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In this paper, a pseudopotential high density ratio (DR) lattice Boltzmann Model was developed by incorporating 

multi5relaxation5time (MRT) collision matrix, large DR external force term, surface tension adjustment external force term 

and solid5liquid pseudopotential force. It was found that the improved model can precisely capture the two5phase interface 

at high DR. Besides, the effects of initial Reynolds number, Weber number, solid wall contact angle (CA), ratio of obstacle 

size to droplet diameter ( 1χ ), ratio of channel width to droplet diameter ( 2χ ) on the deformation and breakup of droplet 

when impacting on a square obstacle were investigated. The results showed that with the Reynolds number increasing, the 

droplet will fall along the obstacle and then spread along both sides of the obstacle. Besides, by increasing Weber number, 

the breakup of the liquid film will be delayed and the liquid film will be stretched to form an elongated ligament. With 

decreasing of the wettability of solid particle (CA → 180°), the droplet will surround the obstacle and then detach from the 

obstacle. When 1χ  is greater than 0.5, the droplet will spread along both sides of the obstacle quickly; otherwise, the 

droplet will be ruptured earlier. Furthermore, when 2χ  decreases, the droplet will spread earlier and then fall along the wall 

more quickly; otherwise, the droplet will expand along both sides of the obstacle. Moreover, increasing the hydrophilicity of 

the microchannel, the droplet will impact the channel more rapidly and infiltrate the wall along the upstream and 

downstream simultaneously; on the contrary, the droplet will wet downstream only. 

 

&����
��%
pseudopotential; high density ratio; multiple5relaxation5time (MRT); lattice Boltzmann model (LBM); contact 

angle; droplet impacting on solid obstacles; microchannels. 
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Droplets impacting solid obstacles in microchannel is a popular phenomenon in many natural phenomena, chemical 

processes(e.g., the separation of droplet in the pharmaceutical process) and engineering applications(e.g., the induced 

movement of droplet in the microfluidic devices and the collision of droplet in the combustion engine) [1, 2]. Therefore, it is 

always of great interests to study the geometrical and physical dynamic changes of the droplet during the collision. 

Most of the phenomena that droplets hit on a solid obstacle can be divided into the level of the droplets impacting 

horizontal wall [356], spherical surface [7, 8] and inclined wall [9, 10]. If the size and shape of solid obstacles are taken into 

account, solid obstacles can be categorized as spherical obstacles [7, 8, 11] , cylindrical obstacles and rectangular obstacles 

[12514]. Significant amount of researches have been reported to explore the characteristics of spreading, wetting, spattering, 

crushing, consequent pressure change and velocity change when droplet impacting on the solid obstacle through theoretical 

analysis, experimental study and numerical simulation. 

Recently, Josserand and Thoroddsen [15] summarized the process of a droplet impacting on solid surfaces theoretically 

and experimentally. In their paper, they mainly explained some physical factors that control the droplet's impact on solid, 

such as the inertial force, the viscosity and the surface tension of the fluid. At the same time, they also revealed that the gas 

beneath the droplet was also a key factor for droplet splashing. However, the wall with different roughness, hydrophilicity 

and hydrophobicity could guide and dampen the droplet impacting process. Banitabaei and amirfazli [16] experimentally 

studied on droplet impact on spherical solid obstacles via experiments using high5speed cameras. The wetting characteristics 

of the wall were mainly taken into account and they selected three spherical obstacles with different wetting surfaces 

(contact angle (CA)=70°, 90°, 118°) when the droplet impact on the spherical wall. At the same time, they also extended the 

Weber (�� ) number to 1146, and they found that at large ��  number, as the wettability of the wall enhanced, the time it 

took for the droplet to be ruptured would increase for hydrophilic walls; while for the hydrophobic 

wall, the lamella formation of the droplet would just change a little as the contact angle increased to 110 °. Besides, their 

results showed that when � �  number is small, the droplet will not be ruptured, but falls along the spherical obstacles, and 

when the � �  number is increased to 200, the liquid film will be formed. Bakshi �������[11] experimentally and theoretically 

investigated the dynamic behaviors of the droplet impacting on the spherical surface. They mainly researched on different 

ratios of droplet5to5spherical size and found that the outcomes of the droplet impacting the wall can be divided into the 

initial deformation stage, the inertia force stage and the viscous force stage according to the droplet morphological changes. 

Liang ��� ��� [14] performed an experimental investigation on the droplet colliding on the cylindrical surface and mainly 

studied the effect of the curvature of the cylindrical surface on droplet splashing at a large � �  number. Stevens ��� ��� 

[17] experimentally studied the sputtering process of low5viscosity and high5viscosity droplet impacting the plane, and their 

results showed that the gas pressure around the droplet greatly affects the droplet impacting, increasing the pressure of 

droplet, and forming a thin sheet. Antonini ������ [18] experimentally demonstrated that water droplets impinged on different 

wetting walls, and their results showed that the maximum spreading radius and wetting time of droplets were affected by the 

wetting characteristics when the � �  number was in the range of 305200. However, when the � �  number is more 

than 200, the wetting characteristics would not be the primary factor. 

Lots of prior literature experimentally investigated the effects of wetting characteristic, � �  number and the size of 

solid particle. However, the time and length scale involving in the impacting process is very small, and the environmental 
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variables are very difficult to control in the experimental process, such as the consistency of the droplet shape with high 

velocity, the selection range of the wetting property of the solid surface, the effect of gravity, ��� ��� On the other hand, 

numerical simulation could easily study the dynamics characteristics of droplet impact on solid barriers under certain 

conditions. Therefore, a large number of scholars developed numerical models to investigate the droplet impacting process. 

Some scholars studied the droplet impact on solid obstacles from the perspective of solving macroscopic Naiver5Stokes 

(N5S) via the marker5and5cell (MAC) method, volume of fluid (VOF) method, front5tracking5method (FTM), particle 

method and level set coupled VOF method [7, 13, 19, 20]. Pasandideh5Fard ������ [12] performed a numerical simulation on 

the dropping of the droplet along different sizes of cylindrical solid, and they found that as the solid diameter of the cylinder 

decreased to 0.551 millimeters, the size of droplet remaining on the solid became smaller and smaller, while the drop impact 

process would become more and more unstable. Recently, Liu ��� ��� [13] performed a numerical study on 

the kinetics process of droplet impacting hydrophobic tubes by using a coupled level set method and VOF method. They 

found that, under the same CA, as the droplet impact velocity increasing, the liquid film would rebound from the solid wall 

earlier. Recently, Gotoh and Khayyer [21] systematically reviewed the applications of particle methods in coastal and ocean 

engineering, and the latest advancement included accuracy, stability multi5physics multi5scale simulations, and the authors 

concluded that further rigorous and comprehensive investigations must be conducted on the convergence, consistency and 

energy conservation. 

However, computational fluid dynamics (CFD) is very complicated in dealing with the droplet5air interface, and solving 

the pressure filed and velocity field also need a lot of computational resources [22]. Recently, the lattice Boltzmann (LB) 

method has been widely applied to simulate the droplet impacting process, because LB method requires less computational 

resources and is easier to be implemented in parallel computing [23, 24]. Furthermore, the LB method can easily model the 

complicated boundary conditions in mesoscale and capture the characteristics at the droplet5air interface, therefore it has a 

natural advantage in dealing with mesoscale two5phase flow with complex geometry [24528]. More specifically for 

multiphase flow, scholars have developed many numerical models, such as Shan5Chen model [29, 30], color5gradient 

model [31], free energy mode [32] and phase field model [33]. Therefore, based on these multiphase LB models, some 

research works have been reported to study the impacting process between droplet and solid obstacle. Gac and Gradon [34] 

numerically investigated drop impact on spherical obstacles via two5color LB method, and they observed that as 

��  number gradually increasing, the droplets fused first, and then ripped, coated and formed many satellite 

droplets. Zhang ��� ��� [35] studied the droplet spreading characteristics of droplet impact on spherical solid by using the 

three5dimension single relaxation time (SRT) LB method (LBM). However, SRT model could not precisely simulate the 

droplet collision process with low viscosity and large ��  number. In addition, the highest the density ratio (DR) of gas and 

liquid (DR= /
� �

ρ ρ , where the subscript � and �  represent gas phase and liquid phase, respectively)  was only 328 in their 

work. Recently, Raman ������ [36] studied the dynamics changes of the droplet when two droplets impacted the same and 

different positions of the solid successively. They mainly focused on the effects of the initial position of two droplets, 

the Ohnesorge number and the ��  number on droplet spreading process, and the result show that the wetting properties of 

the substrate had a great influence on the fusion of the droplets. However, the phase5field model coupled with the 

traditional CFD method was incorporated into the LB method, which significantly increased the requirements of 

computational resources by the LBM. 
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The pseudopotential multiphase model proposed by Shan and Chen [29, 30] has been widely applied in the multiphase 

flow in recent years because it does not require any explicit interface tracking technique and has much less computational 

load than other models [22, 37, 38]. Some scholars also used the Shan5Chen model to study the process of droplet impacting 

on solid. Li� ������ [39] utilized the pseudopotential LB method to study the dynamic behaviors of droplet passing through 

long channel with circular obstacles under the gravitational force. Effects of the distance of spherical obstacle from the 

center of the droplet, the gas5liquid viscosity ratio, the wetting characteristic and the Bond number on the physical 

deformation and fragmentation were investigated. They found that the distance of the axis of solid obstacle from the 

centerline can achieve both the results of separation and non5separation of the droplet, therefore they concluded that as the 

wettability of the walls increasing, the droplet would fall from the top of the solid to the bottom of the solid. However, 

the DR was only maintained as 1.0. Furthermore, the Shan5Chen model has large spurious velocity, it cannot handle  large 

DR and low viscosity flow, and it cannot adjust the surface tension independently [40]. Therefore, a lot of researchers tried 

to improve the Shan5Chen model by overcoming the aforementioned disadvantages. Mccracken and Abraham [41] applied 

the multi5relaxation5time (MRT) model to handle the low5viscosity flow. Benzi ������ [42] added a virtual density to achieve 

the wetting properties of the droplet on the wall. Li ��� ��� [40] amended the external force terms in the MRT model to 

achieve thermodynamic consistency under large DR and independent adjustment of surface tension. Most recently, Li ������ 

[43]  corrected the contact angle of Shan5Chen model. However, the spurious velocity was too large when the contact angle 

was very small or very large. Therefore, this paper coupled the Shan5Chen model with MRT collision model, high 

DR model, independent surface tension adjustment model and wall wetting characteristic. 

In this paper, a series of verifications were performed such as thermodynamic consistency at large DR, Laplace’s 

law, droplet impact onto the liquid film, surface tension adjustment, wetting and fusion properties of the walls. It was found 

that, under large DR, this model met the thermodynamic consistency well and can deal with two5phase flow with low 

viscosity, the spurious velocity was small when achieving small or large contact angle, at the same time it can tune surface 

tension while keeping the same DR. After reviewing of the previous literature on the numerical simulation of droplet impact 

on solid, it was found that most of literature were chosen to study the spherical solid obstacle, but to the authors’ best 

knowledge, nobody ever considered the splitting liquid after impacting the solid obstacles and limited studies have been 

reported to particularly focus on square solid obstacles. Furthermore, the literature of droplet impact onto solid via LBM did 

not realized the large DR and large Reynolds ( �� ) number. Therefore, in this paper, the improved 

large DR pseudopotential MRT5LBM multiphase model was employed to study the droplet impacting square obstacle in 

detail. Effects of a wide range of ��  number, ��  number, wetting characteristic of solid obstacle, ratio of obstacle size to 

droplet diameter ( 1χ ), ratio of channel width to droplet diameter ( 2χ )on the deformation and breakup of droplet when 

impacting on a square obstacle were investigated.. 

 

*(
+���
����
�����


In this section, an improved Shan5Chen model will be clearly discussed. Luo ������ [47] and McCrachen & Abraham 

[41] proposed a multi5relaxation5time (MRT) LB model to realize better numerical stability instead of the BGK model 

because its consider the high5order parameters in moment space compared the SRT model, where the collision distribute 

function(DF) can be given as [41, 48]: 
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( , ) ( , )
( , ) ( , ) ( ) ( 0.5 )��


� � 
 
 �� �
� � � � � � � �α αβα α α α βδ δ δ+ + − = −Λ − + − Λ

x x
x e x           (1) 

where � and ���  represent the particle DF and the equilibrium DF respectively, δ � and δ � are the lattice space step and the 

time step, and both were set to be equal to 1, so � = /δ � δ � =1, �� denotes the discrete velocity along the direction of �

[49]. In this study, the D2Q9 model was adopted, so the discrete velocity can be given as: 

, 0

1,0 , 0,1 , 1,0 , 0, 1 1 4

1,1 , 1,1 , 1, 1 , 1, 1 , 5 8




� � ! 


" � !� � !� � !� � !� �


� !� � !� � !� � !� 


= 
 − − = − 
 − − − − = − 

e                          (2) 

    At the same time, = �1Λ M ΛM  is the collision matrix, M  is the orthogonal transfer matrix, and Λ is the diagonal 

relaxation matrix in the moment space, which can be defined as [49]: 

0 1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1

( , , , , , , , , )

( , , , , , , , , )
# � # �

�
�� � � � � � � � � �

�
�� ρ ς υ υτ τ τ τ τ τ τ τ τ− − − − − − − − −

=

=
e

Λ

   
                      (3) 

where �  is multiple5relaxation5time parameters, 1 2=� � , 3 5=� � , 7 8=� � , and the method how to choose those 

coefficients properly will be discussed in the next section. The non5dimensional relaxation time is defined: 

2

7

1
= / 0.5

s
υτ υ= +��                                        (4) 

where υ  is the kinematic viscosity of the fluid, and ��  is the lattice sound speed and is set to be 1/ 3 . 

    As suggested in Ref. [50], the viscosity relaxation time is determined by: 

( )
�

$ � � �

� �

ρ ρ
τ τ τ τ

ρ ρ

−
= + −

−
                                     (5) 

where subscripts �  and � denote the gas phase and liquid phase respectively. By linear transformation, the DF �  can be 

converted to the moment space �= ⋅m M ,
�� ���= ⋅m M . The moment space DF m  and the equilibrium DF ��m  are 

given by [47, 51]: 
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where �#  and %#  are equal to ρ �� , ρ %�  respectively. 

The evolution of the MRT5LB equation (1) consists two steps, i.e. the collision step and streaming step. The collision 

step is projected onto the moment space the moment space, while the streaming process is carried out in the velocity space. 
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With the aid of Eq. (3) and Eq. (6), the right5hand side of Eq. (1) can be expressed as [43]: 

* ( ) ( )
2

��

�δ= −Λ − + −
Λ

m m m m I S                                (7) 

where I  is the unit tensor, S = MS  is the forcing term in the moment space, and 
 
 � ' ( ) * + ,
� �� �� �� �� �� �� �� �� TS =( ) , and 

the streaming process can be expressed as [49]: 

( , ) ( , )
 
 � � 
� � � �δ δ ∗+ + =x e x                                 (8) 

where
1* *� −=M m . 

For the pseudopotential MRT LB model, the macroscopic density and velocity are determined by [44]: 

,    
2

�


 
 



 


-
� � �

δ
ρ ρ= = +∑ ∑u                                  (9) 

where ( , )= � %- - -  is the total force acting on the pseudopotential MRT LB model. For the fluid5fluid interaction force in 

the Shan5Chen model for multiphase flow can be given by [40, 44]: 

2
( , ) ( ) ( , ). 
 
 





/ � 0 �ψ ψ 
= − + 

 
∑F x e x e e                             (10) 

where /  is the interaction strength with a positive (negative) sign for a repulsive (attractive) force between particles, 

2
( )�0 e  is the weight factor [44]. For the case of D2Q9 model, the weights are (1)0  =1/3 and (2)0 = 1/12. ψ  represents 

the effective mass. 

By overcoming the aforementioned drawbacks in the previous section, a modified forcing term proposed by Li������� 

[49], which can be defined in the moment space as Eq.(11), was integrated with the MRT LB model in order to simulate 

flow with large DR (e.g., DR=1000). 

2

2

2

2

0

12
6( )

( 0.5)

12
6( )

( 0.5)

2( )

( )

�

.

�

� � % %

� �

.

� � % %

�

� � % %

�

%

% % �

%

� - � -

� - � -

� - � -

� - � -

-

-

-

-

ς

θ

ψ δ τ

θ

ψ δ τ

 
 
 
 
 
 
 
 
 =
 
 −
 
 
 −
 
 
 


+ +
−

− +
−



+

−

−

F

F

S                               (11) 

where θ is utilized to adjust the numerical stability in the proposed pseudopotential MRT LB model, and the value will be 

given in the next section, 
2 2 2( ). .� .%- -= +F . 

In this paper, choosing a suitable EOS in the pseudopotential model is the key n. Historically, there are three popular 
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EOS models [52], such as van der Waals EOS, Red5lich5K Wong (R5K)EOS and Carnahan5Starling (C5S) EOS, which were 

used in the pseudopotential. In the current study, Carnahan5Starling (C5S) EOS model was adopted [46]: 

2 3
2

3

1 / 4 ( / 4) ( / 4)

(1 / 4)

ρ ρ ρ
ρ ρ

ρ
+ + −

= −
−12�

3 3 3
4 �5 �

3
                          (12) 

where 
2 20.4963 /= � �� � 5 & , 0.18727 /= � �3 �5 & . 

Therefore, the critical temperature is equal to 0.3773 / ( )=5� � 3� , �5  and �&  are the critical temperature and pressure, 

respectively. In this study, 3 =4, � =1, � =1, δ
�
=1, and ψ in Eq. (11) can be defined as [52]: 

2

2

2( )ρ
ψ

−
= 12� �

4 �

/�
                                       (13) 

Tuning surface tension is very difficult in the pseudopotential model. In early literature, it only can be realized by 

choosing different density ratios, which is greatly limited by the applications. Therefore, Sbragaglia ��� ��� [53] proposed 

multi5range potential model to tune surface tension independently. However, using the multi5range potential model, the 

density ratio will vary with the surface tension accordingly [45]. Li������� [40] modified the MRT pseudopotential model by 

adding an additional source term in the MRT5LB moment space and ensured that the DR did not change. The modified 

collision equation in the moment space can be given as: 

t
* ( ) ( ) +

2

��

�
δ δ= −Λ − + −

Λ
m m m m I S C                            (14) 

where C  is additional source term in the MRT5LB and defined as [40]: 

1

e

1

1

1

0

1.5 ( )

51.5 ( )

(

0

0

0

0

)

�� %%

�� %%

�� %%

�%

6 6

6 6

6 6

6

ς

υ

υ

τ
τ

τ
τ

−

−

−

−

+

+

− −

−

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

C                                      (15) 

In Eq. (24) ,�� %%6 6 and �%6  can be calculated via the following equation [40]: 

8
2

1

( , ) ( )[ ( , ) ( , )]
2


 
 
 





/
7 � 0 � �ψ ψ ψ

=

 
= + − 

 
∑Q x e x e x e e                        (16) 

where ( ), ,�� %% �%6 6 6=Q  is the discrete pressure tensor, 7  is the parameter that can precisely tune the surface tension in the 

proposed pseudopotential MRT LB model [40]. 

In this paper, because there is the three5phase contact line, therefore we need to consider the wall wetting 

characteristics. Benzil ��� ��� [42] employed ghost density on the wall to mimic the interaction between the solid and the 

fluid. By adjusting the density of the solid, the method can achieve different wall wetting characteristic. However, Li ���

��� [43] found that the droplet above the solid is suspended in the gas when achieving the wall wetting characteristic. 
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Therefore, Li ������ further modified the solid5fluid pseudopotential force on the wall, and the equation is as follows [43]: 

 
2

( , ) ( ) ( , ) ( )��� 
 
 





/0 � 0 � �ψ ψ 
= − + 

 
∑F x e x x e e                         (17) 

where ( )+ 
� � �  is a switch function, which is equal to 0 and 1 for solid and fluid respectively, and /0 is the parameter to 

tune wetting ability of the solid wall [43] . Subsequently, the total force in the Eq. (9) and Eq. (11) is . ���+F = F F . 

 

,(
�����
-�
��������	


In this paper, the proposed pseudopotential MRT5LB model was verified by its thermodynamic consistency, Laplace’s 

law, droplet impact onto a thin liquid film, surface tension tuning and droplet wetting wall respectively. 

 

3.1. Thermal consistency 

In order to verify the thermodynamic consistency of the proposed model, the Maxwell construction theory was utilized 

to compare with the results predicted by the MRT LB model. A horizontal liquid film with a thickness of 50 lattice units was 

placed in the middle of a grid size ×8� 8% =200× 200 square computational domain, the periodic boundary condition was 

employed, and the initial density field was defined as follows [45, 54]: 

1 2

g

2(y y ) 2(y y )
= [tanh( ) tanh( )]

2

ρ ρ
ρ ρ

− − −
+ −� �

� �
                    (18) 

where � =5, 2y  and 1y  are the location of the gas5liquid interface and the thickness of the interface is 50 lattice units, so 2y

=125 and 1y =75. 

The Carnahan5Starling (C5S) EOS was adopted in this study, and the parameter �  in Eq. (12) was set to be 0.25. For 

the parameter G in Eq. (8) was set to be 51, while G would be changed to 51/3 if / �5 5  is less than 0.6. It was found that 

shortening the second order moment relaxation time in the MRT model can greatly improve the numerical stability. 

Therefore, in order to ensure the stability and convergence of this pseudopotential MRT LB model, the relaxation times in 

Eq. (3) were chosen as follows: ρτ = #τ =1.0, 
1

�τ
−

=
1

ςτ
−

=0.51, 
1

�τ
−

=1.1. The parameter θ  in Eq. (11) was set to be 0.114, 

and the kinematic viscosity of liquid and gas were both set to be 0.1. The gas and liquid densities obtained from the 

Maxwell construction theory and the pseudopotential MRT LB model are listed in Table 1, and the comparison of three 

different density ratios from Ref. [49] is also included in Table 1. It can be concluded that the proposed pseudopotential 

MRT LB model can satisfy the thermodynamic consistency well even when the DR is high like 1000 when / =0.48�5 5  

from Table 1. 

 

3.2. Laplace’s law and spurious velocity 

The verification of Laplace’s law ( /σ) =& � , σ  is surface tension, �  is the radius of the droplet) is a classic case 

using LBM model. In this study, droplets with various radius were placed at the center of a ×8� 8% =200× 200 grid size 

domain, and periodic boundary conditions were employed. The multiple5relaxation5time coefficients and the kinematic 

viscosity of gas phase and liquid phase still kept the same as Section.3.1. The initial density field distribution can be defined 
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as [54]: 

2 2

0 0 02( ( ) ( ) ) )
(x, y)= [tanh( )]

2 2

� � � � � � % % �

�

ρ ρ ρ ρ
ρ

+ − − + − −
−                 (19) 

where 0 0,� %  are the coordinates of centroid in the domain. Other parameters and conditions were maintained the same as 

Section 3.1. 

Fig. 1 (a) and (b) present the density field distribution, spurious velocity vector, and spurious velocity contour for / �5 5

= 0.48 corresponding to DR=1000, and the white line marked in Fig.1 (b) is the two5phase interface. One can observe from 

Fig.1 that the spurious velocity only appears in the gas phase and around the two5phase interface, while the spurious 

velocity of liquid phase is almost equal to 0. Fig. 2 demonstrates the density change versus x at the center of Y5axis and the 

relationship between the surface tension and gas5liquid kinematic viscosity ratio (KVR). From Fig. 2 the gas5liquid interface 

thickness is approximately 5~6 lattice units and the surface tension does not change with KVR when the DR is as high as 

1000. The pressure difference between the inside and outside of the droplet with different radius is given in Fig.3 when 

/ �5 5  is equal to 0.48 and 0.6. It is very important that the pressure difference is linear with the reciprocal of droplet radius 

at different density ratios. 

To investigate the spurious velocity with different densities, the stationary liquid droplet with different density ratios at 

different parameter values of �=0.25 and 0.5 in Eq. (12) was explored. The relationship between the maximum spurious 

velocity and DR at �=0.25 and 0.5 is demonstrated in Fig.4, where the maximum spurious velocity is equal to 0.0038 at �

= 0.25 and / �5 5 = 0.50, which is in a good agreement with the spurious velocity of 0.0039 in Ref. [49]. From the 

macroscopic point of view, the maximum spurious velocity increases with the increasing of DR. While the smaller the value 

of �  is, the smaller the maximum spurious velocity is, and this effect is more evident for larger density ratios under the 

same DR. In summary, the maximum spurious velocity predicted by the proposed MRT LB model can be maintained around 

10E503 even if the DR is as high as 1000 when � =0.25. 

 

3.3. Droplet splashing on a thin liquid film 

    In the improved pseudopotential MRT LB model, although the Laplace’s law can be verified using stationary droplets, the 

evolution of gas5liquid interface is difficult to capture because of the large spurious velocity. Therefore, droplet splashing on 

a thin liquid film was utilized to verify the accuracy of this model to capture the two5phase interface under large DR, large 

��  number and large e�  number. A computational mesh of ×8� 8% =600× 200 was adopted in current study, and the 

diameter of the droplet was set as 80 lattice units. The liquid film was located in the bottom of the domain where its height 

was one fourth of the diameter of droplet, and the initial impact velocity was assumed as ( , )
� %

� � = (0, )−9 , where 0.129 = . 

The temperature ratio was set to be / �5 5 = 0.50 corresponding to DR of 750 [49], and the non5slip boundary condition was 

employed in the y direction while the period boundary condition was used in the x direction. The gas kinematic viscosity 

was υ� =0.0333, the liquid kinematic viscosity was set to be Case A: 0.06667 and Case B: 0.00667, respectively. Therefore, 

the e�  number of Case A and B are 143.23, 1432.30, respectively. The surface tension was assumed as σ =0.0029, thus 

2 /ρ σ= ��� 9 : =180.63. Other parameters were kept the same as Section 3.2. The dimensionless time (DT) was defined as
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*
/=� �9 : , and *

� =0.0 was assumed as the moment when the droplet touches the thin liquid film. 

The temporal evolution of the interface is showed in Fig.5 for Case A ( � � =143.23) and Case B ( � � =1432.30). It can 

be observed from Fig.5 that when the droplet collides on the thin liquid film, a crown wall is formed and widening as time is 

marching. Furthermore, when the � �  number is increased by 10 times, the crown wall is splashed and two satellite droplets 

are formed eventually. Fig.6 shows the time evolution of the non5dimensional crown radius /; : of Case B versus DT, 

where the predicted spread factors agrees well with the experimental data of power law from Refs. [55, 56], which is 

*
/ 1.29=; : � . 

 

3.4. Surface tension 

To further verify the capability of  the improved pseudopotential MRT LB model tuning the surface tension 

independently from the DR, following Ref. [40], the parameter 7  in Eq. (16) was chosen for verification using the 

Laplace’s law and the droplet’s impact onto a thin liquid film. The reduced temperature was set to be / �5 5 = 0.50, The 

multiple5relaxation5time coefficients still kept the same as Sectoin.3.1, while the kinematic viscosity of gas phase and liquid 

phase were set to be 0.033 and 0.006667, respectively. Fig. 7 presents the relationship of pressure difference between inside 

and outside of the droplet versus 1 / �  for three cases: 157 =1.0, 157 =0.75 and 157 =0.25. It can be seen that the surface 

tension gradually reduces with the increasing of the parameter 7 . Moreover, it is important to note that the pressure 

difference is still linear with the reciprocal of droplet radius at different values of 157 . 

At the same time, the simulation of a droplet impacting a liquid film was carried out by using different values of 7 . The 

gas and liquid kinematic viscosity were set to be 0.16666 and 0.066666, respectively. Other parameters and conditions were 

kept the same as Section 3.3. The density contour of liquid droplet and thin film, as well as their collision, can be found in 

Fig.8 for 157 =1.0, 157 =0.75 ,157 =0.5 and 157 =0.25 at *
� =2.64. As shown, with the same as DR, increasing 7  solely will 

cause the splash of crown wall and the appearance of satellite droplets. 

 

3.5. Contact angle  

In Ref. [43], the model proposed by Li can adjust the contact angle well after adding the pseudopotential force between 

the wall and the fluid. However, it was found that when the wall wettability was too strong or too weak, the spurious 

velocity was too large by considering the liquid5solid force. Therefore, in this paper, the boundary condition of the solid 

wall was changed to the halfway bounce5back scheme [57] without increasing the flow5solid force. In order to verify this 

proposed boundary conditions, we conducted a detailed verification by implementing the contact angle. We chose the grid 

calculation of the size of ×8� 8% =400× 200 , and the initial droplet placed above the solid wall to observe the wetting 

characteristic. The droplet radius was set to be 50, meanwhile, the initial ordinate of the droplet was ( /28� , 

50). For DR and other parameters were the same as Section 3.4. Fig. 9 is given to show the wetting process at the same time 

where/0 equals to 50.2, 0.0, 0.2. From Fig. 9, one can observe that the droplet gradually spread along the wall with the 

passage of time. However, the liquid droplet wetting process differed at different /0 at the same time. The droplet wetting 

length increases with decreasing /0. 

In order to accurately investigate the spreading process of droplet along the different wetting characteristic (CA) walls. 
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The droplet wetting process changing over time when/0  equals to 50.2, 50.1, 0.0, 0.1, 0.2 can be found in Fig. 10.  Fig.10 

also presents the power law ( �
�

� � ) [6] fitting for five different spreading processes. It can be demonstrated that the 

wetting characteristic of the droplet is in good agreement with Power law [6]. Furthermore, increasing the wetting ability of 

the wall, the exponent parameter of �  in the power law will be increased, which is in good agreement with experimental 

data and the numerical simulation results of molecular dynamics [58, 59]. 

Fig.11 also shows the stable state of the droplet along the wall at different /0 , and we find that different /0  can 

achieve the adjustment of wetting characteristic of the wall. Fig.12 shows the relationship between contact angle and /0  , 

which is almost linear correlation. Fig.13 indicates that when the /0  equals to 50.1, 0.0, 0.1, the two5phase velocity vector 

diagram of the stabilized droplet can be seen from the figure. The large velocity vector only appears at the interface. In order 

to verify the magnitude of the spurious velocity at different /0 , Fig.14 presents the spurious velocity of different wall 

wetting characteristics as a relaxation time equals to 0.8 . It can be seen that even at CA=27°, the spurious velocity is still 

less than 0.03 which is much smaller than the data in Fig.9 in Ref. [43].  

To sum up, after using the new wall boundary condition and the pseudopotential force on the wall, it can be guaranteed 

that /0  has the ability to adjust the wetting characteristics of the wall and with less spurious velocity even if 

the DR reaches 750. 

 

.(
�������
�	�
�������


Fig.15 illustrates the initial state of the droplet impact on the solid particles in the microchannel. In this figure, the 

droplet and the solid particle are located on the center line of X5axis, where the droplet diameter is :  and the length of the 

square solid particles is � . It was defined that at the initial collision time, the initial velocity of the droplet was set as 

( , )=(0,U)
� %

� � . At the same time, the shortest distance between the droplets and the solid particles in the Y5 axis direction 

was defined as 	 . In addition, the rest of the domain is gas5phase region. In this simulation, the boundary conditions of no5

slip wall were set in the left and right wall, the periodic boundary conditions were employed in the upper and lower wall, 

and the non5slip wall boundary conditions were still adopted for the solid particles in the computational domain. The new 

DT was defined as /=5 9 � :  , and assuming 5  = 0 as the time of the droplet starting falling. In order to better describe the 

process of droplet impact on solid particles at different parameters, we defined characteristic parameter: ��  number and 

��  number. And they can be expressed as:  

υ
=
9:

��                                           (20) 

2ρ
σ

=
9 :

��                                         (21) 

where 9  is the initial velocity of the droplet, :  represents the diameter of the droplet,υ  denotes the kinematic viscosity of 

the droplet, ρ  and σ  are the density and surface tension of the droplet. 

In order to discuss the effect of solid particle size on the droplet impacting process, the ratio of the solid obstacle length 

and the droplet diameter was defined as follows: 

1
χ =

�

:
                                           (22) 
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To find the effect of the width of the channel on the droplet impacting process, we defined the ratio of the channel width 

and the droplet diameter as Eq. (23).  

2
χ =

8�

:
                                          (23) 

where 8� is the width of the channel. 

The following dimensionless length was also defined to describe how the distance from the solid obstacle can affect the 

impacting process: 

3

h
χ =

:
                                           (24) 

It is worth noting that the lattice unit was adopted for all the dimensionless lengths in the computational process in this 

paper. 

The relaxation times for the pseudopotential MRT5LB model were selected the same as Section 3.1. The reduced 

temperature was chosen as /5 5�=0.50 corresponding DR= 750, and without specified description, the gas5liquid density 

ratio kept constant. Next, it will discuss the effects of e�  number, ��  number, gas5liquid kinematic viscosity ratio (KVR=

/� �υ υ ), gas5liquid density ratio (DR = /� �ρ ρ ), the geometry dimensionless parameter and the shape of solid partial. In 

order to clearly describe the process of the droplet stretching and rupturing over time, the maximum interface width of the 

droplet along the horizontal and vertical directions as < , =  was defined as shown in Fig.16. And the horizontal and vertical 

dimensionless lengths can be defined as follows: 

1

L
ζ =

:
                                          (25) 

2

H
ζ =

:
                                          (26) 

 

4.1. Effects of Reynolds number 

     A computational domain was chosen as ×8� 8%=300× 500 lattice units. As suggested in Ref. [60], the radius of droplet 

should be large than 60 lattice units, therefore in this study the diameter of the droplet was set as : =100 lattice units, and 

the center coordinates of the droplet were 8� /2 in the horizontal direction and 350 in the vertical direction respectively. In 

this part, the length of the square particle located at the bottom of the droplet was set as 40 lattice units and the shortest 

distance of the droplet to the square solid was 80 lattice units, so the dimensionless parameter 3χ  was equal to 0.8. Without 

specified description, 3χ  was kept as constant in the following sections. The initial velocity of the droplet was set as 9

=0.02 and correspondent ��  number was �� =300. Because the MRT collision model was chosen in this paper, which 

allowed us to deal with the low viscosity fluid flow. In this section, the kinematic viscosity of gas and liquid were set to be 

0.1, 0.006667, respectively, and DR was 750. Therefore, the values of DR and KVR were close to the ratio of the water to 

air (DR=773, KVR=15). Besides, contact angle was set as 90°, namely, /0 =0.0. 

Fig.17 shows the dependence of interface evolution over time during the droplet impacting solid particle at �� =300, 

DR=750, KVR=15. In this figure, )5 was set as 0.08 in each frame of Fig.17, and the first frame image of the DT is5

=0.08. (Without specified description, the initial moment and time step are consistent in the remaining sections). We can see 
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that the droplet gradually move toward the solid at a given initial velocity (See 5 = )5 , 2)5 , 3 5) ) as show in Fig.17; at5

= 4 )5 , we find that the droplet lean on the upper wall of the square obstacle and then continue to fall along the solid wall 

under the effect of the inertial force of the droplet (See 5 =5 )5 , 6 )5 , 7 )5 ). Then the droplet continues to fall along the 

wall surface, and finally wraps the square solid particle. 

In order to investigate the effect of the initial ��  number on the droplet colliding solid particles, we 

increase the ��  number to 750. The evolution of the interface over time is given by Fig.18.  From the figure, one can 

observe that as the initial droplet ��  number increasing, the rate of expansion of the droplet accelerates towards to the both 

sides of the solid particle at 5 =3 )5 . Besides, the droplet falls along the wall further as time goes on. However, compared 

with the situation of �� =300, the wetting distance is much longer downwards. At 5 =5 )5 , the height of droplet interface 

surpasses the height of the bottom of the solid. Under the inertial force, the droplet further falls. Finally, the droplet is 

separated into two small secondary droplets due to the solid obstacle, but the drop does not breakup still at 5 =12 )5 . 

We further increased the ��  number to 1200. Fig.19 presents the evolution of the two5phase interface over time at the 

same time step. It can be seen that at 5 = )5 , the droplet completely wetted the upper wall, and then the droplet does not 

move along the wall as shown in Fig.19. On the contrary, the droplet expands towards both sides of the solid (See 5 =2

)5 ). However, at 5 = 3 )5  , the droplet still wets the left wall and right wall, which may be due to the large shear stress 

on the droplet at the vertical boundary of the solid obstacle and the droplet rupture under inertial force. At the same time, the 

droplet continues to stretch in two sides of the solid particle (See 5 =6 )5 , 7 )5 , 8 )5 ). Furthermore, we observe that the 

spherical droplet on the left and right sides of the solid gradually is stretched and then it forms long ligaments (See 5 =9

)5 , 10 )5  ), and we also find that the droplet is split into three parts. In the subsequent stretching process, the two layers 

of liquid film on the left and right walls of the solid start to separate from the solid (See 5 =11 )5 ); finally, the liquid film 

stretched downwards is further fragmented and broken by the surface tension and two satellite droplet are formed (See 5

=12 )5 ), but the droplet above the solid remains on top of it without changing its shape. 

In summary, it can been seen that the results of a droplet impacting on solid is that at a small ��  number, the droplet 

slowly wets the wall, and when ��  further increases, the droplet along the solid obstacle falls faster, but does not form a 

thin liquid film. After the ��  number increases to 1200, the droplet spreads to the both sides of the solid rapidly after the 

droplet collision, and then form a long and thin liquid film, and the droplet is separated into satellite droplets finally. 

Therefore, it is demonstrated from the three Cases that increasing the ��  number of droplet will cause more intense 

dynamic behavior. 

 

4.2. Effects of Weber number 

It has no doubt that the ��  number is the key characteristic parameter to control the dynamic performance of droplet 

impacting on solid obstacles. Therefore, in this section, we explored the effect of ��  number on dynamic behavior of 

droplet colliding solid particle. Due to the limitation of LB model itself, it is extremely difficult for tuning surface tension 

independently on droplet colliding solid obstacles in prior literature. However, the improved pseudopotential LB model with 

addition force term, which makes us tune surface tension easily. In the computational setting, the DR, computational domain 

and other conditions still keep the same as Section 4.1, which means the DR is 750 and KVR is 15, and the ��  number of 

all the cases still is equal to 1200. However, the different surface tension of the droplet can be realized the parameter of 7  in 
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the Eq. (16). The different parameter 7  were chosen as Case a: 7 =50.5, Case b: 7 =0.0 and Case c: 7 =0.5, respectively. As 

a result, the surface tension obtained by the Laplace’s law were Case a: σ =0.0065, Case b: σ =0.0042, and Case c: σ

=0.002 respectively. Fig. 20 illustrates the multiphase interface evolution at the same DT corresponding Case a, Case b, 

Case c, respectively.  

Notice the picture that, at the beginning of the droplet colliding solid particle, three is no differences in the interface 

evolution(See 5 = )5 , 2 )5 ); but at the next moment, we find that with the increase of ��  number, the two layers of 

liquid film become longer and thinner along the both sides of the solid. At the same time, While keeping ��  number 

constant, the smaller We number is, the larger surface tension of the droplet is, and the drop wetting rate becomes faster(See 

5 = 3 )5 ). Then we observe that the liquid film connecting the left and right sides of the solid becomes longer and thinner 

in Case a but the size of the droplet at the end is larger(See 5 = 4 )5 ). Moreover, at large radius of curvature, the first 

rupture of the film occurs in Case a and it does not take place at the same time for Case b and Case C (See 5 = 5 )5 ). 

Finally, the liquid film becomes more and more slender under pull force and breaks up for Case c. And the droplet formed 

due to the rupture of the film adheres to the top of the solid particle while the secondary satellite droplets formed by Case 

a and Case b remain in the gas phase. However, it can be found that the satellite droplet on the top wall have no difference 

in three cases. 

In order to quantify the outcome of droplet impacting on solid obstacle, we still track the dimensionless expansion 

length. The dimensionless expansion length of Case a, Case b and Case c versus DT is given by Fig.21. From the figure we 

can observe that there is no change in the length of expansion of the drop along the left and right sides of the solid in the 

early stages of the collision, but increasing the ��  number will lead to longer expansion length, and this intends will be 

more obvious in the next time.  

 

4.3. Effects of contact angle 

The wetting property of the wall is a key parameter for the droplet striking the solid obstacle [61]. Although some 

scholars had carried out experimental studies on the droplet impact under different wetting walls [16] , but only three 

different wetting wall conditions were studied. At the same time, it is hard to get a lot of different wetting surfaces at one 

time without changing the geometric shape, but numerical simulation naturally has the convenience. Li 

et.al [39]  numerically explored the dynamics of droplet past different wetting solid circular cylinder under gravity 

by LB method, but the velocity of droplet before contact with solid obstacle was very small. At the same time, the authors 

only focused on the movement of the droplet under the hydrophilic wall. Therefore, in order to full understand the influence 

of different wetting characteristics on the kinetic characteristics of droplet impacting on a solid obstacle, in this part, the 

contact angle was selected from hydrophilic to hydrophobic, and the CA was chosen as CA = 

69.01 °, 90 °, 107.68 °, 123.14 °, 140.80 °. However, the other parameters remained unchanged, and it is guaranteed that 

DR=750, KVR=15, �� =1200, �� =69.21. 

In order to simplify the results, Fig.22 illustrates the time evolution of the two5phase interface over time at CA = 

69.01 °, CA = 107.68 ° and CA = 140.80 ° at the same time, which corresponds with Case a, Case b and Case c in current 

study. It can be seen that at 5 = )5 , there is no difference between the three wetting walls, but at the next moment ( 5 =2

)5 ) , we find that the droplet of Case a has wetted the wall, whereas Case b and Case c only expand to the left and right 
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sides; then (5 =3 )5 ) the droplet in Case b begins to wet the wall, while the droplet has completely wetted the left and 

right walls in Case a. Further (5 =4 )5 ), the liquid film in Case a has wetted the bottom of the solid while Case b and Case 

c still stretched only to the left and right sides. At 5 =5 )5 , the droplet of Case a completely wets the whole solid while the 

bottom liquid film is further separated into two parts. At the same moment, the liquid films on both the left and right of Case 

b and Case C rupture. At the end (See 5 =6 )5  ), the liquid film at both sides of Case b is further split into two droplets, 

and impact on the left and right channel walls. Meanwhile, the liquid film in Case c has also impacted the left and right 

channel walls, but the front of the liquid film is slightly away from the wall. For Case b and Case c, there is a little 

difference that secondary droplets form on the top of the solid due to left5right liquid film rupturing. For the secondary 

droplet with CA = 107.68 °, the droplet still remains on the top wall of solid, whereas for CA = 140.80 ° the droplet has 

bounced up and stayed in the air. The reason is that wall wetting behavior in Case c is worse than one in Case b. 

Fig.23 illustrates the relationship between the dimensionless length stretched of the liquid drop along the horizontal 

wetted wall and the DT. From the Fig.23, one can see that with the exception of CA = 90 °, as the wettability of the wall is 

weakened (CA → 180 ° ), the expansion length of the drop increases at the same moment. We also observe that the more 

hydrophobic the solid obstacle is, the shorter the time it takes for the liquid film to touch the channel wall. Further, 

Fig.24 shows the relationship between the dimensionless length in the vertical direction and the DT. It can be seen from the 

figure, in the case of different solid wetting wall, the stretched length of the droplet in the vertical direction changes a little. 

Or rather, it almost keeps constant. 

 

4.4. Effects of solid particle size 

In the case of keeping the diameter of the droplet equaling to 100, let the length of the square particle equaled to 20, 40, 

60, 80. In this section, we still kept the same DR=750, KVR=15, and the computation domain 500 300× = ×8� 8%  was 

employed. However, the ��  number was set to be 900, and the contact angle was equal to CA=90°. 

The snapshots of two5phase fluids after the droplet hits the solid at the same time when the solid side length to droplet 

diameter ratio is equal to 1χ =20/100, 1χ =40/100, 1χ =60/100, which corresponds to Case a, Case b and Case C, respectively 

is given by Fig. 25 . From the figure we can see that the smaller the solid particles, the faster the velocity of the liquid 

droplet wetting wall (See 5 =2 )5 ,3 )5 ); from 5 =5 )5 , the droplet has ruptured in Case a, however, the drops of Case b 

and Case c are still adhered to the wall. Finally, at 5 =6 )5 , the droplet in Case a has completely dropped. The liquid film 

has also been split into two sections in Case b, whereas the Case c liquid film remains unbroken. We will divert attention to 

the droplet hanging on the solid particles. It can be concluded from the results that the size of the solid particle has a great 

influence on the droplet staying above the solid, and the size of the droplet left on the solid top increases with increasing 1χ . 

In order to further investigate the effect of solid particle of different sizes on the droplet impacting and spreading 

process, Figs.26 and 27 show the relationship between the horizontal stretched length of the droplet and DT and the 

relationship between the vertical stretched length of the droplet and DT after the droplet impacts the solid particles of 

different sizes. From Fig.26, it can be seen that the size of the solid particle has a great influence on the interface change of 

the drop impact. When 1
χ >0.5, the stretched length of the droplet at the same time is much larger than 1

χ <0.5, but the 

change of the spreading length of the droplet is not obvious when increasing the size of solid particle. For 1
χ <0.5, the 

stretched length in 1
χ =0.4 is larger than one in 1

χ =0.2 in the early stage of collision, but smaller in the late stage. As can 
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be seen from Fig.27, with the solid particle size remaining constant, the droplet dropping velocity is faster at the same time 

with the decrease of 1
χ , and the stretching length is nearly linear with respect to the DT. On the other hand, the stretched 

length along the vertical direction increases with increasing the size of solid particle, and the stretched length is almost 

inversely proportional to the particle size. 

 

4.5. Effects of channel width  

In previous literature, droplet impacting solid particles occurs mostly in free space, therefore droplet impact in the 

microchannel is rarely studied, especially the effect of the width of the microchannel on droplet impact. Therefore, in this 

section, we studied the influence of the channel width to droplet diameter ratio on impacting process, and it should be noted 

that the dimeter of droplet and the length of square solid particle remained unchanged in different cases, and were set to be 

100 lattice units and 40 lattice units, respectively. The ratios of the width of channel to droplet size were set as 2
χ =150/100, 

2
χ =200/100, 2

χ =250/100, 2
χ =300/100, 2

χ =350/100, 2
χ =400/100, respectively. The DR, KVR, initial e�  number of the 

droplet and � �  number were consistent with ones in Section 4.3. Liquid droplet and solid particle were placed in the center 

position of X5axis of the channel, and to ensure that 2
χ =80/100. In the following, we will investigate the effects of different 

microchannel widths independently for the situation that without considering wetting characteristics, considering the 

hydrophilic wall and considering hydrophobic wall. 

 

4.5.1. Without considering the wetting property of the wall 

Fig.28 shows the interface evolution at the same moment in the process of a droplet colliding on a solid barrier without 

considering wetting property of the left and right wall of the channel corresponding to Case a: 2χ =150/10, Case b: 2χ

=250/100, Case c: 2χ =350/100. From the figure we can observe that at 5 = )5 , 2 )5  there is no difference of the 

interfaces change under the three schemes; however, when 5 =3 )5 , the droplet has hit the channel wall in Case a, the 

droplet is still being stretched towards both sides in Case b and Case c. Then after 5 =5 )5 , the droplet has hit the wall in 

the Case b and the droplet continues to stretch in Case c. At the next moment, the droplet of Case a is split into a long liquid 

film and continues to fall under the inertial force and the counterforce of the wall of the droplet (See 5 =6 )5 ). Finally, 

at 5 =8 )5  , se observe that in Case a, due to narrow channel widths and a larger area of the top liquid film continues to 

drop with its elongated liquid film. The falling liquid film in Case b has formed two satellite droplets while touching 

droplets on the wall to form folds, whereas the droplet in Case c freely develops towards both sides due to the wide channel 

length, but due to the surface tension and the inertia force, the elongated liquid film at both sides is again separated into an 

elongated liquid film, and finally the liquid droplet is divided into three secondary droplets and four liquid films. 

Figs.29 and 30 indicate the evolution of dimensionless spreading length over time along the horizontal and vertical 

direction with different channel widths for droplet impacting on a square solid obstacle respectively. From Fig.29 we 

observe that as the width of the channel increasing, the deformation of the droplet first reaches the maximum when touching 

the wall and then bounces back and finally decreases gradually. At the same time, we also find that when 2χ <350/100, at the 

moment, the maximum spreading length reached before touching the wall is the same. When 2χ =350/100, the horizontal 

spreading process of the droplet will not be affected by the wall of the both sides. 
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It can be seen from Fig.30 that when 5 <1.5, at the same moment the vertical stretched length of the droplet with 2χ

=1.5 has the largest value, and the stretched length is almost the same under other parameters. However, the smaller the 

channel width, the larger the vertical stretched length of the droplet at the same time subsequently, which is due to the 

smaller the channel width, the earlier the droplet impinges on the wall, resulting in no horizontal development of the droplet. 

 

4.5.2. Droplet impacting the hydrophilic solid particles in the walls of hydrophilic channel  

Furthermore, we set the left and right walls as well as the solid particle to be hydrophilic, with CA = 69.01° and the 

other dimensionless parameters was consistent with Section 4.5.1. Fig.31 presents that process of the droplet impacting the 

solid particle when the channel width to droplet diameter ratios are 2χ =150/100, 2χ =250/100, 2χ =350/100 respectively at 

the same time. We find that there is no difference in the droplet interface deformation between the three schemes (See 5 =

)5 , 2 )5 ) at the beginning of the collision. However, at 5 =3 )5 , droplet in Case a has hit the wall, while the droplet in 

Case b and Case c continue to stretch freely. At the next time (5 =4 )5 ), the liquid film in the larger inertial force moves 

upwards, the droplet is still free to spread in Case b and Case c at this time. Lastly (see T = 6 ) T ) ,  due to the narrow 

channel in Case a, the liquid film has already wetted a very large part of the wall at high impact force, whereas the liquid 

film has just begun to wet the wall in Case b and the liquid film is still developing freely in Case c. 

In the meantime, Fig.32 shows the evolution of maximum dimensionless length of the horizontal liquid film over the 

DT after the droplet collides with solid particle at the 2χ  ranging from 150 to 400. We find that the horizontal spreading of 

the droplet develops along droplet spreading process of the maximum microchannel. And only when the channel width is 

narrower and the interfacial width of the droplet reaches the maximum in the early period and will not change over 

time. This is because when the wall is a hydrophilic wall, the droplet contacts the left and right walls and will stick to the 

wall all the time, which leaves the width of the horizontal interface unchanged. 

 

4.5.3. Drop impacting hydrophobic solid particle under the hydrophobic channel  

The contact angle was set to CA=123.14°. Fig.33 presents the process of the droplet impacting solid particle under the 

condition that channel width to droplet diameter ratios are 2χ =150/100, 2χ =250/100, 2χ =350/100 respectively at the same 

time. It can be obtained from the instantaneous change in the interface that at 5 = )5 , hydrophilic and hydrophobic 

interfaces changing have no difference, but at 5 =2 )5 , the droplet has hit the wall in Case A, the wetting phenomenon 

does not occur for the left and right sides of the solid particles. At the next moment (See 5 =3 )5 ), the liquid film does not 

wet the wall upwards like the hydrophilic wall when the liquid film touches the wall in Case a, but wets downwards. At the 

same time, because the wall is hydrophobic, the front of the liquid film is slightly away from the wall (See 5 =4

)5 ). Further (See 5 =5 )5 ), the liquid film at both sides ruptures, but the wider the channel width compared to Case a and 

Case b , the thinner the liquid film is stretched. Finally (See 5 =6 )5 ), the droplet above the solid of three schemes have 

become elliptical and substantially the shapes are the same, however, the liquid film has suffered different results at the 

bottom of the solid. Specially for Case c, the liquid film is further broken into two parts under joint action of the wall 

counterforce, surface tension and inertial force, however the liquid films are still stuck together in near the wall for Case 

a and Case b. 

Furthermore, Figs.34 and 35  show that the evolution process of horizontal spreading dimensionless length and vertical 
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spreading dimensionless length over DT during the droplet impacting solid obstacle at different channel widths. From 

Fig.34, we can see that the processes of droplet impacting on the hydrophobic wall surface and the hydrophilic wall surface 

horizontal spreading are basically the same. This is because the droplet spreading process is greatly affected by the 

horizontal channel width. When decreasing the width of the channel, the droplet first contacts the wall surface, and the 

change is not made in the future. From Fig.35, one can observe that channel width has a little effect on the dimensionless 

vertical length, curves almost overlap together, but when the droplet hits the vertical walls, the dimensionless vertical length 

suddenly increases. Further, it can be concluded that after the drop collides with the solid wall, the vertical stretched length 

of the liquid film immediately approaches the vertical stretched length of the liquid film at the minimum channel width. 

 

/(
#�	������	�


In this paper, a large DR pseudopotential MRT5LB model was developed. In this model, we added the external force 

term in the collision term to satisfy the independent regulation of surface tension. Furthermore, we also added the improved 

pseudopotential wall force to achieve the different wetting properties of the wall. In order to verify the accuracy of the 

model and the program, we validated the improved model by Laplace’s law of stationary droplet in gas phase, calculation of 

spurious velocity under different DR, the spreading radius of the droplet impacting on liquid film and droplet wetting 

different wetting walls at large DR. It can be demonstrated that the model can satisfy thermodynamic consistency, can 

accurately capture the process of the droplet impacting the liquid film under large ��  number, and ��  number, and agree 

with the experimental data [55, 56] and the process of the droplet spreading meets power law under different wetting walls 

[58, 59]. Finally, we applied the improved model to the droplet impacting on square solid obstacle. Effects of ��  number, 

��  number, the wall surface wetting properties, the size of solid particle and width of the microchannel on the deformation 

and rupture mechanism of the droplet were investigated, and the following conclusions can be expressed as: 

a)  At smaller ��  number, the droplet glides directly along the solid obstacle without rupturing; further increasing the ��  

number, the shape of the droplet changes more during impacting and will form two independent droplets at both sides 

of the solid obstacle; with the further increase of ��  number, the droplet spread quickly to the both sides of the solid 

after encountering obstacles, then the liquid film at both sides is stretched and form a small liquid film, and finally the 

liquid film splits into smaller droplet and liquid film under joint action of the inertia force and surface tension. 

b)  During the impacting process, the larger the ��  number, the more difficult it is for the droplet to maintain its initial 

state, which results in a more elongated liquid film on both sides of the solid particle, and at the same time, the liquid 

film expands toward both sides more quickly. 

c)  On the hydrophilic wall, the droplet in the process of impacting first wets the wall early, and the droplet ruptures under 

the solid obstacle accompanied by a layer of liquid film adhered to the solid obstacles as time goes on. For the 

hydrophobic wall, the more hydrophobic the walls, the faster the spread of the droplet to both sides. As the 

hydrophobicity of the wall becomes stronger, the droplet that is split above the solid instead bounces back, whereas the 

liquid film on the left and right sides is less susceptible for secondary breakup. 

d)  The smaller the square solid obstacle, the earlier the droplet ruptures, and the larger the size of the droplet forms at both 

sides. Further, we find that when 1
χ  ranges from 0 to 1 , when 1

χ >0.5 , the droplet spreads more rapidly to both sides, 

and when 1
χ <0.5, the spread velocity of the drop to both sides greatly reduces. For the vertical spreading process, the 
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length of droplet spreading downwards for small solid particle is almost linear with the DT, and inversely proportional 

to the solid particle size. 

e)  The smaller the width ratio of the width of microchannel to droplet diameter, the more rapid droplet drops; at the same 

time, we find that when 2
χ >300 , the height of the liquid film will be free to develop. For the hydrophilic wall, during 

the droplet impacting the left and right walls, some of the liquid film will spread upwards under the action of large 

inertia force, but the spreading velocity downwards is much greater than the spreading velocity upwards. For the 

hydrophobic wall, the liquid film at great velocity will still touch the wall but for smaller 2
χ , and it is different from 

hydrophilic wall that the liquid film will not wet the wall upwards and only wet the wall downwards; at the same time, 

the front of the liquid film wetting the wall downwards will be slightly away from the solid wall. 
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