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Abstract. Two approaches used for monitoring the health of thin aerospace structures are active interrogation and passive

monitoring. The active interrogation approach generates and receives diagnostic Lamb waves to detect damage, while the passive

monitoring technique listens for acoustic waves caused by damage growth. For the application of both methods, it is necessary

to understand how Lamb waves propagate through a structure. In this paper, a Physics-Based Model (PBM) using classical plate

theory is developed to provide a basic understanding of the actual physical process of asymmetric Lamb mode wave generation

and propagation in a plate. The closed-form model uses modal superposition to simulate waves generated by piezoceramic

patches and by simulated acoustic emissions. The generation, propagation, reflection, interference, and the sensing of the waves

are represented in the model, but damage is not explicitly modeled. The developed model is expected to be a useful tool for

the Structural Health Monitoring (SHM) community, particularly for studying high frequency acoustic wave generation and

propagation in lieu of Finite Element models and other numerical models that require significant computational resources. The

PBM is capable of simulating many possible scenarios including a variety of test cases, whereas experimental measurements

of all of the cases can be costly and time consuming. The model also incorporates the sensor measurement effect, which is

an important aspect in damage detection. Continuous and array sensors are modeled, which are efficient for measuring waves

because of their distributed nature.

1. Introduction

Active propagation of Lamb waves is an emerging technique used to detect damage [1–7] in aerospace structures.

Passive methods of measuring Acoustic Emissions (AE) are also used for damage detection [8–12]. The modeling

of wave propagation for these damage detection techniques is often conducted for materials that are of infinite

lateral dimension [13–18,27] because closed-form solutions of wave propagation in a bounded medium are difficult

to obtain. However, a normal mode approach for obtaining a closed form solution for bending wave propagation

in a finite plate is presented in [19–22]. Finite-element methods are also used to model wave propagation in
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Fig. 1. Lateral sides of an element of the PZT with the plate underneath.

bounded media, but the computation time is usually large and the representation of higher frequencies and modes

are constrained by the number of elements used.

The normal mode approach is also used in the present paper to model asymmetric Lamb wave or flexural

wave propagation in a simply supported plate. Previously performed work [19–22] suggests that cracks generate

predominantly extensional mode AE signals and to a lesser extent flexural mode AE signals. Out of plane sources

like impact damage or delamination generate large flexural modes. Cracks not located at the mid-plane of a plate

will also generate flexural modes, but cracks located near the mid-plane generate predominately symmetric modes.

The asymmetric waves usually produce larger responses from sensors located on the surface of the plate, which is

the simplest and possibly most practical application of sensors for SHM. Hence the present simulated AE model

focuses on flexural mode AE signals generated from impact damage, delaminations, and cracks not located at the

mid-plane, and due to active excitations.

A glass epoxy composite plate is modeled here as quasi-isotropic, and piezoceramic Lead Zirconate Titanate (PZT)

actuators and sensors are modeled on the plate for generating and receiving the waves. The objective of developing

this model is to provide a tool to simulate wave propagation and to facilitate the design of sensors to measure the

waves. The model uses a closed-form solution and it is written in matrix and vector forms to run efficiently on a

stand-alone PC. With this technique, series and array configurations of sensors can be investigated including different

shapes of sensors and actuators. Piezoelectric patches are used as the sensor and actuator material. Modeling of

PZT actuators bonded to structures is based upon references [23–26].

The advantage of this technique in contrast to finite element methods is the ability to simulate waves using much

less computational time. Numerical results of the sensor outputs are presented in the simulated cases. The principal

goal of the present research is the development of the PBM of the acoustic wave generation, propagation and sensing

in simply supported plates, based on the classical vibration equations of motion. Details of the continuous sensor

array and the cross-sensor array are also based on references [27,31].

2. Asymmetric Lamb wave modeling

Modeling of acoustic wave generation and propagation in plates is discussed in the following sections. The

acoustic waves in plates are generated passively using a mechanical pencil lead break input, and actively using a

surface bonded piezoelectric actuator. To model impact, delamination, or crack propagation, a transient excitation

such as a delta or step function is needed. For active wave propagation, an impulse or sine tone burst can be used.
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(a)     (b)  

Fig. 2. Circuit model of sensors showing (a) a continuous sensor array and (b) a cross-sensor array.

2.1. Acoustic emission modeling

The following is the equation of motion for an isotropic plate subject to a step load excitation at an arbitrary

location on the plate surface. Quasi-isotropic materials can be approximated using this equation. Such a step force

load is representative of a transient acoustic emission source from propagating damage and is known as a Hsu-Nielsen

source. The equation of motion is:

D∇4w(x,y,t) = −ρh
••

w +f(x, y, t) (1)

where the step function force f(x, y, t) = f0U(t)δ(x − xc)δ(y − yc) gives the magnitude of the input excitation,

w is the z-displacement, ρ is mass density and h is the plate thickness. The plate flexural rigidity is given as:

D = Eh3

12(1−ν2) , and U(t) = 0 when t � 0 and U(t) = 1 when t > 0. The quantities xc and yc denote the coordinates

of the location of lead break on the plate. In previous studies, a source amplitude of f 0 = 1 N [19–22] was used to

model a 0.3 mm pencil lead break and the same is assumed in the present work. In general, f(x, y, t) is considered

to be the normal component of all of the body forces or a concentrated normal surface force. The solution of Eq. (1)

is obtained by applying the Navier solution [29] and by using the orthogonalization property for separation of the

spatial and time variables. The temporal equation thus obtained can be solved for each mode. A detailed derivation

for an impulse input excitation on a simply supported plate is presented in [11]. The detailed derivation shown in

Appendix B considers the step input.

Thus the total solution for the plate displacement as shown in Appendix B can be expressed as:

w(x, y, t) =
∑

n

∑

m

(

Fmn

ω2
mn

−
(

Fmn

ωmnωdmn

e−ζmnωmnt cos(ωdmn
t − θ)

))

sin
(mπx

a

)

sin
(nπy

b

)

(2)

The damping ratio is ζmn and can be specified individually for each mode. For zero damping, i.e., when ζ = 0,

w(x, y, t) =
∑

n

∑

m

Fmn

ω2
mn

(1 − cos(ωmnt)) sin
(mπx

a

)

sin
(nπy

b

)

(3)

The corresponding strains can be written as:

εx(x, y, t) = −z
∂2w

∂x2
= −z

∑

n

∑

m

amn(t) sin
(mπx

a

)

sin
(nπy
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)(mπ
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)2

(4)

εy(x, y, t) = −z
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n
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b

)(nπ
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(5)

γxy(x, y, t) = 2z
∂2w

∂x∂y
= 2z

∑

n
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amn(t) cos
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)
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b

)

(6)
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Fig. 3. Schematic view of the sensor placement on the composite plate.

where the εx and εy are the in-plane strains and γxy is the shear strain. The average strains over the area of the

sensor are used to compute the voltage output from the PZT sensors used in this work. For a simple approximation

to model a unidirectional Active Fiber Composite patch bonded to a plate, the open circuit output voltage can be

approximated using the average strain over the sensor nodes as follows:

V0 = ε̄he/ε
s

(7)

where ε is the average strain and εs is the permittivity. The average strain in the X−direction is computed for the

nodes as:

εx(t) = −h

2

1

∆x∆y

y2
∫

y1

x2
∫

x1

∑

n

∑

m

(mπ

a

)2

amn(t) sin
(mπx

a

)

sin
(nπy

b

)

dxdy (8)

Integrating, the average strain in the x-direction is expressed as:

εx(t)=−h

2

1

∆x∆y

∑

n

∑

m

((mπ

a

)

/
(nπ

b

))

amn(t)
(

cos
mπx2

a
− cos

mπx1

a

)(

cos
nπy2

b
− cos

nπy1

b

)

(9)

where ∆x = x2 − x1 and ∆y = y2 − y1. The strain in the y−direction is computed similarly. The corresponding

strain equations with damping can be derived similarly. The combination of the strains in both directions using

bi-axial stress-strain equations gives the total strain. In the numerical simulation, the elastic solution is computed at

small time steps. The solution procedure requires that a sufficient number of modes are used in the superposition

solution such that the modeled rate of change of the excitation is less than the speed of the propagating waves in the

material. Using this solution, single and continuous sensor designs can be practically studied to sense AE signatures

and wave propagation. This particular AE model is valid for simply supported plates and such a closed form solution

may not be possible for clamped boundary conditions. For other boundary conditions, one may have to use a different

displacement function or coefficients as in a Rayleigh-Ritz approximate model. However, the simply-supported

model gives a very good understanding of how asymmetric Lamb waves are generated and propagate through a plate

and how they may be applied for applications like SHM.

2.2. Equivalent circuit of the PZT patch

The PZT patches are convenient for use in SHM and Active Control. They can be modeled as a capacitor in

parallel with a current source because of the piezoelectric properties of the sensors. The piezoelectric constitutive

equations, as listed in the IEEE standard ANSI/IEEE Standard 176-1987, can be used to show the basis of the PZT
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Fig. 4. Acoustic Wave propagation at 10, 60, 110, 160, 210, 260, 310, 360 micro-sec due to a lead break excitation modeled as a step input

function.

electrical modeling. The following derivations assume a monolithic PZT element, and ideal transfer of strain to the

element. The matrix form of the piezoelectric constitutive equations can be expressed as:
[

D
T

]

=

[

εS e
−et cE

]

·
[

E
S

]

(10)

[

D
S

]

=

[

εT d
dt sE

]

·
[

E
T

]

(11)

In these relations, εS is a 3 by 3 matrix describing the permittivity components, ε ij (farads/m) under a constant

strain condition. The superscript T indicates a constant stress condition and the subscript t means transposed. The

induced stress is a 3 by 3 matrix of the components e ij (Coulomb/m2). The piezoelectric charge coefficients comprise

the elements of a 3 by 6 matrix of the components d ij (m/V). The short circuit compliance matrix is a 6 by 6 matrix

with components sE
ij (m2/N). The short circuit stiffness matrix is a 6 by 6 matrix with components c E

ij (N/m2). The

electrical displacement is a 3 by 1 vector of the components D i (Coulombs/m2). The stress is a 3 by 1 vector of the

components Ti (N/m2). The electric field is a 3 by 1 vector of the components E i (V/m) and the strain is a 3 by 1

vector with components Si (m/m).

If the electric field is only applied through one axis, then D and E are scalar values. Algebraic comparison of

Eqs (10) and (11) show that the induced stress constant can be written as:

e = dcE (12)

and therefore can be readily calculated from the PZT properties. From Eq. (10), the electrical displacement can be

written as follows:

D = εSE + eS (13)



248 A. Ghoshal et al. / Simulation of asymmetric Lamb waves for sensing and actuation in plates

Fig. 5. Wave propagation at 10, 60, 110, 160, 210, 260, 310, 360 micro-sec due to center actuation by a PZT patch with an impulse moment

excitation.

Considering a monolithic, electroded piezoceramic material subjected to bi-directional strain, Eq. (13) becomes:

Dj = εSEj(t) +

(

e31

∂w(xj , yj , t)

∂x
+ e32

∂w(xj , yj , t)

∂y

)

sgn(j) (14)

Corresponding to Eq. (14), the current generated by the jth segment of the sensor is:

ij = ḊjAe = CpV̇o +

(

e31
∂2w(xj , yj , t)

∂x∂t
+ e32

∂2w(xj , yj , t)

∂y∂t

)

Aesgn(j) (15)

where j is used to represent the j th electroded section of the sensor, t is time, w(xj , t) is the plate displacement at

segment j, and the sgn function allows for the connection of the sensors in positive or negative polarities. The simply

supported plate is modeled to study the benefits of various PZT sensor array configurations for measuring strain and

acoustic emissions. The thin glass epoxy composite plate used in the experiment is modeled as quasi-isotropic.

The derivations for calculating the voltage output of PZT sensors in various configurations are described in detail

by Martin et al. [27]. The aforementioned equations depend on the strain or strain rate of the PZT wafer. In this

work, the PZT sensors are bonded to a simply supported plate. The simulation is used to determine the strains and

displacements of the simply supported plate. The strains or strain rates from the simulation are then substituted

into the necessary equations to determine the current of the sensor configuration used. For closed circuit cases, the

current outputs are computed using the Newmark-beta numerical integration method. The voltage output response

is then computed as the product of the current and the external resistance in the oscilloscope, which is 1-MΩ, with

the currents depending on the type of sensor configuration used. The sensor configurations and their outputs are

included in the plate simulation program.

2.3. Modeling active wave generation and propagation

An analytical model has been created for active acoustic wave generation and propagation in a plate due to

surface bonded PZT patches. The closed form solution for wave generation due to actuation by a PZT actuator is

detailed here. From the classical theory of vibration of plates, the equation of motion has been derived in terms of

internal plate flexural moments Mx, Mxy, and My, and actuator induced moments mxand my and then expressed
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(a) 

(b) 

Fig. 6. Voltage time history due to center actuation by a PZT patch; (a) array voltage for 2 ms, (b) array voltage for 0.2 ms.

in displacement form as:

D∇4w(x, y, t) + ρh
••

w =
∂2mx

∂x2
+

∂2my

∂y2
(16)

The moments induced by the actuator patch are expressed as Heaviside step functions. The temporal equation is
derived in terms of modes using separation of spatial and time variables, and orthogonal relationships of trigonometric
functions. A similar procedure was followed in the pencil lead break analysis to solve for the plate displacements
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(a) 

(b) 

Fig. 7. Voltage time history due to center actuation by a PZT patch; (a) continuous sensor voltage for 2 ms, (b) continuous sensor voltage for

0.2 ms.

due to step excitation. For an impulse moment actuation the plate displacement is expressed in terms of a Fourier

series (Navier’s solution) and by summation of modes including damping as shown below:

w(x, y, t) =
∑

n

∑

m

Fmn

ωdmn

e−ζmnωmnt sin(ωdmn
t) sin

(mπx

a

)

sin
(nπy

b

)

(17)
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Fig. 8. Wave propagation at 10, 60, 110, 160, 210, 260, 310, 360 micro-sec due to edge actuation by a PZT patch.

where

Fmn =
4∆t

ρhab
(−1)

[

m1
x

mb

na
+ m1

y

na

mb

]

(

cos
mπx1

a
− cos

mπx2

a

) (

cos
mπy1

a
− cos

mπy2

a

)

(18)

The variables a and b are the width and length of the plate in x and y directions, m and n are the mode numbers, h
is the thickness of the plate, m1

x and m1
y are the distributed surface moments, ρ is the mass density of the glass-epoxy

composite plate, and z is h/2. The corresponding strains are computed from Eqs (4–6). The variables x 1, x2, y1

and y2 represent the boundaries or edges of the PZT element.

The derivation of m1
x and m1

y requires certain assumptions. The assumptions are as follows:

(i) The PZT patch element is poled in the z−direction and experiences equal strains in the x− and y− directions

when exposed to an electric field. This is true only if the strain coefficients d 31 and d32 are equal which is

the case in this present work.

(ii) The host plate is a rectangular simply supported isotropic plate.

(iii) The stress distribution within the plate is assumed to be symmetric about the neutral axis and the bending

of the plate produces a linear normal stress distribution. Thus the neutral axis is assumed to be coincident

with the mid-plane of the plate. This is a reasonable approximation because usually the mass and flexural

rigidity of the PZT element are significantly less than that of the plate [25].

(iv) Actuator stress can be integrated to obtain the equivalent bending moment.

(v) The bond between the plate and the PZT element is assumed to be perfect.

(vi) The strain distribution through the thickness of the PZT element is assumed to have the same slope as the

stress distribution through the thickness of the host plate.

The unconstrained strains in the PZT element due to the input actuation voltage V can be written as:

(εx)pzt =
d31 · V

tpzt
(19)

(εy)
pzt

=
d32 · V

tpzt
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(a) 

(b) 

Fig. 9. Voltage time history due to edge actuation by a PZT patch; (a) array voltage for 2 ms, (b) array voltage for 0.2 ms.

where the subscript PZT is used to denote the strain in the PZT element. The strains in the isotropic plate are
expressed as follows:

(εx)p =
(σx)p

Ep

− vyp
· (σy)p

Ep
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(a) 

(b) 

Fig. 10. Voltage time history due to edge actuation by a PZT patch; (a) continuous sensor voltage for 2 ms, (b) continuous sensor voltage for

0.2 ms.

(εy)p =
(σy)p

Ep

− vxp
· (σx)p

Ep

(20)

where the subscript p denotes strains in the plate [28,29]. From the equations for plate strain (Eqs (19) and (20)), the
normal stresses can now be derived. Since the plate is isotropic, Poisson’s ratio is assumed to be the same in the x-
and y-direction, thus νy and νx of the plate can be represented by ν p. The normal plate stresses are shown in Fig. 1
and are written as:
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(σx)p =

(

Ep

1 − ν2
p

)

·
(

(εx)p + νp · (εy)
p

)

(21)

(σy)
p

=

(

Ep

1 − ν2
p

)

·
(

(εy)
p

+ νp · (εx)p

)

The normal stresses distributed over the lateral sides of the element can be reduced to couples per unit length,

expressed as:

m1
xdy =

h
2
∫

−
h
2

(σx)p zdydz

m1
ydx =

h
2
∫

−
h
2

(σy)
p
zdxdz

(22)

where mx and my are the moments at the plate-PZT interface per unit length. From the assumption of pure bending,

the plate curvatures 1
rx

and 1
ry

can be related to the strains as follows:

(εx)p =
z

rx (23)
(εy)

p
=

z

ry

Substituting Eq. (21) into Eq. (22) yields:

m1
xdy =

h
2
∫

−
h
2

(

Ep

1−ν2
p

)

·
(

(εx)p + νp · (εy)p

)

zdydz

m1
ydx =

h
2
∫

−
h
2

(

Ep

1−ν2
p

)

·
(

(εy)
p

+ νp · (εx)p

)

zdxdz

(24)

By substituting Eq. (23) into Eq. (24), the moments per unit length can be expressed by the plate curvatures, as:

m1
xdy =

(

Ep

1 − ν2
p

)

·

h
2

∫

−
h
2

(

1

rxp

+
νp

ryp

)
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(25)

m1
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(

Ep

1 − ν2
p

)

·

h
2

∫

−
h
2

(

1

ryp

+
νp

rxp

)

z2dxdz

Simplification results in the following form:

m1
xdy =

(

Ep

1 − ν2
p

)

·
(

1

rxp

+
νp

ryp

) [

z3

3

]

h
2

−
h
2

dy

(26)

m1
ydx =

(

Ep

1 − ν2
p

)

·
(

1

ryp

+
νp

rxp

) [

z3

3

]
h
2

−
h
2

dx

Furthermore,

m1
x =

(

Ep

1 − ν2
p

)

·
(

1

rxp

+
νp

ryp

) [

h3

12

]

(27)

m1
y =

(

Ep

1 − ν2
p

)

·
(

1

ryp

+
νp

rxp

) [

h3

12

]
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Fig. 11. Wave propagation at 10, 60, 110, 160, 210, 260, 310, 360 micro-sec due to center actuation by a wide PZT patch.

The flexural rigidity of the plate is defined as D =
Ep·h

3

12(1−ν2

p
)
. Equation (27) can be written as:

m1
x = D ·

(

1

rxp

+
νp

ryp

)

(28)

m1
y = D ·

(

1

ryp

+
νp

rxp

)

Unlike References [23,24] the moments per unit length (mx and my), are not assumed to be equal in the present

case. Through algebraic manipulation of Eq. (28), the plate curvatures can be expressed by the moments per unit
length and the plate rigidity as follows:

1

rxp

=
1

D
·
(

m1
x − νpm

1
y

1 − ν2
p

)

(29)
1

ryp

=
1

D
·
(

m1
y − νpm

1
x

1 − ν2
p

)

These results will be used at a later stage in this derivation. Now the stress-strain relationship at the interface of
the plate and PZT can be derived using Eq. (23), and written as:

(σxi
)p =

(

Ep

1 − ν2
p

)

·
(

(εxi
)p + νp · (εyi

)
p

)

(30)

(σyi
)
p

=

(

Ep

1 − ν2
p

)

·
(

(εyi
)
p

+ νp · (εxi
)p

)

The stresses at the interface of the actuator and the plate are calculated using the superposition of the external

plate strains at the interface and the unconstrained PZT element strains. This gives:
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(b) 

(a) 

Fig. 12. Voltage time history due to center actuation by a wide PZT patch; (a) array voltage for 2 ms, (b) array voltage for 0.2 ms.

(σxi
)pzt =

(

Epzt

1 − ν2
pzt

)

·
(

(εxi
)pzt + νpzt · (εyi

)
pzt

− (εx)pzt − νpzt · (εy)pzt

)

(31)

(σyi
)
pzt

=

(

Epzt

1 − ν2
pzt

)

·
(

(εyi
)
pzt

+ νpzt · (εxi
)pzt − (εy)

pzt
− νpzt · (εx)pzt

)

The bending stresses distribution in the plate is linear through the thickness of the plate, with respect to z and can
be written in terms of the interface stresses giving:

σxp
=

(σxi
)p z

h
2

, σyp
=

(σyi
)
p
z

h
2

(32)

Since the strain distribution in the PZT element is assumed to have the same slope as the strain distribution in the
plate, the PZT element stresses can be written as follows:
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(b) 

(a) 

Fig. 13. Voltage time history due to center actuation by a wide PZT patch; (a) continuous sensor voltage for 2 ms, (b) continuous sensor voltage

for 0.2 ms.

σxpzt
= (σxi

)pzt − (σxi
)p ·

(

1 − z

(h/2)

)

(33)

σypzt
= (σyi

)
pzt

− (σyi
)
p
·
(

1 − z

(h/2)

)

The derivations for σpzt in the x− and y−directions are similar due of the assumption of pure bending. Only the

derivation for the x−direction will be presented for brevity. The interface strains and the plate bending stresses must

be derived in terms of the constituent material properties and the unconstrained actuator strains. The relationship is

determined from a moment balance at the interface based upon the assumption that the plate stresses are due to the

PZT element acting upon it. The relationship is given as:
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Fig. 14. Fiberglass panel with a Continuous Sensor.

Fig. 15. Continuous Sensor response due to a lead break (simulation scaled – dashed, test – solid line).

h
2

∫

0

(σx)p zdz +

h
2

+ tpzt
∫

h
2

(σx)pzt zdz = 0 (34)

Substitution of Eqs (32) and (33) into Eq. (34) yields:

h
2

∫

0

(σxi
)p

h/2
+

h
2

+ tpzt
∫

h
2

(

(σxi
)pzt − (σxi

)p + (σxi
)p

z

h/2

)

zdz = 0 (35)
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Fig. 16. Fiberglass panel with Cross Array Sensor Architecture.

Fig. 17. Simulation scaled response of the Cross. Array (6 outputs), center excitation.

Evaluation of the integrals yields:

(σxi
)p

h/2

[

z3

3

]

h
2

0

− (σxi
)p

[

z2

2
+

z3

3 · (h/2)

]

h
2

+ tpzt

h
2

= − (σxi
)pzt

[

z2

2

]

h
2

+ tpzt

h
2

(36)

From Eq. (36) the relationship between (σxi)p and (σxi)pzt is given as:

K =
(σxi

)p

(σxi
)pzt

= −
(

t2 + t h

t2 + (h2/6) + (4 t3/3h)

)

(37)
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Fig. 18. Test response of the actual Cross Array with all outputs, center excitation.

Similarly,

K =
(σyi

)
p

(σyi
)
pzt

= −
(

t2 + t h

t2 + (h2/6) + (4 t3/3h)

)

(38)

Now, substituting Eqs (30) and (31) into Eq. (38) gives the following:

1

K
=

(σxi
)pzt

(σxi
)p

=

(

Epzt

1−ν2

pzt

)

·
(

(εxi
)pzt + νpzt · (εyi

)
pzt

− (εx)pzt − νpzt · (εy)
pzt

)

(

Ep

1−ν2
p

)

·
(

(εxi
)p + νp · (εyi

)
p

) (39)

Defining a variable P as follows:

P =

(

Epzt

1−ν2

pzt

)

(

Ep

1−ν2
p

) K, (40)

Multiplying Eq. (39) by K , and substituting P , the following expression is obtained:

1 = P ·

(

(εxi
)pzt + νpzt · (εyi

)
pzt

− (εx)pzt − νpzt · (εy)
pzt

)

(

(εxi
)p + νp · (εyi

)
p

) (41)

1 =
P ·

(

(εxi
)pzt + νpzt · (εyi

)
pzt

)

− P ·
(

(εx)pzt − νpzt · (εy)pzt

)

(

(εxi
)p + νp · (εyi

)
p

) (42)

(

(εxi
)p + νp · (εyi

)
p

)

= P ·
(

(εxi
)pzt + νpzt · (εyi

)
pzt

)

− P ·
(

(εx)pzt − νpzt · (εy)
pzt

)

(43)

(1 − P ) · (εxi
)p + (νp − νpzt · P ) · (εyi

)
p

= −P · (εx)pzt − P · νpzt · (εy)
pzt

(44)

Similarly, for the y−direction:
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Table 1

Lateral sides of an element of the PZT with the plate underneath

Sensor X-Location Y-Location

S (row,col) inch (m) inch (m)

S11 5.25 (0.127) 7.25 (0.184)

S12 17.25 (0.438) 7.25 (0.184)

S13 29.25 (0.743) 7.25 (0.184)

S21 5.25 (0.127) 23.875 (0.61)
S22 17.25 (0.438) 23.875 (0.61)

S23 29.25 (0.743) 23.875 (0.61)

S31 5.25 (0.127) 40.5 (1.03)

S32 17.25 (0.438) 40.5 (1.03)

S33 29.25 (0.743) 40.5 (1.03)

(1 − P ) · (εyi
)
p

+ (νp − νpzt · P ) · (εxi
)p = −P · (εy)

pzt
− P · νpzt · (εx)pzt (45)

In matrix form, Eqs (44) and (45) can be written as follows:
[

(1 − P ) (νp − νpzt · P )
(νp − νpzt · P ) (1 − P )

]

·
[

εxip

εyip

]

= −P ·
[

1 νpzt

νpzt 1

]

·
[

εxpzt

εypzt

]

(46)

[

εxip

εyip

]

= −P ·
[

(1 − P ) (νp − νpzt · P )
(νp − νpzt · P ) (1 − P )

]−1

·
[

1 νpzt

νpzt 1

]

·
[

εxpzt

εypzt

]

(47)

Evaluation of the matrix inverse in Eq. (46) yields:
[

εxip

εyip

]

= −P
(1−P )2−(νp− νpzt · P )2

·
[

(1 − P ) − (νp − νpzt · P )
− (νp − νpzt · P ) (1 − P )

]

·
[

1 νpzt

νpzt 1

]

·
[

εxpzt

εypzt

]

(48)

Thus the interface strains can be reduced to a function of the unconstrained PZT element strains and the constituent

material properties. The uniformly distributed edge moments per unit length that would produce the interface strains

can also be determined. By substituting the result from Eq. (23) into Eq. (27) and recalling the definition of the

flexural rigidity of the plate, the edge moments can be expressed as follows:

m1
x =

Ep · h3

12(1 − ν
2
p)

·
(

(εx)p + νp · (εy)
p

) 1

z
(49)

m1
y =

Ep · h3

12(1 − ν
2
p)

·
(

(εy)
p

+ νp · (εx)p

) 1

z

Substituting Eqs (30) and (32) into Eq. (48) and noting that at the interface z = h/2, yields:

m1
x =

(σxi
)p · h2

6
(50)

m1
y =

(σyi
)
p
· h2

6

Substituting the interface stresses of the plate from Eq. (30) gives:

m1
x =

h2

6

(

Ep

1 − ν2
p

)

·
(

(εxi
)p + νp · (εyi

)
p

)

(51)

m1
x =

h2

6

(

Ep

1 − ν2
p

)

·
(

(εyi
)
p

+ νp · (εxi
)p

)

In matrix form this can be written as:
[

m1
x

m1
y

]

=
h2

6

(

Ep

1 − ν2
p

)

·
[

1 νp

νp 1

]

·
[

εxip

εyip

]

(52)
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where the vector of the interface plate strains is given in Eq. (47). Before substituting into the plate equations, the

moments produced by the PZT element are expressed as:

mx = m1
x · [H(x − x1) − H(x − x2)] · [H(y − y1) − H(y − y2)] · f(t)

(53)
my = m1

y · [H(x − x1) − H(x − x2)] · [H(y − y1) − H(y − y2)] · f(t)

where f (t) is purely a function of time. When f (t) is represented by the delta function, and the moments are used

in the classical plate equations, then the results can be summarized by Eqs (16–18). Details of the derivation are

presented in Appendix A. The corresponding equations for a steady state sinusoidal excitation can be similarly

derived by following the same process as shown in Appendix A but with a different forcing function.

2.4. Modeling the continuous and cross sensor array

The advantage of using the continuous and cross sensor arrays for passive damage detection is that a large number

of PZT sensor elements can be used so that one sensor will always be close to any possible damage to give a good

signal to noise ratio, and only a small number of channels of data acquisition are needed. The disadvantage is that

damage location is more difficult. The piezoceramic sensor nodes in the continuous and cross sensor array can be

modeled as a capacitor in parallel with a current source. The piezoelectric constitutive equations are as shown in

Eqs (10) and (11). The piezoceramic sensors can be modeled using the piezoelectric constitutive equations and by

connecting the segments into an electric circuit as shown in Fig. 2. The output voltage equation for a continuous

sensor nerve can be expressed as follows using Kirchhoff’s law:

d

dt
(i) +

n · i
RC

=
eAe

RC

n
∑

j=1

Ṡj (54)

where C is the capacitance of the PZT sensor, Ae is the effective capacitor area, h is the effective plate separation

distance, S is strain and
•

S is the strain rate, ic represents the component of the current going through the capacitor

of the model, and ig represents the component of the current generated by the piezoelectric sensor. Further details of

this derivation can be found in Ref [27]. The homogeneous and particular solutions of Eq. (54) must be calculated

and added to obtain the total solution for the current i. The product of the current i(t), and the impedance R of

the measuring device equals the voltage of the series connected sensors as a function of time. Thus we solve for

the current to get the voltage V0 = iR. This voltage is proportional to the dynamic strain in the structure at the

sensor and thus can be used to detect damage through dynamic strain measurements and acoustic emissions. The

current is numerically computed using the implicit Newmark-beta time marching scheme. Figure 2(a) and 2(b)

shows examples of a continuous sensor array and a 3 × 3 cross sensor array architecture. Details of the continuous

sensor and sensor array system can be found in references [27,31].

3. Simulation of wave propagation

The simulation is performed using a model of the glass epoxy composite plate, which is modeled as a quasi-

isotropic plate. Four different cases of passive and active wave generation and propagation are presented here,

using a lead break excitation modeled as a step function and a surface bonded PZT actuator, and sensing using

the continuous sensor and array sensor. The material properties of the glass epoxy composite plate are as follows:

Elastic modulus = 29.6 GPa, density = 2200 kg/m3, Poisson’s ratio = 0.27. The size of the plate is 0.88 m ×
1.21 m × 3.2 mm. The first 100 vibration modes have been used for the simulation to reduce computation time, for

increased accuracy 200 or modes can be used. The damping ratio considered for all modes is 0.01 and the time step

used is one microsecond. A total of 1600 (40 × 40) grid points are used to generate the 3-D displacement plots. It

must be noted that for sensing accuracy, the length of the sensor node should be shorter than half the wavelength

of the highest frequency mode that is used in the simulation. Approximate material properties of the twelve PZT

sensor nodes considered in the simulation are as follows: Poisson’s ratio= 0.31; permittivity of free space (dielectric

of air)= 8.854e-12 (Farad/m=Coulomb∧2/Nm∧2). Density =7700 kg/m∧3, short circuit stiffness or modulus PZT
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(N/m∧2) E11=61.0 GPa; PZT induced strain constant d31 = −10.9e−11 m/V and d31 is assumed to be equal to d32;

each of the PZT sensor node dimensions are 0.25 in X 0.5in X 0.01in (0.00635 m × 0.0127 m × 0.000254 m); PZT

dielectric with respect to air is taken as 1800. Figure 2 shows the circuit model of the continuous sensor array and

the cross-sensor array, which are being currently investigated by the authors [?]27,31. Figure 3 shows the schematic

view of the sensor placement on the composite plate, which is used in the present simulation. The midpoints of the

sensor nodes are presented in Table 1.

Figure 4 shows the first case of propagating acoustic waves at the time snapshots 10 micro-sec to 360 microsecond

due to anti-symmetric Lamb waves generated by a lead break (simulating a AE source) placed normally at the

co-ordinates (0.3048 m, 0.4064 m) of the glass epoxy composite plate. The surface displacement profile of the plate

due to the lead break excitation is depicted in this figure for the time sequences mentioned above. Figure 5 shows the

active wave propagation over the times 10 microseconds to 360 microseconds due to anti-symmetric Lamb waves

generated by a PZT actuator placed at the center of the glass epoxy composite plate. The actuator dimensions are

2.5 cm × 5 cm × 0.25 mm. Figures 4 and 5 show the difference in wave generation and propagation due to the input

excitation. Figures 6 and 7 show the voltage-time history of the cross-array and the continuous array sensors attached

to the plate, respectively, caused by the center actuation by the PZT patch as shown in Fig. 5. Figure 6(a) shows the

voltage array outputs for 2 ms, whereas Fig. 6(b) zooms in to look into the leading edges of the time history of each

of the outputs. Figure 7 depicts the time history for a single continuous sensor, which is comprised all of the sensor

nodes as shown in Fig. 3 but connected in series to give a single output. Both sensing architectures are considered in

order to minimize the number of channels of data output that are needed. For the array sensing architecture and an

NXN array cluster, there would be 2N-1 Digital to Analog (DAQ) outputs with one channel acting as a ground. For

the continuous sensor with N sensor nodes, there is only one output channel. Since multiple sensors are connected

together, the acoustic signals will combine to form a complex signal as shown in Fig. 7(a). The high frequency

content of the composite signal indicates that an acoustic emission has occurred. Each of the voltage outputs must be

analyzed using signal processing techniques to determine the acoustic emission source locations and the waveform

characteristics. The leading edges of the voltage time history outputs of the array in Fig. 6(b) show the higher

amplitude of the outputs for the array rows and columns that are closer to the center actuator. Similar observations

can also be made for the later examples. Figure 8 shows the anti-symmetric Lamb wave propagation for the time 10

microseconds to 360 microseconds due to the PZT actuator placed at one edge of the glass epoxy composite plate.

The actuator dimensions are 2.5 cm × 5 cm × 0.25 mm. In this case, the incident waves are scattered by the reflected

waves because the actuator is located very close to one of the boundaries. Figures 9 and 10 show the voltage-time

history of the cross-array and the continuous array sensors modeled on the plate, respectively. The differences in the

voltage time history between the two cases (Figs 6–7 and 9–10) can be studied to determine the optimal placement

of the actuator considering scattering of the waves. Figure 11 shows the active wave propagation at the time 10

micro-sec to 360 micro-sec due to anti-symmetric Lamb waves generated by a PZT actuator placed at the center and

across the width of the glass epoxy composite plate. The actuator dimensions are 0.81 m × 2.5 cm × 0.25 mm.

Figures 12 and 13 show the voltage-time histories of the cross-array and continuous array sensors, respectively. The

animated displacements of the plate show the wave generation, propagation, and scattering of the incident wavefront

due to the collision with the reflected waves, and the corresponding effect on the voltage outputs. Figures 5 and

8 show that the small rectangular discrete PZT actuator will generate circular wave fronts, while Fig. 11 shows

that a long actuator across the width of the plate can generate a shock front type wave, which may have interesting

applications. In all of the cases, the PZT voltage outputs are high enough to be detected without amplification.

Some preliminary results validating the models of the continuous sensor and sensor array system are presented

here. Figure 14 shows a fiberglass panel with a continuous sensor with panel dimensions specified in the previous

example. The sensor node locations on the panel are given in Table 1, the sensor connections are shown in Fig. 3.

Figure 15 shows the response of the continuous sensor due to a lead break on the panel. The simulation result is

represented by the scaled dashed line; the test result is represented by the solid line. The simulation result was scaled

in amplitude to show the comparison of waveform types. The experimental result would be closer in amplitude to the

simulation if the exact sensor capacitance and cable resistance properties were measured and used in the simulation.

Figure 16 shows the fiberglass panel with the cross array sensor architecture. Simulation responses of the cross array

sensory outputs due to center excitation is shown in Fig. 17. Figure 18 shows the experimental responses of the

Cross Array sensor architecture (as depicted in Fig. 16) with all outputs due to a center excitation. The reasonable
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agreement of the simulated and experimental results indicates the usefulness of the modeling of the plate and the

sensor systems. Detailed experimental verification and testing of the above models using the voltage history outputs

is shown in [27,31].

This is the only closed-form model of asymmetric wave propagation with dispersion, damping, and reflection in

a plate that the authors are aware of. The model is a useful tool for the design of sensor and actuator systems for

SHM. The model is reasonably accurate for thin plates. For thicker plates, the plate frequencies and wave speeds

will contain some error, but the wave generation, propagation, and reflection characteristics can still be simulated

and studied. A comparison of phase velocities using this model and Lamb wave theory for a composite plate is given

in reference [32]. Further investigations are being done to correlate the peaks in the voltage time history graphs

with the time when the incident and the reflected waves hit the sensors, and when the waves are scattered from a

crack embedded in the plate. A neural network algorithm has been devised as one possible approach to detect and

locate the crack in the plate model [27,31]. Other signal processing techniques are being studied to locate the source

of the AE signal using perpendicular continuous sensor arrangement [33]. The near real-time interpretation of the

damage signals from continuous and cross-sensor arrays is an area of continuing development. An approach of using

rectangular arrays of continuous sensor neurons is discussed in [32,34].

4. Conclusions

The simulations illustrate how high frequency flexural acoustic waves are generated by simulated AE sources,

and by PZT patch actuators. This demonstrates both passive and active wave propagation. The incident wavefronts

and the scattering due to the reflected waves are clearly shown in the simulations. The physics based model thus

developed can be a helpful tool for structural health monitoring scientists and engineers to study the acoustic wave

generation and propagation in plates. The simulations performed have shown that multiple piezoelectric patches

can be connected together in a series or array pattern to simulate the way biological nerves have multiple inputs

(dendrites) connected together. This reduces the number of channels of data acquisition needed to detect damage

represented by acoustic emissions or high strains. The simulation model can also be used to optimize the design of

the neural system for different structural materials and sizes. This can also be used for simulating active interrogation

for damage detection in plate type structures. The model includes damping and dispersion and is helpful to determine

the actuator and sensor spacing and locations for both the continuous sensor and for the sensor array configurations.

The model can also be used for devising a neural network analysis for detection, localization, and quantification

of the crack/damage and monitoring the survivability of the plate structure. The continuous and cross-sensor array

allow a large number of sensors to be used for passive detection of propagating damage using a small number of

channels of data acquisition.
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Appendix A – Derivation of impulse input excitation to a PZT patch on a simply supported plate

The activated piezoelectric actuator will induce internal moments across the PZT. The impulse moments in the

plate can be written using the Heaviside step function as:

mx = m1
x · [H(x − x1) − H(x − x2)] · [H(y − y1) − H(y − y2)] · δ(t)

(A1)
my = m1

y · [H(x − x1) − H(x − x2)] · [H(y − y1) − H(y − y2)] · δ(t)
From the classical theory of plates and vibration of plates, the equation of motion can be written in terms of

internal plate flexural moments Mx, My and Mxy and actuator induced moments mx and my and is:
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∂2

∂x2
(Mx − mx) + 2

∂2Mxy

∂x∂y
+

∂2

∂y2
(My − my) + ρh

••

w = 0 (A2)

We can express Eq. (A2) in terms of displacement as [28]:

D∇4w(x, y, t) + ρh
••

w =
∂2mx

∂x2
+

∂2my

∂y2
(A3)

The boundary conditions for the simply supported plate are given by Eqs (2) and (3). The temporal equation is

derived in terms of modes using separation of spatial and time variables, and orthogonal relationships of trigonometric
functions. A similar procedure was followed in the lead break analysis to solve for the plate displacements due to
Hsu-Nielsen source excitation. The plate displacement is expressed in terms of a Fourier series (Navier’s solution)
and by summation of modes. First the homogeneous solution is given:

w(x, y, t) =
∑

n

∑

m

amn(t) sin
(mπx

a

)

sin
(mπy

b

)

(A4)

The temporal equation is derived as:

••

a mn + amn

[

(mπ

a

)2

+
(nπ

b

)2
]2

D

ρh
= 0 where, ωmn = π2

√

D

ρh

[

(m

a

)2

+
(n

b

)2
]

(A5)

Let the solution of the temporal equation be the following:

amn(t) = Amn sin(ωmnt + φ) where Amn cosφ = Cmn and Amn sinφ = Dmn (A6)

Thus:

amn(t) = Cmn sin ωmnt + Dmn cosωmnt (A7)

Now the partial differential relationship of Heaviside functions and Dirac delta function is given by:

∂

∂x
(H(x − x1)) = δ(x − x1) and

∂

∂x
(δ(x − x1)) =

δ(x − x1)

(x − x1)
(A8)

which implies:

∂2

∂x2
(H(x − x1)) =

δ(x − x1)

(x − x1)
(A9)

Substituting Eq. (A9) into the RHS of Eq. (A3) we have:

∂2mx

∂x2
+

∂2my

∂y2
= I1 + I2 = m1

xδt

[

δ(x − x1)

x − x1
− δ(x − x2)

x − x2

]

[H(y − y1) − H(y − y2)] +

(A10)

m1
yδt

[

δ(y − y1)

y − y1
− δ(y − y2)

y − y2

]

[H(x − x1) − H(x − x2)]

Now substituting Eqs (A4) (A7) and (A10) into Eq. (A3), then multiplying both sides by sin( m′πx
a

) sin(n′πy
b

) and
double integrating we get:

∑

n

∑

m

(

ρh
••

a mn + amnπ4

[

(m

a

)2

+
(n

b

)2
]2

D

) b
∫

0

a
∫

0

(

sin
(mπx

a

)

sin
(nπy

b

)

sin

(

m′πx

a

)

sin

(

n′πy

b

)

dxdy

)

(A11)

= δ(t)

b
∫

0

a
∫

0

(I1 + I2) sin

(

m′πx

a

)

sin

(

n′πy

b

)

dxdy
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Using the property of orthogonalization, Eqs (9) and (10), and when m = m ′ and n = n′, Eq. (A11) reduces to:

(

••

a mn + amn

Dπ4

ρh

[

(m

a

)2

+
(n

b

)2
]2

)

=
4

ρabh
δ(t)

b
∫

0

a
∫

0

(I1 + I2) sin

(

m′πx

a

)

sin

(

n′πy

b

)

dxdy (A12)

Eqnarray (A12) can be rewritten as:

(
••

a mn + amnω2
mn) =

4

ρabh
δ(t) {I3 + I4} (A13)

where

I3 =

b
∫

0

a
∫

0

m1
xδt

[

δ(x − x1)

x − x1
− δ(x − x2)

x − x2

]

[H(y − y1) − H(y − y2)] sin

(

m′πx

a

)

sin

(

n′πy

b

)

dxdy(A14)

I4 =

b
∫

0

a
∫

0

m1
yδt

[

δ(y − y1)

y − y1
− δ(y − y2)

y − y2

]

[H(x − x1) − H(x − x2)] sin

(

m′πx

a

)

sin

(

n′πy

b

)

dxdy(A15)

Mathematical definitions of Delta and Heaviside function states that:

δ(x − x1) =

{

= 1 when x = x1

= 0 when x �= x1

}

and H(x − x1) =

{

= 1 when x � x1

= 0 when x < x1

}

(A16)

The integral identity,

a2
∫

a1

{δ′(x − a)f(x)} dx = [−f ′(x)]x=a (A17)

where prime indicates the first derivative, is also used in this derivation.

Equation (A14) can be rewritten as:

I3 =m1
xδt

b
∫

0

[H(y − y1) − H(y − y2)] sin

(

n′πy

b

)

dy

a
∫

0

[

δ(x − x1)

x − x1
− δ(x − x2)

x − x2

]

sin

(

m′πx

a

)

dx (A18)

Applying mathematical identities Eqs (A16) and (A17) in Eq. (A18) we get

I3 = m1
xδt(−1)

(

m′b

n′a

) [

cos
m′πx1

a
− cos

m′πx2

a

] [

cos
n′πy1

b
− cos

n′πy2

b

]

(A19)

Similarly

I4 = m1
yδt(−1)

(

n′a

m′b

)[

cos
m′πx1

a
− cos

m′πx2

a

] [

cos
n′πy1

b
− cos

n′πy2

b

]

(A20)

Therefore Eq. (A14) can rewritten as the following when m = m ′ and n = n′:

(
••

a mn + amnω2
mn) = Fmnδ(t) (A21)

where

Fmn =
4∆t

ρhab
(−1)

[

m1
x

mb

na
+ m1

y

na

mb

]

(

cos
mπx1

a
− cos

mπx2

a

) (

cos
mπy1

a
− cos

mπy2

a

)

(A22)
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On adding modal damping to the temporal Eq. (A21), it becomes:

••

a mn + 2ζmnωmn

•

amn + ω2
mnamn = Fmnδ(t) (A23)

where the solution is given by

amn(t) =
Fmn

ωdmn

e−ζmnωmntsin(ωdmn
t) (A24)

Thus the equation for transverse displacement as given by Eq. (A4) can be written as:

w(x, y, t) =
∑

n

∑

m

Fmn

ωdmn

e−ζmnωmnt sin (ωdmn
t) sin

(mπx

a

)

sin
(nπy

b

)

(A25)

The corresponding strains can be suitably expressed as given in Eqs (25–27). The voltage output can be derived

as shown in Section 2.2. For details of sensor array outputs and continuous sensor outputs, please refer to ref [27].

The equations for a steady state sinusoidal excitation can be similarly derived.

Appendix B – Derivation of a Hsu-Nielsen source excitation on a simply supported plate

The equation of motion is:

D∇4w(x, y, t) = −ρh
••

w +f(x, y, t) (B1)

where the step function force f(x, y, t) = f0U(t)δ(x−xc)δ(y−yc) gives the magnitude of the input excitation, w is

the z-displacement, ρis mass density and h is the plate thickness. The plate flexural rigidity is given as D = Eh3

12(1−ν2) ,

and U(t) = 0when t � 0 and U(t) = 1 when t > 0. The boundary conditions for a rectangular simply supported

plate of length a and width b are defined as:

w = 0,
∂2w

∂x2
= 0, atx = 0, x = a, w = 0,

∂2w

∂y2
= 0, y = 0, y = b. (B2)

The bending and shear strains are:

εx = −z
∂2w

∂x2
, εy = −z

∂2w

∂y2
, γxy = −∂z

∂2w

∂x∂y
(B3)

First, the homogeneous solution is obtained using f(x, y, t) = 0. Let

w(x, y, t) =
∑

n

∑

m

amn(t) sin
(mπx

a

)

sin
(nπy

b

)

(B4)

Substitution of Eq. (B4) into Eq. (B1) with f(x, y, t) = 0 gives:

D

(

∑

n

∑

m

amn

(mπ

a

)4

sin
(mπx

a

)

sin
(nπy

b

)

)

+ 2D

(

∑

n

∑

m

amn

(mπ

a

)2 (nπ

b

)2

sin
(mπx

a

)

sin
(nπy

b

)

)

+D

(

∑

n

∑

m

amn

(nπ

a

)4

sin
(mπx

a

)

sin
(nπy

b

)

)

= −ρh

(

∑

n

∑

m

••

a mn sin
(mπx

a

)

sin
(nπy

b

)

)

(B5)

or,

D

(

∑

n

∑

m

amn

[

(mπ

a

)2

+
(nπ

b

)2
]2

sin
(mπx

a

)

sin
(nπy

b

)

)

=−ρh

(

∑

n

∑

m

••

a mn sin
(mπx

a

)

sin
(nπy

b

)

)

(B6)

∑

n

∑

m

(

ρh
••

a mn + amn

[

(mπ

a

)2

+
(nπ

b

)2
]2

D) sin
(mπx

a

)

sin
(nπy

b

)

)

= 0 (B7)
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Multiplying both sides by sin m′πx
a

sinn′πy
b

and doubly integrating:

∑

n

∑

m

(

ρh
••

a mn + amn

[

(mπ

a

)2

+
(nπ

b

)2
]2

D

) b
∫

0

a
∫

0

sin

(

m′πx

a

)

sin

(

n′πy

b

)

(B8)
sin

(mπx

a

)

sin
(nπy

b

)

dxdy = 0

When m′ = m, n′ = n

b
∫

0

a
∫

0

sin

(

m′πx

a

)

sin

(

n′πy

b

)

sin
(mπx

a

)

sin
(nπy

b

)

dxdy =
ab

4
(B9)

and when m′ �= m, n′ �= n, m′ = m, n′ �= n, and m′ �= m, n′ = n

b
∫

0

a
∫

0

sin

(

m′πx

a

)

sin

(

n′πy

b

)

sin
(mπx

a

)

sin
(nπy

b

)

dxdy = 0 (B10)

Only the m,nth term remains and since the integral cannot be always zero, therefore,

••

a mn + amn

[

(mπ

a

)2

+
(nπ

b

)2
]2

D

ρh
= 0 (B11)

This represents a linear system with a natural frequency given by:

ωmn = π2

√

D

ρh

[

(m

a

)2

+
(n

b

)2
]

(B12)

The forced response problem can be written as:

D∇4w + ρh
••

w = f0U(t)δ(x − xc)δ(y − yc) (B13)

Substituting Eq. (B4) into Eq. (B13) gives:

∑

m

∑

n

(

ρh
••

a mn + amnπ4

[

(m

a

)2

+
(n

b

)2
]2

D) sin
(mπx

a

)

sin
(nπy

b

)

)

(B14)
= f0U(t) [δ(x − xc)δ(y − yc)]

Multiplying both sides of Eq. (B14) by sin( m′πx
a

) sin(n′πy
b

) and double integrating:

∑

n

∑

m

(

ρh
••

a mn + amnπ4

[

(m

a

)2

+
(n

b

)2
]2

D

) b
∫

0

a
∫

0

(

sin
(mπx

a

)

sin
(nπy

b

)

sin

(

m′πx

a

)

(B15)

sin

(

n′πy

b

)

dxdy

)

= f0U(t)

b
∫

0

a
∫

0

δ(x − xc)δ(y − yc) sin

(

m′πx

a

)

sin

(

n′πy

b

)

dxdy

when m = m′ and n = n′, the left hand side becomes nonzero:
(

ρh
••

a mn + amnπ4

[

(m

a

)2

+
(n

b

)2
]2

D

)

ab

4
= f0U(t) sin

(

m′πxc

a

)

sin

(

n′πyc

b

)

(B16)
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(

••

a mn + amn

Dπ4

ρh

[

(m

a

)2

+
(n

b

)2
]2

)

=
4f0

ρabh
U(t) sin

(mπxc

a

)

sin
(nπyc

b

)

(B17)

From Eq. (B12)

ω2
mn =

Dπ4

ρh

[

(m

a

)2

+
(n

b

)2
]2

. Let

(B18)

Fmn =
4f0

ρhab
sin

(mπxc

a

)

sin
(nπyc

b

)

.

Addition of modal damping to the temporal equation, where each damping ratio for each of the natural frequencies

is specified independently, yields:

••

a mn + 2ζmnωmn

•

amn + ω2
mnamn = F (t) (B19)

where F (t) = F mnU(t) and amn is the modal participating factor. Assuming initial conditions initial displacement

and velocity, to be zeros, and using convolution integrals [30], the time response is obtained as:

amn(t) =
1

ωdmn

e−ζmnωmnt

⎡

⎣

0
∫

−t

(0)e−ζmnωmnt sinωd(t − τ)dτ +

t
∫

0

Fmne−ζmnωmnt sin ωd(t − τ)dτ

⎤

⎦(B20)

or,

amn(t) =
Fmn

ωdmn

e−ζmnωmnt

⎡

⎣

t
∫

0

e−ζmnωmnτ sinωd(t − τ)dτ

⎤

⎦ (B21)

and if t(0) = 0,

amn(t) =
Fmn

ω2
mn

− Fmn

ω2
mn

√

1 − ζ2
e−ζmnωmn(t−t(0)) cos[ωd(t − t(0)) − θ] (B22)

Therefore the solution can be written as:

amn(t) =
Fmn

ω2
mn

−
(

Fmn

ωmnωdmn

e−ζmnωmnt cos(ωdmn
t − θ)

)

(B23)

when t > 0, θ = tan−1

(

ζ√
1−ζ2

)

, ωdmn
= ωmn

√

1 − ζ2
mn and ωmn = π2

√

D
ρh

[(m
a

)
2

+ (n
b
)
2
]. Thus the total

solution for the plate displacement can be expressed as:

w(x, y, t) =
∑

n

∑

m

(

Fmn

ω2
mn

−
(

Fmn

ωmnωdmn

e−ζmnωmntcos(ωdmn
t − θ)

))

sin
(mπx

a

)

sin
(nπy

b

)

(B24)

The damping ratio is ζmnand can be specified individually for each mode. For zero damping, i.e., when ζ = 0,

w(x, y, t) =
∑

n

∑

m

Fmn

ω2
mn

(1 − cos(ωmnt)) sin
(mπx

a

)

sin
(nπy

b

)

(B25)
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