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ABSTRACT 

This article describes the porting and optimization of an explicit, time-dependent, com

putational fluid dynamics code on an 8, 192-node Mas Par MP-1. The Mas Par is a very 

fine-grained, single instruction, multiple data parallel computer. The code uses the flux

corrected transport algorithm. We describe the techniques used to port and optimize the 

code, and the behavior of a test problem. The test problem used to benchmark the flux

corrected transport code on the MasPar was a two-dimensional exploding shock with 

periodic boundary conditions. We discuss the performance that our code achieved on 

the MasPar, and compare its performance on the Mas Par with its performance on other 

acchitectures. The comparisons show that the performance of the code on the Mas Par is 

slightly better than on a CRAY Y -MP for a functionally equivalent, optimized two-dimen

sional code. © 1995 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

~We have ported a computational fluid dynamics 

application to the :\lasPar :\IP-1. The application 

uses the flux-corrected transpor1 (FCTJ algorithm 

[ 1], and consist:-; of a set of Fortran subroutines 

that are collective~\- referred to bv the name of the . . 
main suLroutine. LCPFCT. In addition to the 

main subroutine, several auxiliary subroutines 

can be used to define the geometry. source terms, 

and boundary conditions. The code solves the 

coupled sets of multidimensional nonlinear con

servation laws that describe reactive and nonreac

tive gas dynamics. 

LCPFCT itself can handle Cartesian. cylindri

caL sphericaL or user-defined coordinate svs-
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terns. Alternate sets of boundary conditions can 

be selected by making the appropriate choice of 

arguments to the subroutine calls. Besides inflow, 

outflow, or reflecting wall conditions in any coor

dinate system, LCPFCT can also handle periodic 

boundary conditions. :\lultidimensional problems 

are solved using the method of fractional steps 

[5]. The computational grid can be nonuniform. 

and can move during a time step. allowing the 

user to perform Lagrangian or sliding rezone cal

culations. 

This article describes our porting and optimiza

tion of FCT on the MasPar. First we give a general 

description of the flow model and the FCT algo

rithm. Second, we give a brief overview of the 

MasPar architecture. Third, we briefly describe 

the two-dimensional blastwave problem with peri

odic or solid-wall boundan· conditions which we 

use as a benchmark. Fourth, we discuss the hur

dles involved in adapting the basic LCPFCT com

pressible fluid dynamics module, to a form com

patible with and efficient on the MasPar. Finally, 

we summarize the performance of our code on the 
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MasPar. We compare the results of running our 

two-dimensional code on the .MasPar to equiva

lent benchmarks on other architectures including 

the CRA Y Y-MP and the Connection Machine 

CM-2. 

2 THE FLOW MODEL AND ALGORITHM 

Our flow model is based on the inviscid, time

dependent, multidimensional Euler equations of 

gas dynamics. This includes three con;:;ervation 

laws, for mass, momentum, and energy. In the 

inviscid model, shocks appear as mathematical 

discontinuities. The ;:;olution that we seek is the 

weak solution to the differential equation that sat

isfies the integral form of the equations. From a 

physical standpoint, in the presence of ,.;hocb, the 

integral form is the proper form of the consen·a

tion statement, The FCT algorithm is used to solve 

each of the coupled conservation equations defin

ing the gas dynamic system. 

FCT is an explicit, nonlinear, monotone 

method designed to enforce positivity and causal

ity on the numerically computed solution. These 

constraints ensure that the numerical solution ap

proximates the solution of the consen·ation laws 

in integral form. Positivity and causality would Le 

lost in the numerical approximation if one did not 

ensure that the finite-difference scheme is con

servative. FCT satisfies the monotonicity require

ment: it implements profile-dependent nonlinear 

corrections to the truncation-error terms. which 

ensures that no new numerically produced max

ima or minima occur near shocks or contact dis

continuities. The FCT algorithm ensures fourth

order phase accuracy in smooth regions of the 

flow and guarantees conservation, monotonicity. 

and positivity in regions with steep gradients. An 

extensive discussion and anaksis of FCT has 

been published by Boris and Book [ 1 J. 
FCT is second order accurate in space. Second 

order accuracy in time is achieved Ly splitting the 

time step. First a half time step computation is 

executed and then the intermediate, time-cen

tered values of the physical variables are u,.;eJ to 

evaluate the source terms for the full time step. To 

ensure second order accuracy, the time step must 

be small enough so that the cell a\·eraged values of 

the physical variables do not change appreciably 

during the time step. Direction splitting [ 6] allows 

for multidimensional FCT calculations. In a two

dimensional problem this is accomplished by sep

arating each gas dynamic equation into its respec-

tive x andy part,.;. First each y-direction column in 

the grid is integrated, and then the x-dirt>ction 

rows are integrated. Direction splitting creates a 

bias that will eventuallv break the snnmt>tn· of a . . . 
solution, depending on which direction is inte

grated first. This can be eliminated by performing 

two calculations, x-y then y-x, and an·raging the 

results. 

FCT is a "uniform"' algorithm in which. at each 

time step every cell undergoes the ,.;ame numerical 

operations regardless of the values of the physical 

variables in that cell. It is therefore ideallv suited 

for massively parallel processing on a single in

struction, multiple data ISI\ID) architt>cture ,uch 

as the \lasPar. 

FCT is abo well suited for ,.;imulating high

speed compressible flow. "'e are intere:'itt>d in JWr

forming simulation~ that include combustion. 

Other numerical scht>mes ~uch as PP:\1 piecewise 

parabolic method (PP\1) [2] or monotonic up

stream-centered scheme for cunsen·ation laws 

(\ICSCL) [11] would be appropriate for combus

tion simulations. but we have choben FCT be

cause of its simplicity and its good track rt>cord in 

combustion. It has been used succe,.,,..fulh· for 

combustion simulation bY other researchers such 

as Oran et al. [6. 7. 8]. Thibault et al. [10~. and 

Zhang et al. [ 13 J . 

3 THE MASPAR 

The \'lasPar ~vstem architecture indudt>s a pro

cessor ele1nent arraY. an array control unit. and a . . 
Cl\lX workstation as a front end. The front end 

manages program execution and user interface. 

"'hen there is a nt>ed for paralld ext>cution. the 

front end sends the program for execution to tht> 

processor array. The 8,192 processors are orga

nized in a two-dimensional array topnlof.'Y ( 128 X 

64 ), in a SI\ID architect urt>. In a SI\ID arc hi tec

tu~e, all the processors simultaneously perform 

the same operation on differt>nt data as one ;;inglt> 

stream of instructions is broadcast to all proct>s

sors by the array control uuit. The \lasPar \IP-1· s 

theoretical peak performance i;, 650 \1/lop/ s ;,in

gle precision and 290 \Iflop/ s double preci,;iun. 

There are three types of communication on the 

\1asPar. First., there are communications from the 

array control unit to the pnwt>ssor array wlwre the 

array control unit broadcasts data or instructions 

to all processors in the array simultaneously. St>c

ond, nearest neighbor data communications are 

carried out by the X-net. The X-net is an eight-



way, two-dimensional toroidal mesh that allows a 

processor to communicate with its nearest neigh

bors. Finally, communication between arbitrary 

processors i,; carried out by a hierarchical cross

bar called the global router. 

Interprocessor communication i,; required 

when a processor requires data that are not resi

dent in its local memory. X-net communication 

will be used if the data reside on a neighboring 

processor. In this case. the performance penalty is 

low because X-net communication is fast. If the 

data do not reside on a neighboring processor. 

global router communication will be used. While 

router communication i,; efficient. it is much 

slower than X-net communication-the X-net has 

approximately 16 times the bandwidth of the 

router. 

Another more costly type of communication is 

array sloshing between the front end and the pro

cessor array. Array sloshing has a profound effect 

on performance and occurs in several circum

stances. First, if an array that has been allocated 

on the processor array is accessed in a serial (For

tran 77) manner. it will be sloshed to the front 

end. To avoid this situation. serial acces,; on the 

processor array should be avoided. Likewise. 

when an arrav has been allocated on the front 

end. and a subroutine is called that use,; this arrav 

in a parallel context, the array will be sloshed from 

the front end to the proces,-or array and back 

again when the routine exits. To avoid this, com

piler directives can be used to force allocation on 

the processor array at declaration time. Even 

more costlv than the latter two cases is the slosh

ing of a CO.\I.\101\" block of arrays. This can be 

avoided in the same manner a,.; for indi\·idual ar

rays. 

4 TWO-DIMENSIONAL BLASTWAVE 
COMPUTATION 

The problem used to benchmark F< :T on the 

.\IasPar is a two-dimensional blastwave computa

tion with periodic boundary conditions. This com

putation involves both supersonic and subsonic 

flows with interacting shocks and a high degree of 

symmetry. The blastwave problem may not be a 

significant real-world problem. but it is a good 

benchmark for computational fluid dynamic 

(CFD) codes. It is a good benchmark hecaww the 

solution is very symmetric, it maintain,; this sym

metry for a long time. and a good CFD code 
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should resolve the shockwaves within a few cells 

while maintaining the symmetry of the solution. 

Also, this problem was previously used by Oran et 

a!. [ 5], and using the same problem allowed us to 

compare our results. 

The computation is initialized with a high-den

sity, high-pressure square of fluid that is 32 cells 

on each side. The square is situated in a doubly 

periodic mesh 128 cells on each side. The square 

region in the center of the domain begins with a 

density 15 times the background density and a 

pressure 30 times the background pressure. The 

contact surface that defines the interface between 

the initial high pressure material and the low pres

sure material is tracked by using an additional 

species variable in the computations. This com

putation is a good benchmark for a CFD model 

because it should retain its symmetry for a long 

time, and because periodic or solid wall boundary 

conditions should give the same solution as long 

as the symmetry is maintained. 

Figures 1 and 2 show contours of pressure and 

location of the contact surface for several time 

steps during the simulation. During the simula

tion, the up-down symmetry is eventually broken 

by round-off error arising from the limited preci

sion of the floating-point calculations. Symmetry 

across the 45° degree diagonals is eventually bro

ken by the truncation errors in the time step split

ting. 1hese errors appear to be larger than the 

round-off errors. 

~~hen the unconfined high-pressure gas is re

leased. a shock forms that races out from the 

edges of the initial square. The contact surface 

closely follows behind the shock. Figure 1 shows 

the development of the pressure contours for six 

time step~. By step 500 the initially square shock 

has progressed through a circular phase and con

tinues to change shape. By step 1..500 the shock 

has reflected from the ends of the computational 

domain and has begun to recompress the material 

inside the contact surface. As time proceeds to 

step 10,000 the shocks become progressively 

weaker, and become oriented parallel with the 

sides of the domain . 

~chereas the shock patterns become simpler as 

time progresses, the vorticity caused by the shock 

interactions with the contact surface warps the in

terface into increasingly complex patterns. The 

vorticity is generated by the baroclinic source term 

in the vorticity equation. This term is nonzero 

when the gradients of density and pressure are not 

aligned. The misalignment is created by the shock 

reflecting from the corners of the domain, which 
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FIGURE 1 Pressure contours at six time step;; for the square ],]astwmc problem. 

weakens the shock. The shocks reflect back 

through the interface creating more vorticity. 

5 PORTING AND OPTIMIZING FCT 

The MasPar can be programmed in either :\1PL.. a 

parallel extension to C, or .\IPF. an implementa

tion of a subset of Fortran 90. \\'e used version 

3.012 of MasPar's high-performance Fortran 

compiler "mpfortran" or .\IPF. In .\1PF, parallel 

operations are expressed with the Fortran 90 ar

ray extensions. Arrays are treated as unitary ob

jects rather than requiring them to be iterated 

through one element at a time, as in standard For

tran 77. MPF generates code for both the front 

end and the processor array, effecti,·ely making 

the details of the architecture transparent to the 

programmer. However. programming style will di

rectly affect performance. 

Optimization of FCT on the :\fasPar required 

two main issues to be addressed: making effective 

use of the processor array and nununization of 

communication cost. In SI.\ID architectures. oper

ations performed on a subset of the processor ar

ray, such as single lines or columns. or boundary 

nodes. cost as much in cycles as operations on the 

whole array. Thus. constructs detaling. for in

stance .. with the boundaries separately from the 

main arrays can eaf'ily double the computation 

time, and they are advantageously concatenated 

with the main operations. In addition, unwanted 

interprocessor con1munication can occur if arrays 

are not correctly allocated on the processor array. 

It was critical to ensure that all arrays were prop

erly aligned on the processor array in order to 

minimize communication overhead. 

Porting the code involved getting the code to 

run on the processor array, and optimizing the 

code on the processor array. Fir;;t, since the sub

routines were originally written in F011ran 77. they 

were converted to Fortran 90 using the .\lasPar 

version of Pacific-Sierra's YAST-2.-t.OlL 

(DPVAST) translator. The rran,.;lator searches the 
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FIGURE 2 Contact surface locations at six time steps for thf' square blastwave problem. 

Fortran 77 code for scalar "do'' loops and con

verts them to the Fortran 90 arrav notation, which 

is understood by the processor array. The code as 

translated by DPYAST ran very poorly-the tem

poral performance was much less than one time 

step per second.* Optimization of the code was 

carried out in several stages de&eribed below, and 

the results of optimization are summarized in Ta

ble 1. 

Stage one dealt with CO:\L\IOl\" block alloca

tion. The original blocks contained both scalar 

and array data, and as a result. the compiler allo

cated them on the front end. Since the arrays in 

*Hackney [of: defines temporal performance as the inverse 

of the execution time [RT = T- 1(N;pJ:, wh~n·l\ is the problem 

size and pis the number of processors. Temporal performance 

is measured in solutions per second (sol/s) or time steps per 

second (tstep/ s ). It i;; a good metric for comparing different 

algorithms when solving a certain benchmark problem because 

it tells you which algorithm solves the problem the fastest. 

the blocks were used in Fortran 90 array con

structs, the whole block had to be sloshed to the 

processor array. By removing all CO:\I:\10!\" 

blocks, and passing the block elements a,.; param

eters to the subroutines, we improved the tempo

ral performance by a factor of 2. This was still 

unsatisfactorv. 

Stage two consisted of altering the implementa

tion of direction splitting. The original LCPFCT 

subroutines were one dimensional. Two-dimen

sional problems were handled by calling the one

dimensional subroutines row bv row, and 

then column bv column. This minimizes scratch 

memory-a desirable feature on a vector ma

chine, but leads to poor performance on a SI:\ID 

architecture. For example, for a 128 X 128 grid, a 

row or column array will contain only 128 ele

ments. \Vhen the one-dimensional subroutines 

are called with a 128-element array only 128 pro

cessors will be used at a time, resulting in a perfor

mance that is less than 1.0% of the peak perfor-
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Table 1. Effect of the Optimization (Hesolution: 128 X 128) 

Stage 

DP\-:\ST 

1 

2 

:3 

4 

.) 

6 

Tempoml 

Perfonnann~ 

ltstqllsJ 

().();3 

0.06 

:3.0:3 

-t.SS 

S.:J6 

S.H8 

7.14 

mance of the machine. The code was rewrittt·n 

such that all the rows were dealt "-ith in a ;-;inf!le 

operation and then all the cohunn,.;. Thi,.; can be 

done because adjacent rows or columns are inde

pewlent uf uue another during thi, computation. 

This stage improved the temporal performaJH'e to 

approximately :3 tstPp/s. 

The profiler was used in ,;taf!e three to find 

out which parts of the code used the most CPC 

time. The profiles showed that approximately 

70% of the time wa:; spent in the LCPFCT sub

routine. and a large pPrcentage of the -time wa,; 

spent in calculating the boundary conditions. The 

DP\'AST version of the code u,;pd two one-dimen

sional arravs to store the results of the boundarY . . 
calculations. These arrays could not be properly 

aligned with the main two-dimensional arrays. To 

eliminate the communication penalty that rPsult,; 

from this situation. the code that dt>alt with the 

Loundan· calculations was rewritten. and tlw 

results of the boundan· calculations were stored in 

the main two-dimensional arravs. In addition. in 

the original implementation. periodic boundary 

conditions were controlled by setting the ntlue of a 

double precision flag to either zpro or one. The 

code was modified to use a logical flag and an IF

THE.K-ELSE block instead. As a result of the 

modifications performed in this stage the temporal 

performance improved to -l.5.S tstep/s. 

Stage four consisted of replacing some of the 

subroutine array parameters with C0:\1:\IOI\ 

blocks. As a result of eliminating the CO:\L\10:\ 

blocks in stage two of the optimization. a signifi

cant amount of m·erhead had heen created from 

passing a large number of array parameter:; to the 

subroutines. The original CO:\niOJ\' Ll()(·ks con

tained both array and scalar data, CO:\L\IOI\ 

blocks that contain onh· arra,·s. and no scalar . . 
data will be properly allocated on the processor 

array. Replacing some of the subroutine array ar

guments with CO:\niOl\" blocks reduced the over-

Benchmark 

PPrf<mnarH-e 

,'.\lllop/ ;,-IH I •it; 

Time to P<·rfonn 

Opt i 111 iza tion 

'hr, 

:2.0 

:~.0 

1."i. () 

:3.0 

:3. () 

:2.0 

1.0 

head. This stal!e further imJHO\ed the temporul 

performance to :l.:)6 tstep/s. 

In stage fi,·e. analy,;is of the code profile,., indi

cated that some overhead was !wing incurred due 

to ruutt·r cotllllllllliL·ation. lwnube ;,OJJle of the 

subroutirw calls included arguments that \\Trt' 

parts of arrays. This situation is handled by copy

ing into a temporary array throuf!h ust> of the 

router, which is time consuming. The code was 

modified to eliminate the router opt>rations and 

temporal performance increased to ;~.88 tstep/ s. 

Further impron"Illt'Ill wa,.; obtaiued iu ,.;tage ,;ix 

by aligning all array allocations. The current com

piler implementation maps arrays dirt>ctly on the 

processor array based upon declaration indices. 

without any optimization attempt. Some of our ar

rays needed to include boundary nodes. while 

some others did not. and we had declared tlwm 

with their minimal size. which caust>d unneces

sary shifting of whole arrays to occur. which is 

costly and can be avoided by proper array decla

ration. By changing the declaration indices we 

aligned the array allocations and impnAed the 

temporal performance to a!Jout 7 hlt'p/s. 

6 RESULTS AND DISCUSSION 

Table 1 presents a summary of the effects that 

each stage of optimization had upon the JWrfor

mance of FCT. The benchmark performance was 

calculated as suggested by Hockney [ -t]. t The 

T llockrwy [ -t: defirw' lwrwl11nark perforrnanc•• "'the ratio 

of thP lwnchmark floatill!(-point <>fWration flop) count Fh(:\) 

and the I'XPCUtion tinw T(.'\':p) [Hh = Fh(.'\')/T(N:pf. n .. , 
lwnchmark ,,..rfonllafl('(' w·rwrally has llllits of rnillion float

in!(-point opt·r·ation' pt'r ""·orrd :.\lflop/sl. The lwnclunark 

flop count for our code wa!"i obtained by countin~ opt·rations 

also as Sllf!f!<'>;tt'd by Hockrwy [-t: 1+. -.X= 1 flop:..;., Y = -t 
flop: t'xp. sin. co,. t>tc ... = 8 flop: if ;x .rei. Y) = 1 flop;. 
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Table 2. FCT Benchmark Performam·t> for Differt>nt Grid Sizes 

Grid Size 

1:28 X 6-f 

1:28 X 1:28 

2.')6 X 1:28 

:236 X 236 

.')!:2 X 31:2 

Sin;!le Precision 

Ru (.\lllop/s 

l-t6 

108 

1:26 

1:38 

1:'-t 

largest improvenwnt in pt>rformance was obtained 

in staiW t\n>. which rPq uired tilt' code to lw com

pletely n~written. The other stagPs resulted in 

modest improvements. but were much les,; time 

consuminf! than ,.;taf!e two. Overall. optimization 

of FCT on the .\[asPar wa,.; In· far the mo,.;t timP

con,.;urning ta,.,k. while the tran,;latioll proce:-i:'i 

(DPYAST stage) wa:'i relatively ;;traif!htforward. 

Table 1 effectively dt>monstrate,.; the :'iignificance 

of optimization. By modifyinf! thP "·ay in which the 

code was written we improved the performance by 

a factor of approximately 2-tO o\·er the DPYAST 

version. At this point hnwevPr. further impro,·e

ment would require rewriting a fully two-dimen

sional version of FCT for the .\IasPar. not using 

direction splitting. 

Table 2 shows the benckmark performance 

achieved with the optimized version of the code. 

The first row of Table 2 (128 X 6-f) corresponds to 

a problem with an array size that can be mapped 

optimally onto the proces,;or arrav. In this case 

180 

170 

160 

~ --o- Singlr Precision 

-Q-Doublr Prrcbion 

~ .. 
D. 150 
Q 

= ' ( 
6 140 
... .. 

130 ; 
E \ 

'\\, peak 

2-f 

18 

:21 

:z:~ 

:29 

Double Preci~ion 

% peak 

90 31 

81 28 

87 30 

9:3 32 

lnsuffir·iPnt m<>mnrv 

there is a nununum in communication overhead 

because none of the array;; have to be mapped 

into multiple layers of processor mt'mory. For the 

128 X 128 case a drop of about 2.3% in single 

precision. and about 10% in doublt> precision 

performance is observed. Thi,; would be due to the 

communication overhead created bv one extra 

layer of memo1·y having to be allocated. Table 2 

also shows the percentage of the peak perfor

mance attained by FCT. Since we have imple

mented two-dimensional FCT computations us

ing direction splitting. the peak performance that 

our code could attain is reduced bv at least a fac

tor of two. This is because the rows and columns 

of the grid are dealt with separately. With a fully 

two-dimensional version of FCT this problem 

could be fixed, but would require substantial re

writing of our original code. Taking this into con

sideration our results are quite good. 

Figure 3 shows the dependence of benchmark 

performance on the problem size. After the initial 

j) 

/ 
I v 
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~ .. \ v 
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FIGURE 3 Dependence of benchmark performance on the problem size. 
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drop in benchmark performance. when changing 

from an 128 X 64 to a 128 X 128 grid, the perfor

mance increases at an approximately logarithmic 

rate as the problem size increases. This is becau;;e 

the ratio of floating-point operations to communi

cation overhead is increasing. The incremental 

changes in benchmark performance seem to be 

much more dramatic for the single precision than 

double precision, because communication m·er

head is independent of the precision. 

Timings and floating-point performance for 

FCT on various architectures are presented in Ta

ble 3, which includes the current figures and data 

from Oran et a!. [ .S J. Timings are shown for two 

typical vector supercomputers, the CRA Y Y -~IP 
and the Fujitsu YPX240. The timing for the :\la;;

Par as compared to the Cray is competitive, with 

the ~fasPar approximately 7'Yo fastPr. The Fujitsu 

is a much faster machine than either the Crav or 

the ~fasPar, with a theoretical peak performance 

of2.5 Gflop/s. The timings shown in Table 3 were 

obtained without any attempt to optimize the code 

on the Fujitsu, and should be susceptible to im

provement relatively easily. 

Another parallel architecture was also Included 

for comparison. The Connection .\lachine C\1-2 

has a Sl~1D architecture similar to the \lasPar. 

The MasPar timing is 43% faster than the Con

nection ~achine. FCT on the Connection \la

chine was written in a parallel implementation of 

C called C* ( C star) by Oran et a!. [ 5 J. while the 

code was written in Fortran 90 on the .\lasPar. 

The final two platforms presented for comparison 

are both single processor RISC workstations. 

Further optimization of our code could be ob

tained by writing a fully two-dimensional wrsion 

of LCPFCT, but this would require starting on~r 

from scratch. Due to our limited time on the \las

Par we did not perform this step. l\ow that we 

have a fully optimized version of LCPFCT that 

uses direction splitting there are several po:-;sibili-

ties for using the code to perform real-world ,;imu

lations. \Ve now hm·e the a),ility to perform large 

scale direct simulations of both IHHHPacting and 

reacting flows. A combu;;tion model is currently 

being addt>d to the code so that we can simulate 

detonations and reacting flows in combustors. 

Our results only consiuered rectangular domains. 

To anJid the drastic performance degradation. in

volved with simulating flow through more complex 

domains, techniques such as domain dPcomposi

tion, and mapping of rectangular ;;ubdomains on 

the processor array topology would be required. Jn 

any eYent. finite-difference algorithms are arf!Ua

bly not the most suitable for complex geometries. 

7 CONCLUSIONS 

The :\lasPar· s SI\ID architecture i;-; well suited for 

explicit finite-difference Euler soh er~ because the 

problem can be optimally mapped onto the ma

chine topology. and the algorithm require~ that 

the same operations be performed at all cells at all 

time steps. Optimization required that we rewrite 

the code to calculate the uirection-:'iplit rows or 

columns simultaneously (in parallel). which can 

be done since adjacent row~ or columns are inde

pendent of one another during such a computa

tion. Apart from syntax modifications. further op

timization was carried out by modifying the 

boundary condition calculations so that they were 

aligned with the main arrays. We ha,·e improved 

performance by a factor of 2-tO through the de

scribed optimizations. 

In general, Fortran 90 parallel code is ea~ier to 

write and work with, and shorter than the corre

sponding scalar code. The performance of FCT 

on the ~lasPar is slightly better than on CRA Y Y

MP (1 CPU). and is also faster than on the Con

nection ~lachine C~l-2. The \fasPar has been rel

atively user friendly and easy to program, and the 

Table 3. Benchmarks for the Two-Dimensional Blast Problem 

(Resolution: 128 X 128) 

Computer Type 

MasPar MP-1 (8, 192 K) 

CM-2 (8,192K) [5] 

CRAY Y-~1P (1 CPlJ) [5] 

Fujitsu VPX240 

IBM RS6000/950 

HP 90001710 

Temporal Performance 

(tstt'p/ s) 

7.14 

5.00 

6.67 

14.3 

0.96 

0 .. 55 

Benchmark Performance 

(:\!flop/ s-6-+ bit) 

81 

57 

76 

170 

11 

6.2 



profiling and optimrzmg tool,; are eff(•ctive. The 

results show that the .\lasPar is a suitable com

puter on which to carry out multidimensional FCT 

computations. 
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