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Abstract

Background: The spread of infectious diseases crucially depends on the pattern of contacts between individuals.

Knowledge of these patterns is thus essential to inform models and computational efforts. However, there are few

empirical studies available that provide estimates of the number and duration of contacts between social groups.

Moreover, their space and time resolutions are limited, so that data are not explicit at the person-to-person level,

and the dynamic nature of the contacts is disregarded. In this study, we aimed to assess the role of data-driven

dynamic contact patterns between individuals, and in particular of their temporal aspects, in shaping the spread of

a simulated epidemic in the population.

Methods: We considered high-resolution data about face-to-face interactions between the attendees at a

conference, obtained from the deployment of an infrastructure based on radiofrequency identification (RFID)

devices that assessed mutual face-to-face proximity. The spread of epidemics along these interactions was

simulated using an SEIR (Susceptible, Exposed, Infectious, Recovered) model, using both the dynamic network of

contacts defined by the collected data, and two aggregated versions of such networks, to assess the role of the

data temporal aspects.

Results: We show that, on the timescales considered, an aggregated network taking into account the daily

duration of contacts is a good approximation to the full resolution network, whereas a homogeneous

representation that retains only the topology of the contact network fails to reproduce the size of the epidemic.

Conclusions: These results have important implications for understanding the level of detail needed to correctly

inform computational models for the study and management of real epidemics.

Please see related article BMC Medicine, 2011, 9:88

Background
The pattern of contacts between individuals is a crucial

determinant for the spread of infectious diseases in a

population [1]. The topological structure of the contact

network of the population, the presence of people with

a much larger number of contacts than the mean value

[2-5], the clustering and presence of well-identified

communities of people [6-10], and the frequency and

duration of contacts [11-13] all have important

implications for the spread and control of epidemics.

Knowledge of contact patterns is crucial for building

and informing computational models of infectious dis-

ease transmission [14-23]. Although some of the proper-

ties of contact patterns can dramatically affect the model

predictions [3-5], little is known about their empirical

characteristics, and few experiments have been con-

ducted to collect data on how individuals mix and

interact.

The starting point of most modeling approaches is the

assumption of homogeneous mixing, which assumes

that every individual has an equal probability of contact-

ing other individuals in the population [1]. No
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heterogeneity in the mixing pattern or in the duration

or frequency of the contact is considered, and the

dynamic nature of the contacts is disregarded. Going

beyond this approximation, various approaches have

been proposed to estimate mixing properties between

classes of people (for example, social or age classes)

using indirect [1] and, more recently, direct [11,24-27]

methods. Indirect methods are based on estimating the

elements of a ‘who acquires infection from whom’

(WAIFW) matrix using observed seroprevalence data. In

direct methods, each element of a contact matrix is esti-

mated independently from the epidemiologic data.

Direct methods rely on data collection about at-risk

events via diaries [11,12] or time-use data [2,27]. To

date, research on human social interaction has been

mainly based on self-reported data. Despite a real

improvement in the description of potential contacts

with respect to a homogeneous mixing approach, self-

report methods involve a limited number of people who

provide information on a limited number of snapshots

in time (usually 1 day). The obtained data may be sub-

ject to uncontrolled bias and a lack of representative-

ness, because they are not based on objective reports,

and because the data collection is performed on a ran-

dom day and is not longitudinal. These limitations

become particularly relevant in the case of contact pat-

terns and infectious diseases transmitted by the respira-

tory or close-contact routes. For these diseases, all types

of social encounters, even random contacts of very short

duration (for example, on public transport), may be

important for transmission, but are rather difficult to

report objectively and exhaustively through a diary

method.

New technologies are now available that allow the

tracking of proximity to and interactions between indivi-

duals [28-37], greatly transforming our ability to under-

stand and characterize social behavior [38]. Detection of

contact patterns can rely on objective and unsupervised

measures of proximity behavior that can be extended to

a large number of people, with high temporal and spa-

tial resolution [28,30], thus overcoming the limitations

of self-reported data. Departing from the typical static

representation of a network of contacts between indivi-

duals [39], it is now possible to describe the dynamic

nature of the interactions. Analysis of the dynamics of a

contact network needs to incorporate two essential fea-

tures: (i) variations in the duration and frequency of the

contacts between individuals, and (ii) the existence of

causality constraints in the possible chains of

transmission.

Finally, little is known about the level of detail that

should be incorporated in the modeling effort to per-

form in practice realistic simulations of epidemics

spreading in a population. Very coarse descriptions of

human behavior, such as the homogeneous mixing

hypothesis, leave out crucial elements. Conversely, extre-

mely detailed information may yield a lack of transpar-

ency in the models, making it difficult to discriminate

the effect of any particular modeling assumption or

component.

The aim of this study was to assess the role of the

temporal aspects, heterogeneities and constraints of

dynamic contact patterns in shaping the dynamics of an

infectious disease in a population using data collected

during a 2-day medical conference. In this study, we

capitalized on the recent development of a data-collec-

tion infrastructure that allows the tracking of face-to-

face proximity of individuals at a high temporal resolu-

tion [28,30]. We used the data collected during a scien-

tific conference to provide temporal information on

individual contact events. Such data can be mapped

onto a dynamic network of contacts, in which all infor-

mation on interactions between pairs of individuals,

time of occurrence and duration are explicit in the net-

work representation. Along with the explicit dynamic

network of contacts, we considered two different projec-

tions of the data, defining two types of daily networks

that aggregate the empirical data in different ways,

which reflect different amounts of available knowledge

about the contacts between individuals. We then simu-

lated the spread of an infectious disease over these net-

works, and highlighted the role that different features of

contact patterns and their dynamic aspects played dur-

ing the course of the simulated outbreak. The results

have important implications for identification of the

level of detail needed for contact data to adequately and

realistically inform modeling approaches applied to pub-

lic health problems.

Methods
The ethics committee of Lyon University Hospital

approved this study, and all participants gave signed,

written informed consent. The data were collected

anonymously.

Data collection platform

Contact network measurements are based on the Socio-

Patterns RFID platform (http://www.sociopatterns.org)

[28,30]. With this method, subjects wear a badge

equipped with an active radiofrequency identification

(RFID) device (tag). RFID devices engage in bidirectional

radio communication at multiple power levels, exchan-

ging packets that contain a device-specific identifier. At

low power level, packets can only be exchanged between

tags within a radius of 1 to 2 meters [28,30]. This

threshold is set to allow detection of a close-contact

situation, during which a communicable disease infec-

tion can be transmitted, either by airborne transmission
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through coughing or sneezing, or directly by physical

contact. Subjects wear the RFID badges on their chest,

so that contacts are recorded only when participants

face each other, as the body acts as a shield for the

proximity-sensing RF signals. In addition to sensing

nearby devices, RFID tags send the locally collected con-

tact information to a number of receivers installed in

the environment, which relay this information over a

local area network to a computer system used for moni-

toring and data storage. Proximity scans are performed

at random times, and each tag dispatches information to

the receivers every few seconds. Time is then coarse-

grained over 20 second intervals, during which face-to-

face proximity can be assessed with a confidence in

excess of 99% [28,30]. This time scale is also adequate

to follow the dynamics of social interaction.

All communication (from tag to tag, from tags to

receivers, and from receivers to the data storage system)

is encrypted. Contact data are stored in encrypted form,

and all data management is completely anonymous.

Other details on the data-collection infrastructure can

be found elsewhere [28,30].

Data collection in this study

Participants attending the 2009 Annual French Confer-

ence on Nosocomial Infections (http://www.sf2h.net/)

were asked to wear RFID tags; of the 1,200 attendees,

405 volunteers wore the tags. Face-to-face interactions

between these 405 volunteers were collected during 2

days of the conference (3rd and 4th of June 2009). The

data were collected from 9 am to 9 pm on the first day

and from 8.30 am to 4.30 pm on the second day (peri-

ods defined as ‘day’ in the following text). Contacts were

not recorded outside of these time periods (periods

defined as ‘nights’).

Empirical contact networks

To assess the role of the dynamic nature of the network

of contacts in the dynamics of disease spread, we con-

sidered a network built on the explicit representation of

the dynamic interactions between individuals (referred

to as the dynamic network; DYN) at the shortest avail-

able temporal resolution (20 seconds) against two

benchmark networks that are built on progressively

lower amounts of information available on the interac-

tions, referred to as the heterogeneous (HET) and

homogenous (HOM) networks, respectively.

Firstly, taking advantage of the full spatial and tem-

poral resolution, DYN considered the empirical

sequence of successive contact events collected during

the congress. Each contact was identified by the RFID

identification numbers of the two individuals involved,

and by its starting and ending times. The resulting net-

work was a dynamic object encoding the actual

chronology and duration of contacts, therefore preser-

ving heterogeneity in the duration of contacts and the

causality constraints between events. The latter is parti-

cularly important for disease spread, as it may prevent

propagation along certain sequences of interactions that

would otherwise be allowed in an aggregated static

representation of the contact patterns. For example, if a

susceptible individual A interacts first with an infectious

individual B and then with a susceptible individual C,

disease transmission can occur from B to A and then

from A to C. If instead, A meets first C and later B, A

can become infected from B, but the propagation from

B to A and then to C is no longer possible.

The benchmark networks correspond to coarse-grain-

ing of the data on a daily scale. The first one, HET, was

produced for each conference day by connecting indivi-

duals who came in contact during this conference day,

thus aggregating all daily dynamic information in a sin-

gle snapshot, and weighting each link by the total time

the two individuals spent in face-to-face presence during

the considered day. Therefore, HET included informa-

tion on the actual contacts between individuals (who

has met whom) and on the total duration of these con-

tacts (how long A was in contact with B during the

whole day), but disregarded information about the tem-

poral order of contacts. In the previous example, the

transmission from A to C could take place in both

situations, representing the different sequences of the

events. HET was therefore a daily aggregated network in

which contacts were aggregated over a day, but the

whole neighborhood structure between individuals was

kept. As the conference lasted 2 days, the aggregation

procedure produced two such networks, one for each

day.

By contrast, the HOM network was constructed for

each day by connecting individuals who were in face-to-

face contact during the conference day, again aggregat-

ing all daily dynamic information in a single snapshot,

but weighting each link with equal weight, correspond-

ing to the mean duration of contacts between two indi-

viduals who have met each other on the same day in

the HET network. The HOM construction may corre-

spond to networks constructed by asking each partici-

pant to report with whom they have been in contact

during the conference day, and then estimating for how

long on average this contact lasted. For each conference

day, HET and HOM have exactly the same structure of

interactions from a topological point of view, but they

differ by the assignments of weights on the links.

Generation of contact networks on longer timescales

Because we simulated the spread of a realistic infectious

disease, which would be characterized by longer time-

scales than the data collection period, we introduced
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three different procedures to longitudinally extend the

data-driven network, by preserving some of its features.

The simplest procedure consisted of repeating the 2-day

recordings. This repetition procedure, denoted as REP,

was performed both for the dynamic sequence of con-

tacts (DYN) and consistently for the set of daily HET

and HOM networks. In this simple procedure, the same

contacts were repeated for each attendee for each simu-

lated sequence of 2 days; that is, the assumption was

made that the same attendee always met the same set of

other attendees, in the same order, and for the same

duration. Although this procedure yields a realistic con-

tact pattern for each single day, it uses only empirical

data, and thus such a ‘deterministic’ repetition is rather

unrealistic as time goes on. We therefore considered

two additional procedures that might improve this

limitation.

The first one, random shuffling (RAND-SH), consisted

of producing 2-day sequences by randomly reshuffling

the participants’ identities, as given by their tag IDs. The

overall sequence of contacts was preserved, but each

contact was set as occurring between different attendees

from one 2-day sequence to the next. DYN networks

were then constructed as before, taking into account the

20- second temporal resolution, and the HET and HOM

networks were obtained by aggregating the data for each

day, as explained above. This method results in more

realistic contact patterns being obtained, and avoids the

unrealistic repetition of interactions between individuals.

However, the RAND-SH procedure completely erases

any correlations between the contact patterns of an

attendee in successive 2-day sequences, which is also

unrealistic. Analysis of the empirical contact networks

shows that in fact a correlation did exist between the

number of contacts of an attendee in the first and sec-

ond conference days, and also that a fraction of contacts

were repeated from one day to the next.

Therefore, we designed a third procedure (constrained

shuffling; CONSTR-SH) for the generation of synthetic

contact patterns starting from the 2-day sequence,

which constrained the reshuffling to preserve the corre-

lations between the attendees’ social activity and the

same fraction of repeated contacts during successive

days (see Additional file 1).

It is important to note that in all cases we preserved

the time frame during which data were collected,

because no collection occurred outside the conference

premises. For this reason, each individual was consid-

ered as isolated during the ‘night’ periods in the DYN

network. We therefore also introduced such ‘nights’ in

the HET and HOM networks by ‘switching off’ the links

(that is, considering individuals as isolated) during these

periods, thus resembling the circadian pattern encoded

by the empirical data.

Epidemiological model

We considered a simple SEIR epidemic model for the

simulation of the infectious-disease spread in the popu-

lation under study, in which no births, deaths or intro-

duction of new individuals occurred. Individuals were

each assigned to one of the following disease states: Sus-

ceptible (S), Exposed (E), Infectious (I) or Recovered (R).

The model is individual-based and stochastic. Suscep-

tible individuals may contract the disease with a given

rate when in contact with an infectious individual, and

enter the exposed disease state when they become

infected but are not yet infectious themselves. These

exposed individuals become infectious at a rate s, with

s-1 representing the mean latent period of the disease.

Infectious individuals can transmit the disease during

their infectious period, whose mean duration is equal to

v
-1. After this period, they enter the recovered phase,

acquiring permanent immunity to the disease.

To compare simulation results obtained from the

three different networks, we needed to adequately define

the rate of infection for a given infectious-susceptible

pair, depending on the definition of the networks them-

selves. b was defined as the constant rate of infection

from an infected individual to one of their susceptible

contacts on the unitary time step dt of the process.

Given two people, an infectious individual A and a sus-

ceptible individual B, who are in contact during the uni-

tary time step, the probability of B becoming infected

during this period was given by bdt. To obtain the same

mean infection probability in the HET and HOM net-

works over an entire 24-hour period (day and night),

the weights on such networks needed to be rescaled by

WAB/∆T, defined as the ratio between the total sum of

the duration of all contacts between A and B in a day,

and the effective duration of the day (that is, the total

time during which the links in the daily networks were

considered active, discarding the ‘nights’). Therefore, the

probability of infection between A and B during the

time step dt was bWAB dt/∆T for the HET network,

and b<W> dt/∆T for the HOM network (with <W>

being the mean weight of the links in the HET

network).

We considered two different disease scenarios for the

simulations of disease spread on all networks under

study. In particular, the following values were assumed

for the duration of the mean latency period (s-1), mean

infectious period (v-1) and transmission rate (b): (i) s-1

= 1 days, v-1 = 2 days and b = 3.10-4/s (very short incu-

bation and infectious periods); and (ii) s-1= 2 days, v-1 =

4 days and b = 15.10-5/s (short incubation and infec-

tious periods). These sets of parameter values were cho-

sen to maintain the same value of b/v, which is the

biologic factor responsible for the rate of increase of

cases during the epidemic outbreak, while changing the
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global timescales of incubation and infectious periods,

and assessing the role played by the social factors

embedded in the contact patterns. Short incubation and

infectious periods were used so as to minimize the con-

sequences of the arbitrariness in the construction proce-

dures of long datasets as described above. Each

simulation started with a single randomly chosen infec-

tious individual, with the rest of the population being in

the susceptible state.

Analysis of the empirical contact networks and of the

simulation results

To describe the empirical contact networks, we calcu-

lated the number of contacts, the mean duration of con-

tacts, the mean degree of a node (defined as the number

of distinct individuals encountered by the individual

under scrutiny), the mean clustering coefficient (which

describes the local cohesiveness), the mean shortest path

(defined as the mean number of links to cross to go

from one node to another, and the correlation between

the properties of the nodes in the aggregated networks

of the first and second conference day). For this analysis,

we measured the Pearson correlation coefficients

between the degree of an individual in the first and sec-

ond day, and between the time spent in interaction in

the first and second day.

The comparison of the epidemic outbreaks in the

three networks under study was performed by analyzing

several parameters, namely the final size of the epi-

demic, the number of infectious individuals during the

epidemic peak, the time of the peak, and the duration of

the epidemic.

Since we aim at assessing the impact on spreading

phenomena of the contact patterns, of their dynamic

nature, and of the available amount of details on their

dynamics we also estimated the reproductive number

R0, defined as the expected number of secondary infec-

tions from an initial infected individual in a completely

susceptible host population [1]. Several methods can be

used to compute R0 [40,41], possibly yielding different

estimates [42] for the same epidemiological parameters.

In this study, we computed the value of R0 as the mean,

over different realizations, of the number of secondary

cases from the single initial randomly chosen infectious

individual. Mean R0 values and variances were then

compared for the three networks (DYN, HET and

HOM) and the three data-extension procedures (REP,

RAND-SH and CONSTR-SH) under study.

Results
In total, 28,540 face-to-face contacts between 405 atten-

dees at a 2-day conference were recorded, and the prob-

ability distribution of the duration of these contacts was

plotted (Figure 1). The mean duration was 49 seconds,

with large variations (SD 112 seconds), meaning a large

number of contacts of brief duration, a few contacts of

long duration, and a broad tail, suggesting that no typi-

cal contact duration could be defined. Statistical distri-

butions of the number and duration of contacts and of

the link weights were similar from one day to the next,

although the two daily contact networks were obviously

not identical.

In the daily contact networks, the mean degree of a

node was close to 30, with a distribution decaying expo-

nentially for large numbers. The mean clustering coeffi-

cient was 0.28, much larger than the mean value of 0.07

obtained for a random network of the same size and

mean degree. The network was also a small world, with

a mean shortest path of 2.2 (snapshots of the network

of the first conference day are shown; see Additional

File 2).

The link weights, by contrast, had a broad distribu-

tion, with a mean cumulated duration of the interaction

between two attendees of 2 minutes. The total duration

spent in contact by any attendee also had a broad distri-

bution, with a mean of 75 minutes. The Pearson corre-

lation coefficient between the degree of an individual in

the first and second day was 0.37, and that between the

total time spent in interaction in the first and second

day was 0.52. The fraction of repeated contacts in the

second day with respect to the first was 12%, and was

independent of the degree.

The distributions of R0 for the three networks using

the REP procedure were also plotted (Figure 2). In all

cases, the number of secondary cases from the initial

seed of the single infectious individual ranged from 0,

corresponding to the most probable event of no out-

break, to around 20 to 25 individuals (the mean values

and the variances obtained for the estimation of R0,

depending on the scenarios and the network type are

shown: Figure 3; see Additional file 3). In all scenarios,

higher values of R0, together with larger variances, were

observed in the HOM network compared with the HET

and DYN networks.

The distribution of the final number of cases for the

three networks and the REP data-extension procedure

are also shown (Figure 4). In this plot, a high probability

of rapid extinction of the pathogen spread was seen,

corresponding to a small number of infected individuals.

This was slightly smaller in the HOM case compared

with the HET and DYN networks. By contrast, when

the epidemic started, the final number of cases was

high, and it was larger in the HOM network than in the

HET and DYN networks. Intermediate cases with lim-

ited propagation were rare.

The distribution of the final number of cases for the

three networks was analyzed for the various parameters

of the SEIR model and for the various extrapolation
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scenarios (Table 1; see Additional file 4). In all cases,

and independently from the procedure adopted for

extending the 2-day dataset, the probability of extinction

for the HOM network was lower than for the HET and

DYN networks. In the case of large outbreaks, the final

number of cases was higher in the HOM network than

in the HET and DYN networks. Propagation over the

HET and DYN networks led to a similar extinction

probability and to a similar final number of cases. The

final numbers of cases for both disease scenarios (i.e.,

short and very short latency and infectious periods)

were also fairly close.

Regarding the peak times of disease spread in the var-

ious cases (Figure 5; see Additional file 5), we found

that in most cases, the peak of the epidemic was

reached first on average for spread within the HOM

network. However, the differences between the peak

times were small, and even the simulations on the net-

work with the least information gave a good estimate of

the peak time obtained when the full information on the

contact patterns was included.

Using the evolution in time of the number of infec-

tious and recovered individuals for the different data-

extension procedures and for the two sets of SEIR para-

meters, the temporal behavior of disease spread was

analyzed (Figure 6; Figure 7). Symbols represent the

median values, and lines represent the fifth and ninety-

fifth percentiles of the number of infectious and recov-

ered individuals. In all cases, disease spread on the

HOM network evolved slightly faster and reached a sig-

nificantly larger number of individuals, compared with

the HET and DYN, which had very similar characteris-

tics to each other.

Interesting differences were seen in the results of

simulations on datasets extended with different proce-

dures (Figure 5, Figure 6, Figure 7). The spread was

slightly slower in the RAND-SH case, but lasted longer,

ad consequently the final number of cases R∞ was lar-

ger. In fact, we systematically found R∞(REP)

<R∞(CONSTR-SH) <R∞(RAND-SH), and the more the

identities of the tags were shuffled, the more efficient

was the spread.

Discussion
Using a recently developed data collection technique

deployed during a 2-day conference involving 405 volun-

teers, we measured the dynamics of contact (face-to-face)

interactions between individuals during such a social

event. We used the data to compare the simulated spread

of communicable diseases on this dynamic network

(DYN) and on two networks, one heterogeneous (HET)

and one homogeneous (HOM), obtained by aggregating
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Figure 2 Distribution of R0 for the homogenous (HOM), heterogenous (HET) and dynamic (DYN) networks with the parameters s-1 = 2

days, v-1 = 4 days and b = 15.10-5/s, in the repetition (REP) procedure.
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the dynamic network at two distinct levels of precision. To

compensate for the relatively short duration of the obser-

vation period (2 days), we designed two different models

to construct dynamical contact networks spanning an

extended time period during which the spread of an infec-

tious disease could be simulated.

The broad distributions of the various network char-

acteristics reported in this study were consistent with

those seen in other contexts [30,36,37]. Our results bear

also similarity with those reported previously for inter-

action networks at conferences [30,36], in which the

resulting picture was not characterized by the presence

of ‘superspreaders’, when they were defined in terms of

the number of distinct individuals contacted. This was

however less clear when the cumulated interaction time

was taken into account.

In the three networks, disease extinction occurred as

frequently (between 36% and 47%) as large outbreaks

(between 34% and 49%). Outbreaks tended to be explo-

sive (attack rate between 51% and 80%), consistently

with previous work [4]. A large difference in the process

of disease spread was apparent between the HOM net-

work (which did not include any information on the

heterogeneity of contact durations nor on the dynamic

aspect) and the two other networks; for the HOM net-

work there was a systematically larger number of

infected individuals. This result implies that heterogene-

ity in the contact durations between individuals is asso-

ciated with a lower spread of transmission, suggesting

that a single individual who does not spend their time

equally between their contacts effectively reduces the

routes of disease spread [12,15]. Disregarding the het-

erogeneity of contact durations can lead to large differ-

ences in the estimated number of cases, suggesting that

information on the daily cumulated contact time

between individuals gives crucial information for correct
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modeling of disease spread. Interestingly, however, the

peak time was only slightly changed in the HOM net-

work, showing that even rather limited information can

yield good estimates of the epidemic timescales.

The comparison between disease spread in the HET and

DYN networks provides insights into whether temporal

constraints due to the precise sequence of the contacts

might affect the propagation of disease. Given two indivi-

duals, the overall expected probability of a transmission

occurring during the interval ∆T is the same in both cases

(that is, bWAB), so the only difference is that the contact is

not continuously present in the DYN network, but it may

be intermittent and repeated only during the actual

recorded contacts. This introduces time constraints on the

paths that the infectious agent can follow between indivi-

duals in the DYN network, which may slow down disease

spread on the DYN network compared with the HET net-

work. However, this slowing down of infection and the dif-

ferences in the final number of cases between the HET

and DYN networks were too small to be relevant for the

simulations investigated here. The similarity between the

spreading behaviors in the HET and DYN networks was

independent of the different procedures used to extend

the initial 2-day dataset. These procedures created succes-

sive artificial ‘days’ which differed from each other by var-

ious amounts, that is, with a different level of repetition of

contacts from one day to the next. The robustness of the

comparison between HET and DYN therefore indicates

that the observed similarity between the spreading on the

HET and DYN networks is due to the discrepancy

between the timescales considered for propagation (of the

order of days), and the temporal resolution and the con-

tact durations (of 20 seconds and of the order of minutes

up to a few hours, respectively). The total time spent in

contact by each pair of individuals was in this context suf-

ficient to describe precisely the propagation pattern, as

shown by the peak time and the final number of cases.

Therefore, for the simulation of diseases such as those

considered in this study, contact information at a daily

resolution might be enough to characterize disease spread,
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and the precise order of the sequence of contacts might

not be needed. However, this would not be the case for

extremely fast-spreading processes, as shown in previous

work [36]. This implies that there is a crossover between

the two regimens, which will be the subject of future

investigations.

Finally, the difference between the results obtained for

the different procedures REP, RAND-SH and CONSTR-

SH shows the importance of knowledge of the respective

fractions of repeated and new contacts between succes-

sive days [8,12,43]. Repeated encounters favor propaga-

tion, so that the REP procedure led to an initially faster

Table 1 Distribution of the final number of cases for the three network types according to the four scenarios (5000

runs, dynamic contact network of 405 participating attendees)

1 to 10 final cases
(AR* ≤ 2.5%)

11 to 40 final cases
(2.5% < AR ≤ 10%)

> 40 final cases (AR
> 10%)

Scenarios Parameters Networka Runs,
n

% of run with no
secondary cases

%
run

Mean
cases, n

90%
CI

%
run

Mean
cases, n

90%
CI

%
run

Mean
cases, n

90%
CI

REPb

Very short
latency

s-1 = 1
days

DYN 5000 47.3 18.2 2.3 1 to
6

0.7 15.9 11 to
22

33.8 208 169 to
242

Very short
infectiousness

v-1 = 2 days HET 5000 46.4 17.7 2.4 1 to
7

0.8 17.9 11 to
32

35.2 210 171 to
243

Transmission
rate

b = 3.10-4/s HOM 5000 41.7 11.7 2.2 1 to
6

0.2 16.6 11 to
30

46.3 285 257 to
310

Short latency s-1 = 2
days

DYN 5000 45.3 17.0 2.2 1 to
7

0.4 18.3 11 to
38

37.3 214 178 to
246

Short
infectiousness

v-1 = 4 days HET 5000 44.4 16.4 2.2 1 to
6

0.6 16.8 11 to
27

38.6 216 178 to
248

Transmission
rate

b = 15.10-5/
s

HOM 5000 38.7 13;2 2.1 1 to
6

0.1 13.2 11 to
15

48.1 288 262 to
310

RAND-SHc

Very short
latency

s-1 = 1
days

DYN 5000 44.8 19.4 2.8 1 to
8

2.2 17.9 11 to
31

33.6 278 223 to
319

Very short
infectiousness

v-1 = 2 days HET 5000 45.4 18.5 2.6 1 to
7

1.6 17.6 11 to
30

34.5 284 241 to
322

Transmission
rate

b = 3.10-4/s HOM 5000 39.9 14.3 2.6 1 to
7

0.8 15.7 11 to
28

45.0 324 291 to
350

Short latency s-1 = 2
days

DYN 5000 40.6 18.6 2.7 1 to
8

1.4 19.2 11 to
31

39.4 297 254 to
331

Short
infectiousness

v-1 = 4 days HET 5000 39.5 18.0 2.7 1 to
8

1.3 16.7 11 to
30

41.2 300 259 to
333

Transmission
rate

b = 15.10-5/
s

HOM 5000 35.9 15.7 2.5 1 to
7

0.9 17.0 11 to
31

47.5 325 293 to
352

CONSTR-SHd

Very short
latency

s-1 = 1
days

DYN 5000 45.4 17.7 2.4 1 to
7

1.0 17.0 11 to
28

35.8 240 194 to
278

Very short
infectiousness

v-1 = 2 days HET 5000 46.8 16.5 2.4 1 to
7

0.8 19.0 11 to
33

35.9 245 202 to
282

Transmission
rate

b = 3.10-4/s HOM 5000 39.8 13.3 2.3 1 to
6

0.7 15.4 11 to
21

46.2 308 278 to
334

Short latency s-1 = 2
days

DYN 5000 40.9 18.2 2.3 1 to
6

0.8 16.8 11 to
34

40.2 258 215 to
292

Short
infectiousness

v-1 = 4 days HET 5000 41.3 16.8 2.3 1 to
7

0.5 14.0 11 to
25

41.4 257 213 to
292

Transmission
rate

b = 15.10-5/
s

HOM 5000 35.7 14.8 2.4 1 to
7

0.4 15.2 11 to
21

49.2 314 284 to
339

aNetworks: DYN = dynamic; HET = heterogenous; HOM = homogenous.
bRepetition.
cRandom shuffling.
dConstrained shuffling.

Stehlé et al. BMC Medicine 2011, 9:87

http://www.biomedcentral.com/1741-7015/9/87

Page 10 of 15



spread, but contacts between different individuals from

one day to the next favor propagation across the net-

work, so that the RAND-SH procedure led in the end to

a larger attack rate.

Compared with other approaches [11,26,27], the data

collection method used in this study makes it possible

to gather information on actual face-to-face contacts,

with high temporal and spatial resolution [28,30,36]. It

allows access to the precise durations, time and order of

the successive contacts between individuals, fully repre-

senting the corresponding heterogeneity and the causal-

ity constraints in the chain of transmission.

Limitations
Unsupervised data-collection systems based on RFID

infrastructures, such as the one presented here

[28,30,37] carry some caveats that need to be discussed.

First, individuals are not followed outside of the zone

covered by RFID readers, so that contacts between parti-

cipants that occur during the day outside of the area

covered by the RFID readers are not monitored. This

results in an underestimation of the number of contacts,

and therefore of the possibilities for disease spread.

Moreover, in this study, the periods of ‘nights’ repre-

sented a proportion of 56% of the 24-hour period, dur-

ing which individuals were assumed to be isolated. This

may artificially increase the probability of extinction if

the contagiousness period of an infected individual ends

during these periods, precluding further transmission.

This issue may be solved by upcoming technological

improvements that will allow operation of the RFID sen-

sing layer in a fully distributed fashion with on-board

storage on the devices themselves; that is, such RFID

tags will register and store contacts even if they are not

close to RFID readers.

Another issue, well known in the field of social net-

works, is due to the partial sampling of the population.

Of the 1,200 attendees at this conference, 405 (34%)

participated in the data collection. Consequently, only

these attendees were taken into account in the model of
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Figure 6 Temporal evolution of the spreading process for the three networks with the parameters s-1 = 1 days, v-1 = 2 days and b =

3.10-4/s (very short latency, very short infectiousness). (A, C, E) Evolution of the number of infectious individuals; (B, D, F) number of

recovered. (A, B) Repetition (REP) procedure; (C, D) to the constrained shuffling (CONSTR-SH) procedure and panels E, F to the random shuffling

(RAND-SH) one. Only runs with AR > 10% are taken into account. Symbols represent the median values, and lines represent the fifth and ninety-

fifth percentiles of the number of infectious and recovered individuals.
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disease spread, whereas they were in fact also in contact

with the non-participating attendees. Previous investiga-

tion [30] has shown that for a wide variety of real-world

deployments of the RFID proximity-sensing platform

used in this study, the behavior of the statistical distri-

butions of quantities such as contact durations is not

altered by unbiased sampling of individuals. However,

paths of disease spread between sampled attendees that

Figure 7 Distribution of the final number of cases for the three networks with the parameters s-1 = 2 days, v-1 = 4 days and b =

15.10-5/s (short latency, short infectiousness) in the repetition (REP) procedure.
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also involved unsampled attendees may have existed, but

were not taken into account. This effect may lead to an

underestimation of disease spread, and future work will

focus on quantification of such possible biases, for

instance through bootstrapping procedures. In addition,

it is possible that the volunteering participants them-

selves introduced a systematic bias into the sampled

population concerning their interaction behavior, as

they self-selected to participate to the experiment. How-

ever, assessment of this effect would require indepen-

dent data sources for monitoring unsampled individuals,

inevitably limiting the size of populations and settings

because of logistics constraints. Although interesting for

the understanding of social behavior, such a study

would need to be specifically designed and tailored to

the research question, thus going beyond the aim of the

present study. Another interesting perspective would be

to compare and integrate the results of unsupervised

contact measurements with the results of simultaneously

performed survey- or diary-based inquiries.

Finally, the limited period (2 days) of data collection

made it necessary to generate artificially longer datasets

by different procedures in order to model the spread of

pathogens on realistic timescales. Deployment of the

measuring infrastructure on much longer timescales is

planned so as to validate such generation procedures

and to measure their effect.

Conclusions
Despite the limitations described above, the present study

emphasizes the effects of contact heterogeneity on the

dynamics of communicable diseases. On the one hand,

the small differences between simulated spread on both

the HET and DYN networks shows that taking into

account the very detailed actual time ordering of the con-

tacts between individuals, with a time resolution of min-

utes, does not seem to be essential to describe disease

spread on a timescale of several days or weeks. On the

other hand, the large differences in disease spread in the

HOM network emphasize the need to include detailed

information about the heterogeneity of contact duration

(compared with an assumption of homogeneity) to

model disease spread, as also found previously [12,13] for

simulations of disease spread dynamics based on diary-

based survey data. Results from the different procedures

for data extension also showed how the rate of new con-

tacts is a very important parameter [8,12,43]. Overall, the

combined comparison of the spreading processes simu-

lated on the HET, DYN and HOM networks and using

the different data-extension procedures gave an impor-

tant assessment of the level of detail concerning the con-

tact patterns of individuals that is needed to inform

modeling frameworks of epidemic spread.

In this context, a data collection infrastructure such as

the one used in this study seems to be very effective, as it

gives access to the level of information needed, and also

allows the simulation of very fast-spreading processes

characterized by timescales comparable with those intrin-

sic to social dynamics, where even the precise ordering of

contact events becomes crucial. These measurements

should be also extended to other contexts in which indivi-

duals interact closely in different ways, such as workplaces,

schools or hospitals [44,45]. More experimental work is

needed to collect data over longer time periods, and in

particular to understand better how datasets limited in

time can be artificially extended to yield realistic datasets,

on various samples of individuals and in various locations.

The results of these approaches could be helpful to antici-

pate the effect of preventive measures, and contribute to

decisions about the best strategies to control the spread of

known or emerging infections.
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