multifunctional process control teaching 

system PCT40 

This system is connected to the computer via 

two technological MF624 multifunction I/O 

cards from Humusoft. We can use 9 inputs and 

17 outputs at the same time in the MATLAB 

through the Real-Time toolbox. 

The control experiment uses the same 1DOF 

control scheme and LQ controller presented 

here and the sample results for various values 

of the weighting factor φLQ = 0.005, 0.001 and 

0.01 are shown in following graphs. 
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Figure 19. Course of the output variable y(t) for 

1DOF controller and LQ controller 
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Figure 20. Course of the input variable u(t) for 

1DOF controller and LQ controller 

Results in Figure 19 and Figure 20 have shown 

usability of this control strategy for different 

nonlinear systems. The only difference is in the 

settings of the controller. The setting, or let us 

say tuning, parameter here is weighting factor 

φLQ which is different for each control strategy 

and must be found by the experiments. 

6. Conclusions and Future Work 

The article presents simulation results of hybrid 

adaptive controller which uses polynomial 

synthesis together with delta-models and LQ 

approach. Results satisfy basic control 

requirements – the stability, the reference 

signal tracking and the disturbance attenuation. 

The controller could be also tuned via the 

choice of the weighting factor φLQ while the 

increasing value of this parameter results in the 

quicker output response. The only problem can 

be found at the beginning of the control when 

the recursive identification needs some 

adaptation time due to incomplete a priori 

information about the system. On the other 

hand, the controller has no problems at the rest 

of the control after this initial time even if it is 

affected by various disturbances. 

Although results are products of the computer 

simulation, the proposed hybrid adaptive 

controller could be used also for other similar 
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nonlinear processes as it was shown in the last 

part before conclusion which presents results of 

the conductivity control inside the CSTR with 

the use of the same adaptive LQ controller.  

The future work is related to the simulation 

experiments of other let us say “modern” control 

techniques such as predictive, robust or nonlinear 

control and verifications by the application of 

these controllers on the real process. 
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