Simulation of Compressible Flow on a

Massively Parallel Architecture

DAN WILLIAMS AND LUC BAUWENS

Department of Mechanical Engineering, The University of Calgary, 2500 University Drive N.W.,
Calgary, Alberta T2N IN4, Canada; e-mail: {dnwillia, bauwens}@acs.ucalgary.ca

ABSTRACT

This article describes the porting and optimization of an explicit, time-dependent, com-
putational fluid dynamics code on an 8,192-node MasPar MP-1. The MasPar is a very
fine-grained, single instruction, multiple data parallel computer. The code uses the flux-
corrected transport algorithm. We describe the techniques used to port and optimize the
code, and the behavior of a test problem. The test problem used to benchmark the flux-
corrected transport code on the MasPar was a two-dimensional exploding shock with
periodic boundary conditions. We discuss the performance that our code achieved on
the MasPar, and compare its performance on the MasPar with its performance on other
architectures. The comparisons show that the performance of the code on the MasPar is
slightly better than on a CRAY Y-MP for a functionally equivalent, optimized two-dimen-

sional code. © 1995 by John Wiley & Sons, inc.

1 INTRODUCTION

We have ported a computational fluid dvnamics
application to the MasPar MP-1. The application
uses the flux-corrected transport (FCT) algorithm
[1], and consists of a set of Fortran subroutines
that are collectively referred to by the name of the
main subroutine, LCPFCT. In addition to the
main subroutine, several auxiliary subroutines
can be used to define the geometry. source terms,
and boundary conditions. The code solves the
coupled sets of multidimensional nonlinear con-
servation laws that describe reactive and nonreac-
tive gas dynamics.

LCPFCT itself can handle Cartesian, cylindri-
cdl, spherical, or user-defined coordinate sys-

Received May 1994

Revised December 1994

© 1995 by John Wiley & Sons. Ine.

Scientific Programming. Vol. 4. pp. 193-201 (1995)
CCC 1058-9244/95/030193-09

tems. Alternate sets of boundary conditions can
be selected by making the appropriate choice of
arguments to the subroutine calls. Besides inflow,
outflow, or reflecting wall conditions in any coor-
dinate system, LCPFCT can also handle periodic
boundary conditions. Multidimensional problems
are solved using the method of fractional steps
[5]. The computational grid can be nonuniform.
and can move during a time step, allowing the
user to perform Lagrangian or sliding rezone cal-
culations.

This article describes our porting and optimiza-
tion of FCT on the MasPar. First we give a general
description of the flow model and the FCT algo-
rithm. Second, we give a brief overview of the
MasPar architecture. Third, we briefly describe
the two-dimensional blastwave problem with peri-
odic or solid-wall boundary conditions which we
use as a benchmark. Fourth, we discuss the hur-
dles involved in adapting the basic LCPFCT com-
pressible fluid dynamics module, to a form com-
patible with and efficient on the MasPar. Finally,
we summarize the performance of our code on the

194 WILLIAMS AND BAUWENS

MasPar. We compare the results of running our
two-dimensional code on the MasPar to equiva-
lent benchmarks on other architectures including
the CRAY Y-MP and the Connection Machine
CM-2.

2 THE FLOW MODEL AND ALGORITHM

Our flow model is based on the inviscid, time-
dependent, multidimensional Euler equations of
gas dynamics. This includes three conservation
laws, for mass, momentum, and energy. In the
inviscid model, shocks appear as mathematical
discontinuities. The solution that we seek is the
weak solution to the differential equation that sat-
isfies the integral form of the equations. From a
physical standpoint, in the presence of shocks, the
integral form is the proper form of the conserva-
tion statement. The FCT algorithm is used to solve
each of the coupled conservation equations defin-
ing the gas dynamic system.

FCT is an explicit, nonlinear, monotone
method designed to enforce positivity and causal-
ity on the numerically computed solution. These
constraints ensure that the numerical solution ap-
proximates the solution of the conservation laws
in integral form. Positivity and causality would be
lost in the numerical approximation if one did not
ensure that the finite-difference scheme is con-
servative. FCT satisfies the monotonicity require-
ment; it implements profile-dependent nonlinear
corrections to the truncation-error terms. which
ensures that no new numerically produced max-
ima or minima occur near shocks or comact dis-
continuities. The FCT algorithm ensures fourth-
order phase accuracy in smooth regions of the
flow and guarantees conservation, monotonicity.
and positivity in regions with steep gradients. An
extensive discussion and analysis of FCT has
been published by Boris and Book [1].

FCT is second order accurate in space. Second
order accuracy in time is achieved by splitting the
time step. First a half ume step computation is
executed and then the intermediate, time-cen-
tered values of the physical variables are used o
evaluate the source terms for the full time step. To
ensure second order accuracy, the time step must
be small enough so that the cell averaged values of
the physical variables do not change appreciably
during the time step. Direction splitting [6] allows
for muludimensional FCT calculations. In a two-
dimensional problem this is accomplished by sep-
arating each gas dvnamic equation into its respec-

tive x and y parts. First each yv-direction column in
the grid is integrated, and then the x-direction
rows are integrated. Direction splitting creates a
bias that will eventually break the symmetry of a
solution, depending on which direction is inte-
grated first. This can be eliminated by performing
two calculations. x-v then y-x. and averaging the
results. .

FCT is a ““uniform’ algorithm in which. at each
time step every cell undergoes the same numerical
operations regardless of the values of the physical
variables in that cell. It is therefore ideally suited
for massively parallel processing on a single in-
struction, multiple data (SIMD} architecture such
as the MasPar.

FCT is also well suited for simulaung high-
speed compressible flow. We are interested in per-
forming simulations that include combustion.
Other numerical schemes such as PPM piecewise
parabolic method (PPM) [2] or monotonic up-
stream-centered scheme [or conservation laws
(MUSCL) [11] would be appropriate for combus-
tion simulations. but we have chosen FCT be-
cause of its simplicity and its good track record in
combustion. It has been used succes=fully for
combustion simulation by other researchers such
as Oran et al. [6. 7. 8]. Thibault et al. [10]. and
Zhang et al. [13].

3 THE MASPAR

The MasPar svstem architecture includes a pro-
cessor element array. an array control unit. and a
UNIX workstation as a front end. The front end
manages program execution and user interface.
When there is a need for parallel execution. the
front end sends the program for execution to the
processor arrav. The 8.192 processors are orga-
nized in a two-dimensional array topology (128 X
64), in a SIMD architecture. In a SIMD architec-
ture. all the processors simultaneously perform
the same operation on different data as one single
stream of instructions is broadcast to all proces-
sors by the array control unit. The MasPar MP-1"s
theoretical peak performance is 650 Mflop/s sin-
gle precision and 290 Mflop/s double precision.
There are three tvpes of communication on the
MasPar. First, there are communications from the
array control unit to the processor array where the
array control unit broadcasts data or instructions
to all processors in the array simultaneously. Sec-
ond. nearest neighbor data communicatons are
carried out by the X-net. The X-net is an eight-

way, two-dimensional toroidal mesh that allows a
processor to communicate with its nearest neigh-
bors. Finally, communication between arbitrary
processors is carried out by a hierarchical cross-
bar called the global router.

Interprocessor communication is required
when a processor requires data that are not resi-
dent in its local memory. X-net communication
will be used if the data reside on a neighboring
processor. In this case. the performance penalty is
low because X-net communication is fast. If the
data do not reside on a neighboring processor.
global router communication will be used. While
router communication is efficient. it is much
slower than X-net communication—the X-net has
approximately 16 times the bandwidth of the
router.

Another more costly type of communication is
array sloshing between the front end and the pro-
cessor array. Array sloshing has a profound effect
on performance and occurs in several circum-
stances. First, if an array that has been allocated
on the processor array is accessed in a serial (For-
tran 77) manner, it will be sloshed to the front
end. To avoid this situation. serial access on the
processor array should be avoided. Likewise.
when an array has been allocated on the front
end. and a subroutine is called that uses this arrav
in a parallel context, the arrav will be sloshed from
the front end to the processor arrav and back
again when the routine exits. To avoid this. com-
piler directives can be used to force allocation on
the processor arrav at declaration time. Even
more costly than the latter two cases is the slosh-
ing of a COMMON block of arrays. This can be
avoided in the same manner as for individual ar-
rays.

4 TWO-DIMENSIONAL BLASTWAVE
COMPUTATION

The problem used to benchmark FCT on the
MasPar is a two-dimensional blastwave computa-
tion with periodic boundary conditions. This com-
pltation involves both supersonic and subsonic
flows with interacting shocks and a high degree of
symmetry. The blastwave problem may not be a
significant real-world problem. but it is a good
benchmark for computational fluid dynamic
(CFD) codes. It is a good benchmark because the
solution is very symmetric, it maintains this sym-
metry for a long time. and a good CFD code

SIMULATION OF COMPRESSIBLE FLOW 195

should resolve the shockwaves within a few cells
while maintaining the symmetry of the solution.
Also, this problem was previously used by Oran et
al. [5], and using the same problem allowed us to
compare our results.

The computation is initialized with a high-den-
sity, high-pressure square of fluid that is 32 cells
on each side. The square is situated in a doubly
periodic mesh 128 cells on each side. The square
region in the center of the domain begins with a
density 15 times the background density and a
pressure 30 times the background pressure. The
contact surface that defines the interface between
the initial high pressure material and the low pres-
sure material is tracked by using an additional
species variable in the computations. This com-
putation is a good benchmark for a CFD model
because it should retain its symmetry for a long
time, and because periodic or solid wall boundary
conditions should give the same solution as long
as the symmetry is maintained.

Figures 1 and 2 show contours of pressure and
location of the contact surface for several time
steps during the simulation. During the simula-
tion, the up—down symmetry is eventually broken
by round-off error arising from the limited preci-
sion of the floating-point calculations. Symmetry
across the 45° degree diagonals is eventually bro-
ken by the truncation errors in the time step split-
ting. These errors appear to be larger than the
round-off errors.

When the unconfined high-pressure gas is re-
leased, a shock forms that races out from the
edges of the initial square. The contact surface
closely follows behind the shock. Figure 1 shows
the development of the pressure contours for six
time steps. By step 500 the initally square shock
has progressed through a circular phase and con-
tinues to change shape. By step 1.500 the shock
has reflected from the ends of the computational
domain and has begun to recompress the material
inside the contact surface. As time proceeds to
step 10,000 the shocks become progressively
weaker. and become oriented parallel with the
sides of the domain.

Whereas the shock patterns become simpler as
time progresses, the vorticity caused by the shock
interactions with the contact surface warps the in-
terface into increasingly complex patterns. The
vorticity is generated by the baroclinic source term
in the vorticity equation. This term is nonzero
when the gradients of density and pressure are not
aligned. The misalignment is created by the shock
reflecting from the corners of the domain, which

196 WILLIAMS AND BAUWENS

ML LI B B e e e e e o

T T T T T T T T T T T T T T T
T

Al

Lo

Ll

O Lt taab e ot

Timesiep

Timestep SO0

mm.m”
a
i_‘C/'
-
)
M

‘Timesiep 5000

Timestep 8000

Tumestcp 10000

FIGURE 1 Pressure contours at six time steps lor the square blastwave problem.

weakens the shock. The shocks reflect back
through the interface creating more vorticity.

5 PORTING AND OPTIMIZING FCT

The MasPar can be programmed in either MPL., a
parallel extension to C. or MPF. an implementa-
tion of a subset of Fortran 90. We used version
3.012 of MasPar’s high-performance Fortran
compiler ““mpfortran® or MPF. In MPF, parallel
operations are expressed with the Foriran 90 ar-
ray extensions. Arravs are treated as unitary ob-
jects rather than requiring them to be iterated
through one element at a time. as in standard For-
tran 77. MPF generates code for both the {front
end and the processor array, effectively making
the details of the architecture transparent to the
programmer. However, programming style will di-
rectly affect performance.

Optimization of FCT on the MasPar required
two main issues to be addressed: making effective

use of the processor arrav and minimization of
communication cost. In SIMD architectures. oper-
ations performed on a subset of the processor ar-
ray, such as single lines or columns. or boundary
nodes. cost as much in cveles as operations on the
whole arrav. Thus. constructs detaling. for in-
stance, with the boundaries separately from the
main arrays can easily double the computaton
time, and thev are advaniageously concatenated
with the main operations. In addition, unwanted
interprocessor communication can occur if arrays
are not correctly allocated on the processor arrav.
It was critical to ensure that all arravs were prop-
erly aligned on the processor array in order 1o
minimize communication overhead.

Porting the code involved getting the code to
run on the processor array, and optimizing the
code on the processor array. First, since the sub-
routines were originally written in Fortran 77. they
were converted to Fortran 90 using the MasPar
version of Pacific-Sierra’s VAST-2.4.01L
(DPVAST) translator. The translator searches the

SIMULATION OF COMPRESSIBLE FLOW 197

vvvvvvv

YT

...................

Timestep 500

“Tumesicp 5000

Timestep 10000

FIGURE 2 Contact surface locations at six time steps for the square blastwave problem.

Fortran 77 code for scalar ““do’” loops and con-
verts them to the Fortran 90 array notation, which
is understood by the processor array. The code as
translated by DPVAST ran very poorly—the tem-
poral performance was much less than one time
step per second.* Optimization of the code was
carried out in several stages described below. and
the results of optimization are summarized in Ta-
ble 1.

Stage one dealt with COMMON block alloca-
tion. The original blocks contained both scalar
and array data, and as a result. the compiler allo-
cated them on the front end. Since the arrays in

* Hockney (4 defines temporal performance as the inverse
of the execution time [Rr = T~'(N:p)_. where N is the problem
size and p is the number of processors. Temporal performance
is measured in solutions per second (sol/s) or time steps per
second (tstep/s). It is a good metric for comparing different
algorithms when solving a certain benchmark problem because

it tells vou which algorithm solves the problem the fastest.

the blocks were used in Fortran 90 array con-
structs, the whole block had to be sloshed to the
processor array. By removing all COMMON
blocks, and passing the block elements as param-
eters to the subroutines, we improved the tempo-
ral performance by a factor of 2. This was still
unsatisfactory.

Stage two consisted of altering the implementa-
tion of direction splitting. The original LCPFCT
subroutines were one dimensional. Two-dimen-
sional problems were handled by calling the one-
dimensional subroutines row by row, and
then column by column. This minimizes scratch
memory—a desirable feature on a vector ma-
chine, but leads to poor performance on a SIMD
architecture. For example, for a 128 X 128 grid, a
row or column array will contain only 128 ele-
ments. When the one-dimensional subroutines
are called with a 128-element array only 128 pro-
cessors will be used at a time, resulting in a perfor-
mance that is less than 1.0% of the peak perfor-

198 WILLIAMS AND BAUWENS

Table 1. Effect of the Optimization (Resolution: 128 x 128)
Temporal Benchmark Time 1o Perform
Performance Performance Optimization
Stage (tstep/s) ‘Mflop/s-64 bit; hr;
DPVAST 0.03 0.3 2.0
1 0.06 0.7 3.0
2 3.03 35 15.0
3 4.55 46 3.0
4 56 63 3.0
5 .88 68 2.0
6 714 81 1.0

mance of the machine. The code wus rewritien
such that all the rows were dealt with in a single
operation and then all the columns. This can be
done because adjacent rows or columns are inde-
pendent of one another during this computation.
This stage improved the temporal performance 1o
approximately 3 tstep/s.

The profiler was used in stage three to find
out which parts of the code used the most CPU
time. The profiles showed that approximately
70% of the time was spent in the LCPFCT sub-
routine. and a large percentage of the time was
spent in calculating the boundary conditions. The
DPVAST version of the code used two one-dimen-
sional arravs to store the results of the boundary
calculations. These arravs could not be properly
aligned with the main two-dimensional arravs. To
eliminate the communication penalty that results
from this situation, the code that dealt with the
boundary calculations was rewritten. and the
results of the boundary calculations were stored in
the main two-dimensional arravs. In addition. in
the original implementation. periodic boundary
conditions were controlled by setting the value of a
double precision flag to either zero or one. The
code was modified to use a logical flag and an IF-
THEN-ELSE block instead. As a result of the
modifications performed in this stage the temporal
performance improved to 4.55 tsiep/s.

Stage four consisted of replacing some of the
subroutine array parameters with COMMON
blocks. As a result of eliminating the COMMON
blocks in stage two of the optimization. a signifi-
cant amount of overhead had been created from
passing a large number of array parameters to the
subroutines. The original COMMON blocks con-
tained both array and scalar data, COMMON
blocks that contain only arravs. and no scalar
data will be properly allocated on the processor
array. Replacing some of the subroutine array ar-
guments with COMMON blocks reduced the over-

head. This stage further improved the temporal
performance to 5.50 tstep/s.

In stage five. analysis of the code profiles indi-
cated that some overhead was being incurred due
to router communication. because some of the
subroutine calls included arguments that were
parts of arravs. This situation is handled by copy-
ing into a temporary arrayv through use of the
router, which is time consuming. The code was
modified to eliminate the router operations and
temporal performance increased 10 5.88 1step/s.

Further improvement was obtained in stage six
by aligning all array allocations. The current com-
piler implementation maps arravs directly on the
processor arrav based upon declaration indices.
without any optimization attempt. Some of our ar-
rays needed to include boundary nodes. while
some others did not. and we had declured them
with their minimal size. which caused unneces-
sary shifting of whole arravs to occur. which is
costly and can be avoided by proper arrav decla-
ration. By changing the declaration indices we
aligned the array allocations and improved the
temporal performance to about 7 tstep/s.

6 RESULTS AND DISCUSSION

Table 1 presents a summary of the effects that
each stage of optimization had upon the perfor-
mance of FCT. The benchmark performance was
calculated as suggested by Hocknev [4].4 The

+ Hockney [47 defines benehmark performance as the ratio
of the benchmark floating-point operation flop) count F(N)
and the execution time T(N:p) [R, = Fu(N)/T(N:p) . The
benchmark performance generally has units of million float-
ing-point operations per second (Mflop/s). The benchmark
flop count for our code was obtained by counting operations

also as suggested by Hocknev [4] (4. —. X = THlop: +. V=4
flop: exp. sin. cos. etc... = 8 flop: if {x rel. v} = 1 flop,

SIMULATION OF COMPRESSIBLE FLOW 199

Table 2. FCT Benchmark Performance for Different Grid Sizes

Single Precision Double Precision
Grid Size Ry Mflop/s; % peak Ry Mflop/s) % peak
128 x 64 146 24 90 31
128 x 128 108 18 81 28
256 X 128 126 21 87 30
256 X 256 138 23 93 32
512 X 512 174 29 Insufficient memory
largest improvement in performance was obtained there is a minimum in communication overhead
in stage two. which required the code to be com- because none of the arravs have to be mapped
pletely rewritten. The other stages resulted in into multiple lavers of processor memory. For the
modest improvements. but were much less time 128 X 128 case a drop of about 25% in single
consuming than stage two. Overall. optimization precision. and about 10% in double precision
of FCT on the MasPar was by far the most time- performance is observed. This would be due to the
consuming task. while the wanslation process communication overhead created by one extra
(DPVAST stage) was relatively straightforward. laver of memory having to be allocated. Table 2
Table 1 effectively demonstrates the significance also shows the percentage of the peak perfor-
of optimization. By modifving the way in which the mance attained by FCT. Since we have imple-
code was written we improved the performance by mented two-dimensional FCT computations us-
a factor of approximately 240 over the DPVAST ing direction splitting. the peak performance that
version. At this point however. further improve- our code could attain is reduced by at least a fac-
ment would require rewriting a fully two-dimen- tor of two. This is because the rows and columns
sional version of FCT for the MasPar. not using of the grid are dealt with separately. With a fully
direction splitting. two-dimensional version of FCT this problem
Table 2 shows the benckmark performance could be fixed, but would require substantial re-
achieved with the optimized version of the code. writing of our original code. Taking this into con-
The first row of Table 2 (128 X 64) corresponds to sideration our results are quite good.
a problem with an array size that can be mapped Figure 3 shows the dependence of benchmark
optimally onto the processor array. In this case performance on the problem size. After the initial
180 T T ITI0I
170 | —O—— Single Precision ,p
160 | —{}— Double Precision /
- b
& 150
e - C /
Z 140
. I
g 130 \
E 120 [\ /
=]
; [\//
& 110 (0]
E 100
¢ 90 r
] Lo o
2 o | ~
70
1000 10000 100000 1000000
Number of Mesh Points

FIGURE 3 Dependence of benchmark performance on the problem size.

200 WILLIAMS AND BAUWENS

drop in benchmark performance, when changing
from an 128 X 64 10 a 128 X 128 grid. the perfor-
mance increases at an approximately logarithmic
rate as the problem size increases. This is because
the ratio of floating-point operations to communi-
cation overhead is increasing. The incremental
changes in benchmark performance seem to be
much more dramatie {or the single precision than
double precision, because communication over-
head is independent of the precision.

Timings and floating-point performance for
FCT on various architectures are presented in Ta-
ble 3, which includes the current figures and data
from Oran et al. [5]. Timings are shown for two
tvpical vector supercomputers, the CRAY Y-MP
and the Fujitsu VPX240. The timing for the Mas-
Par as compared to the Cray is competitive, with
the MasPar approximately 7% faster. The Fujitsu
is a much faster machine than either the Crayv or
the MasPar, with a theoretical peak performance
of 2.5 Gflop/s. The timings shown in Table 3 were
obtained without any attempt to optimize the code
on the Fujitsu, and should be susceptible to im-
provement relatively easily.

Another parallel architecture was also included
for comparison. The Connection Machine CM-2
has a SIMD architecture similar to the MasPar.
The MasPar timing is 43% faster than the Con-
nection Machine. FCT on the Connection Ma-
chine was written in a parallel implementation of
C called C* (C star) by Oran et al. [5]. while the
code was written in Fortran 90 on the MasPar.
The final two platforms presented for comparison
are both single processor RISC workstations.

Further optimization of our code could be ob-
tained by writing a fully two-dimensional version
of LCPFCT, but this would require starting over
from scratch. Due to our limited time on the Mas-
Par we did not perform this step. Now that we
have a fully optimized version of LCPFCT that
uses direction splitting there are several possibili-

ties for using the code to perform real-world simu-
lations. We now have the ability 1o perform large
scale direct simulations of both nonreacting and
reacting {lows. A combustion model is currently
being added to the code so that we can simulate
detonations and reacting flows in combustors.
Our results only considered rectangular domains.
To avoid the drastic performance degradation, in-
volved with simulating flow through more complex
domains. techniques such as domain decomposi-
tion, and mapping of rectangular subdomains on
the processor array topology would be required. In
any event. finite-difference algorithms are argua-
bly not the most suitable for complex geometries.

7 CONCLUSIONS

The MasPar’s SIMD architecture is well suited for
explicit finite-difference Euler solvers because the
problem can be optimally mapped onto the ma-
chine topologyv. and the algorithm requires that
the same operations be performed at all cells at all
time steps. Optimization required that we rewrite
the code to calculate the direction-split rows or
columns simultaneously (in parallel}. which can
be done since adjacent rows or columns are inde-
pendent of one another during such a compua-
tion. Apart {from syntax modifications. further op-
timization was carried out by modifving the
boundary condition calculations so that they were
aligned with the main arravs. We have improved
performance by a factor of 240 through the de-
scribed optimizations.

In general, Fortran 90 parallel code is easier to
write and work with, and shorter than the corre-
sponding scalar code. The performance of FCT
on the MasPar is slightly better than on CRAY Y-
MP (1 CPU). and is also faster than on the Con-
nection Machine CM-2. The MasPar has been rel-
atively user [riendly and easy to program. and the

Table 3. Benchmarks for the Two-Dimensional Blast Problem

(Resolution: 128 x 128)

Temporal Performance

Benchmark Performance

Computer Type (tstep/s) (Mflop/s—64 bit)
MasPar MP-1 (8,192 K) 7.14 81
CM-2 (8,192K) [5] 5.00 37
CRAY Y-MP (1 CPU) (5] 6.67 76
Fujitsu VPX240 14.3 170
IBM RS6000/950 0.96 11
HP 9000/710 0.55 6.2

profiling and optimizing tools are effective. The
results show that the MasPar is a suitable com-
puter on which to carry out multidimensional FCT
computations.

REFERENCES

(1]

1. P. Boris and D. L. Book. *Solution of the conti-
nuity equation by the method of flux-corrected
transport.”” Methods Compui. Phys. vol. 16, pp.
85-129. 1976.

 P. Collela and P. R, Woodward. “The piecewise

parabolic method [PPM for gas-dvnamical simu-
lations.”™ J. Comput. Phys., vol. 54. pp. 174—
201. 198+.

1 Digital Equipment Corporation. DECmpp Paral-

lel Fortran Reference Manual, Mavnard. MA:
Digital Equipment Corporation. 1992,

[+ R. W. Hocknev. A framework for benchmark

performance analysis.”™ Comput. Benchmarks,

pp. 65=76. 1993,

P E. S, Oran. J. P. Boris. and R. O. Whaley. “Ex-

ploring fluid dynamies on a connection ma-
chine.” Supercomput. Rer., 1990,

| E.S. Oran and J. P. Boris. Numerical Simulation

of Reactive Flow. New York: Elsevier. 1987,

T E.S. Oran.]. P. Boris. T. R. Young. and]. M.

Picone. “*Numerical Simulation of Detonations in
Hydrogen-Air and Methane-Air Mixtures.” Pro-
ceedings of the I5th Svmposium iInternational)

SIMULATION OF COMPRESSIBLE FLOW

[10]

[13]

21 D. Williams.

201

on Combustion. Pittsburgh: The Combustion In-
stitute, 1981. pp. 1641-1649.

E.S. Oran. T. R. Young. and J. P. Boris, “*Appli-
cation of Time-Dependent Numerical Methods to
the Description of Reactive Shocks.”” Proceedings
of the 17th Symposium (International) on Com-
bustion. Pittsburgh: The Combustion Institute,
1979, pp. 43-54.

D. F. Snelling. “*A philosophical perspective on
performance measurement,” Comput. Bench-
marks, pp. 97-103. 1993.

P. A. Thibault. F. Zhang. J. Penrose. and A. Sul-
mistras, ““Numerical Modeling of Detonation
Driven Hollow Projectiles.”” Proceedings of the
Second Annual Conference of the CFD Society of
Canada. Toronto: University of Toronto Press.

1994. pp. 395—402.

1 B. van Leer. “"Towards the ultimate conservative

difference scheme. V. A second-order sequel to
Godunov’s method.” J. Comput. Phys.. vol. 32.
pp. 101-136. 1979.

K. Grewal, C. Schuh. and L.
Bauwens. A Finite Difference CFD Code on a
SIMD Architecture.”” Proceedings 55'93 High
Performance Computing: New Horizons, 1993.
pp- 531-536.

F. Zhang. D. Tran. J. Penrose. C. Yee. and P. A.
Thibault. “*Numerical Studies of Detonation
Propagation in Mixtures of Combustible Gases
and Inert Dust.”” Proceedings of the Second An-
nual Conference of the CFD Society of Canada.
Toronto: University: of Toronto Press, 1994, pp.
261-265.

Journal of))
Industrial Engineering

Applied
Computational
Intelligence and Soft
Computing—

. A International Journal of
The Scientific Dictione. S
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Ll T Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networkhs
and Communications /1 Advances in

Artificia
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, = Neural Systems
- 2 \ i

International Journal of
Computer Games . in
Technology re Engineering

Reconfigurable
Computing

e Computational L g
Journal of Human-Computer Intelligence and Electrical and Computer
Robotics Interaction Neuroscience Engineering

