
Simulation of Compressible Flow on a

Massively Parallel Architecture

DAN WILLIAMS AND LUC BAUWENS

Department of Mechanical Engineering, The University of Calgary, 2500 University DriveN. W.,

Calgary, Alberta T2N JN4, Canada; e-mail: {dnwillia, bauwens}@acs.ucalgary.ca

ABSTRACT

This article describes the porting and optimization of an explicit, time-dependent, com

putational fluid dynamics code on an 8, 192-node Mas Par MP-1. The Mas Par is a very

fine-grained, single instruction, multiple data parallel computer. The code uses the flux

corrected transport algorithm. We describe the techniques used to port and optimize the

code, and the behavior of a test problem. The test problem used to benchmark the flux

corrected transport code on the MasPar was a two-dimensional exploding shock with

periodic boundary conditions. We discuss the performance that our code achieved on

the MasPar, and compare its performance on the Mas Par with its performance on other

acchitectures. The comparisons show that the performance of the code on the Mas Par is

slightly better than on a CRAY Y -MP for a functionally equivalent, optimized two-dimen

sional code. © 1995 by John Wiley & Sons, Inc.

1 INTRODUCTION

~We have ported a computational fluid dynamics

application to the :\lasPar :\IP-1. The application

uses the flux-corrected transpor1 (FCTJ algorithm

[1], and consist:-; of a set of Fortran subroutines

that are collective~\- referred to bv the name of the . .
main suLroutine. LCPFCT. In addition to the

main subroutine, several auxiliary subroutines

can be used to define the geometry. source terms,

and boundary conditions. The code solves the

coupled sets of multidimensional nonlinear con

servation laws that describe reactive and nonreac

tive gas dynamics.

LCPFCT itself can handle Cartesian. cylindri

caL sphericaL or user-defined coordinate svs-

Rt>ceived :\Ia\· 1 99-t

Revised Oect:rnher 19<)-t

© 1993 by John Wiley & Son~. Inc.

Scientific Programming. \"ol. -+. pp. 19:3-201 (1'J9:))

CCC 1 038-92H/9.'i/0:3019:3-09

terns. Alternate sets of boundary conditions can

be selected by making the appropriate choice of

arguments to the subroutine calls. Besides inflow,

outflow, or reflecting wall conditions in any coor

dinate system, LCPFCT can also handle periodic

boundary conditions. :\lultidimensional problems

are solved using the method of fractional steps

[5]. The computational grid can be nonuniform.

and can move during a time step. allowing the

user to perform Lagrangian or sliding rezone cal

culations.

This article describes our porting and optimiza

tion of FCT on the MasPar. First we give a general

description of the flow model and the FCT algo

rithm. Second, we give a brief overview of the

MasPar architecture. Third, we briefly describe

the two-dimensional blastwave problem with peri

odic or solid-wall boundan· conditions which we

use as a benchmark. Fourth, we discuss the hur

dles involved in adapting the basic LCPFCT com

pressible fluid dynamics module, to a form com

patible with and efficient on the MasPar. Finally,

we summarize the performance of our code on the

194 WILLIAMS A:\D BAL\\:E\S

MasPar. We compare the results of running our

two-dimensional code on the .MasPar to equiva

lent benchmarks on other architectures including

the CRA Y Y-MP and the Connection Machine

CM-2.

2 THE FLOW MODEL AND ALGORITHM

Our flow model is based on the inviscid, time

dependent, multidimensional Euler equations of

gas dynamics. This includes three con;:;ervation

laws, for mass, momentum, and energy. In the

inviscid model, shocks appear as mathematical

discontinuities. The ;:;olution that we seek is the

weak solution to the differential equation that sat

isfies the integral form of the equations. From a

physical standpoint, in the presence of ,.;hocb, the

integral form is the proper form of the consen·a

tion statement, The FCT algorithm is used to solve

each of the coupled conservation equations defin

ing the gas dynamic system.

FCT is an explicit, nonlinear, monotone

method designed to enforce positivity and causal

ity on the numerically computed solution. These

constraints ensure that the numerical solution ap

proximates the solution of the consen·ation laws

in integral form. Positivity and causality would Le

lost in the numerical approximation if one did not

ensure that the finite-difference scheme is con

servative. FCT satisfies the monotonicity require

ment: it implements profile-dependent nonlinear

corrections to the truncation-error terms. which

ensures that no new numerically produced max

ima or minima occur near shocks or contact dis

continuities. The FCT algorithm ensures fourth

order phase accuracy in smooth regions of the

flow and guarantees conservation, monotonicity.

and positivity in regions with steep gradients. An

extensive discussion and anaksis of FCT has

been published by Boris and Book [1 J.
FCT is second order accurate in space. Second

order accuracy in time is achieved Ly splitting the

time step. First a half time step computation is

executed and then the intermediate, time-cen

tered values of the physical variables are u,.;eJ to

evaluate the source terms for the full time step. To

ensure second order accuracy, the time step must

be small enough so that the cell a\·eraged values of

the physical variables do not change appreciably

during the time step. Direction splitting [6] allows

for multidimensional FCT calculations. In a two

dimensional problem this is accomplished by sep

arating each gas dynamic equation into its respec-

tive x andy part,.;. First each y-direction column in

the grid is integrated, and then the x-dirt>ction

rows are integrated. Direction splitting creates a

bias that will eventuallv break the snnmt>tn· of a . . .
solution, depending on which direction is inte

grated first. This can be eliminated by performing

two calculations, x-y then y-x, and an·raging the

results.

FCT is a "uniform"' algorithm in which. at each

time step every cell undergoes the ,.;ame numerical

operations regardless of the values of the physical

variables in that cell. It is therefore ideallv suited

for massively parallel processing on a single in

struction, multiple data ISI\ID) architt>cture ,uch

as the \lasPar.

FCT is abo well suited for ,.;imulating high

speed compressible flow. "'e are intere:'itt>d in JWr

forming simulation~ that include combustion.

Other numerical scht>mes ~uch as PP:\1 piecewise

parabolic method (PP\1) [2] or monotonic up

stream-centered scheme for cunsen·ation laws

(\ICSCL) [11] would be appropriate for combus

tion simulations. but we have choben FCT be

cause of its simplicity and its good track rt>cord in

combustion. It has been used succe,.,,..fulh· for

combustion simulation bY other researchers such

as Oran et al. [6. 7. 8]. Thibault et al. [10~. and

Zhang et al. [13 J .

3 THE MASPAR

The \'lasPar ~vstem architecture indudt>s a pro

cessor ele1nent arraY. an array control unit. and a . .
Cl\lX workstation as a front end. The front end

manages program execution and user interface.

"'hen there is a nt>ed for paralld ext>cution. the

front end sends the program for execution to tht>

processor array. The 8,192 processors are orga

nized in a two-dimensional array topnlof.'Y (128 X

64), in a SI\ID architect urt>. In a SI\ID arc hi tec

tu~e, all the processors simultaneously perform

the same operation on differt>nt data as one ;;inglt>

stream of instructions is broadcast to all proct>s

sors by the array control uuit. The \lasPar \IP-1· s

theoretical peak performance i;, 650 \1/lop/ s ;,in

gle precision and 290 \Iflop/ s double preci,;iun.

There are three types of communication on the

\1asPar. First., there are communications from the

array control unit to the pnwt>ssor array wlwre the

array control unit broadcasts data or instructions

to all processors in the array simultaneously. St>c

ond, nearest neighbor data communications are

carried out by the X-net. The X-net is an eight-

way, two-dimensional toroidal mesh that allows a

processor to communicate with its nearest neigh

bors. Finally, communication between arbitrary

processors i,; carried out by a hierarchical cross

bar called the global router.

Interprocessor communication i,; required

when a processor requires data that are not resi

dent in its local memory. X-net communication

will be used if the data reside on a neighboring

processor. In this case. the performance penalty is

low because X-net communication is fast. If the

data do not reside on a neighboring processor.

global router communication will be used. While

router communication i,; efficient. it is much

slower than X-net communication-the X-net has

approximately 16 times the bandwidth of the

router.

Another more costly type of communication is

array sloshing between the front end and the pro

cessor array. Array sloshing has a profound effect

on performance and occurs in several circum

stances. First, if an array that has been allocated

on the processor array is accessed in a serial (For

tran 77) manner. it will be sloshed to the front

end. To avoid this situation. serial acces,; on the

processor array should be avoided. Likewise.

when an arrav has been allocated on the front

end. and a subroutine is called that use,; this arrav

in a parallel context, the array will be sloshed from

the front end to the proces,-or array and back

again when the routine exits. To avoid this, com

piler directives can be used to force allocation on

the processor array at declaration time. Even

more costlv than the latter two cases is the slosh

ing of a CO.\I.\101\" block of arrays. This can be

avoided in the same manner a,.; for indi\·idual ar

rays.

4 TWO-DIMENSIONAL BLASTWAVE
COMPUTATION

The problem used to benchmark F< :T on the

.\IasPar is a two-dimensional blastwave computa

tion with periodic boundary conditions. This com

putation involves both supersonic and subsonic

flows with interacting shocks and a high degree of

symmetry. The blastwave problem may not be a

significant real-world problem. but it is a good

benchmark for computational fluid dynamic

(CFD) codes. It is a good benchmark hecaww the

solution is very symmetric, it maintain,; this sym

metry for a long time. and a good CFD code

Sl~ll"LA TIO~ OF CO.\IPRESSIBLE FLOW 195

should resolve the shockwaves within a few cells

while maintaining the symmetry of the solution.

Also, this problem was previously used by Oran et

a!. [5], and using the same problem allowed us to

compare our results.

The computation is initialized with a high-den

sity, high-pressure square of fluid that is 32 cells

on each side. The square is situated in a doubly

periodic mesh 128 cells on each side. The square

region in the center of the domain begins with a

density 15 times the background density and a

pressure 30 times the background pressure. The

contact surface that defines the interface between

the initial high pressure material and the low pres

sure material is tracked by using an additional

species variable in the computations. This com

putation is a good benchmark for a CFD model

because it should retain its symmetry for a long

time, and because periodic or solid wall boundary

conditions should give the same solution as long

as the symmetry is maintained.

Figures 1 and 2 show contours of pressure and

location of the contact surface for several time

steps during the simulation. During the simula

tion, the up-down symmetry is eventually broken

by round-off error arising from the limited preci

sion of the floating-point calculations. Symmetry

across the 45° degree diagonals is eventually bro

ken by the truncation errors in the time step split

ting. 1hese errors appear to be larger than the

round-off errors.

~~hen the unconfined high-pressure gas is re

leased. a shock forms that races out from the

edges of the initial square. The contact surface

closely follows behind the shock. Figure 1 shows

the development of the pressure contours for six

time step~. By step 500 the initially square shock

has progressed through a circular phase and con

tinues to change shape. By step 1..500 the shock

has reflected from the ends of the computational

domain and has begun to recompress the material

inside the contact surface. As time proceeds to

step 10,000 the shocks become progressively

weaker, and become oriented parallel with the

sides of the domain .

~chereas the shock patterns become simpler as

time progresses, the vorticity caused by the shock

interactions with the contact surface warps the in

terface into increasingly complex patterns. The

vorticity is generated by the baroclinic source term

in the vorticity equation. This term is nonzero

when the gradients of density and pressure are not

aligned. The misalignment is created by the shock

reflecting from the corners of the domain, which

196 WILLIAMS A;\"D BAL\VE~S

D
T1mesttpO

Tuncstcr 5fXXl T1m~tcp 8000 T1mcstcp 10001

FIGURE 1 Pressure contours at six time step;; for the square],]astwmc problem.

weakens the shock. The shocks reflect back

through the interface creating more vorticity.

5 PORTING AND OPTIMIZING FCT

The MasPar can be programmed in either :\1PL.. a

parallel extension to C, or .\IPF. an implementa

tion of a subset of Fortran 90. \\'e used version

3.012 of MasPar's high-performance Fortran

compiler "mpfortran" or .\IPF. In .\1PF, parallel

operations are expressed with the Fortran 90 ar

ray extensions. Arrays are treated as unitary ob

jects rather than requiring them to be iterated

through one element at a time, as in standard For

tran 77. MPF generates code for both the front

end and the processor array, effecti,·ely making

the details of the architecture transparent to the

programmer. However. programming style will di

rectly affect performance.

Optimization of FCT on the :\fasPar required

two main issues to be addressed: making effective

use of the processor array and nununization of

communication cost. In SI.\ID architectures. oper

ations performed on a subset of the processor ar

ray, such as single lines or columns. or boundary

nodes. cost as much in cycles as operations on the

whole array. Thus. constructs detaling. for in

stance .. with the boundaries separately from the

main arrays can eaf'ily double the computation

time, and they are advantageously concatenated

with the main operations. In addition, unwanted

interprocessor con1munication can occur if arrays

are not correctly allocated on the processor array.

It was critical to ensure that all arrays were prop

erly aligned on the processor array in order to

minimize communication overhead.

Porting the code involved getting the code to

run on the processor array, and optimizing the

code on the processor array. Fir;;t, since the sub

routines were originally written in F011ran 77. they

were converted to Fortran 90 using the .\lasPar

version of Pacific-Sierra's YAST-2.-t.OlL

(DPVAST) translator. The rran,.;lator searches the

Sl\ll L\TIO:\" OF CO\IPRESSIBLE FLO \X. 197

D

T1mestcpO
T1mestrp 500

FIGURE 2 Contact surface locations at six time steps for thf' square blastwave problem.

Fortran 77 code for scalar "do'' loops and con

verts them to the Fortran 90 arrav notation, which

is understood by the processor array. The code as

translated by DPYAST ran very poorly-the tem

poral performance was much less than one time

step per second.* Optimization of the code was

carried out in several stages de&eribed below, and

the results of optimization are summarized in Ta

ble 1.

Stage one dealt with CO:\L\IOl\" block alloca

tion. The original blocks contained both scalar

and array data, and as a result. the compiler allo

cated them on the front end. Since the arrays in

*Hackney [of: defines temporal performance as the inverse

of the execution time [RT = T- 1(N;pJ:, wh~n·l\ is the problem

size and pis the number of processors. Temporal performance

is measured in solutions per second (sol/s) or time steps per

second (tstep/ s). It i;; a good metric for comparing different

algorithms when solving a certain benchmark problem because

it tells you which algorithm solves the problem the fastest.

the blocks were used in Fortran 90 array con

structs, the whole block had to be sloshed to the

processor array. By removing all CO:\I:\10!\"

blocks, and passing the block elements a,.; param

eters to the subroutines, we improved the tempo

ral performance by a factor of 2. This was still

unsatisfactorv.

Stage two consisted of altering the implementa

tion of direction splitting. The original LCPFCT

subroutines were one dimensional. Two-dimen

sional problems were handled by calling the one

dimensional subroutines row bv row, and

then column bv column. This minimizes scratch

memory-a desirable feature on a vector ma

chine, but leads to poor performance on a SI:\ID

architecture. For example, for a 128 X 128 grid, a

row or column array will contain only 128 ele

ments. \Vhen the one-dimensional subroutines

are called with a 128-element array only 128 pro

cessors will be used at a time, resulting in a perfor

mance that is less than 1.0% of the peak perfor-

198 \X"ILLI:\:\IS :\."D B:\U\E:\S

Table 1. Effect of the Optimization (Hesolution: 128 X 128)

Stage

DP\-:\ST

1

2

:3

4

.)

6

Tempoml

Perfonnann~

ltstqllsJ

().();3

0.06

:3.0:3

-t.SS

S.:J6

S.H8

7.14

mance of the machine. The code was rewrittt·n

such that all the rows were dealt "-ith in a ;-;inf!le

operation and then all the cohunn,.;. Thi,.; can be

done because adjacent rows or columns are inde

pewlent uf uue another during thi, computation.

This stage improved the temporal performaJH'e to

approximately :3 tstPp/s.

The profiler was used in ,;taf!e three to find

out which parts of the code used the most CPC

time. The profiles showed that approximately

70% of the time wa:; spent in the LCPFCT sub

routine. and a large pPrcentage of the -time wa,;

spent in calculating the boundary conditions. The

DP\'AST version of the code u,;pd two one-dimen

sional arravs to store the results of the boundarY . .
calculations. These arrays could not be properly

aligned with the main two-dimensional arrays. To

eliminate the communication penalty that rPsult,;

from this situation. the code that dt>alt with the

Loundan· calculations was rewritten. and tlw

results of the boundan· calculations were stored in

the main two-dimensional arravs. In addition. in

the original implementation. periodic boundary

conditions were controlled by setting the ntlue of a

double precision flag to either zpro or one. The

code was modified to use a logical flag and an IF

THE.K-ELSE block instead. As a result of the

modifications performed in this stage the temporal

performance improved to -l.5.S tstep/s.

Stage four consisted of replacing some of the

subroutine array parameters with C0:\1:\IOI\

blocks. As a result of eliminating the CO:\L\10:\

blocks in stage two of the optimization. a signifi

cant amount of m·erhead had heen created from

passing a large number of array parameter:; to the

subroutines. The original CO:\niOJ\' Ll()(·ks con

tained both array and scalar data, CO:\L\IOI\

blocks that contain onh· arra,·s. and no scalar . .
data will be properly allocated on the processor

array. Replacing some of the subroutine array ar

guments with CO:\niOl\" blocks reduced the over-

Benchmark

PPrf<mnarH-e

,'.\lllop/ ;,-IH I •it;

Time to P<·rfonn

Opt i 111 iza tion

'hr,

:2.0

:~.0

1."i. ()

:3.0

:3. ()

:2.0

1.0

head. This stal!e further imJHO\ed the temporul

performance to :l.:)6 tstep/s.

In stage fi,·e. analy,;is of the code profile,., indi

cated that some overhead was !wing incurred due

to ruutt·r cotllllllllliL·ation. lwnube ;,OJJle of the

subroutirw calls included arguments that \\Trt'

parts of arrays. This situation is handled by copy

ing into a temporary array throuf!h ust> of the

router, which is time consuming. The code was

modified to eliminate the router opt>rations and

temporal performance increased to ;~.88 tstep/ s.

Further impron"Illt'Ill wa,.; obtaiued iu ,.;tage ,;ix

by aligning all array allocations. The current com

piler implementation maps arrays dirt>ctly on the

processor array based upon declaration indices.

without any optimization attempt. Some of our ar

rays needed to include boundary nodes. while

some others did not. and we had declared tlwm

with their minimal size. which caust>d unneces

sary shifting of whole arrays to occur. which is

costly and can be avoided by proper array decla

ration. By changing the declaration indices we

aligned the array allocations and impnAed the

temporal performance to a!Jout 7 hlt'p/s.

6 RESULTS AND DISCUSSION

Table 1 presents a summary of the effects that

each stage of optimization had upon the JWrfor

mance of FCT. The benchmark performance was

calculated as suggested by Hockney [-t]. t The

T llockrwy [-t: defirw' lwrwl11nark perforrnanc•• "'the ratio

of thP lwnchmark floatill!(-point <>fWration flop) count Fh(:\)

and the I'XPCUtion tinw T(.'\':p) [Hh = Fh(.'\')/T(N:pf. n .. ,
lwnchmark ,,..rfonllafl('(' w·rwrally has llllits of rnillion float

in!(-point opt·r·ation' pt'r ""·orrd :.\lflop/sl. The lwnclunark

flop count for our code wa!"i obtained by countin~ opt·rations

also as Sllf!f!<'>;tt'd by Hockrwy [-t: 1+. -.X= 1 flop:..;., Y = -t
flop: t'xp. sin. co,. t>tc ... = 8 flop: if ;x .rei. Y) = 1 flop;.

SL\Il.L\TlO:\ OF CO\IPRESSIBLE FLO\,. 199

Table 2. FCT Benchmark Performam·t> for Differt>nt Grid Sizes

Grid Size

1:28 X 6-f

1:28 X 1:28

2.')6 X 1:28

:236 X 236

.')!:2 X 31:2

Sin;!le Precision

Ru (.\lllop/s

l-t6

108

1:26

1:38

1:'-t

largest improvenwnt in pt>rformance was obtained

in staiW t\n>. which rPq uired tilt' code to lw com

pletely n~written. The other stagPs resulted in

modest improvements. but were much les,; time

consuminf! than ,.;taf!e two. Overall. optimization

of FCT on the .\[asPar wa,.; In· far the mo,.;t timP

con,.;urning ta,.,k. while the tran,;latioll proce:-i:'i

(DPYAST stage) wa:'i relatively ;;traif!htforward.

Table 1 effectively dt>monstrate,.; the :'iignificance

of optimization. By modifyinf! thP "·ay in which the

code was written we improved the performance by

a factor of approximately 2-tO o\·er the DPYAST

version. At this point hnwevPr. further impro,·e

ment would require rewriting a fully two-dimen

sional version of FCT for the .\IasPar. not using

direction splitting.

Table 2 shows the benckmark performance

achieved with the optimized version of the code.

The first row of Table 2 (128 X 6-f) corresponds to

a problem with an array size that can be mapped

optimally onto the proces,;or arrav. In this case

180

170

160

~ --o- Singlr Precision

-Q-Doublr Prrcbion

~ ..
D. 150
Q

= ' (
6 140
... ..

130 ;
E \

'\\, peak

2-f

18

:21

:z:~

:29

Double Preci~ion

% peak

90 31

81 28

87 30

9:3 32

lnsuffir·iPnt m<>mnrv

there is a nununum in communication overhead

because none of the array;; have to be mapped

into multiple layers of processor mt'mory. For the

128 X 128 case a drop of about 2.3% in single

precision. and about 10% in doublt> precision

performance is observed. Thi,; would be due to the

communication overhead created bv one extra

layer of memo1·y having to be allocated. Table 2

also shows the percentage of the peak perfor

mance attained by FCT. Since we have imple

mented two-dimensional FCT computations us

ing direction splitting. the peak performance that

our code could attain is reduced bv at least a fac

tor of two. This is because the rows and columns

of the grid are dealt with separately. With a fully

two-dimensional version of FCT this problem

could be fixed, but would require substantial re

writing of our original code. Taking this into con

sideration our results are quite good.

Figure 3 shows the dependence of benchmark

performance on the problem size. After the initial

j)

/
I v

/,
~r:f

120

~ .. \ v
110 =-

~
100 ..

j
90 ..

1:

~
80

70

u

....
r ~,.. p-

I
1000 10000 100000 1000000

NumberorMrsh Points

FIGURE 3 Dependence of benchmark performance on the problem size.

200 WILLIA:\18 A:'\D BAC\"\E'iS

drop in benchmark performance. when changing

from an 128 X 64 to a 128 X 128 grid, the perfor

mance increases at an approximately logarithmic

rate as the problem size increases. This is becau;;e

the ratio of floating-point operations to communi

cation overhead is increasing. The incremental

changes in benchmark performance seem to be

much more dramatic for the single precision than

double precision, because communication m·er

head is independent of the precision.

Timings and floating-point performance for

FCT on various architectures are presented in Ta

ble 3, which includes the current figures and data

from Oran et a!. [.S J. Timings are shown for two

typical vector supercomputers, the CRA Y Y -~IP
and the Fujitsu YPX240. The timing for the :\la;;

Par as compared to the Cray is competitive, with

the ~fasPar approximately 7'Yo fastPr. The Fujitsu

is a much faster machine than either the Crav or

the ~fasPar, with a theoretical peak performance

of2.5 Gflop/s. The timings shown in Table 3 were

obtained without any attempt to optimize the code

on the Fujitsu, and should be susceptible to im

provement relatively easily.

Another parallel architecture was also Included

for comparison. The Connection .\lachine C\1-2

has a Sl~1D architecture similar to the \lasPar.

The MasPar timing is 43% faster than the Con

nection ~achine. FCT on the Connection \la

chine was written in a parallel implementation of

C called C* (C star) by Oran et a!. [5 J. while the

code was written in Fortran 90 on the .\lasPar.

The final two platforms presented for comparison

are both single processor RISC workstations.

Further optimization of our code could be ob

tained by writing a fully two-dimensional wrsion

of LCPFCT, but this would require starting on~r

from scratch. Due to our limited time on the \las

Par we did not perform this step. l\ow that we

have a fully optimized version of LCPFCT that

uses direction splitting there are several po:-;sibili-

ties for using the code to perform real-world ,;imu

lations. \Ve now hm·e the a),ility to perform large

scale direct simulations of both IHHHPacting and

reacting flows. A combu;;tion model is currently

being addt>d to the code so that we can simulate

detonations and reacting flows in combustors.

Our results only consiuered rectangular domains.

To anJid the drastic performance degradation. in

volved with simulating flow through more complex

domains, techniques such as domain dPcomposi

tion, and mapping of rectangular ;;ubdomains on

the processor array topology would be required. Jn

any eYent. finite-difference algorithms are arf!Ua

bly not the most suitable for complex geometries.

7 CONCLUSIONS

The :\lasPar· s SI\ID architecture i;-; well suited for

explicit finite-difference Euler soh er~ because the

problem can be optimally mapped onto the ma

chine topology. and the algorithm require~ that

the same operations be performed at all cells at all

time steps. Optimization required that we rewrite

the code to calculate the uirection-:'iplit rows or

columns simultaneously (in parallel). which can

be done since adjacent row~ or columns are inde

pendent of one another during such a computa

tion. Apart from syntax modifications. further op

timization was carried out by modifying the

boundary condition calculations so that they were

aligned with the main arrays. We ha,·e improved

performance by a factor of 2-tO through the de

scribed optimizations.

In general, Fortran 90 parallel code is ea~ier to

write and work with, and shorter than the corre

sponding scalar code. The performance of FCT

on the ~lasPar is slightly better than on CRA Y Y

MP (1 CPU). and is also faster than on the Con

nection ~lachine C~l-2. The \fasPar has been rel

atively user friendly and easy to program, and the

Table 3. Benchmarks for the Two-Dimensional Blast Problem

(Resolution: 128 X 128)

Computer Type

MasPar MP-1 (8, 192 K)

CM-2 (8,192K) [5]

CRAY Y-~1P (1 CPlJ) [5]

Fujitsu VPX240

IBM RS6000/950

HP 90001710

Temporal Performance

(tstt'p/ s)

7.14

5.00

6.67

14.3

0.96

0 .. 55

Benchmark Performance

(:\!flop/ s-6-+ bit)

81

57

76

170

11

6.2

profiling and optimrzmg tool,; are eff(•ctive. The

results show that the .\lasPar is a suitable com

puter on which to carry out multidimensional FCT

computations.

REFERENCES

[1 J .1. 1'. Bori~ and D. L. Book. ··Solution of the conti

nuity eqtwtion hy tlw HWtlwd of flux-rorrerted

tran,;port.·· .lletluuls Comput. P/n·s. 1nl. 16. pp.

85-129. Jl)-:'tJ.

[2' P. CoiiPia and P. H. \X.oodwanl. ···nw pit>cewi~•·
parabolic nwthod ii'P.\1 for ;ra~-dynamit·al ,;imu

lations ... J. Cmnput. l'h.1·s., Yol. :>-t. pp. 1-:'-t-

201. 198-t.

[6]

[-:''

Di:-.oital [, Jlli pnwn t Corporation. lJLCmpfl l'arul

le/ Fortrun H1:{en•nn• .llruwul . .\lanwnl. .\lA:

Di;rital E<ruipm<'nt <:nrporation. 1 ()<12.

H. \\ . llorkrwY. ··_-\ franwwork for lwnrhmark

rwrfonnan<'f' anak~i~... COIIIfJitf. /Jenrhmurks.

pp. 6.)--:'b. 199:3.

E. S. (han. J. 1'. Bori~. and H. 0. \\'haley. "Ex

plorin;r fluid dynami•·s on a conm·rtion rna-

chine ... SupercomfHtl. Her .. 1990.

E. S. Oran and .1. P. Boris . . Yumeri('(t! Simulrttion

of Rear/ire Flute. ~ew York: Ebe1·ier. 198'.

E. S. Oran. 1. P. Bori~. T. R. Yntm;r. and .1. .\1.

Pirone. "~urnerical Simulation of Detonations in

llydro;ren-:\ir and .\lt•thane-:\ir .\lixtuw~ ... Pro

ceedinf!S u.f the I ~th Symposium ,Jnternatiorwl)

SI.\ICL\ TIO~ OF CO.\IPRESSIBLE FLO\\. 201

on Combustion. Pittsburgh: The Combustion In

stitute, 1981. pp. 1641-16-+9.

[8] E. S. Oran, T. R. Young. and J.P. Boris, "Appli

cation of Time-Dependent :\'umerical.\lethods to

the Description of ReactiYe Shocks,'' Proceedings

of the 17th Symposium (International) on Com

bustion. Pittsburgh: The Combustion Institute,

19?9, pp. 4.3-54.

[9] D. F. Snelling. "A philosophical perspective on

perfonnance measurement.... Compul. Bench

marks. pp. 9?-10:3. 199:3.

[10] P. A. Thibaulc F. Zhang, J. Penrose. and A. Sul

mistras, "~umerieal .\lodeling of Detonation

Driven Hollow Projectiles.,. Proceedings of the

Second Annuol Conferenre of the CFD Society of

Canoda. Toronto: l'nivcrsity of Toronto Press.

199-t. pp. 39.5--+02.

[11J B. van LeN. "Towards the ultimate conserYative

difference scheme. \·. A second-order sequel to

Godwwv·s method ... J. Compul. Phys .. vol. .32.

pp. 101-1:36. 19-:'9.

[12] D. \Yilliarns. K. Grewal. C. Schuh. and L.

Bauwen~. ·'A Finite Difference CFD Code on a

SI.\ID Architecture ... Proceedings 55'93 1/igh

Performance Computing: .Yew 1/orizons, 1 99.3.

pp .. 331-.3:36.

[13] F. Zhang. D. Tran. 1. Penrose. C. Yee. and P. A.

Thibault. '·~umerical Studies of Detonation

Propagation in .\fixtures of Combustible Gases

and Inert Dust.,. Proceedings of the Second An

nual Conference of the CFD Society of Canada.

Toronto: Cnh•ersit,1· of Toronto Press. 199-1. pp.

261-268.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

