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Abstract In this paper, a framework for the simulation of crack propagation in brittle and ductile materials is
proposed. The framework is derived by extending the eigenerosion approach of Pandolfi andOrtiz (Int J Numer
Methods Eng 92(8):694–714, 2012. https://doi.org/10.1002/nme.4352) to finite strains and by connecting
it with a generalized energy-based, Griffith-type failure criterion for ductile fracture. To model the elasto-
plastic response, a classical finite strain formulation is extended by viscous regularization to account for the
shear band localization prior to fracture. The compression–tension asymmetry, which becomes particularly
important during crack propagation under cyclic loading, is incorporated by splitting the strain energy density
into a tensile and compression part. In a comparative study based on benchmark problems, it is shown that
the unified approach is indeed able to represent brittle and ductile fracture at finite strains and to ensure
converging, mesh-independent solutions. Furthermore, the proposed approach is analyzed for cyclic loading,
and it is shown that classical Wöhler curves can be represented.

Keywords Ductile crack propagation · Eigenerosion · Elasto-plasticity · Cyclic loading · Finite strains

1 Introduction

Engineering structures often consist of various different materials exhibiting a brittle or ductile behavior. As
one example in the context of mechanized tunneling, consider the tools attached at the cutting wheel, namely
the cutting disks or the chisels. These tools are usually composed of ductile steel with wear-resistant, brittle
armoring, made of hard metal or metal matrix composites protecting the steel from wear. These armoring
materials make in turn also use of microstructures consisting of brittle and ductile components, namely a
ductile metallic matrix with embedded brittle ceramic particles. Whereas fracture at the macroscale has to
be considered to evaluate potential failure of the tool, sub-critical crack propagation under cyclic loading is
particularly important at the microscale as it is mostly responsible for wear in terms of surface spalling. This is
just a representative example for a variety of engineering applications where brittle and ductile fracture play a
role. However,most algorithms are rather specialized to either brittle or ductile fracture and thus, the connection
of both is not necessarily straightforward, especially with view to ensuring mesh-independent simulations.

Brittle crack propagation has already been investigated by Griffith [7]. There, it was discovered that a crack
propagates by an area increment in an elastic material if the elastic energy surpasses a certain energy level.
This criterion is known as the Griffith criterion in which the constant energy level per crack area increment
is defined as the Griffith energy release rate. This constant is equal to the surface energy that is needed to
produce a certain surface. In this approach, it is assumed that this process works irreversibly and that the crack
surfaces are stress-free. Later, Irwin [9] investigated metals with ductile material behavior and discovered that
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plasticity plays an important role for the crack propagation. For example, necking of tensile samples occurs
before cracking [26] and the crack path changes. Furthermore, Irwin extended the original Griffith criterion
for brittle materials to the Griffith-type criterion for ductile materials by additionally considering the energy
dissipated through plasticity at the crack tip before the crack propagates.

A special form of crack propagation is associated with fatigue due to cyclic loading, which was recently
investigated by Zenner and Hinkelmann [43]. Motivated by the investigation of train axles which broke in an
incident in the nineteenth century [41], it was discovered that structures fail at loads under cyclic loading lower
than the maximum load in a single load cycle. This results from macroscopic effects like macroscopic plastic
deformations and sub-critical crack propagation as well as microscopic effects like plasticity at the microscale,
void nucleation and microcracks as seen in Pineau et al. [30]. The basis for the analysis of this effect is the
well-knownWöhler experiment which consists of series of single experiments to identify the number of cycles
until failure for varied load amplitudes yielding the so-called Wöhler curve. With these, life time predictions
and improvements of engineering structures can be made.

Although crack propagation governs phenomena important to engineering, like failure upon cyclic loading
or surface spalling, its simulation is still a challenging task in engineering science. The reason for that is the
requirement of continuity in the mechanical fields for the application of continuum mechanics which conflicts
with the discontinuity imposed by the cracks. To circumvent numerical problems associated with the continuity
requirements of the classical finite element method (FEM), which is mostly applied to engineering problems,
multiple approaches have been made. For example, mesh-free methods, like e.g., the Peridynamics [17,35], do
not necessarily require continuum mechanical descriptions and thus, a priori avoid these conflicts. However,
the absence of a direct link to continuum mechanical descriptions for the bulk materials may pose different
challenges. Other approaches are extensions of the finite Element framework, e.g., the incorporation of strong
discontinuities within the elements [36] or through enriched shape functions in the sense of the extended
FEM (XFEM) [5]. But these approaches are conceptionally not straightforward and technically demanding.
A further alternative is the phase-field method as in Miehe et al. [21], where sharp cracks are smoothed by a
continuous damage field. This approach has the disadvantage that this separate damage field requires usually
an additional degree of freedom rendering it computationally demanding. Quite similarly, the introduction of
gradient-enhanceddamage formulations describes the crack in a smeared sense.Here, the need for the additional
degree of freedom could be eliminated by the neighbored element method proposed in [11], see also [12] for
finite strains. A further alternative in the context of smeared damage fields is based on the convexification
of incremental variational formulations to allow for mesh-independent simulations, cf. e.g., [3]. However,
the link of the smeared damage fields to failure criteria is still an open problem. Furthermore, cohesive-zone
models as introduced in e.g., Barenblatt [4] and Dugdale [6] have been considered for the crack simulation
using an FE framework (Hillerborg et al. [8]). There, interface elements describing cohesion during cracking
are included between the regular elements where the crack propagates. Thus, the crack paths are enforced
to follow the element edges, which may lead to erroneous crack patterns as shown in e.g., Schellekens and
De Borst [33]. Another class of approaches is based on element erosion where single elements are removed
from the calculation as soon as potential crack growth is detected within the element. This concept does only
allow for an approximate representation of the crack geometry and usually requires very fine meshes. On the
other hand, its implementation and handling is relatively straightforward and thus, it can be directly applied
in a broad range of engineering problems. As a loss of ellipticity of the differential equations in structural
boundary value problems is observed upon failure, mesh-dependent solutions, i.e., non-converging numerical
schemes, can result therefrom. In order to avoid this, all the above-mentioned approaches for crack propagation
make use of nonlocal enhancements of the originally local formulations. Whereas this is directly included in
mesh-free, phase-field, or gradient-damage formulations, strong discontinuity approachesmake use of nonlocal
evaluations of stress-concentration factors. In the context of erosion algorithms, the first consistent nonlocal
approach enabling mesh-independent calculations, the so-called “eigenerosion,” was proposed in [27], based
on the variational eigenfracture formulation proposed in [34]. This eigenerosion approach is based on the
Griffith criterion for crack propagation and achieves its mesh independence from the regularization of the
crack area by evaluating a specifically defined spatial ε-neighborhood. In Schmidt et al. [34], it was proven
that �-convergence of the regularized energy dissipation functional to the unregularized one is obtained as
the length scale parameter ε goes to zero. This leads to an independence of the crack path, crack propagation
and therefore of the overall structural response from the spatial discretization. The eroded elements are able
to undergo eigendeformations for which no additional work has to be imposed in those.

Variations of this method within a mesh-free framework have been developed subsequently [16,24,28],
for example, the simulation of high-impact loading and fragmentation. The eigenerosion approach has been
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originally developed for brittle crack propagation at small strains. One extension to ductile crack propagation
at small strains with Drucker–Prager plasticity has been presented in Qinami et al. [31].

In this paper, we extend the eigenerosion approach to the geometrically nonlinear setting of finite defor-
mations within the finite element framework. Furthermore, we propose an energy-based failure criterion of
Griffith’s type which can be directly used in the eigenerosion algorithm to extend its applicability to ductile
crack propagation. In order to account for sub-critical cracks in metals, the finite strain J2 elasto-plastic model
of Simo and Miehe [38] is considered. Additionally, the elastic energy density is split into a tension and a
compression part in order to ensure that the crack surfaces are stress-free under tension but still transfer forces
under compression. Therefore, the asymmetric material behavior as seen in Miehe et al. [20] can be accounted
for. This asymmetry is necessary for simulations in which the load direction changes, for example for the
simulation of a specimen under cyclic loading, as it is essential for the calculation of the Wöhler curve.

2 Eigenerosion for brittle and ductile fracture at finite strains

2.1 Eigenerosion algorithm

Since the extensions proposed in this section are based on the original eigenerosion approach [27,34], we start
by recapitulating the main equations governing the conceptual framework. The theory of brittle fracture is
based on the work of Griffith [7]. There, the existence of a Griffith-type energy release rate

G := −∂U (u)

∂|C | (1)

is assumed. Herein, the potential energy U stored by imposing mechanical work depends on the displacement
vector u and |C | denotes the area of the crack set C . Irreversibility of crack propagation and no healing of the
material are taken into account. Consider a discrete time increment �t , then the monotonicity constraint

C(t) ⊂ C(t + �t) (2)

holds for the crack set C(t) at time t and the crack set C(t + �t) at a later time step t + �t . If the energy
release rate G reaches the critical value of Griffith energy release rate Gc, the crack propagates with the crack
front velocity v. In that case, G − Gc = 0 holds. Otherwise, if G − Gc < 0, the crack rests and its tip velocity
v becomes 0. Taking these requirements into account, the relations

v ≥ 0 , G − Gc ≤ 0 and (G − Gc) v = 0 (3)

are obtained. Based on this, the energy-dissipation functional

F = U + Gc|C | (4)

is constructed which, according toMielke and Ortiz [23], has to be minimized with respect to the displacement
field u and the crack set C under the monotonicity constraint in Eq. (2). Herein, the potential energy U
competes with the crack resistance Gc|C |. In order to achieve independency from the spatial discretization in
finite element simulations and to obtain a converging numerical scheme, the energy dissipation functional is
regularized by

Fε = U + Gc
|Cε |
2 ε

, (5)

now considering the ε-neighborhoodCε of the crack setC within the influence radius ε > 0. Note that Schmidt
et al. [34] has proven the�-convergence of the regularized energy-dissipation functional Fε to the unregularized
energy dissipation functional F as ε → 0, so that mesh independence of the algorithm is ensured.

For the application in finite element simulations, an algorithmic treatment is required. Themain component
therein is the erosion of an element K as soon as the potential energy in this element exceeds the maximally
tolerable energy which would be released through the formation of additional crack surface. This can be
expressed by considering the differences of the energetic states in element K after the element erosion and
before, which are expressed by the �-operator. Accordingly, we define �UK = −UK to be the difference of
potential energy in element K after eroding the element, which is zero, and the potential energy before eroding
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Fig. 1 aMesh with eroded elements C (dark grey), the Gaußpoints in their ε-neighborhood Cε (dark blue) and b additional crack
area (C ∪ K )ε \Cε for element domain K (green). (Color figure online)

the element, which is equal to UK . Therefore, −�UK corresponds to the potential energy in element K if
the element was not eroded. In the context of Griffith-type fracture criteria, this energy has to be compared
with the maximally tolerable energy released through eroding the element, which is described by the term
Gc�AK . Herein, �AK denotes the effective crack area, which describes the additional, regularized crack
surface resulting from eroding the element. Thus, the net energy gain −�FK can be introduced as the amount
of potential energywhich does not dissipate from element erosion andwhich needs to be stored in the remaining
elements through an appropriate algorithm. This net energy gain is thus defined as the difference of the total
potential energyUK = −�UK , which would have been stored in the element if no crack erosion was detected,
and the maximally tolerable energy Gc�AK , i.e.,

− �FK := −�UK − Gc �AK . (6)

Thus, the net energy gain per effective crack area corresponds to −�FK /�AK = G − Gc. The definition of
the effective crack area is actually crucial ingredient of the eigenerosion approach and differs from previous
nonlocal erosion algorithms. It is defined as

�AK = | (C ∪ K )ε \Cε |
2 ε

(7)

and represents only that part of the neighborhood area which would additionally be considered if the element
domain K was eroded as shown in Fig. 1. In a finite element implementation, the effective crack area is
computed using the same Gaußquadrature which is also applied for the integration of the element residual and
tangent stiffness matrices. For this purpose, the set of integration points is determined by first selecting the
ones whose distance to the center point of the elements in C and K is lower than the influence radius ε. This
list of Gaußpoints is reduced by the ones in Cε (ε-neighborhood of the eroded elements C), which are in turn
defined as the ones being within a distance of ε from the respective element center points. Then, the area �AK
is derived by adding up the volumes of the obtained set of Gaußpoints and normalizing by the factor 2 ε. Note
that the choice of the influence radius ε influences the crack propagation; ε has to be large enough to ensure
mesh independence.

In our implementation, the algorithmic strategy consists of solvingmechanical equilibrium for the displace-
ments u and the regularized crack field |C |ε in an iterative, staggered scheme. After themechanical equilibrium
equations are solved in the current time step tn , the net energy gain −�FK is evaluated for each element K .
If the net energy gain −�FK of an element is larger than zero, this element becomes a possible candidate
for erosion in the current time step. The element with the largest net energy gain −�FK > 0 is eroded,
which means that its resulting forces and stiffness due to the material law is set to zero, and the mechanical
fields are solved again without proceeding in time. This procedure is repeated until no further element to be
eroded is found and then, the algorithm moves to the next time step. That way, in each time step, mechanical
equilibrium is achieved for the updated set of eroded elements representing the crack. In the original approach,
the ε-neighborhood is defined as a sphere around the center of mass of each element. For higher-order shape
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Fig. 2 Schematic illustration of the considered eigenerosion algorithm within a finite element framework

functions, e.g., using a quadratic approximation of the displacements, the mid-nodes may be located far from
the straight connections of the corner nodes if the element formulation is not reduced to straight-edge elements.
This may move the center of mass in such a way that rather small neighborhoods will not necessarily reflect
non-local effects from all sides of the element, and thus, imply unnecessarily large neighborhoods. In order
to a priori avoid this, we consider the neighborhood as union of spheres around the integration points rather
than the center of mass. Furthermore, we incorporate inertia effects using the Newmark scheme [25] in order
to allow for the simulation of complete fracture and detaching fragments. As a result therefrom, the erosion
of elements will imply a loss in mass. To keep its effect on the dynamics small, we distribute the mass in an
uncoupled manner to the corner nodes of the eroded elements. Additionally, if an element is eroded, the list
of Gaußpoints lying in the additional crack area (C ∪ K )ε \Cε for each intact element is updated because it
might be reduced due to the increased crack area. The full algorithm is shown in Fig. 2.

2.2 Formulation for brittle fracture

The crack propagation in the case of brittle materials has been investigated for the case of linearized kinematics
in [27,28]. Here, we extend this approach to the geometrically nonlinear framework of finite deformations.
Note that although brittle fracture is defined to occur after almost purely elastic deformations and thus, usually
at small strains, a geometrically nonlinear setting may still be reasonable. Specific engineering problems may
result in boundary value problems where large deformations occur although only small strains are observed. In
these cases, a fully geometrically nonlinear framework a priori takes into account the additional internal forces
resulting from considering equilibrium in the deformed configuration. This is in contrast to the geometrically
linearized setting, where equilibrium in the undeformed configuration is considered. Note that in the following
descriptions, wewill solely focus on the differences compared to the linearized setting itself, which are relevant
to the components of the eigenerosion algorithm, rather than explaining the whole geometrically nonlinear
setting. For details with this regard, the reader may consider standard literature, e.g.,Wriggers [42]. Despite the
fact that constitutive equations may still be formulated under the assumption of small strains to be used within
the finite deformation setting, we consider the general concept of finite strains to obtain a unified formulation
more suitably connecting to the extension of ductile fracture in the following subsection. The constitutive
equations are formulated in the left Cauchy–Green tensor, i.e., its isochoric part

b = FFT and b̄ = J−2/3 b, (8)
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respectively. Herein, F with J = det(F) denotes the deformation gradient, which maps infinitesimal vector
elements of the undeformed reference configuration to their counterparts in the deformed, actual configuration.
For our numerical analysis presented later, the material law for Neo-Hookean solids according to Rivlin [32]
is taken into account, where the volume-specific strain energy density

ψ = κ

2
ln(J )2 + μ

2
(tr(b̄) − 3) (9)

is considered. Following the second law of thermodynamics and the standard argument of rational continuum
mechanics, theKirchhoff stress tensor is obtained by deriving the energy densitywith respect to the deformation
tensor, i.e.,

τ = κ ln J I + μ dev(b̄). (10)

Herein, the deviator operator is defined as dev(b̄) := b̄ − 1/3tr(b̄)I with I being the second-order identity
tensor. In order to evaluate the net energy gain−�FK for each element K , Pandolfi and Ortiz [27] proposed to
derive the imposed energy −�UK = 0.5 dTK kK dK directly from the element stiffness matrix kK and discrete
element displacement vector dK , which is only directly possible for linear elasticity. For an extension to more
general cases, we propose to compute the volume integral

−�UK =
∫

	K

ψ dV (11)

of the internal energy ψ over the element region 	K in order to capture the whole work that has been imposed
in element K . For small strains, this approach coincides with the original approach. In our case, the energy
associated with inertia is not involved in −�UK because it is not dissipated due to crack propagation.

2.3 Formulation for ductile fracture

For the extension of the eigenerosion algorithm to ductile crack propagation, the rate-independent finite strain
J2 elasto-plasticity formulation with isotropic hardening from [37–39] is applied. For the numerical implemen-
tation, seeMiehe et al. [19] andKlinkel [13]. In thismaterialmodel, the deformation gradient ismultiplicatively
decomposed as

F = FeFp (12)

into an elastic and a plastic part, Fe and Fp, respectively, cf. also Kröner [14,15]. Following this, the elastic
left Cauchy–Green tensor and its spectral decomposition result in

be = FeFeT =
3∑

i=1

(λei )
2 ni ⊗ ni (13)

with the square root of the principal elastic stretches λei obtained as eigenvalues of be, and their principal
directions expressed by the eigenvectors ni . With the application of the principal logarithmic elastic strains
εei = log(λei ), the elastic strain tensor

εe =
3∑

i=1

εei ni ⊗ ni (14)

is obtained in logarithmic representation so that the additive split of the strain ε = εe + εp into an elastic and
plastic part εe and εp can be considered. The strain energy density

ψ = ψe(εe) + ψp(α) (15)

is divided into an elastic part ψe(εe) only depending on the elastic strains εe and the plastic part ψp(α)
depending on the equivalent plastic strain α serving as internal variable. For the elastic part, the quadratic
elastic strain energy density

ψe = κ

2
tr(εe)2 + μ dev(εe) · dev(εe) (16)
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with the compression modulus κ and the shear modulus μ is taken into account. The Kirchhoff stress tensor
can then be identified as

τ = κ tr(εe) I + 2μ dev(εe). (17)

The convex plastic dissipation potential

ψp = y0 α + (y∞ − y0)

[
α + exp(−hexp α) − 1

hexp

]
+ 1

2
hlin α2 (18)

is chosen as the superposition of linear- and exponential-type hardening, cf. Voce [40]. Herein, the hardening
parameters have the following meaning: hexp specifies the degree of exponential hardening, hlin defines the
slope of the superimposed linear hardening, y0 denotes the initial yield strength, and y∞ describes the plastic
yield strength at the transition to the almost purely linear hardening. Hence, we obtain the hardening function

β = ∂ ψp

∂ α
= y0 + (y∞ − y0)

[
1 − exp(−hexp α)

] + hlin α. (19)

We consider plastic incompressibility, which is typical for metal plasticity, so that the flow condition becomes
the von Mises type

φ = ||dev τ || −
√
2

3
β ≤ 0. (20)

Together with the plastic variable λp ≥ 0, the Kuhn–Tucker condition

φ λp = 0 (21)

is fulfilled, where λp is connected to the evolution of the norm of plastic strains

||ε̇p|| = λp (22)

and to the evolution of the equivalent plastic strains

α̇ =
√
2

3
λp. (23)

It is numerically computed from φ = 0, see Eq. (20), using the Newton scheme. In the case of ductile crack
propagation, the imposed energy is proposed to be

− �UK =
∫

	K

(
ψe + ψp) dV, (24)

which represents an extension of the elastic strain energy density by the plastic potential ψp. This approach is
conceptually in line with the idea in Irwin [9] who extended the Griffith energy release rate for brittle materials
to a Griffith-type energy release rate for ductile materials by adding the energy that dissipates into plasticity
near the crack tip before the crack propagates. Therefore, the Griffith-type energy release rate Gc has to be
large enough, in order to trigger plastic deformations before the crack propagation. Note that this parameter Gc
for ductile crack propagation should not be confused with the classical Griffith constant, which is connected
to brittle fracture.
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2.3.1 Regularization of plasticity

In order to avoidmesh dependence, whichmay already occur during the formation of plastic shear bands before
fracture occurs, regularization is applied. Here, the regularization is achieved by extending the elasto-plastic
material model to elasto-viscoplasticity of the Perzyna-type, cf. e.g., Perzyna [29], Junker et al. [10]. Since
here the rate dependency of the material is small and not to be modeled, the viscous part is only introduced
for numerical reasons. Instead of computing λp from φ = 0, we assume the plastic parameter to be computed
from

λp = 1

η
〈φ〉+ (25)

with the Macaulay bracket 〈(•)〉± = ((•) ± |(•)|)/2 and the viscosity η. Here, the same evolution Eqs. (22)
and (23) as for the previous elasto-plastic model are considered. Thereby, the plastic deformation becomes
more diffuse because in contrast to the unregularized model, the plastic deformation is delayed in the affected
elements so that the neighboring elements are subjected to higher loading and have to deform plastically as
well. Note that Eq. (25) may lead to a violation of the yield criterion, i.e., φ > 0, if the viscosity η is chosen
large enough. Hence, the parameter η controls the speed of plastic deformation. In order to adjust the thickness
of the shear bands and thus, the diffusive character of the regularized model, the hardening function is modified
to

β = y0 exp(−δ α) + (y∞ − y0)
[
1 − exp(−hexp α)

] + hlin α (26)

with the localization parameter � reducing the yield stress with increasing equivalent plastic strain α. This
is necessary to imply additional plastic deformation after plasticity once has taken place in the particular
material point, because the viscosity η strongly smears the plastic deformations over the body and therefore
weakens the plasticity on the corresponding elements. Hence, without the parameter �, no clear shear bands
can develop within the viscoplastic material model if the viscosity η is chosen large enough to regularize.
With increasing values of the localization parameter �, the thickness of the bands of plastic deformations
is reduced independently from the spatial discretization except if the thickness of this band is smaller than
the element size. Hence, a low localization parameter leads to an increase in the plastic deformations in the
elements within the shear bands. Furthermore, the value of this rate-independent parameter has to be chosen in
line with the selected viscosity η in each specific application. For this regularized material model, the resulting
plastic dissipation potential is modified accordingly to

ψp = y0
δ

[1 − exp(−δ α)] + (y∞ − y0)

[
α + exp(−hexp α) − 1

hexp

]
+ 1

2
hlin α2. (27)

Note that δ has to be small enough to keep the convexity of the plastic dissipation potentialψp for the occurring
range of the equivalent plastic strains α. Due to the viscosity, the criterion for ductile crack propagation is
extended through the modified imposed energy

− �UK =
∫

	K

⎛
⎝ψe + ψp +

∫

t

Dvis dt

⎞
⎠ dV (28)

which additionally takes into account the viscous dissipationDvis = η α̇2 in order to capture the full dissipation
of the viscoplastic part of this material model. In order to achieve results comparable to experiments, all
material parameters have to be fitted again considering the two additional material parameters η and δ. Note
that the special type of viscous regularization considered here can be exchanged by any kind of regularization,
including alternative viscous formulations, gradient enhanced formulations or energy-relaxed approaches. The
regularization is only required in order to avoid mesh dependency even before the crack evolves. However, it
is of course not sufficient to guarantee mesh independence during crack evolution and thus, a suitable crack
propagation approach—here the eigenerosion algorithm—has to be considered.
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2.3.2 Compression–tension asymmetry

For the simulation of cyclic fatigue, a previous crack may close again. Then, it is assumed that the two sides
of a crack shall only transfer compression forces due to their contact and no tensile forces. To account for this,
the formulation has to be modified in order to only partly erode elements, i.e., the tensile part of the energies,
and keep the compressive part in the cracked elements. Therefore, the split of the elastic energy density into a
tensile and a compressive part similar to Miehe et al. [20] and Ambati et al. [2] is considered as

ψe = (1 − D) ψe+ + ψe−. (29)

Here, the variable D is binary and indicates if an element is either intact (D = 0) or eroded (D = 1). This
variable D should not be confused with continuous damage variables commonly used in continuum damage
mechanics approaches. Considering this split, the tensile and compressive parts of the energy density become

ψe± = λ

2

〈
tr(εe)

〉2
± + μ εe± · εe± (30)

with the Lamé parameter λ = κ − 2/3μ. Herein, the strain tensor is assumed to be split into

εe = εe+ + εe− with εe± =
3∑

i=1

〈
εei

〉
± ni ⊗ ni (31)

as in Miehe et al. [20]. Accordingly, the Kirchhoff stress tensor results in

τ = (1 − D) τ+ + τ− with τ± = λ
〈
tr(εe)

〉
± I + 2μ εe±. (32)

For intact elements, we assume the elastic energy density ψe = ψe+ + ψe−, the stress τ = τ+ + τ−, and
the material tangent C = C+ + C− needed for the Newton–Raphson scheme, respectively, while for eroded
elements, only the compressive parts remain, i.e., ψe = ψe−, τ = τ−, and C = C− holds. Hence, the total
potential energy to be considered in the fracture criterion becomes

− �UK =
∫

	K

⎛
⎝ψe+ + ψp +

∫

t

Dvis dt

⎞
⎠ dV . (33)

The resulting criterion for crack propagation ensures that elements would rather erode under tension loads
and than under compression and consistently represents the energy that is dissipated into plasticity and crack
propagation. Herein, the term Dvis is set to zero for elasto-plastic materials. Note that in eroded elements, no
further plastic deformation is considered in order to avoid an unphysical response under further tension loads.
The algorithmic implementation of the material law itself including the material tangent C follows Miehe and
Lambrecht [18], Miehe et al. [20].

3 Numerical examples

In order to show the performance of the proposed approach for the simulation of crack propagation at finite
strains, several numerical calculations are analyzed which are based on rather classical benchmark problems.
To enable a more directly connected investigation of brittle and ductile fracture, we focus our analysis on the
crack propagation in a dogbone-shaped specimen under tension, cf. Miehe et al. [22] or Aldakheel [1], where
the qualitative development of the crack path is well-known from experiments. There, an already qualitatively
differing crack path is observed for brittle and ductile fracture. The analysis is concentrated on showing amesh-
independent response in the crack path as well as in integral quantities such as the external load-displacement
curves.
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(a) (b) (c)

Fig. 3 a Specimen for tension test with initial crack at time t0, b specimen for tension test without crack, and c considered
geometric parameters; T denotes the thickness of the specimens

3.1 Brittle fracture

First, the performance of the algorithm is analyzed for brittle fracture. Two different scenarios are investigated:
(i) a specimen with an initial crack and (ii) a specimen without an initial crack, where a small perturbation
close to the center is considered. Both specimens are subject to an external displacement and then, the response
under crack propagation is analyzed. Figure 3 shows a schematic illustration of the numerical tests and the
chosen geometry parameters.

3.1.1 Plate with initial crack

First, the specimen as shown in Fig. 3a with a prescribed initial crack with the length a at the time t = 0
s is loaded with the constantly increasing displacement ū = t · 0.05 mm/s. The specimen is discretized
by 27-node hexahedral elements with quadratic ansatz functions with the different characteristic element
sizes h = 0.22, 0.11, 0.065, 0.0325 mm. Note that the element size h represents the minimum in-plane edge
length appearing in the specimen. In thickness direction, only one layer of elements is considered. Thematerial
parameters are chosen as κ = 164,883.0 MPa, μ = 76,100.0 MPa, Gc = 2 N/mm and the density ρ = 7810
kg/m3.

The resulting final crack path after running the simulation is shown in Fig. 4. As can be seen, the crack
follows the expected, horizontal path and it does not depend on the chosen discretization. Admittedly, the path
also follows the element edge lines and thus, the positive results may have been influenced by already arranging
the mesh in line with the expected crack path. However, as shown later, reasonable cracks will also evolve in
directions differing from the element alignment. In order to quantitatively assess the quality of the simulation
results, Fig. 5a shows the resultant force at the Dirichlet boundary versus the applied boundary displacements
for different initial crack lengths. As can be seen, for all scenarios a mesh-independent response is obtained.
This confirms at least numerically mesh independency also for the proposed eigenerosion algorithm for finite
deformations.

3.1.2 Plate without initial crack

In contrast to the previous example, where the crack propagation direction could have been influenced by
the alignment of the initial crack, now a specimen without initial crack is considered, see Fig. 3b. Because
in reality, failure initialization is governed by processes on lower scales, it cannot directly be covered in the
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Fig. 4 Final crack through specimen in tension test with the initial crack length a = 0.95 mm for the different element sizes a
h = 0.22 mm, b h = 0.11 mm, c h = 0.065 mm, and d h = 0.0325 mm

(a) (b)

Fig. 5 Force–displacement curve for brittle material a with and b without prescribed initial crack indicating mesh independence

eigenerosion framework at a high accuracy if just the macroscale is considered. To avoid this inconsistency,
the specimen is slightly weakened in an area with the horizontal length of (W − 2d)/10 close to the center
of the plate. On purpose, this perturbation is not perfectly centered to not artificially symmetrize the problem.
Thereby, in principle, the crack may evolve in arbitrary directions from here. The perturbation is included by
setting the critical Griffith-type energy release rate there to the small value Gc = 0.0001 N/mm. Of course, as
usual for brittle fracture, the crack is still expected to evolve in horizontal direction starting from the perturbed
area. The simulation results show that the crack propagates reasonably in horizontal direction, see Fig. 6, no
matter the considered discretization. Also the response of the load–displacement curve shown in Fig. 5b shows
mesh independence.
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Fig. 6 Final crack through brittle specimen without the initial crack in the tension test with the different element sizes a h = 0.22
mm, b h = 0.11 mm, c h = 0.065 mm, and d h = 0.0325 mm

(a) (b)

Fig. 7 a Adjusted stress–strain curve of elasto-plastic material (iron alloy) and b material parameters

3.2 Ductile crack propagation

In a second set of numerical experiments, ductile crack propagation is analyzed. For this purpose, the same
virtual specimen as above without initial crack, but with weakened area in the center, is considered, cf. Fig. 3b.
The material parameters shown in the table of Fig. 7b, which were adjusted to the stress–strain curve of a
tension experiment of an iron alloy as shown in Fig. 7a, are applied. The critical Griffith-type energy release
rate is chosen to be Gc = 11 N/mm.

3.2.1 Elasto-plastic specimen

First, the unregularized elasto-plastic material formulation is considered. As a result of the simulation, for a
prescribed, external displacement of ū = 0.2 mm, the crack has evolved according to the illustrations in Fig. 8.
There, also the distribution of equivalent plastic strains is shown at this loading state for different element sizes.
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(a) (b) (c)

Fig. 8 Distribution of equivalent plastic strain α at ū = 0.2 mm using the unregularized elasto-plastic formulation for different
element sizes a h = 0.22 mm, b h = 0.11 mm and c h = 0.065 mm

As it can be seen, localized shear bands appear diagonally in a 45◦ angle as expected from the analytic work
of Onat and Prager [26]. The crack occurs within these bands because here, the elements’ imposed energy
−�UK is increased by the plastic potential ψp in contrast to the elements without plastic deformation. In
those, the imposed energy only consists of the elastic part ψe and thus, is lower if the plastic deformation is
large enough. With decreasing element size h, the thickness of the shear bands decreases because only one
row of elements deforms plastically. When these elements start deforming plastically, their stiffness is reduced
so that any further plastic deformation only occurs in those because their resistance against deformation is
lower than the ones of the surrounding elements. This leads to different times tc at which crack propagation
occurs. Hence, the localization of the plastic deformation influences the evolution of the crack and thus, mesh
dependency is obtained, as can be seen in the mesh-dependent force–displacement curves in Fig. 9. However,
despite this mesh-dependent quantitative response, the crack path follows the expected 45◦ angle and appears
to be rather mesh-independent, see Fig. 8. Thereby, it is shown that a reasonable crack evolution can also be
obtained in discretizations where the element edges do not follow the crack path orientation. In contrast to
the brittle material, the crack does not completely propagate within one time step until the two sides of the
specimen are split, and a rather delayed crack evolution occurs. Because of this, finite jumps in the reaction
force are observable in Fig. 9. Furthermore, the field of the equivalent plastic strains α and thereby the crack
path loose their horizontal symmetry as shown in Fig. 8 due to the sensitivity of the plastic localization to the
location of the weakened area, which is considered slightly shifted from the center of the specimen (Fig. 10).

3.2.2 Ductile crack propagation with regularization

In order to showqualitative aswell as quantitativemesh independence of our erosion algorithm, the pathological
localization of the plastic deformation needs to be cured such that the crack propagation will not be influenced
by erroneous distributions of plasticity. Therefore, now the regularized elasto-plastic material formulation
is considered. For the regularization, the viscosity η = 300 MPa s and the localization parameter δ = 0.2
are chosen. In contrast to the virtual tension tests of the unregularized elasto-plastic specimen, the resulting
equivalent plastic strain α before crack evolution shown in Fig. 11 develops diagonally in both possible
directions with a higher intensity in the diagonal from upper left to lower right. This effect results from the
regularization which delays the plastic deformation and thus enables additional plastic zones. Furthermore, due
to the regularization, the shear bands converge with decreasing element size h. Hence, the crack propagation
behaves qualitatively mesh-independent as shown in the crack paths in Fig. 12 and quantitatively as observed
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Fig. 9 Force–displacement curve for the unregularized elasto-plastic material formulation. Clearly, mesh independence can not
be observed

(a) (b) (c)

Fig. 10 Crack path resulting from unregularized elasto-plastic formulation for different element sizes a h = 0.22 mm, b
h = 0.11 mm and c h = 0.065 mm
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(a) (b) (c)

Fig. 11 Distribution of equivalent plastic strain α at ū = 0.25 mm using the regularized elasto-plastic formulation for different
mesh sizes a h = 0.22 mm, b h = 0.11 mm and c h = 0.065 mm

(a) (b) (c)

Fig. 12 Crackpath resulting from regularized elasto-plastic formulation for different element sizesa h = 0.22mm,b h = 0.11mm
and c h = 0.065 mm

from the reaction force in Fig. 13. From these results, we conclude that the viscous regularization if already
sufficient to cure the mesh dependence of the localizing plastic fields, which enables the erosion algorithm to
keep its mesh-independence properties.
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Fig. 13 Force–displacement curve for the regularized elasto-plastic material formulation indicating mesh independence

3.2.3 Influence of regularization intensity

The regularization of the plastic deformations appears to be crucial to obtain a decent starting basis for the
crack propagation. Therefore, here, the influence of regularization intensity is analyzed in more detail. For
this purpose, we firstly consider the response at the material point level. We vary the localization parameter
δ in order to separate the effects of both regularization parameters. Figure 14a demonstrates the effect on the
hardening function. As can be seen, the slope of the hardening function is decreased with increasing δ. Due to
this, the plastic dissipation potential ψp, c.f. Figure 14b, is decreased as well. Second, the structural response
is analyzed. For this purpose, the viscosity η and the localization parameter δ are varied for the weakened
specimen and a homogeneous specimen where not even the perturbation is applied. Figures 16 and 17 show
the simulation results for an external displacement of ū = 0.15 mm. As it can be observed, for a low viscosity,
i.e., η < 1000 MPa s, diagonal shear bands appear, while for a high viscosity, i.e., η ≥ 1000 MPa s, rather
smeared fields are obtained. Furthermore, the results of the simulations with very small viscosity η = 30MPa s
become even asymmetric and only show single bands due to the high impact of plastic localization. In contrast
to this, an increase in the localization parameter δ leads to an increased localization and thus, to a decrease
in the thickness of the shear band. However, as shown in Fig. 14a, the localization parameter δ = 0.05 only
changes the results slightly. Therefore, simulations using values smaller than this can be interpreted as analysis
where the localization term is not considered. Hence, the form of the localized plastic strains can be controlled
by adjusting these two parameters. The force–displacement curves for the different values of the viscosity η
and the localization parameter δ are shown in Fig. 15. The results show that the reaction force F increases
with decreasing values of η and increasing values of δ. Especially for δ = 5 and δ = 20, a rapid decrease in
the force F becomes visible because the plastic deformation develops quite fast compared to the one of the
simulations with a lower localization parameter δ (Figs. 16, 17).

3.2.4 Simulation with cyclic loading

Ductile fracture comes often along with a sub-critical crack propagation in the sense that the crack does not
necessarily go through the specimen in almost an instance. This effect is important in the context of fatigue,
where sub-critical crack growth happens as a result of increasing the number of load cycles. In order to show that
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Fig. 14 a Hardening function β over the equivalent plastic strain α and b plastic dissipation potential ψp over the equivalent
plastic strain α derived from Eqs. (26) and (27) considering the elasto-plastic material model

the erosion framework proposed here enables the simulation of fatigue based on purely macroscopic effects,
simulations with cyclic loadings F(t) = Fmax sin(2π t) and varying force amplitudes Fmax are carried out
on the specimen depicted in Fig. 18a. In these simulations, the geometry parameters from Fig. 3c are used
again and the coarsest mesh from the previous simulations including the weakened area is considered. Note
that out-of-plane displacements on the backside of the specimen are prohibited in order to avoid bending
when the specimen is loaded under compression. Here, the Griffith-type energy release rate is varied and
chosen as Gc = 3, 6, 11, 22 N/mm; the material parameters from Fig. 7b are applied. Furthermore, we define
structural failure as the situation where the specimen is completely separated into an upper and lower part. Note
that the tension–compression split of the material formulations as described in Sect. 2.3.2 was used here to
allow for a realistic response under cyclic loading. In Fig. 19, the force–displacement curve of one simulation
is presented which shows the typical response due to plasticity. With every cycle, the plastic deformation
grows until the imposed energy −�UK in one element K surpasses the crack resistance so that the crack
propagates. Later on, the crack propagates until the structure fails after a certain amount of cycles Nc. If the
load amplitude Fmax surpasses the maximum static force, the plate fails within one cycle. In order to be able to
trigger cyclic failure after a certain amount of cycles, themaximum force amplitude Fmax has to be large enough
to cause plastic deformation in at least one material point of the structure. Otherwise, no crack will develop.
With increasing load amplitude Fmax, the number of cycles until structural failure Nc decreases linearly in the
double logarithmic space as shown in Fig. 18b. These curves show typical Wöhler curves containing the force
amplitudes Fmax over the number of cycles until structural failure Nc. The reasonable response observed in
Fig. 18b is only achieved as a result of the relatively fine deviations from cycle to cycle shown in the zoomed
illustration in Fig. 19b, which are hardly visible in Fig. 19a. Obviously, such results can only be obtained if a
predictive, mesh-independent crack propagation algorithm as the one proposed is applied. Note that although
here only low-cycle fatigue examples were analyzed, the algorithmwould in principle also allow for high-cycle
fatigue. However, then purelymacroscopic simulations would not be sufficient since the small changes of crack
propagation with increasing numbers of cycles would only happen at the microscale.

4 Conclusion

The aim of the work was to develop a mesh-independent framework which enables the simulation of brittle and
ductile crack propagation at finite deformations. The framework was obtained by extending the eigenerosion
approach from [27], which was originally proposed for brittle fracture at small deformations. In numerical
examples of brittle as well as ductile fracture, it was shown that reasonable crack propagation results were
obtained which also converged for finer discretizations implying a mesh-independent approach. This was qual-
itatively shown in terms of comparing the obtained crack paths, as well as quantitatively, where the resulting
force–displacement curves were compared. Specifically for the ductile material, well-known localization of
plastic deformations, which evolve even before crack evolution starts, was observed. This localization was
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Fig. 15 Force–displacement curves for different values of regularization parameters for a homogeneous andbweakened specimen

found to have a significant effect on subsequent crack growth as these localizations already initiatemesh depen-
dence, even before cracks evolve. Whereas a rather moderate impact on mesh dependency regarding the shape
of the crack path was observed, the impact on the quantitativemesh dependency in terms of force–displacement
curves was significant. In order to enable an objective analysis of mesh independency of the proposed crack
propagation algorithm, the localized plastic deformations were regularized using an algorithmically viscous
formulation. Provided that regularized plastic deformations are taken into account, the proposed fracture algo-
rithmwas foundmesh-independent, qualitatively aswell as quantitatively. Furthermore, a specimen undergoing
cyclic loading was simulated and typical Wöhler curves could be obtained as a result. In future works, we
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Fig. 16 Distribution of equivalent plastic strain α in homogeneous specimen for different values of the viscosity η and the
localization parameter δ at ū = 0.15 mm
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Fig. 17 Distribution of equivalent plastic strain α in weakened specimen for different values of the viscosity η and the localization
parameter δ at ū = 0.15 mm
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Fig. 18 a Geometry and boundary conditions of the simulations with cyclic loading Fmax, b resulting Wöhler curves for Gc =
3, 6, 11, 22 N/mm. The results show that qualitatively reasonable Wöhler curves can be obtained from the proposed algorithm

(a) (b)

Fig. 19 a Force–displacement curve for simulation with cyclic loading and amplitude Fmax = 790 N and critical Griffith-type
energy release rate Gc = 6 N/mm, and b zoomed-in illustration of the peak at the maximum of the implied force F

plan to investigate the extended eigenerosion approach in hard metal or metal matrix microstructures. There,
crack propagation through brittle as well as ductile phases has to be simulated where natural benefits of our
unified approach can be exploited. Based on such simulations, the material design may be improved to provide
new engineering tools with higher wear-resistance, which are characterized by an increased toughness against
sub-critical crack propagation at the microscale and thus, an improved resistance against surface spalling.

Acknowledgements The authors gratefully appreciate financial funding by the Deutsche Forschungsgemeinschaft (DFG) in
the framework of the Collaborative Research Center SFB 837 “Interaction Modeling in Mechanized Tunneling,” project C6.
Furthermore, discussions with Philipp Junker (Leibniz University Hannover) regarding the viscous regularization are highly
acknowledged.

Funding Open Access funding enabled and organized by Projekt DEAL.



1220 D. Wingender, D. Balzani

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Aldakheel, F.: Mechanics of nonlocal dissipative solids: gradient plasticity and phase field modeling of ductile fracture. Ph.D.
thesis, Institut für Mechanik, Universität Stuttgart (2016)

2. Ambati, M., Gerasimov, T., De Lorenzis, L.: Phase-field modeling of ductile fracture. Comput. Mech. 55(5), 1017–1040
(2015). https://doi.org/10.1007/s00466-015-1151-4

3. Balzani, D., Ortiz, M.: Relaxed incremental variational formulation for damage at large strains with application to fiber-
reinforced materials and materials with truss-like microstructures. Comput. Methods Appl. Mech. Eng. 92, 551–570 (2012)

4. Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. In: Advances in Applied Mechanics, vol.
7, pp. 55–129. Elsevier (1962). https://doi.org/10.1016/S0065-2156(08)70121-2

5. Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45(5),
601–620 (1999)

6. Dugdale, D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8(2), 100–104 (1960). https://doi.org/10.1016/
0022-5096(60)90013-2

7. Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 221(582–593),
163–198 (1921). https://doi.org/10.1098/rsta.1921.0006

8. Hillerborg, A., Modéer, M., Petersson, P.-E.: Analysis of crack formation and crack growth in concrete by means of fracture
mechanics and finite elements. Cem. Concr. Res. 6(6), 773–781 (1976). https://doi.org/10.1016/0008-8846(76)90007-7

9. Irwin, G.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957)
10. Junker, P., Schwarz, S., Makowski, J., Hackl, K.: A relaxation-based approach to damagemodeling. Contin.Mech. Therodyn.

29(1), 291–310 (2017). https://doi.org/10.1007/s00161-016-0528-8
11. Junker, P., Schwarz, D., Jantos, S., Hackl, K.: A fast and robust numerical treatment of a gradient-enhanced model for brittle

damage. Int. J. Multiscale Comput. Eng. (2019). https://doi.org/10.1615/IntJMultCompEng.2018027813
12. Junker, P., Riesselmann, J., Balzani, D.: Efficient and robust numerical treatment of a gradient-enhanced damage model at

large deformations. Int. J. Numer. Methods Eng. (submitted)
13. Klinkel, S.: Theorie und Numerik eines Volumen-Schalen-Elementes bei finiten elastischen und plastischen Verzerrungen.

Ph.D. thesis, Institut für Baustatik, Universität Karlsruhe (2000)
14. Kröner, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Ration. Mech. Anal. 4(1), 273

(1960)
15. Lee, E.H.: Elastic-plastic deformation at finite strains. J. Appl. Mech. 36(1), 1–6 (1969). https://doi.org/10.1115/1.3564580
16. Li, B., Pandolfi, A., Ortiz, M.: Material point erosion simulation of dynamic fragmentation of metals. Mech. Mater. 80,

288–297 (2015). https://doi.org/10.1007/Fs10704-012-9788-x
17. Madenci, E., Oterkus, E.: Peridynamic Theory and Its Applications. Springer, Berlin (2014)
18. Miehe, C., Lambrecht, M.: Algorithms for computation of stresses and elasticity moduli in terms of Seth–Hill’s family of

generalized strain tensors. Commun. Numer. Methods Eng. 17, 337–353 (2001). https://doi.org/10.1002/cnm.404
19. Miehe, C., Stein, E.,Wagner,W.: Associativemultiplicative elasto-plasticity: formulation and aspects of the numerical imple-

mentation including stability analysis. Comput. Struct. 52(5), 969–978 (1994). https://doi.org/10.1016/0045-7949(94)0081-
7

20. Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack propagation: robust algorithmic
implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199, 2765–2778 (2010). https://doi.org/10.
1016/j.cma.2010.04.011

21. Miehe,C.,Welschinger, F.,Hofacker,M.: Thermodynamically consistent phase-fieldmodels of fracture: variational principles
and multi-field FE implementations. Int. J. Numer. Methods Eng. 83, 1273–1311 (2010). https://doi.org/10.1002/nme.2861

22. Miehe, C., Aldakheel, F., Teichtmeister, S.: Phase-field modeling of ductile fracture at finite strains: a robust variational-
based numerical implementation of a gradient-extended theory by micromorphic regularization. Int. J. Numer. Methods Eng.
111(9), 816–863 (2017). https://doi.org/10.1002/nme.5484

23. Mielke, A., Ortiz, M.: A class of minimum principles for characterizing the trajectories and the relaxation of dissipative
systems. ESAIM Control Optim. Calculus Var. 14(3), 494–516 (2008). https://doi.org/10.1051/cocv:2007064

24. Navas, P., Rena, C.Y., Li, B., Ruiz, G.: Modeling the dynamic fracture in concrete: an eigensoftening meshfree approach.
Int. J. Impact Eng 113, 9–20 (2018). https://doi.org/10.1016/j.ijimpeng.2017.11.004

25. Newmark, N.M.: A method of computation for structural dynamics. J .Eng. Mech. Div. 85(3), 67–94 (1959)
26. Onat, E.T., Prager, W.: The necking of a tension specimen in plane plastic flow. J. Appl. Phys. 25(4), 491–493 (1954). https://

doi.org/10.1063/1.1721667
27. Pandolfi, A., Ortiz, M.: An eigenerosion approach to brittle fracture. Int. J. Numer. Methods Eng. 92(8), 694–714 (2012).

https://doi.org/10.1002/nme.4352
28. Pandolfi, A., Li, B., Ortiz, M.: Modeling failure of brittle materials with eigenerosion. Comput. Model. Concr. Struct. 1,

9–21 (2013). https://doi.org/10.1007/s10704-012-9788-x
29. Perzyna, P.: Fundamental problems in viscoplasticity. In: Advances in Applied Mechanics, vol. 9, pp. 243–377. Elsevier

(1966). https://doi.org/10.1016/S0065-2156(08)70009-7

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00466-015-1151-4
https://doi.org/10.1016/S0065-2156(08)70121-2
https://doi.org/10.1016/0022-5096(60)90013-2
https://doi.org/10.1016/0022-5096(60)90013-2
https://doi.org/10.1098/rsta.1921.0006
https://doi.org/10.1016/0008-8846(76)90007-7
https://doi.org/10.1007/s00161-016-0528-8
https://doi.org/10.1615/IntJMultCompEng.2018027813
https://doi.org/10.1115/1.3564580
https://doi.org/10.1007/Fs10704-012-9788-x
https://doi.org/10.1002/cnm.404
https://doi.org/10.1016/0045-7949(94)0081-7
https://doi.org/10.1016/0045-7949(94)0081-7
https://doi.org/10.1016/j.cma.2010.04.011
https://doi.org/10.1016/j.cma.2010.04.011
https://doi.org/10.1002/nme.2861
https://doi.org/10.1002/nme.5484
https://doi.org/10.1051/cocv:2007064
https://doi.org/10.1016/j.ijimpeng.2017.11.004
https://doi.org/10.1063/1.1721667
https://doi.org/10.1063/1.1721667
https://doi.org/10.1002/nme.4352
https://doi.org/10.1007/s10704-012-9788-x
https://doi.org/10.1016/S0065-2156(08)70009-7


Simulation of crack propagation based on eigenerosion in materials subject to finite strains 1221

30. Pineau, A., McDowell, D.L., Busso, E.P., Antolovich, S.D.: Failure of metals II: fatigue. Acta Mater. 107, 484–507 (2016).
https://doi.org/10.1016/j.actamat.2015.05.050

31. Qinami, A., Pandolfi, A., Kaliske, M.: Variational eigenerosion for rate dependent plasticity in concrete modelling at small
strain. Int. J. Numer. Methods Eng. (2019). https://doi.org/10.1002/nme.6271

32. Rivlin, R.: Large elastic deformations of isotropic materials. I. Fundamental concepts. Philos. Trans. R. Soc. Lond. Ser. A
Math. Phys. Sci. 240(822), 459–490 (1948). https://doi.org/10.1098/rsta.1948.0002

33. Schellekens, J., De Borst, R.: On the numerical integration of interface elements. Int. J. Numer. Methods Eng. 36(1), 43–66
(1993). https://doi.org/10.1002/nme.1620360104

34. Schmidt, B., Fraternali, F., Ortiz, M.: Eigenfracture: an eigendeformation approach to variational fracture. Multiscale Model.
Simul. 7(3), 1237–1266 (2009). https://doi.org/10.1137/080712568

35. Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88(2),
151–184 (2007). https://doi.org/10.1007/s10659-007-9125-1

36. Simo, J., Oliver, J., Armero, F.: An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic
solids. Comput. Mech. 12, 277–296 (1993)

37. Simo, J.C.: Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes
of the infinitesimal theory. Comput. Methods Appl. Mech. Eng. 99(1), 61–112 (1992). https://doi.org/10.1016/0045-
7825(92)90170-O

38. Simo, J.C., Miehe, C.: Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implemen-
tation. Comput. Methods Appl. Mech. Eng. 98(1), 41–104 (1992). https://doi.org/10.1016/0045-7825(92)0170-O

39. Simo, J.C., Taylor, R.L., Pister, K.S.: Variational and projection methods for the volume constraint in finite deformation
elasto-plasticity. Comput. Methods Appl. Mech. Eng. 51, 177–208 (1985)

40. Voce, E.: A practical strain hardening function. Metallurgia 51, 219–226 (1955)
41. Walter, S.: A history of fatigue. Eng. Fract. Mech. 54(2), 263–300 (1996). https://doi.org/10.1016/0013-7944(95)00178-6
42. Wriggers, P.: Nonlinear Finite Element Methods. Springer, Berlin (2008)
43. Zenner, H., Hinkelmann, K.: August Wöhler (1819–1914) Begründer der Schwingfestigkeitsforschung-200. Geburtstag.

Stahlbau 88(6), 594–601 (2019). https://doi.org/10.1002/stab.201900041

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

https://doi.org/10.1016/j.actamat.2015.05.050
https://doi.org/10.1002/nme.6271
https://doi.org/10.1098/rsta.1948.0002
https://doi.org/10.1002/nme.1620360104
https://doi.org/10.1137/080712568
https://doi.org/10.1007/s10659-007-9125-1
https://doi.org/10.1016/0045-7825(92)90170-O
https://doi.org/10.1016/0045-7825(92)90170-O
https://doi.org/10.1016/0045-7825(92)0170-O
https://doi.org/10.1016/0013-7944(95)00178-6
https://doi.org/10.1002/stab.201900041

	Simulation of crack propagation based on eigenerosion in brittle and ductile materials subject to finite strains
	Abstract
	1 Introduction
	2 Eigenerosion for brittle and ductile fracture at finite strains
	2.1 Eigenerosion algorithm
	2.2 Formulation for brittle fracture
	2.3 Formulation for ductile fracture
	2.3.1 Regularization of plasticity
	2.3.2 Compression–tension asymmetry


	3 Numerical examples
	3.1 Brittle fracture
	3.1.1 Plate with initial crack
	3.1.2 Plate without initial crack

	3.2 Ductile crack propagation
	3.2.1 Elasto-plastic specimen
	3.2.2 Ductile crack propagation with regularization
	3.2.3 Influence of regularization intensity
	3.2.4 Simulation with cyclic loading


	4 Conclusion
	Acknowledgements
	References




