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A time dependent symmetric flow with heat transmission of a second-grade fluid con-

taining nanoparticles and gyrotactic microorganisms between two parallel plates in

two dimensions is explored. Partial differential equations furnish the nonlinear ordi-

nary differential equations due to the usage of relevant similarity transformations.

Motion declines due to second grade fluid, energy elevates due to thermophore-

sis, concentration enhances due to Brownian motion and gyrotactic microorganisms

profile elevates due to Peclet number. The unsteadiness parameter β has profound

effect on the nanobioconvection flow within the plates. Optimal homotopy asymp-

totic method (OHAM) is followed to evaluate the transformed systems. Consistency

and smoothness between the first and second orders of the optimal homotopy asymp-

totic method are revealed through graphs. Also, graphs are provided to manifest the

impacts of each parameter. © 2018 Author(s). All article content, except where oth-

erwise noted, is licensed under a Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5054679

I. INTRODUCTION

Thin patches dispersed on the surface of fluid formed by microorganism like single cell motile

phytoplankton has profound effect on aquatic ecosystem. Phytoplankton inhabits the well-lit surface

of oceans and other pools, utilizes sunlight in the existence of CO2 dissolved in water yield food for

other organisms, called autotrophs. It is essential component of food web mostly lived in euphotic

zone of marine environment. The motile phytoplankton has been observed in suspension of swimming

micro-organisms like algae, protozoa and bacteria. These microorganisms swim randomly with the

partial towards a focused direction. The motion may be by virtue of chemical gradient (chemo-taxis),

light (photo-taxis), upwards (negative gravi-taxis) or from the amalgamation of these and other taxes.

Motility of microbes towards the surface is under the influence of the daylight due to phototaxis and

towards the deeper environment or sometimes at night due to the rich amount of nutrients conferred

as chemotaxis. The shallow suspension of such motile generates large-scale ordered (bioconvection

pattern). Bioconvection occurs when motile micro-organisms swim averagely towards upward which

are denser than water. When the upper surface of the shallow suspension is too dense due to the

aggregation of motile, then the density-gradient surpasses a critical position, causes gravitational

instability and ultimately microorganisms fall down for causing bio-convection.
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Under bioconvection experiments, bottom-heavy microorganisms swim rising upward in static

medium. When these are in flow field, their swimming position is determined by the equilibrium con-

dition of viscous drag arising from shear flow and gravitational torques on an asymmetric distribution

of mass within the organism. As a result, these cells tend to swim towards segment of down-welling

fluid refer to gyrotactic process.

The term “bioconvection” was stated by Platt1 from the beginning with the streaming patterns

detected in the dense cultures of free-swimming micro-organisms (i.e. tetrahymena, ciliates and flag-

ellates). These microorganisms look like Bernard cells but they are not due to the existence of thermal

convection (see Platt, 1961). Kessler2 defined the convection rhythms which may form impulsively

in isothermal liquids, containing swimming microorganisms where the motile swimmers supplied

energy to this dissipative process. The routes of cell are fixed by gravitational force and vorticity,

resulting cells to tend towards the center of liquid where downstream velocity is high. This concen-

trative process is named as “gyrotaxis.” Kuznestsov3 investigated the heating effect on the stability

of gyrotactic of the fluid layer with finite depth. The result of his work revealed that suspensions of

these cells are less stable under the influence of heat as compared to the suspension under isothermal

conditions. Khan et al.4 worked on the semi analytical solution of the nonlinear transformed form

obtained from the model of mixed convection in two dimensions in which gravity has driven the

non-newtonian nanofluid films namely Casson and Williamson flow containing the nanoliquid and

gyrotactic microbes along the convective heated surface of vertical shape and also discussed the effect

of boundary conditions with the actively controlled nanofluid model over liquid film flow. They fur-

ther investigated the consequence of Brownian motion and thermophoresis forces on the fluid flow.

Zuhra et al.5 explained the mechanism of gyrotactic microorganisms with magnetohydrodynamic

second grade nanofluid flow under the passively controlled nanofluid model boundary conditions by

using convectively heated vertical surface. The research further discussed the effects of well known

parameters like Prandtl number, Peclet number, Lewis number etc. on the nature of nanofluid contain-

ing motile microorganisms. Mahdy6 examined boundary layer flow with free convection arising from

nonhomogeneous model of nanofluid on a vertical plate fixed in spongy medium containing gyro-

tactic microorganisms. Natural convection flow in form of coolant is accommodating in cooling of

nuclear reactors and astronaut field. Sivraj et al.7 threw light on the impact of gyrotactic microorgan-

isms and thermal radiation on boundary layer flow having nanoparticles of size 29nm in CuO-water

nanofluid flow over the upper surface of paraboloid structure, like the car bonnet, upper surface of an

aircraft and upper pointed surface of rocket etc. Khan et al.8 applied passively controlled of nanofluid

model boundary conditions on time independent second grade nanofluid thin film flow containing

nanosized particles and gyrotactic microorganisms over convectively heated vertical solid surface. He

further illustrated the influences of different parameters on velocity field, temperature, concentration

and density of microorganism profiles through graphs. Rashad et al.9 explained the mixed biocon-

vection flow of nanofluid containing gyrotactic microbes from vertical shape cylinder, examining

passively controlled nanofluid model which is more authentic than actively controlled models in

their perspective work. Dianchen et al.10 examined nanofluid containing gyrotactic microorganisms

in three-dimensional steady flow model and discussed numerical solution of the above model under

the condition of anisotropic slip beside moveable channel. He also demonstrated the influence of

Arrhenius activation energy equation, joule heating accompanying binary chemical reaction over the

above flow.

Cooling is poignant for pressing pre-essential for industrial and domestic technologies due to

the global warming. However, convectional heat transfer fluid has low thermal conductivity as com-

pared to solids. To overcome such problems, the investigative study is carried out to enhance poor

thermal conductivity of fluids by adding millimeter or micrometer sized solid particles which gen-

erate the new approach towards the nanofluid. The current interest in fluid mechanic is diverted to

the field of nanofluid dynamics. Nanofluids are manufactured by the suspension of the nano-sized

particles (less then 100nm) in the medium fluid such as water, coolants, emulsions, ethylene glycol

or tri-ethylene oil, other lubricants, polymer solutions and other common bio-fluids. Nanoparticles

ingredients may include metals (aluminum Al, copper Cu), metal carbides (silicon carbide SIC), oxide

ceramic (aluminum-oxide Al2O3, copper-oxide CuO), nitrides (aluminum nitride AlN, SIN), layered

(AL+, Al2O3, Cu+C). The mixtures of nanoparticles and base fluids can produce many heterogeneous
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nanofluids, characterized for their thermophysical properties (thermal diffusivity, thermal conductiv-

ity, viscosity) as coolant in heat transfer as compared to base fluid, which went up with increasing

volumetric fraction of nanoparticles. With enhanced thermal properties, nanofluid has an active role

in medical/biological science, chemical science, mechanical and engineering sciences. Thus, it has

many applications including microelectronics, hybrid power engines, fuel cells, refrigerator, car AC,

engine cooling, chiller, grinding machine, pharmaceutical process, boiler exhaust fuel gas recovery,

in ultrasonic field, high power lasers, in the field of nanotechnologies, cooling of welding, nuclear

system cooling, microwave tubes, space, thermal storage and drag reduction. Nanofluids can be

manufactured in industrial level which follows two main procedures: One step method and two step

method. In one step method, the particle manufactures and disperses in medium fluid concurrently,

without passing through the process of dehydration, storage, shipment and dispersing of nanoparti-

cles. Thus, the assortment of nanoparticle is diminished and fluid stability is elevated. In such case

of preparation, the nanofluid in large scale demands high advance technology and thus is costly.

On the other hand, two step method is widely used in the industrial preparation of nanoparticles.

According to this method, nano-sized particles, fibers, tubes and other nano-materials are produced

in the form of dry powder, and then like be dispersed into the medium fluid with different process

like rigorous magnetic force agitation, ultrasonic agitation, high shear mixing, homogenizing and

ball milling. The goal line in the field of nanofluids is to get the maximum thermal material prop-

erties at the lowest possible clustering process (about<1% by volume) by maintaining the balance

of homogenous scattering and steady suspension of nanoparticles (<10 nm) in medium fluids. By

attaining the target, it is essential to understand the procedure that how nanoparticles may enhance

the transport of thermal conductivity in liquids. Initial development was contrived by Choi11 in

the term of thermophysical performance enhancement to the fluid comprising the suspension of

nanometer sized particles. Innovative experiments made by him over the measure of heat transfer

convective co-efficient of base fluid, illustrated significant thermal properties for extensive appli-

cations being enhanced heat transfer, size reduction of heat transfer system, microchannel cooling,

miniaturization of systems and minimal clogging in his perceptive study. Since the investigative

development has been continued and potential modification has been done by the researchers. Zheng

et al.12 introduced an efficient procedure of the provision of drug nanocolloids keeping diameters

of little than 100 nm residing on the sonication-assisted nucleation of drug particles from their dis-

persion in carbon compounds solvents where the preparation of consistent curcumin nanocolloids

by dominant crystallization was practiced by worsening saturated curcumin alcohol dispersions.

Zhang13 provided the discovered information reliant to tea and cancer protection via chemical struc-

ture, mixing, epidemiologic information and ways of innovations. Residing on the epidemiologic

information, he also developed a layer-by-layer multi-functional drug delivery program and synergy

information reliant to the investigated innovations related to science experimentations for coming

time tea and work about cancer. Khan et al.14 analyzed the influence of Hall current, thermophore-

sis, Brownian motion and mixed convection on MHD non-Newtonian thin liquid film second grade

nanofluid flow on the heat transfer past a stretching surface. They further discussed the effect of

Brownian motion over solid transportation of heat from particle to particle, causing an increase in

thermal conductivity. Mahanthesh et al.15 carried out the influence of nonlinear thermal convec-

tion and radiation of non-newtonian nanofluid flow of three dimensions boundary layer and found

that volumetric fraction and temperature profile are much stronger in the presence of solar radi-

ation in comparison with problems without radiation. Ramzan et al.16 discussed unsteady MHD

second grade nanofluid flow persuaded by porous vertical surface. The effects of mixed convec-

tion, thermal radiation, Brownian motion and thermophoresis are encountered and it is detected

that temperature and concentration outlines are prominent which show uniform action for ther-

mophoresis constraint but have dichotomous inclination because of Brownian motion parameter.

Khan et al.17 focused on MHD nano-liquid thin film sprayed over stretching cylinder along heat

transfer and studied the behavior of magnetic nano-liquid on water based nanofluid under the con-

sideration of thin film. Zuhra et al.18 discussed the equations taken from the combined flow model

arising from Casson and Williamson nanofluids with flow and heat transfer properties in electrically

conducting water based thin film containing graphene nanoparticles with the existence of magnetic

field.
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Various approximate analytical/numerical approaches have been investigated over the years for

fixing linear/nonlinear boundary values problems arising in the field of science and engineering.

With worth mentioning development in different modele under initial/boundary conditions occur

naturally or industrially which may sort out complicated high nonlinear equations that may increase

mathematical intricacy of the problems which diminish the chance of getting close solutions to

such problems. To triumph over these problems, researchers are looking to expand high-quality

numerical/analytical techniques like differential transform method (DTM),19 variational iteration

method (VIM),20 finite difference method (FDM),21 Adomian decomposition method (ADM),22

homotopy perturbation method (HPM),23 homotopy analysis method (HAM)24 and optimal homo-

topy asymptotic method (OHAM).25 OHAM ia considered best method among all due to its potentials

results presented by Marinca and Harisanu26–32 (for nonlinear problem arising in heat transfer, to

the steady flow problem of fourth grade fluid, for the nonlinear equation taking from thin film

model, for purpose of periodic results of the problem related to motion of a particle on rotating

parabola, for the oscillatory solution with discontinuities and fractional power, for solving Blasius

equations etc.). Idrees et al.33 applied OHAM to fourth order nonlinear boundary value problem aris-

ing from axisymmetric squeezing flow of two-dimensional incompressible fluid model and showed

semi-analytical solution closer to perturbation method, homotopy perturbation method and numer-

ical solutions. Zuhra et al.34 implemented OHAM to attain semi-analytical solution of Benjamin

bona mahoney (BBM) and Sawada kotera (SK) equations, also discussed comparison with ADM

and HPM. Islam et al.35 used this technique for solving singular boundary value problems mag-

nificently, further did comparison with modified ADM to show the efficiency of OHAM through

the rapid convergence to exact solution. Zuhra et al.36 practiced OHAM for high nonlinear (7th

order) Kortewege-de vries equations. Only second order solution provided enough accuracy to

exact output as compared to HPM. Almost in all cases OHAM proved straightforward, accurate

and efficient because only few orders (terms) of OHAM gives rapid convergence towards exact

form instead of large series (in case of HAM). Recently Shah et al.37–40 studied nanofluid flow in

rotating system with impacts of thermal radiation using analytical technique (Homotopy Analysis

Method HAM).

Until no paper is published on the current subject. Therefore, it is elaborated to model and analyze

the bioconvection in unsteady second-grade fluid flow and heat transfer containing nanoparticles and

gyrotactic microorganisms lying in the parallel plates keeping equal distance to each other. A strong

scheme i. e. optimal homotopy asymptotic method is utilized to attain the evaluation which has been

put into various graphs to manifest the impacts of each parameter.

II. DESCRIPTION OF THE PROBLEM

Consider two-dimensional, time dependent and equilibrium flow of a non-Newtonian incom-

pressible fluid bounded by two plates and parallel to each other. Within the system of Cartesian

coordinates, the position of these plates is specified, the lower plate is placed fixed horizontally on

x−axis where y−axis is perpendicular to the lower plate. Both plates are assumed to be placed at

the distance y = h(t), where h(t)= (
v(1−at)

b
)1/2. The capability of the upper plate is either to move

towards the lower plate placed fixed at the position y = 0 or to move away. It moves with the velocity

v(t)=
d(h)
dt

and has passive auxiliary conditions at y = h(t). Temperatures at the lower and upper plates

is considered as T1 and T2 respectively. It is expected that corresponding plates are kept up at con-

stant temperature. Furthermore, nanoparticles are diluted in the base fluid successively and steadily

so are scattered continuously at the lower plate (sited at y = 0). The dispersion of microorganisms is

demonstrated by N1 at the lower plate and N2 at upper plate as shown in Fig. 1. It is also assumed

that microorganisms are disseminated continuously. Considering water as base fluid for the existence

of microorganisms.

Under the aforementioned assumptions, the two-dimensional unsteady nanobioconvection flow

model between parallel plates is presented as in;34

∂u

∂x
+
∂v

∂y
= 0, (1)
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FIG. 1. Geometry of physical model and coordinate system.

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+
α1

ρf

(

∂3u

∂t∂y2
+ u

∂3u
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∂u

∂x

∂2u

∂y2
+
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∂y2
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∂3u
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)

, (2)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= αm

∂2T

∂y2
+ DB

(ρc)p

(ρc)f

∂C

∂y

∂T

∂y
+

DT

T0

(ρc)p

(ρc)f

(

∂T

∂y

)2

, (3)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
=DB

∂2C

∂y2
+

DT

T0

∂2T

∂y2
, (4)

∂N

∂t
+ u

∂N

∂x
+ v

∂N

∂y
+
∂(N ṽ)

∂y
=Dn

∂2N

∂y2
. (5)

In bioconvection nanofluid carrying microorganism flow model of defined by Eqs. (1)–(5), u and v

being the velocity components in x− and y− directions, respectively. T is temperature at the plate and

T0 is ambient temperature. C and N are the volumetric fractions of nanoparticle and density of motile

microbes respectively. v is the kinematic viscosity with ν = µ/ρf in which µ is the dynamic viscosity of

suspended nanoparticles and microbes, ρf is the density of nanoliquid. α1 is the substantial parameter

of unsteady second grade fluid. αm =
k
ρf

is the thermal diffusivity of nanofluid in which k denotes

the thermal conductivity.
(ρc)p

(ρc)f
is the ratio of heat capacity of nanofluid and base fluid. DB and DT

are the coefficients of Brownian diffusion and thermophoretic diffusion respectively, ṽ =
(

bcWc

∆C

)

∂C
∂y

is the vector of average swimming velocity of gyrotactic microbes where maximum speed of motile

microbe is denoted by W c and bc is the coefficient of chemotaxis.

Relevant auxiliary conditions for the lower horizontal plate (at y = 0) and upper plate at (y = h(t))

are the following

u= 0, v = 0, T =T1, C =C0 and N =N1, (6)

u= 0, v =

dh

dt
, T =T2, DB

(

∂C

∂y

)

+
DT

T0

(

∂T

∂y

)

= 0 and N =N2. (7)

Introducing the nondimensionalized transformed variables f, θ, ϕ, Ω and similarity variable ξ that

support the above bioconvection flow model of nanofluid between two corresponding plates are

written as following,

ψ(x, y)=

(

bv

1 − at

)1/ 2

xf (ξ), where ξ =

(

b

v(1 − at)

)1/ 2

y

u=

(

bx

1 − at

)

f ′(ξ), v =−

(

bv

1 − at

)1/ 2

f (ξ),

θ(ξ)=
T − T0

T2 − T0

, ϕ(ξ)=
C − C0

C0

, Ω(ξ)=
N − N0

N2 − N0

,

+///////////
-

(8)
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where ψ(x, y) is the stream function with u=
∂ψ(x,y)

∂y
, v =−

∂ψ(x,y)

∂x
. a and b are nonnegative con-

stants with dimension (time)−1. After substituting the dimensionless transformations from Eq. (8) in

Eqs. (1)–(7) and calculating the suitable partial derivatives for f, θ, ϕ and Ω, the following system of

ordinary differential equations are achieved successfully,

f ′′′(ξ) + f (ξ)f ′′(ξ) −
(

f ′(ξ)
)2
− β

(

ξf ′′(ξ) + 2f ′(ξ)
)

+ α
(

4βf ′′′(ξ) + βξf ′′′′(ξ) − f (ξ)f ′′′′(ξ) + 2f ′(ξ)f ′′′(ξ) −
(

f ′′(ξ)2
))

= 0, (9)

θ ′′(ξ) + Pr( f (ξ) − βξ)θ ′(ξ) + Nbθ ′(ξ)ϕ′(ξ) + Nt
(

θ ′(ξ)
)2
= 0, (10)

ϕ′′(ξ) + Le( f (ξ) − βξ)ϕ′(ξ) +
Nt

Nb
θ ′′(ξ)= 0, (11)

Ω
′′(ξ) + Sc( f (ξ) − βξ)Ω′(ξ) − Pe

(

Ω(ξ)ϕ′′(ξ) +Ω′(ξ)ϕ′(ξ)
)

= 0. (12)

In Eqs. (9)–(12), β = a
2b

is unsteadiness parameter. The accelerating plates moving apart for β > 0

obviously, increasing the values of β cause deceleration between plates. α =
α1b

µ(1−at)
is dimension-

less parameter of second grade fluid. Other non-dimensional physical parameters of flow model

are bioconvection Prandtl number (Pr = ν
a
), Peclet number (Pe=

bcWc

Dn
), Lewis number (Le= ν

DB
)

and (Sc= ν
Dn

) is Schmidt number. Nt =
(ρc)p

(ρc)f

DT (T2−T0)
T0a

is thermophoresis physical parameter,

Nb=
(ρc)p

(ρc)f

DBC0

a
is parameter of Brownian motion of bioconvection nanofluid model.

Correspondingly, transformed form (Eqs. (8)) of the reasonable boundary conditions for

Eqs. (9)–(12) at lower and upper plates, that is at y = 0 and y = h(t) respectively, defined by Eqs. (6)

and (7) is

f (0)= 0, f ′(0)= 0, f (1)=ω, f ′(1)= 0, (13)

θ(0)= δθ , θ(1)= 1, (14)

ϕ(0)= δϕ , Nbϕ′(1) + Ntθ ′(1)= 0, (15)

Ω(0)= δΩ, Ω(1)= 1, (16)

where the relevant boundary parameter can be defined as follow

δθ =
T1 − T0

T2 − T0

, δΩ =
N1 − N0

N2 − N0

, ω =
aH

2(vb)1/2
, where H =

(

ν

b

)1/2

. (17)

III. SOLUTION OF THE PROBLEM BY OPTIMAL HOMOTOPY
ASYMPTOTIC METHOD (OHAM)

OHAM is adopted to find the semi-analytical solutions of system of ODEs ((9)–(16)) magnifi-

cently. Formulation procedure of OHAM has been explained in detail by many researchers in their

articles25–28 for convenience study.

Consider Eqs. (9) in the form of❆1(φ1(ξ, q))=▲1(φ1(ξ, q)) +◆1(φ1(ξ, q)), where

▲1(φ1(ξ, q))= αβξ
∂4f (ξ, q)

∂ξ4
, (18)

N1(φ1(ξ, q))=
∂3f (ξ, q)

∂ξ3
+ f (ξ)

∂2f (ξ, q)

∂ξ2
−

(

∂f (ξ, q)

∂ξ

)2

− β

(

ξ
∂2f (ξ, q)

∂ξ2
+ 2

∂f (ξ, q)

∂ξ

)

+ α*
,
4β

∂3f (ξ, q)

∂ξ3
− f (ξ, q)

∂4f (ξ, q)

∂ξ4
+ 2

∂f (ξ, q)

∂ξ

∂3f (ξ, q)

∂ξ3
−

(

∂2f (ξ, q)

∂ξ2

)2

+
-
, (19)

Taking Eqs. (10) as❆2(φ2(ξ, q))=▲2(φ2(ξ, q)) +◆2(φ2(ξ, q)), in which
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▲2(φ2(ξ, q))=
∂2θ(ξ, q)

∂ξ2
, (20)

◆2(φ2(ξ, q))=Pr( f (ξ, q) − βξ)
∂θ(ξ, q)

∂ξ
+ Nb

∂θ(ξ, q)

∂ξ

∂ϕ(ξ, q)

∂ξ
+ Nt

(

∂θ(ξ, q)

∂ξ

)2

. (21)

Equation (11) is❆3(φ3(ξ, q))=▲3(φ3(ξ, q)) +◆3(φ3(ξ, q)), in which

▲3(φ3(ξ, q))=
∂2ϕ(ξ, q)

∂ξ2
, (22)

◆3(φ3(ξ, q))=Le( f (ξ, q) − βξ)
∂ϕ(ξ, q)

∂ξ
+

Nt

Nb

∂2θ(ξ, q)

∂ξ2
(23)

Equation (12) is in the form of❆4(φ4(ξ, q))=▲4(φ4(ξ, q)) +◆4(φ4(ξ, q)), where the linear part is

▲4(φ4(ξ, q))=
∂2
Ω(ξ, q)

∂ξ2
, (24)

nonlinear part is

◆4(φ4(ξ, q))= Sc( f (ξ) − βξ)
∂Ω(ξ, q)

∂ξ
− Pe

(

Ω(ξ, q)
∂2ϕ(ξ, q)

∂ξ2
+
∂Ω(ξ, q)

∂ξ

∂ϕ(ξ, q)

∂ξ

)

. (25)

According to procedure of OHAM,25 construct the homotopy formula for nanobiconvection model

(Eqs. (9)–(12)), as following

❍1(φ1(ξ, q), q)= (1 − q)▲1(φ1(ξ, q)) −❍1(q)❆1(φ1(ξ, q))= 0, with B1

(

φ1,
∂φ1(ξ, q)

∂ξ

)

, (26)

❍2(φ2(ξ, q), q)= (1 − q)▲2(φ2(ξ, q)) −❍2(q)❆2(φ2(ξ, q))= 0, with B2

(

φ2,
∂φ2(ξ, q)

∂ξ

)

, (27)

❍3(φ3(ξ, q), q)= (1 − q)▲3(φ3(ξ, q)) −❍3(q)❆3(φ3(ξ, q))= 0, with B3

(

φ3,
∂φ3(ξ, q)

∂ξ

)

, (28)

❍4(φ4(ξ, q), q)= (1 − q)▲4(φ4(ξ, q)) −❍4(q)❆4(φ4(ξ, q))= 0, with B4

(

φ4,
∂φ4(ξ, q)

∂ξ

)

, (29)

where q is an embedding parameter such that 0 ≤ q ≤ 1, ❍1(q), ❍2(q), ❍3(q) and ❍4(q) are

auxiliary functions such that

❍1(q)= qC1 + q2
C2 + q3

C3..., ❍2(q)= qK1 + q2
K2 + q3

K3...

❍3(q)= qL1 + q2
L2 + q3

L3..., ❍4(q)= qM1 + q2
M2 + q3

M3...
(30)

C1,C2,C3, ..., K1,K2,K3, ..., L1,L2,L3, ..., M1,M2,M3, ... are auxiliary constants to be deter-

mined by least square method.23

It is worth mentioned that convergence rate of functions f (ξ), θ(ξ), ϕ(ξ) and Ω(ξ) depend on

the auxiliary functions. Increasing the number of auxiliary constants cause the approximate solutions

closer to exact form.

For q = 0 and q = 1, the following result obtained from Eqs. (9)–(12)

q= 0⇒❍1(φ1(ξ, 0), 0)=▲1(φ1(ξ, 0))= f0(ξ), q= 1⇒❍1(φ1(ξ, 1), 1)=❆1(φ1(ξ, 1))= f (ξ),

q= 0⇒❍2(φ2(ξ, 0), 0)=▲2(φ2(ξ, 0))= θ0(ξ), q= 1⇒❍2(φ2(ξ, 1), 1)=❆2(φ2(ξ, 1))= θ(ξ),

q= 0⇒❍3(φ3(ξ, 0), 0)=▲3(φ3(ξ, 0))= ϕ0(ξ), q= 1⇒❍3(φ3(ξ, 1), 1)=❆3(φ1(ξ, 1))= ϕ(ξ),

q= 0⇒❍4(φ4(ξ, 0), 0)=▲4(φ4(ξ, 0))=Ω0(ξ), q= 1⇒❍4(φ4(ξ, 1), 1)=❆4(φ4(ξ, 1))=Ω(ξ).

+///////
-

(31)

Expand the φ1(ξ; q,Ci), φ2(ξ; q,Ki), φ3(ξ; q,Li) and φ4(ξ; q,Mi) in Taylor’s series about q, we

have
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φ1(ξ; q,Ci)= f̃ (ξ)= f0(ξ) +

∞
∑

i=1

fi(ξ,Ci)q
i, φ2(ξ; q,Ki)= θ̃(ξ)= θ0(ξ) +

∞
∑

i=1

θi(ξ,Ki)q
i,

φ3(ξ; q,Li)= ϕ̃(ξ)= ϕ0(ξ) +

∞
∑

i=1

ϕi(ξ,Li)q
i, φ4(ξ; q,Mi)=Ω(ξ)=Ω0(ξ) +

∞
∑

i=1

Ωi(ξ,Mi)q
i,

(32)

with corresponding boundary conditions

f (0, q)= 0, f ′(0, q)= 0, f (1, q)=ω, f ′(1, q)= 0, (33)

θ(0, q)= δθ , θ(1, q)= 1, (34)

ϕ(0, q)= δϕ , Nbϕ′(1, q) + Ntθ ′(1, q)= 0, (35)

Ω(0, q)= δΩ, Ω(1, q)= 1. (36)

The zeroth order deformation problem of Eq. (9) is

f (ξ, 0)= 4αξ
∂f0(ξ)

∂ξ
= 0, (37)

with boundary conditions

f0(0)= 0, f0
′(0)= 0, f0(1)=ω, f0(1)= 0. (38)

Zeroth order deformation problem of Eq. (10) is

θ(ξ, 0)=
∂2θ0(ξ, q)

∂ξ2
= 0, (39)

with boundary conditions

θ0(0)= δθ , θ0(1)= 1. (40)

Zeroth order deformation problem of Eq. (11) is

ϕ(ξ, 0)=
∂2ϕ0(ξ, q)

∂ξ2
= 0, (41)

with boundary conditions

ϕ0(0)= δϕ , Nbϕ0
′(1) + Ntθ0

′(1)= 0. (42)

Zeroth order deformation problem of Eq. (12) is

Ω(ξ, 0)=
∂2
Ω0(ξ, q)

∂ξ2
= 0, (43)

with boundary conditions

Ω0(0)= δΩ, Ω0(1)= 1. (44)

Correspondence zeroth order solution of Eqs. (37)–(44) are

f0(ξ)= 3ξ2ω − 2ξ3ω, θ0(ξ)= ξ + δθ − ξδθ ,

ϕ0(ξ)=
Nbδϕ − Ntξ(θ0)′[1]

Nb
, Ω0(ξ)= ξ + δΩ − ξδΩ.

(45)

1st order deformation of Eq. (9) is

C1
*.
,

(

f0
′(ξ)

)2
+ (βξ − f0(ξ))f0

′′(ξ) + α
(

f0
′′(ξ)

)2
− ( f0(ξ))3

− 4αβ

( f0(ξ))3 + 2f0
′(ξ)

(

β − α( f0(ξ))3
)

+ αf0(ξ)( f0(ξ))4
− αβξ( f0(ξ))4

+/
-
− ( f0(ξ))4 + ( f1(ξ))4

= 0,

(46)

with f1(0)= 0, f1
′(0)= 0, f1(1)= 0, f1(1)= 0.
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1st order deformation problem of Eq. (10) is

K1
*
,

Pr βξθ0
′(ξ) − Pr f0(ξ)θ0

′(ξ) − Nt
(

θ0
′(ξ)

)2

−Nbθ0
′(ξ)ϕ0

′(ξ) − θ0
′′(ξ)

+
-
− θ0

′′(ξ) + θ1
′′(ξ)= 0, (47)

with θ1(0)= δθ , θ1(1)= 0.

1st order deformation problem of Eq. (11) is

1

Nb

(

L1LeNb(βξ − f0(ξ))ϕ0
′(ξ) − L1Ntθ0

′′(ξ) − Nb
(

(1 + L1)ϕ0
′′(ξ) − ϕ1(ξ)

))

= 0, (48)

with Nbϕ1
′(1) + Ntθ1

′(1)= 0, ϕ1(0)= 0.

1st order deformation problem of Eq. (12) is

M1(Scβξ − Scf0(ξ) + Peϕ0(ξ))Ω0
′(ξ) + M1PeΩ0(ξ)ϕ0

′′(ξ)

−Ω0
′′(ξ) −M1Ω0

′′(ξ) +Ω1
′′(ξ)= 0,

Ω1(0)= 0, Ω1(1)= 0.

(49)

Solutions of corresponding 1st order deformation problems of Eqs. (46)–(49) are

f1(ξ,C1)=−
1

420
C1(−1 + ξ)2ξ2ω

*.
,

7β
(

6 + 120α + ξ − 4ξ2
)

+ 3
(

70 +
(

10 + 210α + 6ξ + 2ξ2
− 2ξ3 + ξ4

)

ω
)

+/
-
, (50)

θ1(ξ,L1)=
1

60
L1Pr(−1 + ξ)ξ

(

10β(1 + ξ) + 3
(

−3 − 3ξ − 3ξ2 + 2ξ3
)

ω
)

(−1 + δθ ), (51)

ϕ1(ξ,M1)=
1

60Nb
Nt

*.....
,

M1Le
(

10β
(

−3 + ξ2
)

+ 3
(

10 − 5ξ3 + 2ξ4
)

ω
)

+ M1

Le
*.
,

−10β
(

−3 + ξ2
)

−3
(

10 − 5ξ3 + 2ξ4
)

ω

+/
-
δθ − 60(θ1)′[1]

+/////
-

, (52)

Ω1(ξ,N1)=
1

60Nb
N1(−1 + ξ)ξ

*...
,

−30NtPe + NbSc*
,

10β(1 + ξ)

+ 3
(

−3 − 3ξ − 3ξ2 + 2ξ3
)

ω
+
-

+30NtPeδθ

+///
-

(−1 + δΩ). (53)

Similarly, proceeding second order deformation problem for Eqs. (9)–(12) with boundary conditions

(13)–(17), one gets semi analytical solution of for Eq. (9) as

f̃ (ξ)= f0(ξ) + f1(ξ,C1) + f2(ξ,C1,C2).

Semi analytical solution for Eq. (10) is

θ̃(ξ)= θ0(ξ) + θ1(ξ,K1) + θ2(ξ,K1, K2).

For Eqs. (11) it is

ϕ̃(ξ)= ϕ0(ξ) + ϕ1(ξ,L1) + ϕ2(ξ,L1,L2).

Obtained solution for Eqs. (12) is

Ω̃(ξ)=Ω0(ξ) +Ω1(ξ,M1) +Ω2(ξ,M1,M2)

IV. RESULTS AND DISCUSSION

OHAM is proposed to sort out the semi-analytical series solutions of the nonlinear differential

series equations, arised from unsteady, two-dimensional incompressible flow model of second grade

nanofluid. It carries out the exploration about the microorganisms in the channel bounded by two

parallel plates, in which the lower plate is placed fixed horizontally and upper plate is portable. This

part is concerned to check the impact of non-dimensional physical parameters on the velocity pro-

file f (ξ), temperature profile θ(ξ), nanofluid concentration ϕ(ξ) and the density of motile gyrotactic

microorganisms profile Ω(ξ). These parameters are Prandtl number Pr, Lewis number Le, Peclet
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FIG. 2. Different order solutions for parameters α = β = 0.5, ω = 1 of momentum f (ξ).

number Pe, Schmidt number Sc, Brownian motion parameter Nb and thermophoretic parameter Nt.

Time dependent parameters comprises the unsteadiness parameter β and constant of unsteadiness

second grade fluid α. To find the consequential series solutions for f (ξ), θ(ξ), ϕ(ξ) andΩ(ξ), conver-

gence rate is vital to be verified. Figs. 2–5 show zeroth order, first order and second order solutions

FIG. 3. Different order solutions for parameters α = β = 0.5, Nt = Nb = 0.1, Pe = Pr = Sc = ω = 1, δθ = 0.1 of temperature

profile θ(ξ).

FIG. 4. Different order solutions for parameters α = β = 0.5, Nt = Nb = 0.1, Pe = Pr = Sc = ω = 1, δθ = 0.1, δϕ = 0.1 of

nanofluid concentration profile ϕ(ξ).
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FIG. 5. Different order solutions for parameters α = β = 0.5, Nt = Nb = 0.1, Pe = Pr = Sc = ω = 1, δθ = 0.1, δϕ = 0.1 and of

motile microorganism profile Ω(ξ).

for f (ξ), θ(ξ), ϕ(ξ) and Ω(ξ) against ξ respectively. It is clear that OHAM solutions is converging

rapidly as we increase the auxiliary constants.25 There seems no dispersion and irregularities within

the range. On the behalf of this method, the effect of above mentioned parameters on velocity, tem-

perature, concentration and microorganism profiles are portrayed graphically and briefly discussed

one by one respectively in Figs. 2–5.

A. Velocity profile

A brief theoretic discerption is required on the flow channel of the fluid across parallel plates

under some assumptions. Figures 6–7 demonstrate the impact of unsteadiness parameter β on velocity

field in y (f (ξ)) and x (f ′(ξ)) directions. Positive values of β indicates that parallel plates are moving

away from each other and negative values of β correspond to the state when these plates come closer

to each other. Flow behavior is shown in Fig. 6, for case (i) when the plates are moving apart and

for case (ii) when plates come together. Both cases are opposite to each other. In case (i) by making

larger the positive values of unsteadiness parameter β enhance the fluid velocity. Reason is that when

the plates move apart, space inside the channel is more for fluid which causes increase in the fluid

velocity inside the channel. On other hand while plates are coming in the direction of each other, fluid

inside the channel is injected out caused in a drop of fluid inside so decelerates the velocity. Figure 7

is sketched for f ′(ξ) against 0 ≤ ξ ≤ 1 about dual performance of β, in the range 0 ≤ ξ ≤ 0.5 for larger

positive unsteadiness parameter velocity of base fluid decelerate while in 0.5< ξ ≤ 1.0 flow behavior

shows enhancement in velocity for increasing nonnegative value of β. Variation of the second grade

FIG. 6. Effect on velocity profile f(ξ) for parameters α = 0.5, Nt = Nb = 0.1, Pe = Pr = Sc = ω = 1 and for different values of

β in y ( f (ξ)) direction.
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FIG. 7. Effect on velocity profile f(ξ) for parameters α = 0.5, Nt = Nb = 0.1, Pe = Pr = Sc = ω = 1, δθ = 0.1, δϕ = 0.1,

δΩ = 0.1 and for various values of β in x ( f ′(ξ)) direction.

parameter α on velocity field is shown in Fig. 8, actually α is direct proportional to viscosity that is

why viscosity increases for larger values of α yield decrement in fluid velocity. It is observed in range

0 ≤ ξ ≤ 0.5 the velocity decelerates for α and accelerates in another half range. Figure 9 is related

FIG. 8. Effect on velocity profile f(ξ) for parameters β = 0.5, Nt = Nb = 0.1, Pe = Pr = Sc = ω = 1, δθ = 0.1, δϕ = 0.1,

δΩ = 0.1 and for different choices of α in x ( f ′(ξ)) direction.

FIG. 9. Effect on velocity profile f(ξ) for parameters α = β = 0.5, Nt = Nb = 0.1, Pe = Pr = Sc = 1, δθ = 0.1, δϕ = 0.1,

δΩ = 0.1 and for different values of ω in x ( f ′(ξ)) direction.
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to the variation in boundary condition ω, which is a constant relevant to the distance between two

parallel plates with respect to time. It is observed that some small changes inω yield the great effects

on the velocity profile. Increment in values of ω give the rapid rises to fluid velocity.

B. Temperature profile

Variation in temperature profile is basically the distribution of heat transfer. Influence of different

parameters like β unsteadiness parameter, constant of unsteadiness second grade nanofluid parameter

α, thermophoretic parameter Nt, Brownian motion parameter Nb, Prandtl number Pr, Peclet number

Pe and Lewis number Le on the temperature field in the presence of nanoliquid and motile microbes

are illustrated in Figs. 10–16. Time dependent parameter β is depicted in Fig. 10. Negative and

positive values of β yield the distance between parallel plates. For β > 0, upper plate moves away

from lower plate which results more space for fluid to yield the reduction of temperature while the

negative values of β carries opposite behavior in plates causing increment in temperature profile. In

Fig. 11 temperature profile for unsteady second grade parameter α decreases rapidly. Thermophoresis

phenomena surely defines the different particle temperature which exhibits different responses to

the force of temperature. Figure 12 illustrates that rises in the values of thermophoretic parameter

Nt, enhance the boundary layer thickness which leads to increase the temperature profile, as this

phenomenon represents temperature itself thus it is the main factor to affects the temperature in

direct proportion. By the Brownian motion theory, the speed of nanoparticles is direct proportional

FIG. 10. Effect on temperature profile θ(ξ) for parameters α = 0.5, Nt = Nb = Le = 0.1, Pe = Pr = Sc = ω = 1, δθ = 0.1,

δϕ = 0.1, and for different values of β.

FIG. 11. Effect on temperature profile θ(ξ) for parameters β = 0.5, Nt = Nb = Le = 0.1, Pe = Pr = Sc = ω = 1, δθ = 0.1,

δϕ = 0.1 and for various quantities of α.
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FIG. 12. Effect on temperature profile θ(ξ) for parameters α = β = 0.5, Nb = Le = 0.1, Pe = Pr = Sc = ω = 1, δθ = 0.1,

δϕ = 0.1 and for different values of Nt.

FIG. 13. Effect on temperature profile θ(ξ) for parameters α = β = 0.5, Nt = Le = 0.1, Pe = Pr = Sc = ω = 1, δθ = 0.1,

δϕ = 0.1, and for different values of Nb.

to temperature. With the rises of temperature, the molecules of nanoparticles have more kinetic

energy yielding movement faster. Figure 13 depicts no specific effect in temperature profile for the

values of Nb. Increasing parameter Pr reduces the thermal diffusion which yields thermal capacity

FIG. 14. Effect on temperature profile θ(ξ) for parameters α = β = 0.5, Nb = Nt = Le = 0.1, Pe = Sc = ω = 1, δθ = 0.1,

δϕ = 0.1, and for various choices of Pr.
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FIG. 15. Effect on temperature profile θ(ξ) for parameters α = β = 0.5, Nb = Nt = Le = 0.1, Pr = Sc = ω = 1, δθ = 0.1,

δϕ = 0.1, and for various values of Pe.

FIG. 16. Effect on temperature profile θ(ξ) for parameters α = β = 0.5, Nb = Nt = Le = 0.1, Pe = Pr = ω = 1, δθ = 0.1,

δϕ = 0.1, and for different values of Sc.

of fluid which results to drop down the temperature. Figure 14 is plotted for the high values of Pr

in 0 ≤ ξ ≤ 0.5 where temperature drops down while in the range 0.5 ≤ ξ ≤ 1.0, temperature of fluid

rises with small increase in Pr. Peclet Number Pe carries the ratio between advective transport rate

and diffusive transport rate. In Figs. 15 and 16 the effect of Peclet number and Schmidt number is

inconsequential on temperature profile.

C. Nanoparticles concentration profile

The concentration of some phytoplankton species is higher at the surface of non-Newtonian fluid

inside the channel. Concentration of chemical species is the colony of phytoplankton distributed on

the surface of fluid on the plates, this colony distribution is more in non-Newtonian fluid to that of

Newtonian fluid. Number of particles suspended in a base fluid is directly proportional to erosion

and surface roughness on the plates. It is also mentioned that initial order ϕ0(ξ) of concentration

profile has started with negative sign which shows influence of different parameters on concentration

profile below the origin in all graphs. Figures 17–24 display the effect of relevant parameters on

concentrated area. For the positive unsteadiness parameter β when the plates go away produce more

space in internal region for fluid which yield high concentration. In Fig. 17 larger positive values of

β enhance speed in concentration while negative numbers of β bring the plates closer to each other

which causes low concentration. Figure 18 illustrates that the nondimensional concentration profile

ϕ(ξ) elevates with greater values of time dependent second grade parameter α. The reason is that α is
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FIG. 17. Effect on concentration profile ϕ(ξ) for parameters α = 0.5, Nb = Nt = Le = 0.1, Pe = Sc = ω = 1, δθ = 0.1,

δϕ = 0.1, and for various values of β.

FIG. 18. Effect on concentration profile ϕ(ξ) for parameters β = 0.5, Nb = Nt = Le = 0.1, Pe = Sc = ω = 1, δθ = 0.1,

δϕ = 0.1 and for different choices of α.

correlated to viscoelastic forces thus by enhancing these forces cause an enhancement of concentration

boundary layer. Figure 19 reportes for ordinary rise in the values of thermophoresis parameter Nt

for which concentration process decreases with high speed. This indicates that by increasing Nt

FIG. 19. Effect on concentration profile ϕ(ξ) for parameters α = β = 0.5, Nb = Le = 0.1, Pe = Sc = ω = 1, δθ = 0.1,

δϕ = 0.1, and for various values of Nt.
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FIG. 20. Effect on concentration profile ϕ(ξ) for parameters α = β = 0.5, Nt = Le = 0.1, Pr = Pe = Sc = ω = 1, δθ = 0.1,

δϕ = 0.1 and for various values of Nb.

FIG. 21. Effect on concentration profile ϕ(ξ) for parameters α = β = 0.5, Nb = Nt = 0.1, Pr = Pe = Sc = ω = 1, δθ = 0.1,

δϕ = 0.1 and for different values of Le.

provoke resistance to the diffusion of chemical species into the base fluid and this cause reduction

of concentration on surface plates. Figure 20 shows that by varying Brownian motion parameter Nb,

the non-dimensional parameter ϕ(ξ) increases because the colony distribution of nanoparticles and

FIG. 22. Effect on concentration profile ϕ(ξ) for parameters α = β = 0.5, Nb = Nt = Le = 0.1, Pe = Pr = ω = 1, δθ = 0.1,

δϕ = 0.1 and for various values of Sc.
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FIG. 23. Effect on concentration profile ϕ(ξ) for parameters α = β = 0.5, Nb = Nt = Le = 0.1, Pe = Sc = ω = 1, δθ = 0.1,

δϕ = 0.1 and for various values of Pr.

FIG. 24. Effect on concentration profile ϕ(ξ) for parameters α = β = 0.5, Nb = Nt = Le = 0.1, Pr = Sc = ω = 1, δθ = 0.1,

δϕ = 0.1 and for different values of Pe.

microorganisms become larger with high Brownian motion. Figure 21 displays that the increasing

behavior of concentration function against ξ when the amount of Lewis number Le rises gradually.

Lewis number is the relation of kinematic viscosity ν to mass diffusion DB of nanoparticles. Owing

to the property of heat transport, it enables to enhance the speed of nanoparticles which results strong

concentration bond among nanoparticles. In Fig. 22 there seems no perceptible effect of Schmidt

Number Sc on concentration profile of nanoparticles. Figure 23 reportes decreasing nature for Prandtl

number Pr because Prandtl number has the ability to put viscosity of fluid in correlation with thermal

conductivity which decreases the thickness of concentration boundary layer. In Fig. 24 the Peclet

quantity Pe preserves concentration profile ϕ(ξ) unchanged.

D. Density of motile microorganism profile

Graphical description shows the effects of relevant parameters which cause variation in motile

microbes density profile with coordinate of ξ. Their effects are highlighted in Fig. 25–32. Figure 25

presents the change in density of motile microbes induced by the positive and negative behaviors of

unsteadiness parameter β. For varying positive choices of β (plates move away), the motile microbes

profile displays opposite variation and rapidly decreases with small increment in β. On other hand,

rise in negative direction of parameter β (upper plate moves towards lower), density function of

motile microorganism movement increases rapidly. Figure 26 depicts the interaction between density

of motile microbes and second grade fluid parameter α. α is in direct relation to the thickness of fluid,

thus rising the amount of α leads to slight extends in the density of motile microbes. The influence
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FIG. 25. Effect on motile microorganism profile Ω(ξ) for parameters α = 0.5, Nb = Nt = Le = 0.1, Pr = Pe = Sc = ω = 1,

δθ = 0.1, δϕ = 0.1, δΩ = 0.1 and for various parametric values of β.

FIG. 26. Effect on motile microorganism profile Ω(ξ) for parameters β = 0.5, Nb = Nt = Le = 0.1, Pr = Pe = Sc = ω = 1,

δθ = 0.1, δϕ = 0.1, δΩ = 0.1 and for different values of α.

of thermophoresis coefficient Nt on the motile concentration boundary layer is shown in Fig. 27.

Small addition in the quantity of Nt reveals high density profile of microorganisms. As Brownian

motion bears the molecules of suspended liquid (fluid carrying suspended motile) colliding with

FIG. 27. Effect on motile microorganism profile Ω(ξ) for parameters α = β = 0.5, Nb = Le = 0.1, Pr = Pe = Sc = ω = 1,

δθ = 0.1, δϕ = 0.1, δΩ = 0.1 and for various values of Nt.
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FIG. 28. Effect on motile microorganism profile Ω(ξ) for parameters α = β = 0.5, Nt = Le = 0.1, Pr = Pe = Sc = ω = 1,

δθ = 0.1, δϕ = 0.1, δΩ = 0.1 and for various values of Nb.

FIG. 29. Effect on motile microorganism profile Ω(ξ) for parameters α = β = 0.5, Nt = Nb = Le = 0.1, Pr = Sc = ω = 1,

δθ = 0.1, δϕ = 0.1, δΩ = 0.1 and for numerous values of Pe.

microorganisms where true motility is movements in some specific direction, may be twisting and

turning. Figure 28 illustrates the role of faster Brownian motion parameter Nb across the region

of motile microorganisms which result weak self-propel through an aqueous environment causing

FIG. 30. Effect on motile microorganism profile Ω(ξ) for parameters α = β = 0.5, Nb = Nt = 0.1, Pr = Pe = Sc = ω = 1,

δθ = 0.1, δϕ = 0.1, δΩ = 0.1 and for different values of Le.
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FIG. 31. Effect on motile microorganism profile Ω(ξ) for parameters α = β = 0.5, Nt = Nb = Le = 0.1, Pr = Pe = ω = 1,

δθ = 0.1, δϕ = 0.1, δΩ = 0.1 and for various values of Sc.

FIG. 32. Effect on motile microorganism profile Ω(ξ) for parameters α = β = 0.5, Nt = Nb = Le = 0.1, Pr = Pe = Sc = ω = 1,

δθ = 0.1, δϕ = 0.1, δΩ = 0.1 and for different values of Pr.

decline in the density of motile microbes. Figure 29 displays the effect of dimensionless Peclet

Number Peon motile concentration boundary layer, which is the fraction of motile swimming speed

and diffusion of microorganisms. Growing of Pe tends to exceed in density and boundary layer

thickness for motile microorganisms. Figure 30 explains the behavior of Lewis parameter Le which

has the tendency to reduce the rescaled density of motile microbes. Reason is that by increasing

the choices of Lewis number Le, the viscous diffusion rate increases which results in reduction in

velocity at the surfaces of plates. This variation brings reduction in density profile of microorganism

concentration boundary layer. Schmidt number Sc is a fraction of viscous diffusivity of nanofluid and

molecular diffusivity for motile microbes. Figure 31 shows the effect of Sc, owing to the thickness of

fluid. When magnitude of Schmidt number Sc increases, the viscous diffusivity of nanofluid becomes

in high rate which results in the reduction of density of motile microorganism profile. On density of

motile microorganism profile, no clear impact of Prandtl parameter is displayed in Fig. 32.

V. CONCLUSION

The unsteady bioconvection nanofluid model of a second-grade suspension is explored. A pow-

erful tool OHAM is employed for the solution containing the relevant expressions for velocity,

temperature, concentration and motile microorganism density function. The stability of this scheme

for zeroth, first and second order is revealed through graphs. Additionally, various interesting results

due to the impacts of all parameters are manifested via graphs.
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The main achievements obtained from the results are summarized as follow.

i. The velocity f (ξ) of fluid accelerates for the unsteadiness parameter β while it decelerates for

the second-grade fluid coefficient α.

ii. Temperature θ(ξ) rises for the thermophoresis parameter Nt while it falls down for the high

values of unsteadiness parameter β, time dependent second-grade parameter α and Prandtl

number Pr.

iii. The concentration ϕ(ξ) of nanofluid elevates for the time dependent parameter β, second-grade

parameter α, Brownian motion parameter Nb and Lewis number Le while it diminishes or have

weak concentration bond for the thermophoresis parameter Nt and Prandtl number Pr.

iv. The density function of motile microorganism denoted byΩ(ξ) is high for second-grade param-

eter α, for thermophoresis parameter Nt, Peclet number Pe while it has low concentration profile

for unsteadiness parameter β, Brownian motion parameter Nb, Lewis number Le and Schmidt

number Sc.
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