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We investigate the properties of dense suspensions and sediments of small spherical silt particles by means
of a combined molecular dynamics and stochastic rotation dynamics �SRD� simulation. We include van der
Waals and effective electrostatic interactions between the colloidal particles, as well as Brownian motion and
hydrodynamic interactions which are calculated in the SRD part. We present the simulation technique and first
results. We have measured velocity distributions, diffusion coefficients, sedimentation velocity, spatial corre-
lation functions, and we have explored the phase diagram depending on the parameters of the potentials and on
the volume fraction.
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I. INTRODUCTION

We simulate claylike colloids, for which in many cases
the attractive van der Waals forces are relevant. They are
often called “peloids” �Greek: claylike�. The colloidal par-
ticles have diameters in the range of some nm up to some
�m. In general, colloid science is a large field, where many
books have been published �1–6�. The term peloid originally
comes from soil mechanics, but particles of this size are also
important in many engineering processes. Our model system
of Al2O3-particles of diameter 0.5 �m suspended in water is
an often used ceramics and plays an important role in tech-
nical processes. In soil mechanics �7� and ceramics science
�8�, questions on the shear viscosity and compressibility as
well as on porosity of the microscopic structure which is
formed by the particles, arise �9,10�. In both areas, usually
high volume fractions ���20% � are of interest. The me-
chanical properties of these suspensions are difficult to un-
derstand. Apart from the attractive forces, electrostatic repul-
sion strongly determines the properties of the suspension.
Depending on the surface potential, which can be adjusted
by the pH value of the solvent, one can either observe the
formation of clusters or the particles are stabilized in suspen-
sion and do sediment only very slowly. Hydrodynamic ef-
fects are also important for sedimentation experiments. Since
typical Peclet numbers are of order 1 in our system, Brown-
ian motion cannot be neglected.

In summary, there are many important factors which have
to be included in a model which describes peloids in a sat-
isfying way. Such a model is needed to gain a deeper under-
standing of the dynamics of dense colloidal suspensions. A
lot of effort has been invested by applying different simula-
tion methods, which have their inherent strengths but also
some disadvantages. Simplified Brownian dynamics �BD�,
such as in the work of Hütter �11�, does not contain long-
ranged hydrodynamic interactions among particles at all. The
computational cost is low, since hydrodynamics is reduced to
a simple Stokes force and thus large particle numbers can be
handled. BD with full hydrodynamic interactions utilizes a
mobility matrix which is based on the Oseen- or Rotne-

Prager-Yamakawa tensor approximations which are exact in
the limit of zero Reynolds number and zero particle volume
fraction �12,13�.

This technique faces the main problem that the computa-
tional effort scales with the cube of the particle number due
to the inversion of matrices.

The lattice Boltzmann �LB� method, on the other hand, is
numerically efficient and intrinsically contains hydrody-
namic interactions. Ladd and Verberg give an overview over
the LB method and describe how to include stress fluctua-
tions �14�. Adhikari et al. add noise to their model by intro-
ducing a noise term for every lattice velocity and node �15�.
However, the discussion about the correct inclusion of ther-
mal fluctuations is still ongoing �15,16�. Pair-Drag simula-
tions have been proposed by Silbert et al. �17�, which in-
clude hydrodynamic interactions in an approximative way.
They have focused on suspensions with high densities �up to
50%� of uncharged spherical colloidal particles. Here we use
stochastic rotation dynamics �SRD� �18,19�, a recently devel-
oped method to simulate fluid flow, and combine this with a
molecular dynamics �MD� simulation for the suspended par-
ticles. SRD is a particle-based method which does not show
any numerical instabilities, contains thermal fluctuations in-
trinsically, and is simple to implement. Many important is-
sues in fluctuation fluid dynamics such as sedimentation
�20�, vesicles in flow �21�, polymers in flow �22�, and react-
ing fluids �23� have been addressed very recently using this
method. In this paper, first we discuss the main points of the
MD part of our simulation code. Second we present the SRD
method in the context of our work, and then we describe two
alternative ways of coupling the two parts of the simulation
and point out the advantages and disadvantages of these two
possibilities. After that, we analyze the time scales which are
relevant for the peloids, we want to simulate. Based on the
insights of this section we show in the following section how
to determine the simulation parameters. Then we describe
how we have tested our simulation code and present first
results in the following section. Finally in the last section we
draw a conclusion and summarize shortly the model we have
presented.

PHYSICAL REVIEW E 72, 011408 �2005�

1539-3755/2005/72�1�/011408�16�/$23.00 ©2005 The American Physical Society011408-1

http://dx.doi.org/10.1103/PhysRevE.72.011408


II. MOLECULAR DYNAMICS

The colloidal particles in our simulation are represented
by three-dimensional spheres. In order to correctly model the
statics and dynamics when approaching stationary states, re-
alistic potentials are needed. The interaction between the par-
ticles is described by Derjaguin-Landau-Verwey-Overbeek
�DLVO� theory �10,11,24�. If the colloidal particles are sus-
pended in a solvent, typically water, ions move into solution,
whereas their counter-ions remain in the particle due to a
different resolvability. Thus, the colloidal particle carries a
charge. The ions in solution are attracted by the charge on
the particles and form the electric double layer. It has been
shown �see �24�� that the resulting electrostatic interaction
between two of these particles can be described by an expo-
nentially screened Coulomb potential

VCoul = ��r�0�4kBT

ze
tanh� ze�0

4kBT
��2d2

r
exp�− 	�r − d�� ,

�1�

where d denotes the particle diameter and r is the distance of
the particle centers. z is the charge of the ions, e is the el-
ementary charge, T is the temperature, �0 denotes the effec-
tive surface potential, and 	 is the inverse Debye screening
length. In addition the behavior is determined by the attrac-
tive van der Waals interaction which can analytically be in-
tegrated over the two spheres. This leads to the second part
of the DLVO potential:

VVdW = −
AH

12
� d2

r2 − d2 +
d2

r2 + 2 ln� r2 − d2

r2 �� . �2�

AH is the Hamaker constant which involves the polarizability
of the particles and of the solvent. The DLVO potentials are
plotted in Fig. 1 for six typical examples with different
depths of the secondary minimum. The primary minimum
has to be modeled separately, as discussed below.

To avoid the particles penetrating each other, one needs a
repulsive force depending on their overlap. We are using a
Hertz force described by the potential

VHertz = K�d − r�5/2 if r 
 d , �3�

where K could be expressed by the elastic modulus of Al2O3.
This would determine the simulation time step, but to keep
computational effort relatively small, we determine the time
step using the DLVO potentials as described later on and
then choose a value for K. Two aspects have to be consid-
ered: K has to be big enough, so that the particles do not
penetrate each other by more than approximately 10% and it
may not be too big, so that numerical errors are kept small,
which is the case when the collision time is resolved with
about 20 time steps. Otherwise total energy and momentum
are not conserved very well in the collision.

Since DLVO theory contains the assumption of linear po-
larizability, it holds only for large distances—i.e., the singu-
larity when the two spheres touch—does not exist in reality.
Nevertheless, there is an energy minimum about 30kBT deep,
so that particles which come that close would very rarely
become free again. To obtain numerical stability of our simu-
lation, we model this minimum by a parabolic potential,
some kBT deep �e.g., 6kBT�. The depth of the minimum in
our model is much less than in reality, but the probability for
particles to be trapped in the minimum has to be kept low
enough so that only few of them might escape during simu-
lation time.

The long-range hydrodynamic interaction is taken into ac-
count in a separate simulation for the fluid as described be-
low. This can only reproduce interactions correctly down to a
certain level. On shorter distances, a lubrication force has to
be introduced explicitly in the molecular dynamics simula-
tion as described in �25�. The most dominant mode, the so-
called squeezing mode, is an additional force

Flub = − �vrel, r̂�r̂
6��rred

2

r − r1 − r2
, �4�

with

rred =
r1r2

r1 + r2
, �5�

between two spheres with radii r1 and r2 and the relative
velocity vrel. � is the dynamic viscosity of the fluid. Flub
diverges if particles touch each other. Therefore, we limit the
force by introducing a minimum radius, where the force
reaches its largest allowed value. The potential is shifted ac-
cordingly to smaller particle distances, so that the maximum
force is reached for particles touching each other.

The Hertz force also contains a damping term in the nor-
mal direction,

FDamp = − �vrel, r̂�r̂�	r − r1 − r2, �6�

with a damping constant �, and for the transverse direction a
viscous friction proportional to the relative velocity of the
particle surfaces is applied.

FIG. 1. DLVO potentials for Al2O3 spheres of R=0.5 �m diam-
eter suspended in water. These are typical potentials used for our
simulations as described below. The primary minimum at d /R
=2.0 is not reproduced correctly by the DLVO theory. It has to be
modeled separately. In most of our cases the existence of the sec-
ondary minimum determines the properties of the simulated system.
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For the integration of the translational motion we utilize a
velocity Verlet algorithm �see �26�, Chap. 3.2.1� to update
the velocity and position of particle i according to the equa-
tions

xi�t + t� = xi�t� + tvi�t� + t2Fi�t�
m

, �7�

vi�t + t� = vi�t� + t
Fi�t� + Fi�t + t�

2m
. �8�

For the rotation, a simple Euler algorithm is applied:

�i�t + t� = �i�t� + tTi, �9�

�i�t + t� = �i�t� + F��i,�i,t� , �10�

where �i�t� is the angular velocity of particle i at time t, Ti is
the torque exerted by noncentral forces on the particle i, �i�t�
is the orientation of particle i at time t, expressed by a quater-
nion, and F��i ,�i ,t� gives the evolution of �i of particle i
rotating with the angular velocity �i�t� at time t.

The concept of quaternions �26� is often used to calculate
rotational motions in simulations, because the Euler angles
and rotation matrices can easily be derived from quaternions.
Using Euler angles to describe the orientation would give
rise to singularities for the two orientations with �= ±90°.
The numerical problems related to this fact and the relatively
high computational effort of a matrix inversion can be
avoided using quaternions.

We have switched off dissipative forces and checked if
the total energy and each component of the total momentum
are conserved. We have verified this for the molecular dy-
namics simulation for the simulation of the fluid and for the
coupled simulation separately.

We also checked that our implementation of the molecular
dynamics code is correct by simulating eight large particles
with Hertz repulsion and Coulomb friction in a closed box at
a volume fraction of �
20%. We checked that the colli-
sions are realistic—i.e., that the individual angular velocities
for two particles interacting in a noncentral collision before
and after they have touched are consistent.

III. STOCHASTIC ROTATION DYNAMICS:
SIMULATION OF THE FLUID

The stochastic rotation dynamics method introduced by
Malevanets and Kapral �18,19� is a promising tool for a
coarse-grained description of a fluctuating solvent, in par-
ticular for colloidal and polymer suspensions. The method is
also known as “real-coded lattice gas” �27� or as “multi
particle-collision dynamics” �MPCD� �28�. It can be seen as
a “hydrodynamic heat bath,” whose details are not fully re-
solved but which provides the correct hydrodynamic interac-
tion among embedded particles �29�. SRD is especially well
suited for flow problems with Peclet numbers of order 1 and
Reynolds numbers on the particle scale between 0.05 and 20

for ensembles of many particles.1 The numerical effort scales
linearly with the number of embedded colloidal particles un-
like in Brownian dynamics, and only one random number
per node �for the choice of the rotation matrix� is needed in
contrast to fluctuating lattice Boltzmann. For Peclet numbers
of order 1, about 3–5 SRD particles are required per box �or
node� whose positions and velocities can be seen as the de-
grees of freedom in that node. In three dimensions �3D� this
amounts to 18–25 variables per node which is similar to the
15 or 19 speed lattice-Boltzmann method.

While the LB method might be slower than SRD in the
regime of large thermal fluctuations it has the advantage that
it can be used for almost arbitrarily high Peclet numbers just
by reducing the amplitude of the noise. To reduce the noise
in SRD, a huge number of fluid particles per node has to be
used which makes the method inapplicable at Peclet numbers
higher than about 20. Fortunately it has been shown by Pad-
ding and Louis �20� that basic properties of sedimentation
such as the main settling speed are hardly affected by ther-
mal noise.

The method is based on so-called fluid particles with con-
tinuous positions and velocities which follow a simple, arti-
ficial dynamics.

The system is coarse grained into cubic cells of a regular
lattice with no restriction on the number of particles in a cell.
The evolution of the system consists of two steps: streaming
and collision. In the streaming step, the coordinate of each
particle is incremented by its displacement during the time
step. Collisions are modeled by a simultaneous stochastic
rotation of the relative velocities of every particle in each
cell. The dynamics is explicitly constructed to conserve
mass, momentum, and energy, and the collision process is
the simplest consistent with these conservation laws. It has
been shown that there is an H theorem for the dynamics and
that this procedure yields the correct hydrodynamic equa-
tions for an ideal gas �18�.

Consider a set of N point particles with �continuous� co-
ordinates ri�t� and velocities vi�t�. In the streaming step, all
particles are propagated simultaneously by a distance vi�,
where � is the value of the discretized time step. For the
collision step, particles are sorted into cells, and they interact
only with members of their own cell. Typically, the simplest
cell construction consisting of a hypercubic grid with mesh
size a is used. The collision step consists of an independent
random rotation of the relative velocities vi−u, of the par-
ticles in each cell, where the macroscopic velocity u�� , t� is
the mean velocity of the particles in the cell with coordinate
�. The local temperature T�� , t� is defined via the mean-
square deviation of the particle velocities from the mean ve-

1For low Peclet numbers Brownian motion dominates and sedi-
mentation takes place very slowly. The simulations require a huge
number of time steps. Then Brownian simulation �BS�, including
short-range hydrodynamics interactions, might be a more suitable
tool, since not the complete velocity field has to be calculated. For
very high Peclet numbers, SRD becomes inefficient due to the nec-
essary averaging. For high Reynolds numbers a small time step and
high spatial resolution would be necessary, which increases the
computational effort extremely.
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locity in a cell. All particles in a cell are subject to the same
rotation, but the rotation angles of different cells are statisti-
cally independent. There is a great deal of freedom in how
the rotation step is implemented �18,30�, since, by construc-
tion, the local momentum and kinetic energy are invariant.
The dynamics is therefore summarized by

ri�t + �� = ri�t� + �vi�t� , �11�

vi�t + �� = u��i�t + ��� + ���i�t + ����vi�t� − u��i�t + ���� ,

�12�

where ���i� denotes a stochastic rotation matrix and �i is the
coordinate of the cell occupied by particle i at the time of the
collision. u����1/M��k��vk is the mean velocity of the
particles in cell �. � is taken to be a rotation by an angle ±�,
with probability 1 /2. We are using rotations about the three
coordinate axes with �= ±90°, because these are the most
simple rotation matrices one can imagine in 3D, since they
only contain entries taken out of �0, ±1�. This has been sug-
gested by Tuzel et al. �31�. In every time step for each cell
one of these 6 possibilities is chosen with equal probability
1 /6. However, any stochastic rotation matrix consistent with
detailed balance can be used.

In order to remove low temperature anomalies and to
achieve exact Galilean invariance, we use a modification
of the original algorithm �30�: all particles are shifted by
the same random vector with components in the interval
�−a /2 ,a /2� before the collision step. Particles are then
shifted back by the same amount after the collision. The
random vectors of consecutive iterations are uncorrelated.
Ihle and Kroll have discussed in Refs. �32,33� why this
simple procedure works and showed that it leads to transport
coefficients independent of an imposed homogeneous flow
field. In Refs. �34,35� analytical calculations of the transport
coefficient in this method are presented.

Two different methods to couple SRD and MD simula-
tions have been introduced in the literature. We have imple-
mented them both, and we are using them depending on what
we plan to measure. The first one �27� is much more accurate
in resolving the local velocity field around the colloidal par-
ticles. Lubrication effects are reproduced well by this cou-
pling method. The second one �36� resolves the velocity field
only down to a length scale of the particle diameter. On the
other hand, the method becomes much faster because of the
lower resolution. In both coupling methods the long-range
hydrodynamic interactions are reproduced.

IV. COUPLING I: PLACING FLUID PARTICLES
OUTSIDE OF COLLOIDAL PARTICLES

In the combined MD and SRD simulation the fluid par-
ticles have to interact with the colloidal particles and transfer
momentum from one to the other part of the simulation. One
possibility to do this is, as suggested by Inoue et al. �27�, to
check after each streaming step of a fluid particle i if its new
position xi�t+�� is within a colloidal particle and, if yes, to
modify its position and velocity. In this coupling step total
momentum has to be conserved, which means, that when

modeling the “collision” between the fluid particle and the
colloidal particles, one has to make sure that the change of
momentum of the fluid particle is transfered to the suspended
particle. The calculations described in the following are done
in a frame fixed on the colloid particle.

One can think of several different methods to assign a
new position to the fluid particle, which have been shown to
work properly.

�i� Place it on the shortest distance to the surface of the
colloidal particle and move it with its new velocity half of a
time step.

�2� Calculate the point and the exact time when the fluid
particle has entered into the colloidal particle and move it
back to there. Then choose a new velocity and move the fluid
particle with the new velocity for the remainder of the time
step.

Both methods turned out to work, where the second one is
more accurate but more computationally intensive as well.
Just to place the fluid particle directly on the surface and
move it again in the next time step turned out to produce an
increase of the fluid particle density around the colloidal par-
ticle. Anomalies in the fluid temperature could also be found
when the fluid particles were placed directly on the colloid
surface.

To increase stability of the simulation the idea is not to
conserve energy in every single collision, but to use a ther-
mostat and choose the new velocities according to a given
distribution. The new velocities should point from the colloid
surface to the outer area. Since the interior of the colloidal
particle usually does not contain any fluid particles and the
velocity distribution next to a colloidal particle should be
independent of neighboring particles, the velocity distribu-
tion for the newly chosen fluid particle velocities has to be
the same as if the space inside the suspended particle was
filled with fluid particles. Assume these imaginary fluid par-
ticles having the same density and temperature as in the re-
mainder of the fluid bath. Then, one could evaluate the ve-
locity distribution for the reflected fluid particles by taking
the velocity distribution of the imaginary fluid particles pass-
ing through the colloid surface. But it is a nontrivial task to
analytically calculate this distribution for a spherical area.
However, if the mean free path of the fluid particles is small
compared to the diameter of the colloidal particles, we can
safely assume the colloid surface to be an infinitely extended
plane separating the space into two regions �27�. Then one
finds the following distribution:

p�vn� � vn exp�− �vn
2� , �13�

p�vt� � exp�− �vt
2� , �14�

with

� =
mf

2kBT
,

where vn is the normal component and vt is the tangential
component of the fluid particle velocity in the frame fixed to
the surface of the large particle. mf is the mass of a fluid
particle. In the following sections we describe how mf has to
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be chosen. T is the temperature to which this thermostat is
adjusted, and the whole system will adopt this temperature
after a transient time. The tangential component can be ob-
tained by computing 	x1

2+x2
2 of two independent and Gauss-

ian distributed random variables.
Since the fluid particles of the SRD are artificial particles

within the context of this mesoscopic simulation method,
their mean free path and their momentum are different from
the corresponding values for single solvent molecules. Be-
cause of this, there is a depletion force acting on colloidal
particles which is much larger than in reality. Depletion
forces are only relevant in systems with very big
molecules—e.g., polymer solutions with added small par-
ticles or binary mixtures of particles with clearly separated
diameters. There, each of the small particles carries a con-
siderable momentum—which is also the case in the SRD
simulations. Nevertheless, unrealistically high depletion
forces can be suppressed by reflecting fluid particles many
times: If after the collision step the fluid particle is placed in
another colloidal particle, the collision step is repeated for
that colloidal particle and so on, until the fluid particle
reaches a position outside any colloidal particle or until a
maximum number Nmax of collisions has been calculated
through. We have measured the depletion force and found
out that a limit of Nmax�10 is a good compromise between
computational speed and accuracy. The depletion force does
not decay substantially stronger if the limit is increased, but
the computational effort still grows with Nmax �at most lin-
early�, because some fluid particles are trapped in a small
gap between two colloidal particles and jump from one to the
other. This in fact would still decrease the depletion force,
but in the meantime the calculation for the remaining system
is interrupted until finally eventually one single fluid particle
is reflected the very last time. It is obvious that this scenario
can easily be truncated. The remaining depletion force can be
neglected at least in the cases where strong attractive van der
Waals forces or strong repulsive electrostatic forces are
present.

V. COUPLING II: ROTATING VELOCITIES
OF THE COLLOIDAL PARTICLES

A second possibility to couple SRD and MD simulations
is to sort the colloidal particles into the SRD boxes and in-
clude their velocity in the rotation step. This technique has
been used to model protein chains suspended in a liquid
�36,37�. The mean velocity in each cell has then to be
weighted with the mass of the particle �because the mass of
colloid particles differs at least by one order of magnitude
from the one of the fluid particles and their inertia dominates
the flow field next to it�. The calculation of u��i�t+��� in Eq.
�12� is modified to

u��� 
1

M
�
k��

vkmk, �15�

where we sum over all colloid and fluid particles in the cell.
mk is the mass of the particle with index k and M �k��mk is
the total mass contained in the cell.

The coupling acts on the center of mass of the colloidal
particles and affects only the fluid particles within the same
cell. This means, to affect the same area of the flow field like
in reality, one has to choose the cells to be of the same size
as the colloidal particles. Obviously, the mesh size is drasti-
cally larger than in the first coupling method and the flow
field cannot be resolved in detail. The fact that colloidal par-
ticles push away the solvent as well as depletion and lubri-
cation forces cannot be reproduced at any level.

VI. TIME-SCALE ANALYSIS

Our system contains many different, let us say L, time
scales, which differ by several orders of magnitude making
brute force numerical simulations very time consuming or
even impossible. These time scales can be used to define L
−1 dimensionless characteristic numbers, such as the Rey-
nolds or Peclet number, as the ratio of two time scales. If one
can manage to adjust the simulation parameters such that all
these characteristic numbers are the same as in the experi-
ment, the simulations should be able to exactly reproduce the
dynamical behavior of the real system. Of course, therefore
one has to change quantities like the temperature or the vis-
cosity of the fluid.

Often, it is sufficient to reproduce only a few of all char-
acteristic numbers exactly—i.e., only those which are be-
lieved to be significant for the behavior. For example, in
sedimentation processes where the Reynolds number is much
smaller than unity, it may be modified to another value,
which still fulfills the condition of being much smaller than
1. In both cases the Stokes limit is a valid approximation. As
a general rule of thumb, dimensionless numbers of order 1
are important to be reproduced since they represent two com-
peting dynamical effects. The reason to modify the other
“insignificant” numbers is to reduce the ratio of the largest to
the smallest time scale which determines the numerical ef-
fort. In order to decide which are the dimensionless numbers
that can be safely modified without changing the physics too
much, a detailed analysis of the different time scales is
needed.

We start with the largest scales. After some time an iso-
lated spherical particle sedimenting in a liquid reaches the
so-called Stokes velocity

vS =
2

9

R2g

�
��m

�w
− 1� . �16�

� is the kinematic viscosity, g denotes gravity, �m is the mass
density of the particle, and �w the mass density of the sol-
vent. This velocity is obtained from the force balance be-
tween buoyancy and weight of the particle, FG=4���m

−�w�gR3 /3, and the drag force in a viscous liquid, FD

=6���wRv.
The drag force FD also defines the mobility �=v /FD

=1/ �6���wR� of a spherical particle. The time for a particle
to move a distance of its diameter, 2R, is denoted by
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�S =
2R

vS
=

9�

Rg��m

�w
− 1� . �17�

By means of the Einstein relation D=�kBT we obtain the
diffusion constant D for the particle,

D =
kBT

6���wR
. �18�

The mean-square displacement of a diffusing particle in each
dimension i is given by

�xi
2�t�� = 2Dt; �19�

hence, the time the particle needs to diffuse a distance of 2R
is of the order of

�D =
2R2

D
=

12���wR3

kBT
, �20�

which we call the diffusion time.
The ratio �D /�S measures the importance of Brownian

motion in the system and is called the Peclet number, Pe
=�D /�S. It turns out to be close to unity here. Inserting the
definitions for �D and �S, one notices that Pe depends on the
fourth power of the radius R,

Pe =
vSR

D
=

FGR

kBT
=

4�gR4��m − �w�
3kBT

. �21�

Let us consider another time proportional to �D: we assume a
regular three-dimensional, cubic array of spheres which are
separated by gaps of size R /2. Then, the volume concentra-
tion of this suspension is in the intermediate regime, �
=0.268. The time one sphere diffuses the distance of a gap is
given by �G=�D /16.

Now, let us discuss another important time called the par-
ticle relaxation time, which is related to how long it takes the
particle to react to an imposed force; i.e., this time measures
the inertia effects. Consider Newton’s equation for a particle
of mass m subject to a force F and a friction coefficient �,
m �v /�t=−�v+F. Expanding the velocity v around the sta-
tionary state, v=vS+v, gives

�v
�t

= −
�

m
v , �22�

which leads to an exponential decay on a time scale �P
=m /�. Identifying the friction � with 1/� and inserting the
mass leads to

�P =
2

9

R2

�

�m

�w
. �23�

Now we consider a very short time scale �F; the time fluid
momentum diffuses a distance 2R—i.e., �2R�2=2��F —
leading to

�F =
2R2

�
, �24�

which helps defining the particle Reynolds number as

Re =
�F

�S
=

RvS

�
. �25�

Finally, we have to discuss another important short length
scale due to a short-range potential among the colloidal par-
ticles. This scale usually determines the maximum time step
in molecular dynamics. Guided by the analogy to a harmonic
oscillator with frequency �=	k /m, we replace the spring
constant k with the second derivative of the interparticle po-
tential �2V�R� /�R2 and use the period of this oscillation to
define the interaction time scale,

�V =
2�

�
= 2�	ml2

AH
, �26�

where we approximate the derivative of the potential by
means of the Hamaker constant AH as a typical size of the
potential and a typical distance l such as the distance be-
tween the surface of the particle and the primary potential
minimum due to the combined effect of van der Waals at-
traction and screened Coulomb repulsion. Comparison of �V
and �P can answer the question whether the oscillations of
two particles around the primary or secondary minimum are
visible or whether the creeping or overdamped case is real-
ized where friction is dominating over inertia. Analyzing a
harmonic oscillator with damping constant � one finds that
creeping being established at

�P �
�V

4�
. �27�

In using this relation a lubrication force described in Eq. �4�
has to be taken into account. This force is proportional to the
difference of normal velocities of two approaching particles,
and in this sense it can be seen as an additional contribution
to the friction coefficient. It becomes huge at short interpar-
ticle distances d, and it will turn out later that even without
this addition all particles considered here are well inside the
creeping regime due to the large friction in water. This is the
justification that so far many people used Brownian dynam-
ics for this system instead of molecular dynamics �11,38�. In
our situation, including thermal fluctuations and full hydro-
dynamics consistently is easier to do in molecular dynamics.
Moreover, with our parameters the MD is at least competi-
tive or even faster than previous BD calculations.

VII. SIMILARITY CONSIDERATIONS AND
DETERMINATION OF SIMULATION PARAMETERS

A. Introduction

The determination of parameters for a mesoscopic model
to quantitatively compare with experiment is a nontrivial
task. Typical values of the parameters in an experiment are
listed in Table I. For these values of the parameters in the
experiment all the time scales defined in the previous section
are calculated and listed in Table II. This tells us that the
Peclet number is Pe=�D /�S=0.74 and we have a competition
between convection due to gravity and Brownian motion.
The particle Reynolds number is very small—i.e., Re
=�F /�S=4.0�10−7. The ratio of �V to �P is larger than 4�;
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hence, oscillations of particles in their short-range potentials
are overdamped, already without considering lubrication
forces. We get �P��G, since the particles are well relaxed
before they hit each other due to Brownian motion. �F��D;
hence, the transport of momentum through the fluid is much
faster than if transported directly by the particle. These are
the dynamical characteristics which have to be preserved by
any parameter changes; in particular, the Peclet number has
to be kept exactly the same. Of course, the static properties
such as the ratio of kinetic energy �kBT to the potential
energies, �mgR, and �AH have to be kept the same too.

However, using identical parameters as shown in Table I
in an MD simulation would require of the order of 10�S /�P

5�107 iterations to see sufficient progress in the sedimen-
tation process. This is an unacceptably high numerical effort,
which must be reduced without significantly changing the
physics of this process. First, we now show how to choose
the parameters for a simulation using the coupling method I.
After that, we describe what has to be changed using the
coupling II.

B. Determination of the parameters for coupling I

We start by choosing reasonable parameters for the hydro-
dynamic part of the code—i.e., stochastic rotation
dynamics—since this is time consuming and the most stor-
age intensive part of our simulation. For the moment we
keep the particle radius constant at R=0.4 �m. Let a be the
lattice constant of the SRD grid. By choosing a=R /2 a
spherical particle covers about 34 boxes which is a sufficient
resolution of the particle. We get a=0.2 �m.

We use an average number of M =2.5 fluid particles per
box, which leads to 6M =15 real numbers �3 velocity and 3
position coordinates in 3 dimensions� to be stored for every
box. A larger M would reduce Brownian motion and increase
CPU-time and storage requirements. Using a smaller number
leads to a very long effective mean free path of the fluid

particles �sometimes there is only one particle per box and
no collision takes place�, which results in a large viscosity
and a bad resolution of the flow field around the colloidal
particles.

Next, we choose the ratio of the mean free path �
=�	kBT /mf to the lattice constant. mf is the mass of the fluid
particle and T the effective temperature of the fluid particles
which can differ by several orders of magnitude from the real
temperature of the experiment as will be explained later. In
Ref. �30� it was discovered that a ratio � /a smaller than 0.5
leads to anomalies in the model, which can be corrected by a
random shift of the lattice prior to every rotation. Here, we
set �=0.6a=0.12 �m to have sufficient resolution of the
flow and random shifts are not needed.

The rotation angle � is taken to be 90° because this gives
the most simple rotation matrix.

The exact expression for the shear viscosity for �=90° is
given by �34�

� =
a2

18t
�1 −

1 − e−M

M
� +

kBTt

4mf

M + 2

M − 1
. �28�

Inserting M =2.5 and expressing temperature by means of �
it follows for our choice of parameters that

� = 0.3052
a2

t
. �29�

In order to reproduce the same diffusion coefficient as seen
in experiments, t has to be determined by means of the
Einstein relation,

D = kBT� =
kBT

6���wR
. �30�

Setting �w=Mmf /a3, using � from Eq. �29�, and expressing
kBT /mf by means of � one finds t=0.025a3 / �DR�. Inserting
the diffusion coefficient expected in reality from the Einstein
relation, D=5.49�10−13 m2/s, we arrive at a time step t
=0.91 ms for the SRD algorithm. This time step is of course
too large to resolve the motion of colloidal particles due to
interparticle forces and friction. Hence, a two-step method is
needed: The trajectory for the colloidal particles is integrated
by another, smaller time step tM. This also means that the
extensive SRD procedure is only applied every �t /tM�th
iteration of the MD algorithm, thus reducing the required
computer power substantially.

The way parameters are derived implicitly means that we
keep �S and �D as in reality. This corresponds to
�S /0.91 ms=869 SRD iterations until a colloidal particle has
fallen down by one diameter 2R which is affordable. The
kinematic viscosity in the simulation is much smaller than in
nature ��model=1.34�10−11 m2/s�.

Next, one has to check what happens to the particle relax-
ation time �P. The requirement is that it should be much
larger than the one given in Table I �in order to increase
numerical efficiency� and, on the other hand, it should still
be smaller than �G to ensure that particles can relax between
consecutive collisions caused by thermal motion. Following
Eq. �23�, we obtain �P=10.36 ms. This is an acceptable
value: it is much larger than the 0.139 �s seen in reality and

TABLE I. Parameters for the simulation.

Particle radius R 0.4 �m

Temperature T 300 K

Mass density of particle �m 3.9�103 kg/m3

Mass density of water �w 1.0�103 kg/m3

Boltzmann constant kB 1.38�10−23 J /K

Kinetic viscosity of water � 10−6 m2/s

Gravity g 9.81 m/s2

Hamaker constant AH of Al2O3 in H2O 4.76�10−20 J

Distance to primary minimum l 0.008 �m

TABLE II. Time scales which arise in a system characterized by
the parameters listed in Table I.

�S �D �G �V �F �P

0.791 s 0.582 s 36.5 ms 7.45 �s 0.320 �s 0.139 �s
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still smaller than �G=36.5 ms. Therefore it needs 3.5 SRD
steps to relax a particle which means that the process still can
be resolved.

Considering momentum transport in the fluid versus di-
rect transport: During time �D, momentum in the fluid is
transported a distance x2=2��G=24.43a2, i.e., x=4.94a
=2.47R. Hence, momentum transport in the fluid is only
slightly faster than by diffusive transport, which is still ac-
ceptable, even though in the real system it is much faster.
This is reflected in a Reynolds number which is larger by a
factor of 10−6 /�model=0.746�105 in the simulation, i.e., Re
=3.0�10−2. This again reflects the fact that the SRD model
is efficient only if the Peclet and Reynolds numbers are in
the range between 0.05 and 20.

Now, the gravity constant g of the model has to be deter-
mined requiring that the Stokes velocity be the same as given
in Table I. Since thermal convection of the fluid is not im-
portant for our simulation, we can neglect gravity on the
fluid particles. Therefore, there is no buoyancy force in the
simulation. We can correct for that by assuming a smaller
gravity constant modified by the density ratio of colloid ma-
terial and fluid. We find

gmodel = greal
�model

�real
�1 −

�w

�m
� = 9.78 � 10−5 m/s2. �31�

As mentioned above, not only the viscosity, but also the tem-
perature in our simulation may be different from the one in
nature. To see that we calculate the ratio �=�m /kBT. In na-
ture we have �=0.942�1024 s2 /m5. In the model we get
�model=3.9 Mmf / �a3kBT� where we express kBT /mf by
means of the mean free path and the time step �2 / �t�2. One
finds that �model is scaled by a factor of 7.44�104. The static
features have to be reproduced by the model, and therefore
we have to keep the ratio of kinetic and potential energy
kBT /AH constant. This means that the ratio �m /VPot and es-
pecially �m /AH has also to be scaled by this factor. We use
AH=4.76�10−20 J / �7.44�104� in the model, corresponding
to new AH=6.39�10−25 J. From Eq. �26� we get a scaled �V
of 2.03 ms corresponding to �V /�P=0.196 �which is smaller
than 4�; see Eq. �27��. The unscaled value is 53.6. The
creeping case is restored by the lubrication force, which we
have included in the MD simulation and which grows for
smaller gaps between the particles. The lubrication force de-
termines the small iteration time step tM for the MD simu-
lation. We chose tM =2 �s, which is about 200 times larger
than it would be if all the original parameters would have
been kept and min��V ,�P�, being much smaller, would deter-
mine the time step.

Comparing to the SRD time step we see that every 455
small steps one SRD step is performed. We need 869 SRD
steps and 4�105 MD steps to see a colloidal particle sinking

down by one diameter. The time scales in the simulation are
summarized again in Table III.

C. Determination of the parameters for coupling II

To simulate the same system with coupling method II, we
use the same particle radius R=0.4 �m. The lattice constant
has now to be chosen differently because the colloidal par-
ticles are coupled to the SRD simulation as mass points.
They have influence on the fluid which is in the same cell,
and therefore the size of the cell can be understood as the
volume within which the SRD simulation “feels” the colloi-
dal particles and we choose the lattice constant in a way that
the volume of the cell is equal to the volume of a colloidal
particle: a=6.25�10−7 m. A smaller lattice constant in this
context would model smaller colloidal particles in the SRD
part of the simulation. The velocity field would be resolved
better, but since coupling method II does not allow a resolu-
tion smaller than the colloidal particles, one cannot expect to
gain any information from the fluid simulation on smaller
length scales than the colloidal particle size. Any attempt to
increase the resolution of the SRD simulation would only
cause a larger computational effort.

Since we do not modify the Peclet number, we have to
choose approximately the same number of fluid particles per
colloidal particle. Since the box size has increased with re-
spect to the coupling method I, we have to assume more
particles per box now. We choose M =60 �which would cor-
respond to two particles per box in the coupling method I,
but since the boxes are much larger now, we can slightly
reduce the ratio of fluid particles per colloidal particle�.

We choose � /a=0.5 and use random grid shifts here to
avoid the fluid particles interacting too often with the same
partners which causes artifacts in their correlation. The rota-
tion angle � is again 90° to achieve very simple matrices.
Following the same procedure as for coupling method I �Eq.
�28�� we find a time step for the SRD of

t = 2.05 ms. �32�

According to Eq. �29� the viscosity in the simulation results
to �model=2.29�10−11 m2/s. The gravity constant therefore
has to be rescaled by a factor of 58 813, and the temperature
and potentials have to be scaled by 43 733.2

The resulting characteristic times are shown in Table IV.
�S and �D are again kept as in reality. Now we need
�S /2.05 ms=385 SRD iterations until a colloidal particle has
fallen down by one diameter, which is much faster than by
using coupling method I. �P is still smaller than �G. Again �P

2Where we take care of the fact that we do not apply gravity to the
fluid particles.

TABLE III. Time scales in the simulation using coupling
method I.

�S �D �G �V �F �P

0.791 s 0.582 s 36.5 ms 2.03 ms 22.9 ms 10.36 ms

TABLE IV. Time scales in the simulation using coupling
method II.

�S �D �G �V �F �P

0.791 s 0.582 s 36.5 ms 1.56 ms 14.0 ms 6.02 ms

HECHT et al. PHYSICAL REVIEW E 72, 011408 �2005�

011408-8



became larger than �V, so that we have to include a lubrica-
tion force in the MD part for coupling II as well. Apart from
that, the order of the different time scales is reproduced
again: �P
�F
�G
�D
�S.

Momentum is transported 1.34 times faster in the fluid as
by the particles themselves. Short-range hydrodynamic inter-
actions which cannot be resolved are in this sense compa-
rable to particle-particle collisions whereas for long-range
interactions the slightly faster transport of momentum can
reproduce coarse-grained hydrodynamic effects. Again, to
model these effects comparable to reality, the Reynolds num-
ber has to be much smaller than unity. We find Re=1.77
�10−2.

If we include lubrication forces in the MD simulation in
order to reproduce at least to some extend short-range hydro-
dynamics, we have to choose the same MD time step as for
coupling method I but we need approximately 50% less CPU
time for the hydrodynamics. Even though it seems to be a
too simplified approach, we can reproduce a volume-
fraction-dependent sedimentation velocity as will be de-
scribed in Sec. X.

VIII. SIMULATION SETUP

A. Boundary conditions

Most simulations have been performed using periodic
boundary conditions in all three directions. Then the total
momentum may not change in any simulation step if no ex-
ternal forces �like gravity� are applied. If gravity on the col-
loidal particles is applied in a system with periodic boundary
conditions, this would accelerate the whole system, since the
total force on the center of mass is not vanishing. In a real
system there is friction at the walls and, even more impor-
tant, there is an equilibrium between hydrostatic pressure
acting on the surface of a given volume and gravity acting as
a body force. Since we simulate a volume in the center of the
suspension, we either have to apply the pressure on the walls
or, which is easier, make sure that in sum the forces on the
center of mass of the whole simulated system vanishes.
Therefore, we follow the center of mass; i.e., on particles
with higher density their gravity minus buoyancy has to be
applied, so that they move downward whereas the same force
in opposite direction has to be applied to the fluid, which
makes it move upward like in a sedimentation vessel with a
closed bottom.

For the following discussion we define that the direction
in which eventually gravity is applied is called the –z direc-
tion if a shear force is applied acts in the x direction. Using
closed boundaries wall effects may be introduced; e.g., crys-
tallization starts earlier than in the bulk. This effect could be
observed especially when gravity was switched off and only
closed-boundary conditions were applied. This is a finite-size
effect, which is not that strong if periodic boundaries are
applied. But in the case of gravity being applied, the whole
system accelerates. To face this problem, three possibilities
were tested.

�i� Fix the boundaries only in the z direction.
�ii� Fix the boundaries in the x and y directions and apply

a no-slip condition for the fluid.

�iii� Choose periodic boundaries in all directions and com-
pensate the gravitation on the colloidal particles with a force
in the opposite direction applied on the fluid.

Possibilities �i� and �ii� simulate a system close to a wall;
in case �i�, it is the bottom of a vessel, whereas in case �ii�
the experiment would be done in a capillary. Possibility �iii�
turned out to be the most realistic simulation, although it can
start to drift if the compensating force is not adjusted accu-
rately. Slowly accumulated drifts of the center of mass can
be removed every hundreds of SRD time steps if necessary.

B. Temperature and thermostat

We have measured the temperature of the colloidal par-
ticles for different setups. If damping constants are chosen
appropriately, the resulting temperature fits very well the
temperature, which we have adjusted for the fluid by the
initial conditions. If we additionally switch on a thermostat
which we describe in the following, the measured tempera-
ture exactly agrees with temperature adjusted by the thermo-
stat. When gravity is applied to the system, particles are ac-
celerated and if in addition periodic boundaries are used, a
thermostat is absolutely needed to remove the extra energy,
introduced by the periodic boundary in z direction in combi-
nation with gravity.

Therefore we use a modified version of the thermostat
described in �26� �Chap. 7.4.1, p. 227f�. The thermostat,
originally suggested by Heyes �39�, chooses a random scal-
ing factor � for the velocities from an interval �1−� ,1+��.
The scaling of the velocity is then accepted or rejected ac-
cording to a Monte Carlo scheme. However, the detailed
balance is not fulfilled for the choice of � described in �26�.
In our implementation of the thermostat, we randomly
choose an � in the interval �0,�� and apply for � one of the
values 1+� or 1/ �1+��, each of them with the probability of
1
2 . With one of these values the velocity is scaled by the
Monte Carlo acceptance rate. Also the temperature in our
case is defined slightly different from �26�: the mean velocity
u within one SRD cell defines the velocity field of the fluid
and gives the hydrodynamic interaction between the colloi-
dal particles. Therefore it may not be modified by the ther-
mostat. We only scale the velocity component relative to the
mean velocity: vi

new=��vi−u�+u. The Monte Carlo accep-
tance rate in our case is given by

�„3�M−1�… exp„− �M − 1���2 − 1�T/T*
… , �33�

with

T =
mf

2�M − 1�kB
�
i=1

M

�vi − u�2,

which is the local temperature in the SRD cell and T* de-
notes the temperature to which the thermostat will drive the
system. M is the number of particles in the cell. Note that
one has to divide the total thermal energy in the SRD cell by
M −1 instead of M to calculate the local temperature. This
reflects the fact that the mean velocity u in the cell already
contains three degrees of freedom which the particles in the
SRD cell have. The choice of � and the frequency with
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which the thermostat is called to work determine the relax-
ation rate, with which the system adapts T*. The version
described in �26� shows deviations of the achieved tempera-
ture for small numbers of particles per cell, whereas our
implementation exactly reproduces T*. The thermostat can
even be extended to particles of different mass—i.e., colloid
and fluid particles where the mass is used as weight factor
for all velocities of the simulation.

C. Outlook: Shear

There are several possibilities to shear the system. If one
only has MD particles, one can use moving walls either with
a spring constant and a friction coefficient or with direct hard
reflections, where a moving wall is assumed and the reflec-
tion is calculated in the moving frame fixed to the wall.

These approaches of course neglect all effects �like
pseudo wall slip�, which appear close to a wall in a shear
experiment with a suspension. There, shear stress has to be
applied to the fluid which then drags the suspended particles.
One way to implement this is to add a small velocity offset to
all fluid particles which are reflected. Since this approach
works well and the colloidal particles are dragged by the
fluid, we apply shear in this way to our system.

IX. TESTS OF THE SIMULATION CODE

A. Conservation of energy, velocity distributions

We have checked that the total energy is conserved in the
molecular dynamics simulation if all damping constants are
switched off. Otherwise or if the total energy even increases
in spite of damping constants, the MD time step has been
chosen too large. In the SRD simulation energy is conserved
as well and if we use coupling method II also for the total
system energy is conserved within numerical accuracy. With
coupling method I �where a thermostat is already included in
the coupling method� or if we switch on an additional ther-
mostat, energy will not exactly be conserved but the system
will reach a stable—i.e., equilibrated—state. In that sense,
total energy �including thermal energy� will converge to a
constant value.

In SRD simulations without any embedded particles, the
total energy contains only the kinetic energy of the fluid
particles. It is fully determined by the initialization of the
particle velocities. We can choose three uniformly distributed
random numbers to initialize the three velocity components
for the fluid particles. In thermal equilibrium the distribution
should be a Gaussian, which in fact can be observed in our
simulations after some tens of SRD time steps. If colloidal
particles are included into the system, they should reach a
thermal equilibrium, at least as long as no external forces are
applied. Damping terms would reduce fluctuations, so to
check if the colloidal particles reach the same temperature as
the fluid particles, damping constants have to be set to zero.
Both distributions are shown in Fig. 2. They are both Gauss-
ian with the correct temperature, even though for initializa-
tion uniformly distributed random numbers �square well� had
been used. The tests are performed with both coupling meth-
ods. We have carried out simulations with particle radii of

0.4 �m and 0.25 �m, where the Peclet number �for the
simulations where gravity is applied� is 0.11 and, of course,
it takes much longer to observe sedimentation.

B. Viscosity

The diffusion coefficient of suspended colloidal particles
can be used to check if the desired viscosity could really be
achieved in the simulation. Using Eq. �18� we can, once we
have measured D, calculate the kinematic viscosity � and
compare it to the value we have used to determine the simu-
lation parameters like the SRD time step. We achieve a de-
viation of less than 20% in a diluted system compared to the
theoretical value for an infinitely diluted system. Note that D
is a fixed number only in the limit of an infinitely diluted
system and only if the interaction potentials between the col-
loidal particles are exclusively repulsive.

We are using two different methods, either the Green-
Kubo method or direct evaluation of the mean-square dis-
placement. The first is even very accurate, if only few par-
ticles are used, but consumes much computer time and

FIG. 2. Velocity distribution of fluid �a� and colloid �b� particles
in a SRD simulation after thermalization. Particle density is
3900 kg/m3, the time step 2.0 �s, model temperature T
=10.57 mK, fluid particle mass mf =1.0667�10−18, and particle di-
ameter d=0.5 �m. The theoretical Gaussian curve is plotted as well
as the measured velocity distributions.
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memory because all particle velocities have to be stored for
all time steps used in the calculation. That means, for higher
volume fractions, it is more efficient just to sum up all the
mean-square displacements within a given period of time. To
calculate D using the Green-Kubo method one uses the fol-
lowing relation:

gx�j� = lim
I→�

1

IMTot
�
i=1

I

�
n=1

MTot

vx,n„�i + j�t…vx,n�it� , �34�

Dx = t�1

2
gx�0� + �

j=1

�

gx�j�� , �35�

where MTot is the total number of particles in the system and
I is the number of time steps used to calculate the contribu-
tion g�j�. vx,n�it� denotes the x component of the velocity of
particle n in the ith time step. The sum in the expression for
Dx is in principle an infinite one, but since the contributions
g�j� decay with j−3/2, one can truncate this sum after some
tens of terms. Dy and Dz can be calculated accordingly. In
Fig. 3�a� we show the diffusion coefficient in each direction.
In numerical calculations it is impossible to evaluate an in-
finite sum. In Eq. �34�, I is limited at least by the total num-
ber of time steps within the simulation and in Eq. �35� the
sum therefore is not infinite either. Since the contributions
gx�j� become more and more inaccurate for larger j we trun-
cate the sum after n terms and find that in our simulations for
n
50 the diffusion coefficient does not change anymore in a
systematic way if n is increased further. In Fig. 3�b� the last
term of the sum is shown. For larger values, they fluctuate
due to the finite sum in Eq. �34� which leads to the inaccu-
racy in the right part of Fig. 3�a�. These fluctuations become
smaller for longer simulation runs, but do not change the
value of the diffusion coefficient taken as an average from
the center part of Fig. 3�a�.3

For the mean-square displacement in one direction during
a time interval �t we calculate

Dx =
1

2�tMTot
�
i=1

MTot

�xi�t + �t� − xi�t��2 �36�

and Dy and Dz accordingly. For medium densities we have
compared both methods and achieved the same results within
error bars. Depending on the number of particles, we use one
of both methods.

According to Richardson and Zaki �40�, the mean sedi-
mentation velocity of particles suspended in a liquid depends
on the volume fraction � as

vs��� = v��1 − ��l, �37�

with a typical exponent l between 
2.5 and 4 depending on
the boundary conditions. For periodic boundary conditions,
Peclet number of Pe=1, and Reynolds number Re�1 we
find an exponent of 3.5 �Fig. 4� even when we use coupling
method II, where only the long-range hydrodynamic interac-
tion can be calculated correctly. A similar value is found for

Pe=2 and Pe= 1
2 . Padding and Louis have found that the

exponent l depends very weakly on the Peclet number �20�.
We have used here coupling method II, but some investiga-
tions have also been carried out using coupling method I. In
the first view there is no big difference apparent between the
two coupling methods, at least as long as, like in this test of
our simulation code, no attractive forces are included. Our
first results where we have studied the peloid system in more
detail are presented in the following section.

X. RESULTS

A. Spatial correlation functions

For our production runs, we have simulated volume frac-
tions of 7%, 14%, 21%, 28%, and 35% in a cube with an
extension of �6 �m�3. Therefore are 231, 462, 693, 924, and
1155 colloidal particles, respectively, and 2.0�105 fluid par-
ticles necessary.

We have evaluated the particle-particle correlation func-
tion. For attractive potentials several sharp peaks can be ob-
served and we assign them to distinct local orders of par-
ticles. Oscillations can be found in the correlation function.
They are caused by exclusion of volume. In the case of at-3This can be seen as a smooth cutoff of the sum in Eq. �35�.

FIG. 3. �a� Evaluation of D using the Green-Kubo method: the
plot shows the sum of � j=1,. . .,ngx,y,z�j� and the estimated D. �b� The
decay of the contributions gx,y,z�j�. We have measured the diffusion
constant of soft spheres coupled with coupling II to the SRD at low
volume fractions.
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tractive forces they are less pronounced than if mainly repul-
sive interaction is present; see Figs. 5 and 6.

In Fig. 5 the particles cluster due to their attractive poten-
tials and form stable configurations. The diameter of the par-
ticles is 5�10−7 m. There is a sharp peak in the spatial cor-
relation function of the particle centers at exactly that
distance 2R, where two particles touch each other in the very
left part of the plot �A�. Then, for larger particle separation,
the correlation function starts to grow and drops suddenly
after a peak at 1 �m �D�, which is twice the diameter �4R�.
This is the contribution of two particles touching the same
third particle. The distance between them depends on the
angle which they form with the particle in the middle, but it
is at last twice the diameter, when they are in a straight line,
which explains the sudden drop of the correlation function. If
several particles stick together, the straight line is stabilized.
This explains the peak at the end of this section of the cor-
relation function.

Two more peaks can clearly be assigned to configurations:
One of them is from two particles touching two other par-

ticles, which themselves touch each other �C�. There again
the case of all particles being in the same plane can be sta-
bilized by other particles surrounding them. The particles
under consideration are then separated by a distance of
2R	3. But of course, bending this configuration is still a
degree of freedom which brings the two particles slightly
closer to each other. Thus their contribution to the correlation
function is shifted downward. The fourth peak at 4

3R	6 re-
flects two particles, both touching three particles, which
themselves are touching each other and define a plane �B�.
There is no freedom anymore for the two particles touching
all the three of them at the same time. One can place one of
them at one side of the plane and the other one at the other
side.

When the potentials are mainly repulsive and the mini-
mum caused by the van der Waals attraction is only a frac-
tion of kBT, the spatial correlation function looks completely
different, as depicted in Fig. 6: The peaks described in the
previous paragraphs have disappeared here. The primary
peak has moved to a slightly larger distance, since the repul-
sive potential hinders the particles from touching each other.

In Fig. 7 we compare the correlation function of Fig. 6
with the potential used for that simulation. The maximum of
the correlation function coincides with the minimum of the
potential, but as the minimum is not very sharp, the particles
are not restricted to fixed geometries and are in a steady
process of rearrangement which results in broader peaks.
This process could also be studied by evaluating the velocity
correlation function for the colloidal particles which is re-
lated to the viscosity of the sample. The correlation of par-
ticles which are several diameters apart is still remarkable, as
it is transmitted by the particles in between. The oscillations
of the correlation function can be understood as a formation
of layers where the probability of finding a particle in a cer-
tain layer is higher than in between.

B. Shear

We have carried out simulations with shear and gravity.
For the particles the boundaries in the z direction were closed

FIG. 4. Mean sedimentation velocity over porosity �1−�� ac-
cording to Eq. �37�: measured values and fit curve in a log-log-plot.
The Peclet number of this simulation is 1. Coupling method II has
been used for this plot.

FIG. 5. �Color online� Correlation function of Al2O3 for �0

=50 mV and 	=3�108/m. The potential is attractive; thus, peaks
�labeled by letters� can be identified and assigned to special local
configurations �see text�.

FIG. 6. Correlation function of Al2O3 for �0=50 mV and 	
=7.3�107/m. Repulsive potentials. One can see oscillations
caused by the excluded volume.
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and gravity was applied in the negative z direction only to
the colloidal particles. For the fluid particles the boundary in
the z direction was closed as well and additionally a velocity
offset was added to apply a shear in the x direction. Bound-
aries for fluids and for particles were periodic in the x and y
directions. Velocity distribution functions have been evalu-
ated. For the cases we investigated, after a transient they are
all Gaussian �Fig. 8�.

C. Phase diagram

We have explored the phase diagram for Al2O3 with re-
spect to screening length and effective surface potential. We
could identify the regions of suspended single particles and
of flocculation �Fig. 9�. The transition between these two
regions depends on both parameters: the Debye screening
length and effective surface potential. It is known that the
pH value determines the effective surface potential �0 and
that the salt concentration and pH value determine the Debye
screening length 	 �9�. Exact relations between salt concen-
tration and pH value on the one side and 	 and �0 on the
other side are not known a priori for the parameter ranges of

our suspensions. There are approximations for very diluted
systems and low salt concentrations. It is known that for
Al2O3 the surface potential becomes zero for pH
8.7 �41�.
However, a phase transition between clustering in the upper
left part of Fig. 9 and a suspended regime in the lower right
part can be found in the simulations in analogy to the experi-

FIG. 7. Plot of the correlation function of Fig. 6 together with
the potential used in this simulation. One can see that the maximum
of the correlation function occurs for the distance, at which the very
shallow secondary minimum of the potential is located.

FIG. 8. Velocity distribution of colloidal particles for each di-
rection. Semilogarithmic plot where deviations from a Gaussian
would be visible by deviations from a parabolic profile.

FIG. 9. �Color online� Snapshots from the phase diagram of
Al2O3: For the DLVO potentials with different effective surface
charge and different screening length one can either observe cluster
formation or single particles in suspension. The simulation was
done at room temperature for 1 s of real time and a particle diam-
eter of 0.5 �m. Gravity has not been applied here. The pictures are
corresponding to the values written on the axis. For this figure we
have chosen the simulation runs for 14% volume fraction with 462
colloidal particles.

FIG. 10. Correlation function and its dependence on the inverse
Debye screening length 	. �0=20 mV and �=0.14 have been kept
constant. For shorter Debye screening lengths the attractive force
becomes stronger and leads to clustering, which is reflected in the
appearance of peaks. The single curves have been shifted with re-
spect to each other.
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ment. The spatial correlation function can be evaluated for
all the simulated cases and it can be used as a tool to identify
the two regions of the phase diagram.

Figures 10–13 show selected examples of correlation
functions for different parameter sets. The first and second
graphs refer to a volume fraction �=14% which also has
been used for the phase diagram of Fig. 9. In Fig. 10 the
correlation function has been plotted for every other image
of the left column in the phase diagram in Fig. 9. One can
see that for suspended particles only the first peak can be
found in the correlation function. The secondary minimum in
the potential causes the particles to glue for short times be-
fore they continue with their diffusion process. With increas-
ing 	 the secondary minimum approaches the particle sur-
face, and therefore the main peak is shifted to smaller
distances. At the same time it becomes deeper so that clusters
are formed and more peaks occur. The peak at a distance of
2R	2
3R disappears again, when the attraction becomes
stronger since this is a meta stable configuration of particles
forming an octahedron. Figure 11 corresponds to the first

row of images of Fig. 9. In this case the depth of the second-
ary minimum is adjusted by changing the effective surface
potential. Again the transition between clustering regime and
suspension can be observed. The potentials used here are
among the ones plotted above in Fig. 1.4 In Figs. 12 and 13
the dependence of the correlation function on the volume
fraction can be seen. In both cases long-range correlations
become more pronounced with increasing volume fraction.
This is shown for the suspended regime �Fig. 12� and for the
clustering regime �Fig. 13�, where the transition between the
two cases presented here is achieved by a variation of 	 by
only 10%.

D. Diffusion

We measured the diffusion coefficient of colloidal par-
ticles with attractive potentials. In Fig. 14 we show the dif-
fusion coefficient for Al2O3 with an effective surface poten-
tial of �0=50 mV and an inverse Debye screening length of
	=2�108 m−1 for room temperature. One can see that the
mobility of the particles decays since a cluster formation
process takes place and the particles in the cluster are rela-
tively fixed. The remaining mobility consists of two parts:
Particles can still, with a nonvanishing probability, leave the
cluster by thermal activation and the cluster itself can take
part in a diffusion process; it can vibrate or be deformed—all
of these are processes which are taking place on much longer
time scales than the single-particle diffusion. By studying the
dependence of the diffusion coefficient on the potentials and
on the volume fraction, one might be able to find an answer
to the question as to which of these processes is important
for the dynamics of the system in which part of the phase
diagram of Fig. 9.

XI. CONCLUSION

We have shown that by combining a stochastic rotation
dynamics and a molecular dynamics simulation it is possible

4In current simulations we did not yet distinguish between clus-
tering in the primary or secondary minimum.

FIG. 11. Correlation function and its dependence on the effec-
tive surface potential �0. 	=2�108 m−1 and �=0.14 have been
kept constant. The higher the effective surface potential, the stron-
ger the attraction force, and clustering can be seen in the growing
peaks.

FIG. 12. Correlation function and its dependence on the volume
fraction �. Effective surface potential �0=20 mV and 	=1.4
�108 m−1 have been kept constant. For center-center distances be-
tween six and eight particle radii broad peaks start to appear for
larger volume fractions.

FIG. 13. Correlation function and its dependence on the volume
fraction �. Effective surface potential �0=20 mV and 	=1.6
�108 m−1 have been kept constant. Due to a small change in 	 with
respect to Fig. 12, one can cross the phase border between sus-
pended particles and clustering regime. Also here long-range corre-
lations become more pronounced for high volume fractions.
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to study dense colloidal suspensions. We have explained how
to determine effective parameters for the simulation �box
size a, simulation time step t, number of fluid particles per
box M, etc.�. It is possible to relate the simulation to very
distinct experimental conditions since all parameters �den-
sity, temperature, potentials, etc.� which enter into the de-

scription are scaled in a well-defined manner. We have pre-
sented first results which demonstrate the power of the
model. We have demonstrated that the Richardson-Zaki law
is reproduced already with the simple and fast coupling
method II, and we have studied the dependence of the pair
correlation function on the shape of the interaction poten-
tials. We have shown how one can distinguish if for given
Debye screening length 	, effective surface potential �0, and
Hamaker constant aH if the system is in the clustering or
suspended regime.

We are planning to carry out detailed investigations of the
properties described in the two preceding sections �diffusion
coefficient, correlation functions, sedimentation velocity� as
well as cluster size and shape. Then these quantities can be
analyzed under shear, their dependence on the shear rate, and
the shear viscosity of the suspension, containing the fluid and
particles, which both contribute to a complex shear viscosity.
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