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We simulate angular-resolved RABBITT (reconstruction of attosecond beating by interference of two-photon

transitions) measurements on valence shells of noble-gas atoms (Ne, Ar, Kr, and Xe). Our nonperturbative

numerical simulation is based on solution of the time-dependent Schrödinger equation (TDSE) for a target atom

driven by an ionizing XUV and dressing IR fields. From these simulations we extract the angular-dependent

magnitude and phase of the RABBITT oscillations and deduce the corresponding angular anisotropy β parameter

and Wigner time delay τW for the single XUV photon absorption that initiates the RABBITT process. Said β

and τW parameters are compared with calculations in the random-phase approximation with exchange (RPAE),

which includes intershell correlation. This comparison is used to test various effective potentials employed

in the one-electron TDSE. In lighter atoms (Ne and Ar), several effective potentials are found to provide

accurate simulations of RABBITT measurements for a wide range of photon energies up to 100 eV above

the valence-shell threshold. In heavier atoms (Kr and Xe), the onset of strong correlation with the d shell

restricts the validity of the single active electron approximation to several tens of eV above the valence-shell

threshold.
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I. INTRODUCTION

Angular-resolved RABBITT (reconstruction of attosecond

beating by interference of two-photon transitions) experiments

have been used to coherently control the photoelectron emis-

sion direction [1] and, more recently, to measure angular-

dependent time delay in atomic photoionization [2,3]. These

experiments bring sensitive information on ultrafast electron

dynamics influenced by correlation and exchange effects.

Theoretical modeling of the angular-resolved RABBITT pro-

cess has been provided within the framework of lowest-order

perturbation theory (LOPT) [4,5] and nonperturbatively by

solving the time-dependent Schrödinger equation (TDSE)

[2,6]. In our preceding paper [6], we solved TDSE for a

noble-gas atom (He or Ne) driven by ionizing XUV and

dressing IR fields in the configuration of a typical RABBITT

measurement. From this solution we deduced the angular

dependence of the photoemission time delay as measured

by the RABBITT technique [7,8]. Our model was calibrated

against a recent angular-resolved measurement on He [2]. We

employed the soft photon approximation (SPA) and used a

hydrogenic continuum-continuum (CC) correction to connect

the magnitude and phase of the RABBITT oscillations with

the angular anisotropy β parameter and the Wigner time delay

τW for the single-XUV-photon absorption that initiates the

RABBITT process.

The solution of the TDSE in Ref. [6] was obtained in

the single active electron (SAE) approximation and utilized

the optimized effective potentials (OEPs) of Sarsa et al. [9].

While such an approach was found to be valid for He, this

remains to be shown for Ne and heavier noble-gas atoms. In

the present work, we conduct these tests for noble gases from

Ne to Xe by comparing the β and τW parameters with those

coming from calculations performed in the random-phase

approximation with exchange (RPAE), the latter including

intershell correlation and exchange of the photoelectron with

the remaining ionic core. These effects are not included in

the TDSE-SAE model. However, the latter model takes an

accurate account of ultrafast electron dynamics whereas the

RPAE is unable to do so by its basis based construction. In

lighter atoms (Ne and Ar), several effective potentials are found

to provide accurate simulation of RABBITT measurements

over a wide range of photon energies up to 100 eV above the

valence shell threshold. In heavier atoms (Kr and Xe), the onset

of strong correlation with the subvalent d shell restricts the

validity of the SAE approximation to several tens of eV above

the valence-shell threshold.

A further goal of the present work is to test the universality

of the hydrogenic CC correction (τcc). This correction relates

the single-photon Wigner time delay (τW ) and the measured

atomic time delay (τa) via

τa = τW + τcc. (1)

A hydrogenic CC correction was used in the theoretical anal-

ysis of the photoemission time delay measured close to the 3s

ionization-cross-section minimum in Ar [10]. The theoretical

and experimental time delays reported in Ref. [10] differed

by as much as 50 as and no plausible explanation to this

disagreement was found to date. We address this issue in the

present work. More recently, the RABBITT measurement on

Ne of Isinger et al. [11] has finally reconciled the persistent

disagreement between the earlier experiment [12] and a large

number of theoretical predictions [13–18]. Our present calcu-

lations are similarly in perfect agreement with Ref. [11].

The remainder of this paper is organized as follows: In

Sec. II we describe our method and numerical techniques.

In Sec. III we present and analyze our numerical data. We

conclude by highlighting links with existing experimental

measurements and propose several new areas of interest.
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II. THEORY

A. Solution of time-dependent Schrödinger equation

As previously done [6], we solve the one-electron TDSE

for a target atom

i∂�(r)/∂t = [Ĥatom + Ĥint(t)]�(r), (2)

where the radial part of the atomic Hamiltonian

Ĥatom(r) = −
1

2

d2

dr2
+

l(l + 1)

2r2
+ V (r) (3)

contains an effective one-electron potential V (r). The various

potentials considered are detailed in Sec. II B. The Hamiltonian

Ĥint(t) describes interaction with the external field and is

written in the velocity gauge

Ĥint(t) = A(t) · p̂, A(t) = −

∫ t

0

F(t ′) dt ′. (4)

This external field is comprised of both XUV and IR fields.

The XUV field is modelled by an attosecond pulse train (APT)

with the vector potential

Ax(t) =

5
∑

n=−5

(−1)nAn exp

(

−2 ln 2
(t − nT/2)2

τ 2
x

)

× cos [ωx(t − nT/2)], (5)

where

An = A0 exp

(

−2 ln 2
(nT/2)2

τ 2
T

)

.

Here, A0 is the vector potential peak value and T = 2π/ω is

the period of the IR field. The XUV central frequency is ωx and

the time constants τx,τT are chosen to span a sufficient number

of harmonics in the range of photon frequencies of interest for

a given atom.

The vector potential of the IR pulse is modelled by the

cosine-squared envelope,

A(t) = A0 cos2

(

π (t − τ )

2τIR

)

cos [ω(t − τ )]. (6)

The IR pulse is shifted relative to the APT by a variable delay

τ such that the RABBITT signal of the even-2q sideband (SB)

oscillates as

S2q(τ ) = A + B cos [2ωτ − C] . (7)

The solution of the TDSE (2) is found by using the iSURF

method as given in Morales et al. [19]. A typical calcu-

lation with XUV and IR field intensities of 5×109 and

3×1010 W/cm2, respectively, would take up to 35 CPU hours

for each τ .

The RABBITT parameters A, B, and C entering Eq. (7) can

be expressed via the absorption and emission amplitudes

A = |M
(−)

k |2 + |M
∗(+)

k |2, B = 2Re[M
(−)

k M
∗(+)

k ],

C = arg[M
(−)

k M
∗(+)

k ] = 2ωτa. (8)

Here, M
(±)

k are complex amplitudes for the angle-resolved

photoelectron produced by adding or subtracting an IR photon,

respectively. By adopting the soft photon approximation (SPA)

[20] we can write

A,B ∝ |J1(α0 · k)|2|〈f |z|i〉|2

∝ [1 + βP2(cos θk)] cos2 θk. (9)

Here we made a linear approximation to the Bessel function

because the parameter α0 = F0/ω
2 is small in a weak IR field.

See the Appendix for a more detailed derivation. In Eq. (9),

θk is the angle between the photoelectron emission direction

k̂ and the electric-field vector of the linearly polarized light.

By fitting the calculated angular dependence of the A and B

parameters with the SFA expression (9) we can obtain the two

sets of the angular anisotropy parameters βSB
A and βSB

B and

compare them with the value calculated by the RPAE model.

At the same time, we derive the angular dependence from the

odd high-harmonic (HH) peaks by fitting angular variation of

their amplitude with 1 + βHHP2(cos θk). Thus, for each target

atom three sets of β parameters are extracted and analyzed

over a wide photon energy range.

Laurent et al. [1] proposed a different parametrization of

the angular dependence of the RABBITT signal. In the case

for which the APT has only odd HH peaks, it reads

Fq(θk,τ ) =

2Lmax
∑

j=0

βj (q,τ )Pj (cos θk)

∝ 1 + β2P2(cos θk) + β4P4(cos θk). (10)

While β2 in Eq. (10) is identical with our definition of βHH, β2

and β4 can be expressed via βSB. By expanding Eq. (9) over the

Legendre polynomials, we arrive at the following expressions:

β2 =
70 + 55βSB

35 + 14βSB
, β4 =

36βSB

35 + 14βSB
. (11)

In the following, we show that, in all presently studied cases,

βHH ≃ βSB
A ≃ βSB

B and one set of β parameters fits all the

RABBITT measurements. The β4 and β2 parameters depend

on this β linearly. Thus, the β4 parameter is redundant and its

introduction by Cirelli et al. [3] is superfluous.

The C parameter is converted to the atomic time delay τa

by Eq. (8) and analyzed as a function of the photoelectron

direction relative to the polarization axis. The angular depen-

dence of τa is compared with the analogous dependence of the

Wigner time delay τW [21]. The time delay difference τa − τW

in the zero-angle direction is compared with the hydrogenic

CC correction τCC [22].

B. One-electron potential

In our previous work on He and Ne, we employed an

optimized effective potential (OEP) [9]. This potential is

derived by a simplified treatment of the exchange term in the

Hartree–Fock (HF) equations using the Slater X-α ansatz [23].

The OEP potential takes the form

Ve(r) = −
1

r

⎛

⎝1 + (Z0 − 1)

S
∑

p=0

np
∑

k=1

ck,prpe−βk,pr

⎞

⎠

≡ −
Z∗(r)

r
(12)
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FIG. 1. The effective charge Z∗(r) = −rV (r) of Ne generated

from various one-electron potentials. (top) The effective charge Z∗

derived from the LHF potential using the HF radial orbital κ = 0.01

and ℓ = 0 is shown with the (red) open circles. The fit with the analytic

expression (15) is shown by the (red) solid line. (middle) The effective

charges generated from the optimized effective potential (OEP) of

Ref. [9] and the LHF potential are compared with the spherically

symmetric Hartree potential (13). (bottom) The charge difference

(exchange hole) Z∗ − Z∗
H for the OEP and LHF potentials.

where the effective charge Z∗(r) varies from the unscreened

nucleus charge Z0 as r → 0 and unity at large distances r →

∞. The former limit is satisfied by imposing the condition
∑n0

k=1 ck,0 = 1. The effective charges Z∗(r) for Ne and Ar are

shown in Figs. 1 and 2, respectively.

It is instructive to compare Z∗ with the effective charge

derived from the spherically symmetric part of the Hartree

potential Z∗
H = Z0 − rVH(r), where

VH(r) =
1

4π

∫

d�r

∫ ∞

0

d r ′ ρ(r ′)

|r ′ − r|
,

ρ(r ′) =
∑

nlm

|ψnlm(r ′)|2.
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FIG. 2. Same as Fig. 1 for argon. In addition, the effective charge

Z∗(r) = −rV (r) is generated from the atomic pseudopotential of

Miller and Dow [24] (labeled MD) and the Muller potential [7].

By way of spherical integration, the above expression can be

reduced to the following radial integral:

VH(r) =

∫ ∞

0

r ′2dr ′ ρ(r ′)

r>

, ρ(r ′) =

N−1
∑

nl

|Rnl(r
′)|2. (13)

Here, r> = max(r,r ′) and the upper limit in the sum N − 1

indicates that the number of electrons in the singly ionized

atomic core is reduced by one. The charge Z∗
H is derived

from the charge density of the occupied atomic orbitals and

it neglects the exchange of the departing photoelectron with

those in the core. Thus, Z∗
H provides a convenient baseline

for elucidating the exchange effects. The charge difference

Z∗ − Z∗
H is expected to be negative as the exchange softens

the atomic core and reduces its screening capacity. In density

functional theory (DFT), this effect is termed the exchange and

correlation hole [25].

A further model potential that we employ is that of a

localized Hartree–Fock (LHF) potential generated from a

known continuous orbital calculated in a frozen HF core [26].
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TABLE I. The valence-shell energies, in atomic units, calculated

with various model potentials. The experimental thresholds are from

Ref. [27]. The LHF entries also contain the α parameters from

Eq. (15).

Method Ne 2p Ar 3p Kr 4p Xe 5p

Expt. [27] 0.792 0.579 0.514 0.445

HF 0.850 0.591 0.524 0.457

OEP [9] 0.851 0.590 0.528 0.467

LHF 0.843(2.29) 0.583(2.11) 0.202(2.80) 0.412(2.54)

Muller [7] 0.581

MD [24] 0.423 0.203

The radial Schrödinger equation with the atomic Hamiltonian

(3) can be rewritten such that the LHF is expressed in terms of

the known HF radial orbital and its second derivative,

VHF(r) =
κ2

2
−

ℓ(ℓ + 1)

2r2
+

P ′′
κℓ(r)

Pκℓ(r)
. (14)

The LHF should be weakly sensitive to the choice of the

momentum κ and the orbital momentum ℓ. For practical

reasons, we chose κ = 0.01 and ℓ = 0 to avoid multiple nodes

of Pκℓ(r) where the right-hand side of Eq. (14) diverges. The

effective charge Z∗ = −rVHF(r) derived from Eq. (14) is a

smooth function outside of these nodes and can be fit with an

analytical expression

Z∗
HF(r) = (Z0 − 1)e−ar + 1. (15)

This fit with a = 2.29 for Ne and a = 2.11 for Ar is shown in

the top panels of Figs. 1 and 2, respectively.

The p = 0 term in Eq. (12) is analogous to the Muller

potential introduced specifically for Ar [7],

VM(r) = −
1

r
[1 + 5.4 exp(−r) + 11.6 exp(−3.682r)]. (16)

Miller and Dow [24] suggested an alternative analytical ex-

pression

Z∗
MD(r) = 1 +

(Z0 − 1)(1 − r/R)2θ (R − r)

1 + Cr + Dr2
, (17)

where θ (R − r) is the unit step function. The numerical

parameters R, C, and D are chosen to match the variation

of the angular anisotropy parameter β with energy across

the Cooper minimum (CM) known from experiment. The

effective charges generated with the potentials (16) and (17)

for Ar are shown in Fig. 2 along with those extracted from the

OEP and LHF potentials. As compared with Ne, the role of

exchange is significantly larger in Ar with the corresponding

exchange hole being much greater. We also note that charge

difference Z∗ − Z∗
H in argon with the LHF, and particularly

MD, potentials is slightly positive at larger distances.

The valence-shell energies calculated with various model

potentials along with the experimental threshold energies are

compiled in Table I. For the LHF potential, we also show in

parentheses the α parameters from Eq. (15).
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FIG. 3. Angular anisotropy β parameters for the Ne 2p valence

shell extracted from the TDSE calculations with the LHF potential

(top) and the OEP potential (bottom). The βHH parameters extracted

from the angular dependence of the high-harmonic peaks are plotted

with (red) filled circles. Same parameters βSB extracted from the

angular variation of the RABBITT A and B coefficients in Eq. (8)

are plotted with (orange) triangles and (blue) asterisks, respectively.

The RPAE calculation is shown by the solid line. The experiment [28]

is given by the points with the error bars.

III. RESULTS

A. Neon 2 p shell

In Fig. 3 we display the angular anisotropy β parameters for

the Ne 2p valence shell extracted from the TDSE calculations

with the LHF potential (top) and the OEP potential (bottom).

The βHH parameters extracted from the angular dependence of

the high-harmonic peaks are plotted along with the βSB param-

eters extracted from the angular variation of the RABBITT A

and B parameters in Eq. (8). The RPAE calculation is shown

with the solid line. This calculation is known to reproduce

accurately the experimental β parameters across the studied

photon energy range [28].

We see that the harmonics and sideband TDSE calculations

of β parameters are consistent between each other and are

fairly close to the XUV-only RPAE calculation, with the LHF

results marginally closer to the RPAE than the OEP ones. In our

previous work [6] we employed the OEP potential and quoted

βSB ≃ 0.3 for sideband 20 (SB20) which is in reasonable

agreement with the present results for both potentials.

The angular dependence of the atomic time delay τa(θk)

as a function of the escape angle is shown in Fig. 4. The

top and middle panels display the TDSE calculations with

the LHF and OEP potentials, respectively. The bottom panel

shows the angular dependence of the Wigner time delay τW(θk)

from the XUV-only RPAE calculation. We see that both TDSE
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FIG. 4. Angular variation of the atomic time delay �τa =

τa(θk) − τa(0) in various sidebands of the Ne 2p RABBITT trace

calculated with the LHF potential (top) and the OEP potential

(middle). (bottom) Angular variation of the Wigner time delay �τW =

τW(θk) − τW(0) from the XUV-only RPAE calculation.

calculations are quite close to one another while the RPAE

calculation suggests an angular dependence which is an order

of magnitude weaker. The consequence being that nearly all the

angular dependence of the atomic time delay in Ne comes from

the CC correction introduced by the probe IR field. A similar

observation was made for He where the Wigner time delay

is isotropic [2]. In Ne, the Wigner time delay is not entirely

isotropic because the 2p → ǫs and 2p → ǫd channels enter

the ionization amplitude with their own spherical harmonics;

namely, Y00(θk) and Y20(θk). However, as a result of the Fano

propensity rule [29], the d continuum is strongly dominant and

the s continuum contributes only a very weak angular modu-

lation. We note that this situation would change drastically

near the CM in Ar and heavier noble gases where the angular

dependence of the Wigner time delay is very strong.

The time delay in the polarization axis direction θk = 0

is shown in Fig. 5. In the top panel, we compare the atomic

time delay from the TDSE calculation with the LHF potential
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FIG. 5. Time delay in the polarization axis direction θk = 0. (top)

The atomic time delay τa from the TDSE calculation (red filled circles)

is compared with the Wigner time delay (orange triangle) from the

RPAE calculation. The CC correction τCC is shown by the thin dotted

line whereas the sum τW + τCC is displayed with the (blue) dotted

line. (bottom) The CC correction τCC (thin dotted line) is compared

with the atomic and Wigner time delay difference τa − τW from the

TDSE calculations with the LHF and OEP potentials (shown by the

red filled and black open circles).

and the Wigner time delay τW from the RPAE calculation.

The hydrogenic CC correction τCC, which is shown separately,

is then added to the Wigner time delay. This correction, as

a function of the photoelectron energy, is represented by the

analytic expression

τCC(E) = NE−3/2[a ln(E) + b], (18)

where the coefficients N , a, and b are found from fitting the

regularized continuum-continuum delay shown in Fig. 7 of

Ref. [22]. We see that, except for the near-threshold region

where the photoelectron energy is very small and where the

regularization of τCC may not be applicable, the identity (1)

τa ≃ τW + τcc holds very well.

This utility of the hydrogenic CC correction can be used

to analyze the recent set of RABBITT measurements on Ne

[11] where the time-delay difference between the 2s and 2p

shells in Ne was determined. This analysis is shown in Fig. 6.

In the top panel, we plot the Wigner time delay from the

RPAE calculation for the individual 2s and 2p shells and

their difference. In the bottom panel, the Wigner time-delay

difference is augmented by that of the CC correction. We

assume that the CC correction τCC is a universal function of the

photoelectron energy and as such the CC correction difference

between shells at the same photon energy is caused by their
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FIG. 6. (top) Wigner time delay in the 2s and 2p shells of Ne

and their difference. (bottom) Atomic time-delay difference τa(2s) −

τa(2p) as measured experimentally by Isinger et al. [11] (filled circles)

and Schultze et al. [12] (red square). The Wigner time delay difference

τW(2s) − τW(2p) (red solid line) is augmented by the CC correction

difference τCC(2s) − τCC(2p) (dotted line) to get the atomic time delay

difference τa(2s) − τa(2p) (blue solid line) which is compared with

the calculated result of Isinger et al. [11] (purple squares).

varying ionization potentials. The atomic time delay difference

τa(2s) − τa(2p) = τW(2s) − τW(2p) + τCC(2s) − τCC(2p)

(19)

is compared with the RABBITT measurement and the RPA

calculation presented in Ref. [11]. We see that both calculations

(almost indistinguishable in the scale of the figure) reproduce

the measurement [11] very well. In contrast, the older measure-

ment [12] deviates from the theoretical predictions by nearly

a factor of two.

B. Argon 3 p shell

The β parameters for the Ar 3p shell extracted from the

angular dependence of the high-harmonic peaks and sidebands

are shown in Fig. 7. The TDSE calculations performed with

the LHF and OEP potentials are shown in the top and bottom

panels, respectively. The three sets of β parameters are com-

pared with the RPAE calculation and with experiment [30].

We observe from this figure that all three sets of β parameters

extracted from the TDSE calculation with the LHF potential

follow closely the RPAE prediction and agree with experiment.

At the same time, the OEP TDSE results are displaced relative

to the RPAE in the photon energy scale by as much as 10 eV.

This mismatch is a reflection of the displacement of the CM

position in the photoionization cross section. This position can
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FIG. 7. Same as Fig. 3 for Ar 3p shell. The experiment [30] is

given by the points with error bars.

be located very accurately from the squared radial integral [31]

∣

∣

∣

∣

∫ ∞

0

P3p(r)PEd (r)rdr

∣

∣

∣

∣

2

. (20)

A plot of this integral is given in Fig. 8 where the radial orbitals

of the bound and continuous states have been calculated from

the Schrödinger equation with Hamiltonian (3) using the LHF,

OEP, Muller [7] and Miller and Dow [24] potentials. The equiv-

alent value from the HF and RPAE calculations are also shown.

We see that the CM position is misplaced for each of the poten-

tials except the LHF. Subsequently, in the following, we present

our TDSE results calculated with the LHF potential only.
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FIG. 8. Squared radial integral (20) calculated with the LHF (red

filled circles), OEP (open green circles), Miller and Dow [24] (blue

asterisks), and Muller [7] (purple triangles) potentials for Ar. The

HF and RPAE results are shown with black dotted and solid lines,

respectively.
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FIG. 9. (top) Anisotropy parameters derived from the angular

variation of the high-harmonic peaks. The two sets of experimental

values β2 from Ref. [3] are shown by open circles with error bars. The

synchrotron measurement [32] is shown by black dots. The orange

triangles connected with a solid line visualize βHH from the LHF

TDSE calculation whereas the black solid line displays the RPAE

result. (bottom) Experimental β2 and β4 parameters are shown by the

same symbols as in the top panel. The same parameters extracted from

the LHF TDSE calculation are shown by orange triangles (derived

from A parameter) and blue asterisks (B parameter).

In Fig. 9 we compare β2 and β4 parameters as measured by

Cirelli et al. [3] and those expressed in Eq. (11). On the top

panel we compare β2 and βHH derived from the main harmonic

peaks while on the bottom panel we display β2, β4 as measured

directly from the SB amplitude and as expressed via βSB(A)

and βSB(B) in Eq. (11). We see that the β4 parameters compare

rather favorably whereas the β2 parameters are a bit higher than

in the experiment.

The angular variations of the atomic time delay �τa =

τa(θk) − τa(0) in various sidebands of the Ar 3p RABBITT

trace and the Wigner time-delay angular variation �τW =

τW(θk) − τW(0) at the same photon energies are displayed in

Fig. 10 (top and bottom panels, respectively). In stark contrast

to the analogous set of data for Ne 2p shown in Fig. 4, the

angular variation of the Wigner time delay for Ar 3p is of the

same order of magnitude and is almost identical for SB30 near

the CM. As a reference, in both panels of Fig. 10, the LOPT

calculation [4] for SB32 is shown. Beyond the CM (SB48 and

SB60), the angular variation of the Wigner time delay flattens

whereas the same variation of the atomic time delay changes

its sign and simultaneously lessens in magnitude.

In Fig. 11 we compare the angular variation of the atomic

time delay �τa = τa(θk) − τa(0) in SB14 (top) and SB16. In

the experiment [3], SB16 is tuned in resonance with the 4s−15p
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FIG. 10. (top) Angular variation of atomic time delay �τa =

τa(θk) − τa(0) in various sidebands of Ar 3p RABBITT trace cal-

culated with the LHF potential. (bottom) Angular variation of the

Wigner time delay �τW = τW(θk) − τW(0) from the XUV-only RPAE

calculation. The angular variation of time delay for SB32 from Ref. [4]

is shown for comparison.

autoionizing state while SB14 is off the resonance. For SB14

we find a fairly good agreement between the experiment and

the present LHF TDSE calculation. The LOPT calculation
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FIG. 11. Same as Fig. 10 for SB14 (top) and SB16 (bottom). Two

sets of measurements from Ref. [3] are shown by open circles with

error bars. The LOPT result from the same work is visualized by

a dashed line. The LHF TDSE result is shown by orange triangles

connected by the solid line. The bottom panel also shows the

calculation from Ref. [3], which includes the Fano resonance (black

solid line).
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FIG. 12. Same as Fig. 5 for Ar 3p shell. In addition, the atomic

time delay τa from the LOPT calculation [4] and the CC correction

τCC = (φ−
CC − φ+

CC)/2ω obtained from the phases φ±
CC reported in

Ref. [3] are shown.

reported in Ref. [3] is also very close. For SB16 both the TDSE

and LOPT calculations predict considerably weaker angular

dependence than in the experiment and the calculation which

accounts for resonance by the Fano configuration-interaction

formalism.

Various time delays for the Ar 3p shell in the zero-angle

polarization direction are shown in Fig. 12. In the top panel, we

display the atomic time delay τa from the TDSE LHF calcula-

tion, the Wigner time delay τW from the RPAE calculation, the

regularized hydrogenic CC correction τCC, and their sum τW +

τCC. We also show the atomic time delay τa from the LOPT

calculation [4]. The latter is almost indistinguishable from the

sum τW + τCC, but visibly different from the TDSE calculation

for τa . In the bottom panel we show the hydrogenic τCC and

the argon-specific value τCC = (φ−
CC − φ+

CC)/2ω obtained from

the phases φ±
CC reported in Ref. [3]. Both values, which are

remarkably close, are compared with the difference τa − τW.

Unlike in the Ne 2p case, displayed in the bottom panel of

Fig. 5, these two derivations of the CC correction give quite

different results. This difference may, in principle, be attributed

to the different approximations used in TDSE-LHF and RPAE

calculations. The former employs a localized version of the

HF potential and neglects the correlation while the latter gives

the full account to the exchange and intershell correlation.

However, the same calculations return quite similar sets of

β parameters. As such, it is more likely that the hydrogenic

approximation to τCC breaks for the argon 3p shell.

This break down may have implications to theoretical

interpretation of the time delay difference in the valence shell
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FIG. 13. (top) Wigner time delay in the 3s and 3p shells of Ar

and their difference. (bottom) Atomic time-delay difference τa(3s) −

τa(3p) as measured experimentally by Guénot et al. [10] (filled cir-

cles). The Wigner time-delay difference τW(3s) − τW(3p) (red solid

line) is augmented by the CC correction difference τCC(3s) − τCC(3p)

(dotted line) to get the atomic time-delay difference τa(3s) − τa(3p)

(blue dashed line).

of Ar shown in Fig. 13. Here the atomic time-delay difference

τa(3s) − τa(3p) = τW(3s) − τW(3p) + τCC(3s) − τCC(3p)

(21)

is computed with the hydrogenic CC corrections and compared

with the RABBITT measurement [10]. As τCC(3p) deduced

from the present TDSE calculation is more negative by about

20 as near the 40 eV mark as compared with the hydrogenic

estimate, the atomic time-delay difference estimated from

Eq. (21) will be shifted upwards by the same amount. It will

make the disagreement with the measurement [10] even worse.

The present TDSE calculation is not able to give an estimate to

τCC(3s) because ionization of this shell is strongly correlated

with that of the valence 3p shell and goes beyond the SAE

approximation.

C. Krypton 4 p shell

We test validity of various effective potentials for Kr

by determining the CM position in the 4p photoionization

cross section. We do so by comparing the squared radial

integrals (20) calculated with the bound-state 4p orbital and

the continuous d wave obtained from the radial Schrödinger

equation (3). This comparison is shown in Fig. 14. Unlike in

the case of Ar 3p photoionization, illustrated in Fig. 8, the CM

position calculated in the HF and RPAE differs by nearly 20 eV.

This is so because of the influence of the intershell correlation

between the 4p and 3d shells and which is accounted for in the
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FIG. 14. The squared radial integral (20) calculated with the LHF

(red filled circles), OEP (open green circles), Miller and Dow [24]

(blue asterisks) potentials for Kr. The HF and RPAE results are shown

with black dotted and solid lines, respectively.

RPAE but not in the HF calculation. This correlation is absent

in the case of Ar 3p as the 3d shell is vacant for this atom. The

CM position calculated with the LHF and MD potentials is

in between the HF and RPAE whereas the OEP calculation

displaces the CM to lower energies very significantly. We

discard the OEP in the following.

The three sets of angular anisotropy β parameters extracted

from the high-harmonic peaks and the side bands are shown

in Fig. 15 calculated with the LHF (top) and MD (bottom)

potentials. We see that agreement between the TDSE and
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FIG. 15. Same as Fig. 3 for the Kr 4p shell. The experimental

data are from Ref. [33].
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FIG. 16. The squared radial integral (20) calculated with the LHF

(red filled circles), and OEP (open green circles) potentials for Xe.

The HF and RPAE results are given by the black dotted and solid

lines, respectively.

RPAE calculations is generally good but these calculations

diverge at higher photon energies. This occurs well below

the 3d threshold whose position can be identified by the

converging autoionization resonances visible in the RPAE

curve. Experiment [33] clearly favors the RPAE calculation.

Partial agreement between the TDSE calculations with the

LHF and MD potentials, the RPAE and the experiment may

be somewhat fortuitous given a strong deviation of the TDSE

binding energies from the experimental threshold (see Table I).

Should the β parameters in Fig. 15 be plotted versus the

photoelectron energy, this agreement will disappear.

D. Xenon 5 p shell

This tendency of deviation of the TDSE calculations with

various local potentials from the RPAE and experiment is

aggravated further in Xe. As an illustration, we show in Fig. 16

the CM position deduced from the squared radial integral (20).

First, we observe that the HF and RPAE results diverge by as

much as 40 eV. This is a clear sign of a very strong correlation

between the 5p and 4d shells accounted for in the RPAE but

missing in the HF. Second, both the LHF and OEP give the

CM position which is displaced by 20 eV from the RPAE for

the same reason.

It is well known that missing the intershell correlation

between the 5p and 4d shells in Xe has a profound effect on the

anisotropy β parameter. It becomes strongly displaced relative

to the experiment as shown graphically in Fig. 1 of Ref. [34].

We therefore do not expect any reasonable agreement of the

presently employed TDSE-SAE model with the experiment,

either.

IV. CONCLUSIONS

We presented a series of simulations and their analysis

for the angular-dependent RABBITT traces in the valence

shells of noble-gas atoms from Ne to Xe. Our simulations

are based on numerical solutions of the one-electron TDSE

driven with the XUV ionizing field and the IR probing pulse.

Exchange between the departing photoelectron and the ionized

atomic core is accounted for by various effective one-electron

potentials. The accuracy of this account is tested by making
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comparison with the Hartree–Fock approximation which in-

cludes the exchange by constriction. The intershell correlation

between the valence np and subvalent ns, (n − 1)d shells are

neglected in a one-electron TDSE. To elucidate the strength

of this correlation, we compare the TDSE results with the

RPAE calculation which is known to account for the intershell

correlation very accurately. However, the RPAE is unable

to account for ultrafast electron dynamics and designed for

much slower ionization processes initiated by long pulses of

synchrotron radiation.

We focus our analysis on the anisotropy β parameter, which

is extracted from the angular dependence of the high-harmonic

peaks as well as sideband RABBITT oscillation amplitude A

and B factors. Within the scope of the soft photon approxi-

mation, all the three sets of β should be in agreement which

was found to be the case. This streamlines considerably the

analysis of an angular-resolved RABBITT measurement and

makes redundant the introduction of multiple sets of angular

anisotropy parameters which was made by Cirelli et al. [3].

The phase of the RABBITT oscillation is converted to the

angular-dependent time delay which is compared with the

RPAE calculations. The time delay in the polarization direction

is used to test accuracy of the hydrogenic CC correction.

Our results can be broadly categorized into the two groups.

In lighter atoms, Ne and Ar, the single-active-electron model

is generally valid. The Ne calculations are particularly robust

with all the tested effective potentials producing accurate

results close to the RPAE predictions both for the angular

anisotropy and the time delay. In Ar, because of the appearance

of the Cooper minimum, the TDSE calculations become very

sensitive to the choice of the effective potential and a simple

analytic fit to the localized HF potential produces the best

results for β parameters. At the same time, this calculation

suggests deviation of the CC correction from the regularized

hydrogenic expression. Because of the Cooper minimum, the

angular variation of the Wigner time delay is of the same

magnitude as the variation of the atomic time delay. In Ne,

the angular variation of the Wigner time delay is negligible.

In heavier atoms, in Kr and particularly in Xe, the intershell

correlation between the valence np shell and subvalent (n −

1)d shell becomes very strong. In Kr, with some choice of

effective potentials, the present model can return sensible

Cooper minimum position and β parameters away from the

(n − 1)d shell threshold. In Xe, no effective potential is

expected to replace the strong effect of intershell correlation

and the present model is generally invalid.

Our findings are of importance to the theoretical analysis of

angular-resolved RABBITT measurements. Particularly that

there is a linear dependence of the β2 and β4 parameters

which can be derived from the single set describing the whole

RABBITT measurement, both the high-harmonic peaks and

the side bands. This set can be easily compared with predictions

of the RPAE theory which is valid for all noble-gas atoms.

These β parameters can also be tested against the XUV only

measurements [28,30,32–34].

This work is a step forward in resolving the persistent con-

troversy in the time-delay measurement in Ar [10]. However,

as the measurement involved both the valence 3p and the

subvalent 3s shells, we are unable to conclusively do so. The

3s shell in argon is strongly correlated with the 3p shell and

this intershell correlation goes beyond the scope of the present

model.

The model, as it stands now, can be applied to the subvalent

Kr 3d and Xe 4d shells which are not effected strongly by

intershell correlation with outer valence shells. The nd corre-

lation with the inner core is only noticeable near corresponding

deeper thresholds. We can also easily incorporate the effect

of a fullerene cage [35] to model a RABBITT process in

encapsulated atoms. Eventually, we will attempt to generalize

our model to account for intershell correlation. This will

require considerable development of the existing one-electron

TDSE code.
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APPENDIX: RABBITT IN SOFT PHOTON

APPROXIMATION

We start from Eqs. (10) and (11) of Ref. [20] and write

the amplitude of the XUV photon absorption modulated by

absorption (+) or emission (−) of n IR photons as

S =

+∞
∑

n=−∞

Snδ(k2/2 − E0 − ωx − nω),

Sn = −2πiJ−n(a0 · kn) exp [−i(φx + nφ)]〈kn|ǫ · ∇|i〉,(A1)

with kn ≃ [2(E0 + ωx + nω)]1/2 being the shifted momentum

of the photoelectron and ωx , φx and ω, φ as the XUV and

IR frequencies and phase shifts, respectively. Here the matrix

element 〈kn|ǫ · ∇|i〉 of the XUV photon absorption is written

in the velocity gauge.

In RABBITT we are only interested in the n = 1 and

n = −1 sidebands. Their corresponding amplitudes are

S±1 ≡ M
(±)

k±1
= −2πiJ∓1(a0 · k±1) exp[∓iφ±

CC]〈k±1|ǫ · ∇|i〉.

Here we introduced the phase φ±
CC associated with the

continuum-continuum transition in absorption or emission of

an IR photon. For simplicity we have dropped the XUV phase

φx and thus neglected the harmonic group delay. Using the

transformation J−n = (−1)nJn we write

S+1 + S−1 = −2πi[J1(a0 · k−1)〈k−1|ǫ · ∇|i〉 e−iφ+
CC

−J1(a0 · k+1)〈k+1|ǫ · ∇|i〉 e+iφ−
CC ].

We can relate the phases of the dipole matrix elements with the

soft photon shifted momenta by the phase energy derivative,

〈k±1|ǫ · ∇|i〉 ≈ 〈k|ǫ · ∇|i〉e±iω∂δmi
(k)/∂E,

δmi
(k) = arg〈k|ǫ · ∇|i〉 . (A2)

Furthermore, we assume J1(α0 · k±1) ≈ J1(α0 · k) and subse-

quently find the magnitude of the RABBITT signal (8) to be
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proportional to

Re[M
(−)

k M
∗(+)

k ] ∝ |J1(α0 · k)|2

[

∑

mi

|〈χk|ǫ · ∇|ψi〉|
2

]

∝ cos2 θ [1 + βP2(cos θ )] . (A3)

Here we used the expansion J1(x) ≃ x/2 + O(x3) valid for a

weak IR field and accordingly small parameter α0 = F0/ω
2.

We also performed the angular-momentum projection summa-

tion [36]

∑

mi

|〈k|ǫ · ∇|i〉|2 ∝
σi

4π
[1 + βP2(cos θ )], (A4)

where β is the angular anisotropy parameter and σi is the

photoionization cross section of the ith atomic shell.

The atomic time delay is given by

τ =
1

2ω
arg[M

(−)

k M
∗(+)

k ]

≡
1

2ω
arg

[

∑

mi

|cmi
|2e2iφmi

]

+
φ−

CC − φ+
CC

2ω

≡ τW + τCC, (A5)

where we have used the shorthand

φmi
= ω

∂δmi
(k)

∂E
, cmi

= 〈χk|ǫ · ∇|ψi〉,

for the quantities associated with the XUV photon absorption

which define the Wigner time delay τW.
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