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Abstract We develop a stable and high-order accurate finite difference method
for problems in earthquake rupture dynamics in complex geometries with multiple
faults. The bulk material is an isotropic elastic solid cut by pre-existing fault
interfaces that accommodate relative motion of the material on the two sides. The
fields across the interfaces are related through friction laws which depend on the
sliding velocity, tractions acting on the interface, and state variables which evolve
according to ordinary differential equations involving local fields.

The method is based on summation-by-parts finite difference operators with ir-
regular geometries handled through coordinate transforms and multi-block meshes.
Boundary conditions as well as block interface conditions (whether frictional or
otherwise) are enforced weakly through the simultaneous approximation term
method, resulting in a provably stable discretization.

The theoretical accuracy and stability results are confirmed with the method of
manufactured solutions. The practical benefits of the new methodology are illus-
trated in a simulation of a subduction zone megathrust earthquake, a challenging
application problem involving complex free-surface topography, nonplanar faults,
and varying material properties.
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1 Introduction

In this paper we develop a numerical method that can be applied to problems
of propagating shear ruptures, particularly those arising in earthquake rupture
dynamics. The rupture problem couples seismic wave propagation and frictional
sliding on faults, and is thus influenced by both fault and surrounding material
response. Over the temporal and spatial scales of interest in rupture dynamics,
the rock response can be approximated as linear elastic (though more complex
models can be considered which account for inelastic deformation) and the fault
as an infinitesimally thin frictional interface.

As the material on one side of the fault is displaced with respect to the other,
jump conditions relate stress and particle velocity on the two sides of the fault. The
tangential displacement discontinuity across the interface is referred to as slip. The
jump conditions arise from force balance considerations and constitutive laws for
evolving fault strength (i.e., friction laws). Friction laws used in rupture dynamics,
which are described in more detail below, depend not only on the current slip
velocity and tractions acting on the fault but also on, for instance, the history of
sliding, frictional heat generation, and transport of heat and pore fluids in the fault
zone. The latter processes are parameterized in terms of state variables that obey
differential evolution equations which are distinct from the governing equations of
the elastic medium.

Earthquake simulations, and other frictional contact problems, are inherently
interface driven. Hence numerical errors and instabilities arising from the treat-
ment of the frictional interfaces can destroy the accuracy of the solution, preventing
reliable ground motion predictions that are critical for seismic hazard assessment.

The method developed in this paper uses high-order finite difference methods
with weak enforcement of interface and boundary conditions. In order to handle
complex geometries, multi-block grids are used along with a coordinate transform
formulation. The developed method is provably stable, regardless of mesh skew-
ness, and can be used with quite general frictional formulations.

1.1 Previous work on seismic wave propagation and dynamic rupture modeling

The boundary integral equation method (BIEM) has been quite popular for crack
and rupture propagation problems (Das, 1980; Andrews, 1985; Das and Kostrov,
1988; Perrin et al., 1995; Geubelle and Rice, 1995; Kame and Yamashita, 1999;
Aochi et al., 2000; Lapusta et al., 2000; Day et al., 2005; Noda et al., 2009).
BIEM reduces the problem to solving only for the solution along the fault, with
the material response entering through convolutions over the past history of slip
or tractions on the fault. The main computational cost is associated with the
convolutions. At least in present formulations, BIEM is limited to faults in a linear
elastic medium with uniform material properties.
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Finite element methods (FEM) overcome some of these computational chal-
lenges, and have been successfully applied to rupture problems (Oglesby et al.,
1998; Aagaard et al., 2001; Ma and Liu, 2006; Moczo et al., 2007). In contrast
to BIEM, the entire volume is discretized, not just the faults. The meshes for
FEM can be quite general and typically lower order elements with linear basis
functions are used. Traditional FEM discretizations of the elastic wave equation
result in nondiagonal mass matrices. Solving the resulting linear system can be
avoided by lumping the mass matrix. This makes the spatial difference operator
rank-deficient, leading to nonphysical oscillations (hourglass modes) that must be
damped. To address this, the use of certain high-order methods, such as spectral
element methods (Ampuero, 2002; Festa and Vilotte, 2005; Kaneko et al., 2008),
which have diagonal mass matrices due to the choice of basis functions and quadra-
ture points, and discontinuous Galerkin methods (de la Puente et al., 2009; Pelties
et al., 2012), which have block-diagonal mass matrices, are gaining in popularity.

Finite difference methods, especially those on staggered grids, are also com-
monly used (Andrews, 1976; Miyatake, 1980; Day, 1982; Madariaga et al., 1998;
Day et al., 2005; Moczo et al., 2007). These methods are very efficient for wave
propagation, but proving stability is difficult with nonlinear friction laws (Rojas
et al., 2009). Additionally, staggered grid methods have difficulty handling com-
plex geometries. A notable exception is the approach of Cruz-Atienza and Virieux
(2004) for nonplanar faults.

Within seismic wave propagation there has been work on the use of unstaggered
grids for the first and second order form of the equations of elasticity (Bayliss
et al., 1986; Zhang and Chen, 2009; Nilsson et al., 2007). Coordinate transforms
have been applied to both forms of the equations to handle complex geometries
(Fornberg, 1988; Tessmer et al., 1992; Appelö and Petersson, 2009).

1.2 Approach and outline of the paper

In our previous paper (Kozdon et al., 2012) we developed a strictly stable numer-
ical method for two dimensional antiplane shear problems with nonlinear friction
laws depending only on slip velocity and shear stress. That study was limited to
flat faults and regular (Cartesian) meshes. Here, we extend the method to tensor
elasticity in irregularly shaped domains through the use of coordinate transforms
and multi-block grids. Additionally, we introduce state dependence to the friction
law through the rate-and-state formalism; more details on this are given in Sec. 3.

The remainder of the paper is organized as follows. In Sec. 2 we outline the
governing equations and the general computational framework. This section is
designed to give the reader a roadmap for the paper, providing a concise summary
of the details necessary to understand and implement the method. Sec. 3 presents
the specific form of the boundary and interface conditions used in this work. Energy
estimates for the continuous and discrete problems are derived in Sec. 4, thus
proving that the method presented in Sec. 2 is stable.

These theoretical results are confirmed in Sec. 5 through two test problems.
First the method of manufactured solutions is used to show that the method con-
verges at the expected rate of accuracy on a highly skewed mesh. Next we test
the practical benefits of the method by simulating a subduction zone megathrust
earthquake. This simulation requires highly skewed meshes, complex free-surface
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topography, a nonplanar fault, and material blocks with differing physical proper-
ties. Conclusions are drawn in Sec. 6.

2 Form of the governing equations and computational approach

In this paper we consider a 2-D, isotropic elastic medium. Complex geometries
are handled through the use of coordinate transforms and multi-block grids. The
full computational domain is decomposed into curvilinear quadrilateral blocks. To
each of the blocks coordinate transforms are applied so that the computational
domain is regular (rectangular). It is in this regular domain that the high-order
finite differences are applied. In the decomposition, fault and material interfaces
(discontinuous changes in material properties) are mapped to block edges.

2.1 Governing equations

We partition the computational domain Ω ⊂ R
2 into a set of disjoint, curvilin-

ear quadrilateral blocks Ω(l) ⊂ Ω (see Figure 1). The edges of the blocks can
either be outer boundaries or internal interfaces. As will be seen, at the block
level these can be treated identically in the discretization even though interface
and boundary conditions are of a different form. Therefore we refer to boundary
and interface conditions generically as edge conditions. Since the structure of the
scheme does not depend on the specifics of the boundary and interface conditions,
a full discussion of these is delayed until Sec. 3.

Within each block, the particle velocities vi and the components of the stress
tensor σij are governed by momentum conservation and Hooke’s law:

ρ
∂vi
∂t

=
∂σij
∂xj

, (1)

∂σij
∂t

=λ δij
∂vk
∂xk

+G

(
∂vi
∂xj

+
∂vj
∂xi

)
, (2)

where here, as in subsequent equations, Roman subscripts take values 1, 2, 3 and
summation is implied over repeated Roman subscript indices. Here ρ is the density,
G is the shear modulus, λ is Lamé’s first parameter, and δij is the Kronecker delta.
In this paper we assume that material properties ρ, λ, and G are constant within
each block, but can vary between blocks, i.e., the material properties are piecewise
constant. Due to conservation of angular momentum the stress tensor is symmetric:
σij = σji. Thus, governing equations (1) and (2) represent nine equations for the
nine unknowns (six components of stress and three particle velocities).

Given a block Ω(l) we transform to a regular domain Ω̃(l) = [0, 1]× [0, 1] (see

Figure 1) using the transforms x
(l)
1 = x

(l)
1

(
ξ
(l)
1 , ξ

(l)
2

)
and x

(l)
2 = x

(l)
2

(
ξ
(l)
1 , ξ

(l)
2

)
;

we assume that this transform is invertible so that ξ
(l)
1 = ξ

(l)
1

(
x
(l)
1 , x

(l)
2

)
and

ξ
(l)
2 = ξ

(l)
2

(
x
(l)
1 , x

(l)
2

)
also exist. Across block interfaces we require the transform

to be conforming, e.g., in Figure 1 x
(a)
i (ξ1, 0) = x(b)(ξ1, 1), but no other smoothness
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Fig. 1: Example of the coordinate transforms and multiblock decomposition. Two
blocks, labeled (a) and (b), are shown with an interface between them. In this

example, the interface is mapped to the south edge of block (a) (ξ
(a)
1 = 0) and

the north edge of block (b) (ξ
(b)
1 = 1). As shown, the material properties in each

block can be different and, apart from matching at the interface, each block has
an independent coordinate transform. The unit normal n on each edge is outward
pointing and orthogonal unit vector m is defined such that m × n = ẑ. The
variables w+(a) and w+(b) denote the characteristic variables propagating into
blocks (a) and (b), respectively, and the characteristic variables w−(a) and w−(b)

are those propagating out of the blocks.

constraints are imposed across the interfaces. The Jacobian determinant is then

J =
∂x1
∂ξ1

∂x2
∂ξ2

−
∂x1
∂ξ2

∂x2
∂ξ1

, (3)

where here, as in the remainder of the paper, we drop the superscript (l) when con-
sidering a single block unless it is necessary for clarity. The coordinate transform
and Jacobian determinant give rise to the metric relations

J
∂ξ1
∂x1

=
∂x2
∂ξ2

, J
∂ξ1
∂x2

= −
∂x1
∂ξ2

, J
∂ξ2
∂x2

=
∂x1
∂ξ1

, J
∂ξ2
∂x1

= −
∂x2
∂ξ1

. (4)

Using the metric relations, conservation of momentum (1) and Hooke’s law (2)
can be expressed in the transformed coordinate system as

ρJ
∂vi
∂t

=γ
∂

∂ξα

(
J
∂ξα
∂xj

σij

)
+ (1− γ) J

∂ξα
∂xj

∂σij
∂ξα

, (5)

J
∂σij
∂t

=γ

[
λ δij

∂

∂ξα

(
J
∂ξα
∂xk

vk

)
+G

∂

∂ξα

(
J
∂ξα
∂xj

vi + J
∂ξα
∂xi

vj

)]
(6)

+ (1− γ)

[
λ δijJ

∂ξα
∂xk

∂vk
∂ξα

+G

(
J
∂ξα
∂xj

∂vi
∂ξα

+ J
∂ξα
∂xi

∂vj
∂ξα

)]
, (7)



6 Jeremy E. Kozdon et al.

where here, as in subsequent equations, summation is implied over 1 and 2 for
repeated Greek subscript indices. The parameter γ can take any value in the con-
tinuous problem. It is common to set γ = 1 so that in the constant coefficient
case the equations can be written in conservation form. Unfortunately this intro-
duces an energy instability in the discretized equations (Nordström and Carpenter,
2001), which is particularly pronounced on highly skewed grids with long time in-
tegration. Instead, we will show that with γ = 1/2 a provably stable method can
be developed regardless of mesh skewness (Nordström, 2006).

To fully specify the problem the edge conditions are required. The form of
these is given in Sec. 3, but in order to present the method a few definitions are
required. Consider the single edge of a block. We define n = [n1, n2, 0]T to be
the outward pointing unit normal to the block edge. Since we are considering a
2-D domain, the unit vector ẑ = [0, 0, 1]T is orthogonal to n and we define
m = n× ẑ = [n2, −n1, 0]

T to be the second orthogonal coordinate direction (see
Figure 1). The stress tensor and particle velocities can now be rotated into this
new coordinate system, and it is in this rotated coordinate system that we apply
the edge conditions. Namely, we define the rotated particle velocities

vn = nivi, vm = mivi, vz = v3, (8)

which are the components of particle velocities normal (vn) and orthogonal (vm,
vz) to the edge. The components of traction acting on the interface are

Ti = σijnj . (9)

The tractions can be further decomposed into the normal traction σn (taken to be
positive in compression) as well as the two components of shear traction τm and
τz, aligned with m and ẑ, acting on the interface:

σn =− niTi = −niσijnj , τm = miTi = miσijnj , τz = ẑiTi = ẑiσijnj , (10)

Ti =− σnni + τmmi + τz ẑi. (11)

There are three additional components of stress in the new coordinate system
which do not exert tractions on the interface:

σm =miσijmj , σmz = miσij ẑj , σz = ẑiσij ẑj = σ33. (12)

We now assume that edge conditions are of the form

gn (Ti, vi) = 0, gm (Ti, vi) = 0, gz (Ti, vi) = 0, (13)

where gn, gm, and gz can be linear or nonlinear functions and in the case of
interface conditions will depend on the solution on both sides of the interface.

2.2 Discrete framework

As in our previous work, we use summation-by-parts (SBP) finite difference meth-
ods (Kreiss and Scherer, 1974, 1977; Strand, 1994; Carpenter et al., 1999; Mattsson
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and Nordström, 2004) on an unstaggered grid. An SBP difference approximation
to the first derivative has the form

∂v

∂x
≈ H

−1
Q v, (14)

where H is a symmetric positive definite matrix, Q is an almost skew-symmetric
matrix withQT+Q = B = diag[−1, 0, . . . , 0, 1], and the vector v = [v0, v1, . . . , vN ]T

is the grid data. These are called SBP methods because they mimic integration-by-
parts properties of the continuous problem. Defining the continuous and discrete
inner products

(u, v) =

∫ b

a

u(x) v(x) dx and (u,v)h = u
T
Hv, (15)

this becomes clear since

(
v,
dv

dx

)
=

∫ b

a

v
dv

dx
dx =

1

2

[
v(b)2 − v(a)2

]
, (16)

(v,H−1
Qv)h = v

T
Q v =

1

2
v
T (Q+Q

T ) v =
1

2
(v2N − v20). (17)

SBP operators are standard central difference operators, having orders q =
2, 4, 6, 8, . . . in the interior, that become one-sided operators near boundaries in
a manner that ensures the SBP property. The boundary order of accuracy r is
typically lower than the interior accuracy q and hence the global accuracy is p =
r+1 (Gustafsson, 1975; Svärd and Nordström, 2007). In this work we only consider
diagonal norm (diagonal H) operators which have interior accuracy q = 2s (s =
1, 2, . . . ), boundary accuracy r = s, and global accuracy p = s+1. There are SBP
operators that have boundary accuracy r = 2s−1 and global accuracy p = 2s, but
using these makes stability proofs difficult for problems with variable coefficients,
coordinate transforms, and nonlinear boundary/interface conditions (Nordström
and Carpenter, 2001; Olsson, 1995; Nordström, 2006; Kozdon et al., 2012).

Each block Ω̃(l) is discretized using an N
(l)
1 ×N

(l)
2 grid; note that each block

can have a different number of grid cells, but the grids must conform at the block
interfaces, i.e., have the same number of collocated grid points on both sides of
the interface. Let vi and σij be the particle velocities and stresses on the grid
stacked as a vectors:

vi =
[
(vi)00 , (vi)01 , . . . , (vi)N1N2

]T
, (18)

σij =
[
(σij)00 , (σij)01 , . . . , (σij)N1N2

]T
. (19)
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The transformed governing equations (5) and (6) are then discretized in space
using dimension-by-dimension application of the 1-D difference operators,

ρJ
∂vi
∂t

=γD̄α

(
J
∂ξα
∂xj

σij

)
+ (1− γ) J

∂ξα
∂xj

D̄ασij (20)

+ ρPN
i + ρPS

i + ρPE
i + ρPW

i ,

J
∂σij
∂t

=γ

{
λ δijD̄α

(
J
∂ξα
∂xk

vk

)
+GD̄α

(
J
∂ξα
∂xj

vi + J
∂ξα
∂xi

vj

)}
(21)

+ (1− γ)

[
λ δijJ

∂ξα
∂xk

D̄αvk +G

(
J
∂ξα
∂xj

D̄αvi + J
∂ξα
∂xi

D̄αvj

)]

+P
N
ij +P

S
ij +P

E
ij +P

W
ij ,

where the matrices J and ∂ξα/∂xi are diagonal matrices with elements along the
diagonal ordered in the same manner as vi and σij . The difference operators are
defined as

D̄1 = D1 ⊗ IN2
, D̄2 = IN1

⊗D2, (22)

with Dα being the 1-D SBP difference operators, INα
being the Nα×Nα identity

matrix, and ⊗ representing the Kronecker product of two matrices.
Weak enforcement of the edge conditions is captured via the penalty terms Pi

and Pij where the superscripts refer to each of the block edges: N refers to the
“north” edge ξ2 = 1, S to the “south” edge ξ2 = 0, E to the “east” edge ξ1 = 1,
andW to the “west” edge ξ1 = 0; see Figure 1. Since we consider only the diagonal
norm SBP operators, the penalty terms only act on grid points along the block
edges. Thus, the penalty terms take the form of vectors which are zero except for
the grid points on the edge to which they refer, e.g., along the west edge they are
of the form

P
W
i =

[(
PWi

)
00
, . . . ,

(
PWi

)
0N2

, 0, . . . , 0
]T
, (23)

P
W
ij =

[(
PWij

)
00
, . . . ,

(
PWij

)
0N2

, 0, . . . , 0
]T
, (24)

and similarly for the other edges.
In order to state the penalty terms we consider a single grid point on one of

the block edges; for clarity in this discussion we drop the subscripts denoting grid
index. From the grid data we define the hat variables

v̂n, v̂m, v̂z, σ̂n, σ̂m, σ̂mz, σ̂z, τ̂m, τ̂z, (25)

which satisfy the edge conditions (13), and are dependent on the grid solution at
the edge; the specific form of these is given in Sec. 3 and it will be shown that these
hat variables are defined in a manner that only modifies the three characteristic
variables propagating into the block. These hat variables are written in terms of
the edge local coordinate system; they can of course be rewritten in terms of the
global coordinate system using the inverse relations to (8), (10), and (12):

v̂i =niv̂n +miv̂m + ẑiv̂z, (26)

σ̂ij =− niσ̂nnj +miσ̂mmj + ẑiσ̂z ẑj +miσ̂mz ẑj +miτ̂mnj + ẑiτ̂znj . (27)
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The terms arising in the penalty vector then take the general form




P1

P2

P3

P11

P12

P13

P22

P23

P33




=




ΣT
1

ΣT
2

ΣT
3

ΣT
11

ΣT
12

ΣT
13

ΣT
22

ΣT
23

ΣT
33










v1
v2
v3
σ11
σ12
σ13
σ22
σ23
σ33




−




v̂1
v̂2
v̂3
σ̂11
σ̂12
σ̂13
σ̂22
σ̂23
σ̂33







= Σ (q− q̂) , (28)

where Σ is the penalty matrix for the grid point under consideration and is chosen
such that the scheme is stable. The form above is quite general, but obscures the
simplicity of the method. Thus, we now write down the specific form that the
penalty terms take after appropriate choice of Σ (see Kozdon et al. (2012) for
details):

Pi =Σ
T
i (q− q̂)

=−
1

Tp
ni (vn − v̂n)−

1

Ts
mi (vm − v̂m)−

1

Ts
ẑi (vz − v̂z) , (29)

Pij =Σ
T
ij (q− q̂)

=
1

Tp
ninj (σn − σ̂n)−

1

Tp
mimj (σm − σ̂m)−

1

Tp
ẑiẑj (σz − σ̂z) (30)

−
1

Ts
(nimj + njmi) (τm − τ̂m)−

1

Ts
(niẑj + nj ẑi) (τz − τ̂z) ,

where Ts and Tp will be chosen such that the method is provably stable; the lack of
minus sign on σn is due to the sign convention that σn is positive in compression.
Here vn, vm, vz, σn, σm, σz, τm, and τz correspond to the grid data rotated into
the edge local coordinate system; see (8), (10), and (12). The possible schemes
represented by (29) and (30) are a subset of all possible schemes represented by
(28); see Kozdon et al. (2012) for a more detailed discussion.

The penalty terms written in the form of (29) and (30) can be interpreted
physically as relaxation of the grid data vi and σij towards values which satisfy
the edge conditions v̂i and σ̂ij (the hat variables) over the relaxation times Tp
and Ts. As will be seen in Sec. 4.2, these relaxation times scale as Tp ∼ h/cp and
Ts ∼ h/cs with cp and cs being the P-wave and S-wave speeds, respectively, and
h being the grid spacing. Since the relaxation times scale with the grid spacing
h the relaxation times go to zero under grid refinement and the edge condition is
enforced exactly. The vectors n, m, and ẑ arise because the stresses and velocities
must be rotated into a coordinate system that is aligned with the edge.

For practical implementation of the method, the formulation (29) and (30) is
extremely convenient for two reasons. First, as will be seen in Sec. 3, the edge
condition and hat variables are easily stated in terms of the local rotated coor-
dinates. Second, and perhaps more importantly, the treatment of all edges is the
same regardless of whether the edge is a boundary, locked interface, or frictional
fault. That is, Tp and Ts are the same for both external boundaries and interfaces
and are independent of the specific edge condition. This greatly simplifies code
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development by increasing modularity, allowing for a single set of routines for all
blocks; of course different subroutines are required to set the hat variables for each
edge condition.

3 Boundary and interface conditions

Here we give the specific form for the edge conditions (13). As noted above, the
edges of blocks are either outer boundaries or interfaces with other blocks. Since
the governing equations (1) and (2) are hyperbolic, the number of edge conditions
can be derived from a characteristic decomposition in the local, rotated coordinate
system (Kreiss, 1970). There are two characteristic variables associated with the
P-waves and four characteristic variables associated with the S-waves; additionally
there are three characteristic variables associated with zero speed waves.

If we consider the outward normal n to a single block of the domain, there are
three characteristic variables propagating into and three propagating out of the
block. The two characteristic variables associated with the P-waves, travelling at
velocity cp =

√
(λ+ 2G)/ρ in the directions ∓n, are

w±
n = −σn ± Zpvn, (31)

where Zp = ρcp is the dilatational impedance of the material. Similarly, the four
characteristic variables associated with the S-waves, propagating in the ∓n direc-
tions with velocity cs =

√
G/ρ, are

w±
m = τm ± Zsvm, w

±
z = τz ± Zsvz, (32)

where Zs = ρcs is the shear impedance of the material. The variable w±
m is polar-

ized in the m direction and w±
z in the ẑ direction. If ẑ were the vertical direction,

i.e., normal to Earth’s surface, then wm and wz would be associated with the SH
and SV polarized S-waves, respectively. It is worth highlighting that w±

n transmits
normal tractions and velocities to the edges, and w±

m and w±
z transmit shear trac-

tions and edge parallel velocities. To simplify the notation, we define the vectors

w
± =



w±
n

w±
m

w±
z


 . (33)

With the definition that n is the outward pointing normal, w+ corresponds to the
characteristic variables propagating into the block and w− to those propagating
out of the block; see Figure 1. As mentioned above, there are additionally three
zero speed waves:

ẘm = σm +

(
1− 2

c2s
c2p

)
σn, ẘz = σz +

(
1− 2

c2s
c2p

)
σn, ẘmz = σmz. (34)
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3.1 Outer boundary conditions

This characteristic analysis implies that we need three edge conditions relating
the characteristics propagating into the block to the characteristics propagating
out of the block. If the edges are outer boundaries, we take these to be the simple
linear expressions

w
+ = Rw−, (35)

where −1 ≤ R ≤ 1 is a reflection coefficient. Of course, more general boundary
conditions are possible, but this suffices for this paper where our primary interest
is the treatment of complex geometries and nonlinear interface conditions. Two
important boundary conditions are the free surface boundary condition Ti = 0
which results with R = −1, and the absorbing boundary condition when R = 0.
In the case of the absorbing boundary conditions, more effective nonreflecting
boundary conditions are possible (e.g., Hagstrom et al., 2008; Appelö et al., 2006),
though we do not consider these in this work.

3.2 Locked (non-frictional) interface conditions

In the case of interfaces, say between blocks Ω(a) and Ω(b), the interface conditions
take the general form:

w
+(a) = W

+(a)
(
w

−(a),w−(b)
)
, (36)

that is the characteristic variables propagating into the block are a (potentially)
nonlinear combination of the characteristic variables propagating out of the block
(and into the interface). In this work we will consider two different types of inter-
faces, leading to two different expressions for W

+(a). The simplest case is when
the interface between blocks Ω(a) and Ω(b) is not a frictional fault, that is when
the interface has been introduced to handle a change in material properties or for
purely computational reasons. We call this a locked interface. In the case of the
locked interface, W+(a) is a linear function. Though it is possible to state the
explicit form of this linear relation, it is easier to state the interface conditions
in terms of the physical variables. Force balance requires that across the interface

the tractions must be equal and opposite, T
(a)
i = −T

(b)
i , or equivalently given our

definitions of the outward normal and orthogonal vectors

σ(a)
n = σ(b)

n , τ (a)m = τ (b)m , τ (a)z = −τ (b)z . (37)

Additionally, since the interface is locked this means that the velocities are con-
tinuous across the interface so that

v(a)n = −v(b)n , v(a)m = −v(b)m , v(a)z = v(b)z . (38)

This represents six conditions for the interface, which is the correct number since
each side requires three expressions; it is straightforward to show that these can
be written in the characteristic form of W+(a) and W

+(b). The difference in sign
of the z component in (37) and (38) is due to the fact that ẑ(a) = ẑ(b) whereas
n(a) = −n(b) and m(a) = −m(b).
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3.3 Frictional interface conditions

The more interesting case is a frictional interface. As shown in App. A, there is no
general closed form expression for W

+(a) and W
+(b) in the case of a frictional

interface. Instead we will write down the friction law in the physical variables,
a nonlinear relation between the velocities and the tractions, and derive a set of
sufficient conditions that guarantee the existence of a unique characteristic form.
As in the case of a locked interface, force balance (37) requires that the tractions
be equal and opposite across the interface. We impose the physical constraint
that the fault remain closed, which implies that the opening velocity be zero, or
alternatively that the normal component of particle velocity be continuous across
the interface,

v(a)n = −v(b)n . (39)

Since the components of the fault tangential velocity are permitted to be discon-
tinuous, we define the slip velocity vector:

V =

[
Vm
Vz

]
=

[
−v

(a)
m − v

(b)
m

−v
(a)
z + v

(b)
z

]
, (40)

where, similarly to as noted in the locked interface case, the difference in sign in
the components is due to the definition of the fault tangential unit vectors. We
denote the magnitude of the slip velocity as V = ‖V‖. The nonlinear relation
between the stress and the velocity must be determined through experiments and
theoretical considerations of the physics of frictional contact (though mathematical
considerations can place some constraints on the form of these relations). In this
work we exclusively consider friction laws of the form:

τ = σ̄nf (V, ψ)
V

V
, (41)

where σ̄n = max(σn, 0) and τ = [τ
(a)
m , τ

(a)
z ]T . Note we have defined the compo-

nents of the shear traction vector with respect to side (a), if we were to define it

with respect to (b) then Vz = v
(a)
z − v

(b)
z . The form of friction law (41) implies

that τ and V are parallel. Physically this says that the shear tractions are acting
to resist fault motion. The frictional coefficient f is a nonlinear function of both
the magnitude of the slip velocity V and a state variable ψ, and is defined such
that f ≥ 0. The state variable ψ is governed by an ordinary differential equation

dψ

dt
= G (V, ψ) . (42)

Specific forms for f(V, ψ) and G(V, ψ) will be given in Sec. 5. If ∂f/∂V ≥ 0 then,
using the implicit function theorem along with equal and opposite tractions as well
as non-opening, it is possible to show that these nonlinear interface conditions
take the form of (36), i.e., a characteristic form exists although no closed form
expression is known; see App. A for more details.
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3.4 Hat variables

In the defintion of the penalty terms (29) and (30) we introduced a set of hat
variables (25). Here, we are now able to define these more precisely. Let vn, vm,
vz, σn, σm, σz, τm, and τz be the solution at a grid point on the edge of a block
rotated into the edge local coordinate system using the local normal vector n and
the two orthogonal vectors m and ẑ; see (8), (10), and (12).

With these values we can define the incoming and outgoing characteristic vari-
ables w±; see (31) and (32). The edge conditions give us the boundary or interface
conditions in terms of the characteristic variables propagating out of the block,
that is we can also define W+ as the edge condition evaluated with w−. When the
edge is an interface between two blocks (a) and (b) the edge conditions W

+(a)

and W
+(b) are evaluated using the characteristic variables propagating out of

both blocks, w−(a) and w−(b).

We now define the hat variables using w− and W
+. The particle velocities

are defined as

v̂n =
1

2Zp

(
w+
n −W−

n

)
, v̂m =

1

2Zs

(
w+
m −W−

m

)
, v̂z =

1

2Zs

(
w+
z −W−

z

)
, (43)

and the tractions as

σ̂n = −
1

2

(
w+
n +W−

n

)
, τ̂m =

1

2

(
w+
m +W−

m

)
, τ̂z =

1

2

(
w+
z +W−

z

)
, (44)

along with the components of stress which do not extert tractions on the interface

σ̂m = ẘm −

(
1− 2

c2s
c2p

)
σ̂n, σ̂z = ẘz −

(
1− 2

c2s
c2p

)
σ̂n, σ̂mz = ẘmz, (45)

where ẘm, ẘz, and ẘmz are the zero speed characteristic variables (34).

One of the properties of these hat variables is that by construction they exactly
satisfy the edge conditions both in terms of the characteristic variables and the
physical variables. This is important when the edge is an interface between two
blocks, say blocks (a) and (b). In the case of a locked interface the particle velocities
are continuous with equal and opposite tractions (see (37) and (38)):

σ̂(a)
n = σ̂(b)

n , τ̂ (a)m = τ̂ (b)m , τ̂ (a)z = −τ̂ (b)z , (46)

v̂(a)n = −v̂(b)n , v̂(a)m = −v̂(b)m , v̂(a)z = v̂(b)z . (47)

Similarly, when the edge is a frictional interface, the hat variables satisfy the
nonlinear friction law (41) and continuity conditions

τ̂ = σ̄nf
(
V̂ , ψ

)
V̂

V̂
, τ̂ (a)m = τ̂ (b)m , τ̂ (a)z = −τ̂ (b)z , (48)

σ̂(a)
n = σ̂(b)

n , v̂(a)n = −v̂(b)n , (49)

Additionally, when integrating the state variable ψ with (42) we use V̂ and not V
as defined by the grid data.
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4 Energy estimates

In order to develop an energy estimate, we need both continuous and discrete
energy norms E and Eh, that is positive definite functionals of the solution. In
general there are an infinite number of possibilities for this, but for the equations
of linear elasticity it is convenient to choose the norm that corresponds to the
physical energy in the system. Namely, we let

E(t) =
∑

l

E(l)(t), (50)

E(l)(t) =

∫∫

Ω(l)

[
ρ

2
vivi +

1

4G
σij

(
σij −

λ

3λ+ 2G
σkkδij

)]
dx1 dx2

=

∫∫

Ω̃(l)

[
ρ

2
vivi +

1

4G
σij

(
σij −

λ

3λ+ 2G
σkkδij

)]
J dξ1 dξ2. (51)

where E(l)(t) corresponds to the total mechanical energy per unit distance in the
z−direction for block (l) and E(t) is the total energy for the entire system (Slaugh-
ter, 2002). In (51) the first term is the material kinetic energy and the second term
is the elastic strain energy (Slaughter, 2002). By rewriting the block energy (51)
in terms of the mean stress σ̄ = σkk/3, the components of the deviatoric stress
tensor sij = σij − σ̄δij , and the bulk modulus K = λ+ 2G/3,

E(l)(t) =

∫∫

Ω̃(l)

[
ρ

2
vivi +

1

4G
sijsij +

1

2K
σ̄2

]
J dξ1 dξ2, (52)

it is clear that E(l)(t) ≥ 0 if ρ ≥ 0, G ≥ 0, and K ≥ 0.
Similarly, we introduce the semi-discrete energy by approximating the integrals

in (51) with the H matrices from the SBP operators:

Eh(t) =
∑

l

E
(l)
h (t), (53)

E
(l)
h (t) =

ρ

2
v
T
i JH̄vi +

1

4G
σ
T
ijJH̄

(
σij −

λ

3λ+ 2G
σkkδij

)
, (54)

where H̄ = H1 ⊗H2 can be interpreted as a quadrature rule for approximating
the integrals in (51). Note that since we exclusively consider the diagonal norm
SBP operators, i.e., Hi is diagonal, the matrices J and H̄ commute, and the
product JH̄ is symmetric.

With these definitions for the energy, we say that there is an energy estimate
for the continuous and discrete problems if

E(t) ≤ E(0), Eh(t) ≤ Eh(0), (55)

that is the energy at any future time is bounded by the initial energy in the
solution; for more general definitions of well-posedness and energy estimates see
Kreiss and Lorenz (1989) and Gustafsson et al. (1996). In order to show that the
energy estimate (55) holds for the continuous and discrete problems we will show
that:

dE

dt
≤ 0,

dEh
dt

≤ 0, (56)
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and then (55) holds after integration.
Remark: Due to the nonlinearity of the interface conditions, uniqueness of the
solution does not follow directly from the energy estimate since the difference of
two solutions does not satisfy the friction law (Kozdon et al., 2012). The question of
well-posedness for the most general problem of sliding between dissimilar elastic
materials with rate-and-state friction laws is still an open and active research
question (Rice et al., 2001). Since the focus of this paper is the development of a
stable numerical method, we do not consider this question further here.

4.1 Continuous problem energy estimate

As noted above, an energy estimate for the continuous problem can be derived by
looking at the energy dissipation rate for the problem. Namely, taking the time
derivative of the continuous energy (50) gives

dE

dt
=
∑

l

dE(l)

dt
, (57)

dE(l)

dt
=

∫∫

Ω̃(l)

[
ρvi

∂vi
∂t

+
1

2G
σij

∂σij
∂t

(58)

−
λ

4G(3λ+ 2G)
δij

(
∂σij
∂t

σkk + σij
dσkk
dt

)]
J dξ1 dξ2.

Plugging in the governing equations (5) and (6) gives, after some straightforward
algebra,

dE(l)

dt
=

∫∫

Ω̃(l)

{
γ

[
vi

∂

∂ξα

(
J
∂ξα
∂xj

σij

)
+ σij

∂

∂ξα

(
J
∂ξα
∂xj

vi

)]

+(1− γ)J
∂ξα
∂xj

(
vi
∂σij
∂ξα

+ σij
∂vi
∂ξα

)}
dξ1 dξ2

=

∫∫

Ω̃(l)

[
∂

∂ξα

(
J
∂ξα
∂xj

viσij

)
−

1

2
(1− 2γ)viσij

∂

∂ξα

(
J
∂ξα
∂xj

)]
dξ1 dξ2.

(59)

Using the metric relations (4) it follows that

∂

∂ξα

(
J
∂ξα
∂xj

)
= 0, (60)

and thus the last term cancels regardless of the choice of γ; this is as expected
since all choices of γ yield the same continuous problem. Using this along with the
divergence theorem the energy dissipation rate (59) becomes

dE(l)

dt
=

∫ 1

0

[
J
∂ξ1
∂xj

viσij

]1

ξ1=0

dξ2 +

∫ 1

0

[
J
∂ξ2
∂xj

viσij

]1

ξ2=0

dξ1

=

∫

∂Ω(l)

viσijnj ds, (61)
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where we have transformed back to an integral over the block edge ∂Ω(l) with ds
being the arc length. The integrand can be rewritten as

viσijnj = viTi = −vnσn + vmτm + vzτz, (62)

which is the rate of work per unit surface area done on the block edge by boundary
tractions (Malvern, 1977).

The block edge can be either an outer boundary or an interface (locked or
frictional), and thus we derive the contribution from each of these conditions sep-
arately.

4.1.1 Outer boundary

For outer boundaries the edge conditions take the form of w+ = Rw−. Rewriting
the physical variables in terms of the characteristic variables (31) and (32), the
integrand becomes

−vnσn + vmτm + vzτz =
1

4Zp

[(
w+
n

)2
−
(
w−
n

)2]
+

1

4Zs

[(
w+
m

)2
−
(
w−
m

)2]

+
1

4Zs

[(
w+
z

)2
−
(
w−
z

)2]

=− (1−R2)
1

4

[(
w−
n

)2

Zp
+

(
w−
m

)2

Zs
+

(
w−
z

)2

Zs

]
. (63)

Since −1 ≤ R ≤ 1 this is negative semidefinite, and an energy estimate results if
the edge is an outer boundary with the linear boundary condition.

4.1.2 Interface conditions

If the edge is an interface, we consider two blocks (a) and (b) on either side of the
interface. We thus consider the sum of the integrals from both blocks, which leads
to the combined integrand

v
(a)
i T

(a)
i + v

(b)
i T

(b)
i =

(
v
(a)
i − v

(b)
i

)
T

(a)
i

=−
(
v(a)n + v(b)n

)
σ(a)
n +

(
v(a)m + v(b)m

)
τ (a)m (64)

+
(
v(a)z − v(b)z

)
τ (a)z

where we have used the fact that the tractions across the interface are equal and
opposite (37). In the case of the locked interface, the particle velocities are also
continuous across the interface (38), and thus integrand (64) is zero.

All that is left to consider is the frictional interface condition. In this case, the
normal component of velocity is continuous, and therefore (64) can be rewritten
as

v
(a)
i T

(a)
i + v

(b)
i T

(b)
i =− τ (a)m Vm − τ (a)z Vz = −τ

T
V. (65)

Applying the interface conditions (41) we have that

−τ
T
V = −σ̄nf (V, ψ)V ≤ 0, (66)
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which is negative semidefinite since V , f , and σ̄n are non-negative by definition.
Thus we have an energy estimate for the continuous problem. Eqn. (66) represents
the rate at which work is done on the fault.

4.2 Discrete problem energy estimate

Here we use the energy method to pick penalty parameters for the semi-discretization
such that the numerical method is stable. Furthermore, we will show that with
our choice of penalty parameters the numerical scheme and continuous problem
dissipate energy at rates that are identical up to the order of accuracy of the
scheme. To do this, we will follow a completely analogous procedure as was used
in the continuous energy estimate. Namely, we will take the time derivative of the
discrete energy (54) and plug in the semi-discretization (20) and (21). We will
then choose the penalty parameters Tp and Ts in the penalty terms (29) and (30)
such that energy is dissipated at the correct rate, and thus stability follows.

Taking the time derivative of the discrete energy (54) and plugging in the
semi-discretization (20) and (21) gives, after some algebra,

dE
(l)
h

dt
=v

T
i

[
γQ̄αJ

∂ξα
∂xj

+ (1− γ)J
∂ξα
∂xj

Q̄α

]
σij

+σ
T
ij

[
γQ̄αJ

∂ξα
∂xj

+ (1− γ)J
∂ξα
∂xj

Q̄α

]
vi (67)

+ ρvTi H̄
(
P
N
i +P

s
i +P

E
i +P

W
i

)

+
1

2G

(
σ
T
ij − δij

λ

3λ+ 2G
σ
T
kk

)
H̄
(
P
N
ij +P

s
ij +P

E
ij +P

W
ij

)
,

where for convenience we have made the following definitions

Q̄1 = Q1 ⊗H2, Q̄1 = H1 ⊗Q2. (68)

In the continuous problem, the energy dissipation rate (59) was simplified using
the metric relations and chain rule. This cannot be done for the discrete energy
dissipation rate (67) as the discrete operators do not satisfy the chain rule. It is
for this reason that we have introduced the splitting parameter γ. By making the
choice γ = 1/2 the first two terms of (67), i.e., those that do not involve penalty
parameters, become

1

2
v
T
i

[
Q̄αJ

∂ξα
∂xj

+ J
∂ξα
∂xj

Q̄α

]
σij +

1

2
σ
T
ij

[
Q̄αJ

∂ξα
∂xj

+ J
∂ξα
∂xj

Q̄α

]
vi

=
1

2
v
T
i

[(
Q̄
T

α + Q̄α

)
J
∂ξα
∂xj

+ J
∂ξα
∂xj

(
Q̄
T

α + Q̄α

)]
σij

= v
T
i J

∂ξα
∂xj

B̄ασij , (69)

where we have defined

B̄1 = B1 ⊗H2, B̄1 = H1 ⊗B2, (70)
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with Bi = Qi + QT
i . The form of (69) exactly mimics the continuous energy

estimate (61); of course nothing can be said about the sign of (69) since it does not
include the penalty terms. Making a different choice for γ, such as the conventional
choice of γ = 1, results in an energy growth term that will be of O(hp) with
sufficient refinement. This growth can destroy the accuracy of the solution for
sufficiently long time integration (see Sec. 5 and Nordström and Carpenter (2001)).

In order to determine the penalty terms, it is useful to perform a few interme-
diate calculations. Consider a single grid point (i, N2) on the north edge, all other
edges are handled in an analogous manner. Omitting the grid indices for clarity, in
the energy dissipation rate (67) the penalty term involving velocity can be written
as

viP
N
i =−

1

Tp
vn (vn − v̂n)−

1

Ts
vm (vm − v̂m)−

1

Ts
vz (vz − v̂z)

=−
1

Tp

(
w+
n − w−

n

)

2Zp

(
w+
n − ŵ+

n

)

2Zp

−
1

Ts

(
w+
m − w−

m

)

2Zs

(
w+
m − ŵ+

m

)

2Zs
(71)

−
1

Ts

(
w+
z − w−

z

)

2Zs

(
w+
z − ŵ+

z

)

2Zs
,

where we have transformed from the physical variables to the characteristic vari-
ables using (31) and (32). In order to consider the penalty terms of (67) involving
stress, we first note that since the mean stress σ̄ is an invariant of the stress tensor
and (n,m, ẑ) forms an orthonormal basis it follows that

3σ̄ = σii = −σn + σm + σz. (72)

We can then write

σijP
N
ij =

1

Tp

(
3λσ̄ − 2Gσn
λ+ 2G

)
(σn − σ̂n)−

2

Ts
τm (τm − τ̂m)−

2

Ts
τz (τz − τ̂z) ,

(73)

where we have used the fact that

σm − σ̂m = σz − σ̂z = −

(
1− 2

c2s
c2p

)
(σn − σ̂n) = −

λ

λ+ 2G
(σn − σ̂n) . (74)

Additionally, we can write

δij
λ

3λ+ 2G
σkkP

N
ij =

1

Tp

3λ

λ+ 2G
σ̄ (σn − σ̂n) . (75)
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Thus in (67) the penalty terms involving stress can be written as

1

2G

(
σij − δij

λ

3λ+ 2G
σkk

)
PNij =−

1

Tp (λ+ 2G)
σn (σn − σ̂n)

−
1

TsG
τm (τm − τ̂m)−

1

TsG
τz (τz − τ̂z)

=−
1

Tp(λ+ 2G)

(
w+
n + w−

n

)

2

(
w+
n + ŵ+

n

)

2

−
1

TsG

(
w+
m + w−

m

)

2

(
w+
m + ŵ+

m

)

2
(76)

−
1

TsG

(
w+
z + w−

z

)

2

(
w+
z + ŵ+

z

)

2
,

where once again we have used (31) and (32) to go from the physical variables to
the characteristic variables. Similarly, (69) can be rewritten in characteristic form:

∂ξ2
∂xj

viσij =|∇ξ2| (−vnσn + vmσm + vzσz)

=|∇ξ2|

{
1

4Zp

[(
w+
n

)2
−
(
w−
n

)2]
+

1

4Zs

[(
w+
m

)2
−
(
w−
m

)2]

+
1

4Zs

[(
w+
z

)2
−
(
w−
z

)2]}
, (77)

with no summation taken over repeated subscripts n, m, and z, and the gradient
∇ξ2 is taken with respect to the physical coordinate system xi not the transformed
coordinate system ξi.

Plugging (69), (71), (76), and (77) into the discrete energy estimate (67) gives
[
dE

(l)
h

dt

]

(i,N2)

=
H1J |∇ξ2|

4Zp

[(
w+
n

)2
−
(
w−
n

)2
− 2w+

n

(
w+
n − ŵ+

n

)]
(78)

+
H1J |∇ξ2|

4Zs

[(
w+
m

)2
−
(
w−
m

)2
− 2w+

m

(
w+
m − ŵ+

m

)]

+
H1J |∇ξ2|

4Zs

[(
w+
z

)2
−
(
w−
z

)2
− 2w+

z

(
w+
z − ŵ+

z

)]

where we have chosen the penalty parameters (relaxation times) to be

Tp =
H1

J |∇ξ2|cp
, Ts =

H1

J |∇ξ2|cs
. (79)

In order to show that (78) is negative semidefinite, note that
(
w+
)2

−
(
w−
)2

− 2w+
(
w+ − ŵ+

)
=
(
ŵ+
)2

−
(
w−
)2

−
(
w+ − ŵ+

)2
, (80)

which holds for w± = w±
n , w

± = w±
m, and w± = w±

z . The third term in (80) is
a numerical dissipation term which is always negative semidefinite. Furthermore,
this term will go to zero under refinement as w+ approaches ŵ+. Thus, in order

to prove that the scheme is stable, we only need to show that
(
ŵ+
)2

≤
(
w−
)2

so
that (80) is negative semidefinite.

As in the continuous case, we consider the boundary and interface conditions
separately.
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4.2.1 Outer boundary

If the edge is an outer boundary, then the edge conditions take the form of (35)
with ŵ− = Rw+, and therefore

(
ŵ+
)2

−
(
w−
)2

=−
(
1−R2

)(
w−
)2
. (81)

Since we constrain −1 ≤ R ≤ 1 this is negative semidefinite. The total energy
dissipation rate when grid node (i, N2) is an outer boundary is then

[
dE

(l)
h

dt

]

(i,N2)

=−
(
1−R2

) H1J |∇ξ2|

4

[(
w−
n

)2

Zp
+

(
w−
m

)2

Zs
+

(
w−
z

)2

Zs

]
(82)

−
H1J |∇ξ2|

4

[(
w+
n − ŵ+

n

)2

Zp
+

(
w+
m − ŵ+

m

)2

Zs
+

(
w+
z − ŵ+

z

)2

Zs

]
,

which is negative semidefinite. Furthermore, the first term is of the same form
as in the continuous problem (63) and the second term is the above mentioned
numerical dissipation term. This numerical dissipation term will go to zero as the
grid is refined and the grid data approaches the hat variables which strictly satisfy
the boundary conditions. Thus, the numerical scheme and the continuous problem
dissipate energy at the same rate up to the order of accuracy of the scheme.

4.2.2 Interface conditions

In order to consider the case of an edge being an interface, we transform back to
the physical variables:

(
ŵ+
n

)2
−
(
w−
n

)2
=
(
ŵ+
n − w−

n

)(
ŵ+
n + w−

n

)
= −4Zpv̂nσ̂n, (83)

(
ŵ+
m

)2
−
(
w−
m

)2
=
(
ŵ+
m − w−

m

)(
ŵ+
m + w−

m

)
= 4Zsv̂mτ̂m, (84)

(
ŵ+
z

)2
−
(
w−
z

)2
=
(
ŵ+
z − w−

z

)(
ŵ+
z + w−

z

)
= 4Zsv̂z τ̂z. (85)

Using these, the energy dissipation rate (67) becomes:

[
dE

(l)
h

dt

]

(i,N2)

=H1J |∇ξ2|T̂iv̂i (86)

−
H1J |∇ξ2|

4

[(
w+
n − ŵ+

n

)2

Zp
+

(
w+
m − ŵ+

m

)2

Zs
+

(
w+
z − ŵ+

z

)2

Zs

]
.

Considering only the first term and summing over both sides of the interface gives

H
(a)
1 J(a)

∣∣∣∇ξ(a)2

∣∣∣ T̂ (a)
i v̂

(a)
i +H

(b)
1 J(b)

∣∣∣∇ξ(b)2

∣∣∣ T̂ (b)
i v̂

(b)
i

= H
(a)
1 J(a)

∣∣∣∇ξ(a)2

∣∣∣
[
−
(
v̂(a)n + v̂(b)n

)
σ̂(a)
n +

(
v̂(a)m + v̂(b)m

)
τ̂ (a)m (87)

+
(
v̂(a)z − v̂(b)z

)
τ̂ (a)z

]
.
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where we have used the fact that the tractions across the interface (for the hat
variables) are equal and opposite (46). In the case of the locked interface, the hat
variable particle velocities are also continuous across the interface (47), and thus
(87) is zero.

In the case of frictional interfaces, only the normal component of velocity is
continuous (see (49)), and therefore

H
(a)
1 J(a)

∣∣∣∇ξ(a)2

∣∣∣
(
T̂

(a)
i v̂

(a)
i + T̂

(b)
i v̂

(b)
i

)
= −τ̂ (a)m V̂m − τ̂ (a)z V̂z = −V̂

T
τ̂

(a). (88)

Though in general the grid data will not satisfy the friction law, the hat variables
V̂T and τ̂ (a) have been constructed such that they exactly satisfy the friction law
(see (48)):

−V̂
T
τ̂

(a) = −ˆ̄σnf(V̂ , ψ)V̂ ≤ 0. (89)

Since this is negative semidefinite, we have an energy estimate and stability follows.
Eqn. (89) is of the same form as the energy dissipation in the continuous problem
(66), and thus, even in the case of nonlinear interface conditions, the discrete and
continuous solutions dissipate energy at the same rate up to the order of accuracy
of the scheme.

5 Computational results

To confirm the above stability and accuracy results we test the method (and the
code which implements the method) in two ways. In order to rigorously verify
the accuracy, convergence, and stability properties of the method the method of
manufactured solutions (MMS) (Roache, 1998) is used. In MMS, boundary data
(forcing functions) and source terms are added to the problem in such a way that
the exact solution is known a priori. In the second test we apply the method
to an extremely challenging application problem—a subduction zone megathrust
earthquake—involving a highly irregular domain, complex free surface topography,
multiple blocks with different material properties, and a nonplanar fault.

In all the results that follow, the mesh is generated using the transfinite inter-
polation method (Knupp and Steinberg, 1993) after specifying the location of the
points (and outward pointing normals) on the boundaries and faults. The metric
derivatives (e.g., ∂xi/∂ξα) are computed using the same SBP difference operators
used in the semi-discrete approximation.

As formulated, the method can encompass all two-dimensional problems, in-
cluding both plane strain (mode II ruptures), antiplane shear (mode III ruptures),
and even mixed mode shear ruptures. However, both tests are restricted to plane
strain deformation in the x1− and x2−directions only, for which only P and SV
waves are excited. Convergence tests for the antiplane shear problem were con-
ducted by Kozdon et al. (2012).

5.1 Rate-and-State Friction and Nondimensionalization

Before proceeding to the computational results, we first present the specific rate-
and-state friction law used in this work and cast the problems in nondimensional
form.
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Fig. 2: Response of the friction coefficient, f , to an abrupt increase in slip velocity
from V to V +∆V , for a friction law that is instantaneously velocity-strengthening
(∂f(V, ψ)/∂V > 0) with a velocity-weakening steady state (dfss(V )/dV < 0). f
instantaneously increases from the steady state value fss(V ) (the direct effect),
then evolves with slip over the state evolution distance, L, to the new, lower steady
state value fss(V +∆V ).

We use the regularized slip law form of rate-and-state friction (Rice, 1983;
Lapusta et al., 2000):

f(V, ψ) =a arcsinh

(
V

2V0
exp

(
ψ

a

))
,
dψ

dt
= −

V

L
[f(V, ψ)− fss(V )] , (90)

where L is the state evolution distance, V0 is an arbitrary reference velocity, and
a is the direct effect parameter. Experiments and theory demonstrate that a > 0
(Rice et al., 2001), corresponding to an instantaneous strengthening of the fault
following an abrupt increase in V , as illustrated in Figure 2. Following the direct
effect, f(V, ψ) evolves toward fss(V ) over a characteristic slip distance L. For the
steady state friction coefficient, we use the standard logarithmic form

fss(V ) =f0 − (b− a) ln

(
V

V0

)
, (91)

where f0 is the steady state friction coefficient at V = V0 and the sign of b − a
determines whether the fault is velocity-strengthening (b − a < 0) or velocity-
weakening (b−a > 0) in steady state. The latter is necessary for unstable slip and
self-sustaining rupture propagation.

We next nondimensionalize the equations using the assumption that at least
some portion of the fault is velocity-weakening in steady state (so b− a > 0). The
state evolution distance, L, provides a characteristic slip distance. A linear stability
analysis of steady sliding along a planar frictional interface with b−a > 0 between
identical elastic half-spaces (Rice and Ruina, 1983; Rice et al., 2001) reveals that
pertubations having along-fault wavelengths exceeding a critical wavelength are
unstable; shorter wavelength perturbations are stable. (And if b− a < 0 then the
interface is stable to all perturbations as long as a ≥ 0.) For quasi-static elasticity,
the critical wavelength is approximately h∗ = GL/(b − a)σ0

n, and we take this as
the characteristic distance scale. The associated time scale is T = h∗/cs. The grid
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spacing (along the fault) must be smaller than h∗ so that the unresolved (Nyquist)
modes in the solutions cannot trigger this physical instability.

For propagating ruptures, inertial terms become important in the momentum
balance and h∗ no longer provides an accurate characterization of spatial variations
in the solution. In particular, fields vary most rapidly in the region immediately be-
hind the propagating rupture front, where the strength drop occurs. The strength
drop occurs over a distance, R, that is proportional to h∗, but about three orders
of magnitude smaller than h∗ for typical parameters. For more discussion of R and
h∗, see Rice et al. (2001) and Dunham et al. (2011a).

We therefore nondimensionalize space and time as

x̄i =
xi
h∗
, t̄ =

t

T
. (92)

The nondimensional grid spacing must satisfy h̄≪ 1 (in the vicinity of the fault).
Stresses and particle velocities are related via the shear impedance, Zs, leading to
the nondimensionalization

σ̄ij =
σij

(b− a)σ0
n

, v̄i =
Zsvi

(b− a)σ0
n

, and V̄ =
ZsV

2 (b− a)σ0
n

. (93)

In the case of dissimilar materials, a choice must be made for Zs from one side of
the interface in the nondimensionalization.

For the friction law, we select the reference slip velocity as V0 = 2 (b− a)σ0
n/Zs,

which leads to the dimensionless form

f =a arcsinh

(
V̄

2
exp

(
ψ

a

))
, (94)

dψ

dt̄
=− V̄

[
f
(
V̄ , ψ

)
− fss

(
V̄
)]
, fss

(
V̄
)
= f0 − (b− a) ln

(
V̄
)
. (95)

Thus in the friction law we have three nondimensional parameters: a, b − a, and
f0. The equations also require an initial value for ψ.

As noted in Sec. 3.4, the state variable ψ is integrated using the hat variables
(25). This is done so that state and the interface relations are integrated in a con-
sistent manner. Additionally, this avoids any complications with the fact that the
traction components of stress, as defined by the grid values, will not be continuous
across the interface when the SAT method is used.

5.2 Method of Manufactured Solutions

We consider a two block system with a frictional fault interface. The geometry of
the two blocks is shown in Figure 3. As can be seen, the blocks are transformed in
all directions and across the fault interface the coordinate transform is continuous
but not smooth. We next construct an MMS solution that satisfies continuity of

traction components of stress across the fault (T̄
(a)
i = −T̄

(b)
i ), the non-opening

condition (v̄
(a)
n + v̄

(b)
n = 0), and parallel slip velocity and shear stress. (Of course,

this is not strictly necessary, but facilitates verification of our implementation).
Since we only consider in-plane deformation, τ̄z = V̄z = 0, and the parallel re-
quirement reduces to sign(V̄m) = sign(τ̄m).
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side x̄1(ξ1, ξ2) x̄2(ξ1, ξ2)

fault 2ξ1 − 1 − sin (2πξ1) /10

S(a) 2ξ1 − 1 4ξ21(2ξ1 − 2)/5− 1

W (a) − sin (2πξ2) /5− 1 ξ2 − 1

E(a) (ξ2 − 1)ξ22 + 1 ξ2 − 1

N(b) 2ξ1 − 1 − sin (6πξ1) /10 + 1

W (b) ξ2(ξ2 − 1)2 − 1 ξ2
E(b) ξ2(ξ2 − 1)/3 + 1 ξ2

Fig. 3: Computational domain for the MMS calculation. The expression for the
block edges are given in terms of the transformed variables ξ1 and ξ2 with the
transfinite interpolation method (Knupp and Steinberg, 1993) used to define the
interior transform.

The fault is given by the curve x̄1 = 2ξ1 − 1 and x̄2 = κ(ξ1) with κ(ξ1) =
− sin(2πξ1)/10. The unit normal and perpendicular vectors to the fault are then

n
(b) = −n

(a) =
1√

4 + κ′(ξ1)2

[
κ′(ξ1)
−2

]
, (96)

m
(b) = −m

(a) =
−1√

4 + κ′(ξ1)2

[
2

κ′(ξ1)

]
. (97)

To define the solution we introduce the following auxiliary functions:

ςnn (x̄1, x̄2, t̄) , ς
(l)
m (x̄1, x̄2, t̄) , ςnm (x̄1, x̄2, t̄) , ϕn (x̄1, x̄2, t̄) , ϕ

(l)
m (x̄1, x̄2, t̄) ,

(98)
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which are all continuous functions of space and time, except for discontinuities in

ς
(l)
m and ϕ

(l)
m across the fault. The solution in the entire domain is

σ̄(l)
xx =− ςnnm

2
2 + ς(l)m n2

2 − 2ςnmm2n2, (99)

σ̄(l)
yy =− ςnnm

2
1 + ς(l)m n2

1 − 2ςnmm1n1, (100)

σ̄(l)
xy =ςnnm1m2 − ς(l)m n1n2 + ςnm (n2m1 + n1m2) , (101)

v̄
(l)
1 =ϕ(l)

m n2 − ϕnm2, v̄
(l)
2 = −ϕ(l)

m n1 + ϕnm1, (102)

m1 =− n2 = m
(a)
1 , m2 = n1 = m

(b)
2 , (103)

It is easy to verify that this solution yields fault values: v̄
(a)
n + v̄

(b)
n = 0, τ̄ = ςnm,

σ̄n = −ςnn, and V̄ = ϕ
(a)
m − ϕ

(b)
m .

In order to test both the implementation of the finite difference method as well
as state evolution we use a slightly modified frictional framework. Namely, we use
the friction law:

f =a arcsinh

(
V̄

2
exp

(
ψ∗ + δψ

a

))
, (104)

dδψ

dt̄
=− V̄

[
f
(
V̄ , ψ∗ + δψ

)
− fss

(
V̄
)]

+ V̄ ∗
[
f
(
V̄ ∗, ψ∗

)
− fss

(
V̄ ∗
)]
, (105)

ψ∗ = ln

(
2

V̄ ∗
sinh

(
τ̄∗

aσ̄∗
n

))
, (106)

where the superscript ∗ indicates fields that are known functions of space and time
evaluated using the exact solution (99)-(102). For the outer boundary conditions
we specify the incoming characteristic variables, namely w+(l) = g on ∂Ω where
g is easily defined from (99)-(102) using the outward pointing normal.

For our test we define the auxiliary functions to be

ςnn =− ςgnng (x̄1, x̄2, t̄)− ς0nn, ςnm =ςgnmg (x̄1, x̄2, t̄) , (107)

ς(a)m =− ςgmg (x̄1, x̄2, t̄) , ς(b)m =ςgmg (x̄1, x̄2, t̄) , (108)

ϕ(a)
m =− ϕgmg (x̄1, x̄2, t̄) , ϕ(b)

m =ϕgmg (x̄1, x̄2, t̄) , (109)

ϕn =ϕgng (x̄1, x̄2, t̄) , g (x̄1, x̄2, t̄) = cos
(
k̄x̄1

)
cos
(
k̄x̄2

)
cos (ω̄t̄) ,

(110)

with k̄ = 2π, ω̄ = 200π/69, ς0nn = 250, ςgnn = 125, ςgnm = ςgm = 150, and ϕgm =
ϕgm = 5. The domain given in Figure 3 is discretized using N1 = 2N2 = 2i where
i = 7, 8, 9, 10. The simulation is run until t̄f = 13.8 which corresponds to t̄f ω̄/2π =
20 oscillations of the solution. The material is identical on both sides of the fault
with a Poisson ratio of ν = 0.21875. Time integration is performed with a 4th

order, low memory Runge-Kutta method of Carpenter and Kennedy (1994) (their
5[4] method with solution 3) using a time step size ∆t̄ = 0.4416/N1 ≈ 0.3 h̄min,
where

h̄min = min
ξ1,ξ2


min


 J

N1

√(
∂x1
∂ξ2

)2

+

(
∂x2
∂ξ1

)2

,
J

N2

√(
∂x1
∂ξ1

)2

+

(
∂x2
∂ξ2

)2



 .

(111)
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10−1

10−2
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2nd 3rd 4th

N1 error rate error rate error rate

26 2.84× 100 · · · 3.24× 100 · · · 7.36× 100 · · ·

27 6.96× 100 2.03 4.19× 10−1 2.96 5.63× 10−1 3.71
28 1.73× 100 2.01 5.32× 10−2 2.98 3.51× 10−2 4.00
29 4.32× 10−1 2.00 6.69× 10−3 2.99 2.13× 10−3 4.04

Fig. 4: Global error in the H-norm and convergence rate estimates for the method
of manufactured solutions.

The error in the solution is defined as

error (N1) = ‖q− q
∗‖h, (112)

where the norm ‖·‖h is the energy norm defined in (53) and q∗ is the exact solution
evaluated at the same spatial locations as the discrete solution. We estimate the
convergence rate between successive solutions as

p(N1) = log2

(
error(N1/2)

error(N1)

)
. (113)

The results for the 2nd, 3rd, and 4th order diagonal SBP operators (Kreiss and
Scherer, 1974, 1977; Strand, 1994) are given in Figure 4, which shows the error as
a function of N1 and the estimated convergence rates.

In order to assess the importance of energy stability, particularly for long time
integration, Figure 5 compares the energy stable (γ = 1/2) method with the
non-energy stable, fully conservative (γ = 1) method; see Sec. 4.2. Shown in the
figure is the error in the solution for the N1 = 27 simulation versus time for both

schemes using the globally 4th order accurate SBP operator. As can be seen, the
error grows rapidly in time after sufficiently long time. The effects of this energy
growth are not seen at earlier times, since the growth is related to a lack of a
discrete chain rule and thus the growth rate should be of order O(h4) (Nordström
and Carpenter, 2001).
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Fig. 5: Error for the conservative (γ = 1) method and the energy stable (γ = 1/2)
method versus time.

5.3 Subduction Zone Megathrust Earthquake

We now consider a complex application problem to demonstrate the full potential
of the method. The problem is motivated by the 11 March 2011 magnitude 9.0
Tohoku, Japan, megathrust earthquake and the resulting tsunami. The specific
geometry we consider is shown in Figure 8, and is based on the subduction zone
structure in the vicinity of the Japan trench (Miura et al., 2001, 2005). The Pacific
Plate is being subducted to the west beneath the North American / Okhotsk
Plate, with relative motion across the plate interface (the fault) occurring during
megathrust earthquakes. The Japanese island of Honshu lies at the left edge of the
domain, and the upper boundary of the entire computational domain is the seafloor
(with the ocean deepening offshore until it reaches a maximum depth of about 7
km at the trench). Slip along the plate interface causes vertical deformation of the
seafloor, causing uplift or subsidence of the overlying water layer. Gravity waves
(tsunamis) occur as the sea surface returns to an equilibrium level. The model
used for this example is similar to the geometry used in Kozdon and Dunham
(submitted: 9 April 2012) except a slightly different frictional description is used.

The east (Pacific Plate) side is idealized with a three-layer model (two oceanic
layers and the uppermost mantle). As the Pacific Plate dives beneath the North
American / Okhotsk Plate, it crosses several material layers (idealized here as
upper and lower crust and the mantle wedge). We do not include an ocean water
layer in this model (it makes negligible difference in the rupture process due to the
large impedance contrast between water and rock (Kozdon and Dunham, 2011)),
and instead approximate the seafloor as a traction-free surface.

Figure 6 shows the multi-block structure used for this example, with black lines
representing interfaces across which there is a material contrast and white lines
representing purely computational interfaces. In this model there are 30 blocks
and 49 interfaces, four of which are frictional interfaces.

Initial conditions are required on stress, velocity, and state variable. We take
the initial velocity to be everywhere zero. We write the stress as the superposition
of a prestress, σ0

ij , and stress perturbations arising from slip on the fault, ∆σij .
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250 km

uppermost
mantle

lower crust

mantle wedge

trenchcoastline
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km/s

 

10 km

upper crust-1

slip 
direction

upper crust-2

oceanic layer-2oceanic layer-3

uppermost
mantle

(a)

(b)

Layer Name P-wave velocity S-wave velocity Density Shear modulus
(km/s) (km/s) (kg/m3) (GPa)

upper crust-1 4.8 2.8 2200 16.9
upper crust-2 5.5 3.2 2600 26.2
lower crust 7.0 4.0 2800 45.7
mantle wedge 8.0 4.6 3200 68.3
oceanic layer-3 5.5 3.2 2600 26.2
oceanic layer-2 6.8 3.9 2800 43.1
uppermost mantle 8.0 4.6 3200 68.3

Fig. 6: (a) Subduction zone geometry for megathrust earthquake problem. The
color scale denotes the P-wave velocity structure. Solid black lines denote different
material boundaries whereas white lines denote computational (multi-block grid)
boundaries. The fault is denoted by a thick green line. (b) Close view of the
geometry near the trench axis. The accompanying table lists material properties.

Linearity of the elastic wave equation permits us to solve only for stress pertur-
bations in the interior, but the nonlinear friction law must be enforced using the
absolute stress values. Hence we write the shear and normal stresses used in the
friction law (41) as τ = τ0 +∆τ and σn = σ0 +∆σn, respectively, where the pre-
stress values τ0 and σ0 are known functions and the stress changes are calculated
from wave propagation in the interior. This procedure is similar to adding forcing
functions on the interface as done in the MMS test problem.

We take the background normal stress to be linearly increasing with depth to
a maximum value of σ0 = 60 MPa (see Figure 7). We take the initial shear stress
to be τ0 = 0.3σ0 (except in the nucleation zone, as described below). Similarly, the
friction parameters vary with temperature and rock type (and thus with depth),
and in this model we use the profile given in Figure 7. With these values of a and
b − a, the rupture will propagate up the fault toward the free surface, but since
b − a becomes negative at depth, the downward rupture will eventually stop as
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reference velocity V0 10−6 m/s
initial state variable ψ0 0.5
state evolution distance L 0.4 m

Fig. 7: (a) Frictional parameters and (b) the effective normal stress for the sub-
duction megathrust problem.

the fault becomes velocity-strengthening. The fault is also velocity strengthening
near the trench.

In order to nucleate, or start, the rupture, the initial shear stress is increased
over a small patch of the fault:

τ0 = 0.3σ0 + 42 MPa exp

[
−
(x1 + 155 km)2 + (x2 − 30 km)2

2(1.75 km)2

]
. (114)

The stress perturbation immediately initiates rapid sliding via the direct effect
(shear stress and slip velocity increase together), since state evolution is negligible
over short time scales. Because the amplitude and width of the Gaussian pertur-
bation are sufficiently large, the perturbation grows and leads to unstable slip and
dynamic rupture.

To assess solution accuracy, we conduct the simulation at two levels of resolu-
tion. The low resolution run has ∼ 8.9× 106 grid points (4403 in the ξ1-direction
and 2015 in the ξ2-direction) with a minimum grid spacing along the fault of 200
m. We minimize the effects of the outer boundaries by using a linear grid stretching
for those blocks which border the absorbing boundary. This grid structure results
in minimum and maximum grid spacings hmin = 4 m and hmax = 9.7 km, respec-
tively, where hmin is defined in (111) and hmax is defined similarly. The time step
is ∆t = 2.5×10−4 s, corresponding to an S-wave CFL of 0.3. The 200 s simulation
requires 8× 105 time steps. The high resolution run has twice the grid resolution
(∼ 3.5× 107 grid points and 1.6× 106 time steps).

Figure 8(a) shows the wavefield at 15 s. The relative motion of the North
American / Okhotsk Plate and the Pacific Plate is consistent with the sense of
slip indicated in Figure 6. For the Japan trench, the island arc would be on the
North American / Okhotsk Plate side, approximately 250 km from the trench axis
(the intersection of the fault with the seafloor). Figure 8(b) shows the wavefield at
95 s, shortly after the rupture has reached the trench. The material on the North
American / Okhotsk Plate side is moving rapidly to the right due to interaction
of the waves reflected off the seafloor with the subducting plate interface. The
wavefield is quite rich in structure, and includes dispersed Rayleigh waves prop-
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Fig. 8: (a) Wavefield at t = 15 s for the subduction zone megathrust earthquake.
The actively slipping part of the fault lies slightly behind the hypocentral S-wave
front. (b) Wavefield at t = 110 s shortly after the rupture has reached the trench.
(a) and (b) have the same color and length scale. The arrows on the free surface
show the seafloor deformation (red and blue arrows are for points west and east
of the trench, respectively).

agating along the seafloor in the oceanic layers. These details are lost in models
that simplify the physics and geometric complexity.

An important seismological quantity is the cumulative slip on the fault, which
partially determines the magnitude of the earthquake. Slip is often estimated in
inversion studies using geodetic and seismic data. We show the cumulative slip,
plotted every 5 s, in Figure 9 for the two resolution levels. At the end of the
simulations (200 s) the maximum difference in slip between the two simulations
is 0.4% relative to the mean slip and 0.2% on average. During the simulation the
largest difference in slip is around the rupture tip.

In Figure 10 the final vertical and horizontal displacement of the ocean floor
is shown (arrows on free surface in Figure 8 show the cumulative displacement
at the wavefield snapshot times). The seafloor displacement is critical for tsunami
prediction and hazard assessment, as this is what causes the initial perturbation
to the water column. Our model results match the structure and magnitude of
uplift seen in the observed data from the Tohoku earthquake (Sato et al., 2011;
Kozdon and Dunham, submitted: 9 April 2012).

6 Conclusions

We have developed a numerical method for simulation of earthquake ruptures
in complex geometries. The method uses coordinate transforms and multi-block
meshes to handle irregular domains. Additionally, this allows the accurate coupling
of material blocks across discontinuous changes in material properties. Though
not shown, as it was outside the focus of the paper, this includes the coupling of
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Fig. 9: Cumulative slip as a function of distance along the fault, plotted at 5 s
intervals. The solid red line is the base resolution simulation and the blue line is a
simulation at twice the resolution. The earthquake is nucleated at approximately
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Fig. 10: Vertical (blue line) and horizontal (red line) seafloor displacement at
t = 200 s as a function of horizontal distance (see Figure 8). The fault reaches the
seafloor at 0 km.

elastic and acoustic blocks. The method is based on the SBP-SAT formalism, and
is provably stable with appropriately chosen penalty parameters.

Furthermore, we have developed a splitting for coordinate transforms which
ensures energy stability for arbitrary coordinate transforms. This eliminates the
additional energy growth in the numerical solution seen in previous work with co-
ordinate transforms (Nordström and Carpenter, 2001; Nordström, 2006). Though
worked out for the equations of linear elasticity, the splitting is straightforward to
apply to any linear hyperbolic system.

The accuracy and stability of the numerical method were verified using the
method of manufactured solutions for a plane strain problem; the accuracy of the
method for antiplane shear deformation was previously demonstrated by Kozdon
et al. (2012). Additionally, it was shown that the energy growth due to using the
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standard, conservative formulation destroys the accuracy of the solution on the
highly skewed meshes used for this problem, thus demonstrating the need for an
energy stable method as developed in this paper. A realistic application problem in-
volving a subduction zone megathrust earthquake through multiple material layers
demonstrated the versatility of the method for extremely challenging geometries.

The method developed in this paper has been successfully used in several simu-
lation studies of the physics governing earthquake dynamics. Kozdon and Dunham
(submitted: 9 April 2012) simulated the 11 March 2011 Tohoku, Japan, megath-
rust earthquake with realistic material properties and geometry using the method
described in this paper. This allowed Kozdon and Dunham (submitted: 9 April
2012) to make direct comparisons with seafloor deformation data and slip inver-
sions as well as demonstrate that rupture to the seafloor is possible for subduction
zone megathrust earthquakes even when the near trench fault segment is velocity
strengthening. Similarly, the method was used in Dunham et al. (2011b) to explore
the role of fault roughness on earthquake dynamics.
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A Equivalence of friction law in physical and characteristic variables

In this appendix we show that if ∂f/∂V ≥ 0 then friction law f(V, ψ) is expressible in char-
acteristic form. Assuming that the interface is between blocks (a) and (b), the normal stress
and fault normal velocity can be written using the characteristic interface variables (31):
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Continuity of normal stress (37) and fault normal velocity (39) implies that these can be
written as
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All that remains is to show that (41) can also be written in characteristic form (36). We
can write the shear stress and slip velocity using the characteristic variables (32):
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Force balance (37) and the nonlinear friction law (41) then can be written as the nonlinear
system
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where 02 is the 2× 2 zero matrix and
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with f = f(V, ψ). The determinant of J is
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If ∂f/∂V ≥ 0 then J 6= 0 and it follows by the implicit function theorem that friction law f is
expressible in characteristic form.
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J. de la Puente, J.-P. Ampuero, and M. Käser. Dynamic rupture modeling on unstructured
meshes using a discontinuous Galerkin method. J. Geophys. Res., 114:B10302, 2009. doi:
10.1029/2008JB006271.

E. M. Dunham, D. Belanger, L. Cong, and J. E. Kozdon. Earthquake ruptures with strongly
rate-weakening friction and off-fault plasticity, Part 1: Planar faults. Bull. Seism. Soc. Am.,
101(5):2296–2307, 2011a. doi: 10.1785/0120100075.

E. M. Dunham, D. Belanger, L. Cong, and J. E. Kozdon. Earthquake ruptures with strongly
rate-weakening friction and off-fault plasticity, Part 2: Nonplanar faults. Bull. Seism. Soc.

Am., 101(5):2308–2322, 2011b. doi: 10.1785/0120100076.
G. Festa and J-.P. Vilotte. The Newmark scheme as velocity and stress time-staggering: an

efficient PML implementation for spectral element simulations of elastodynamics. Geophys.

J. Int., 161(3):789–812, 2005. doi: 10.1111/j.1365-246X.2005.02601.x.
B. Fornberg. The pseudospectral method: Accurate representation of interfaces in elastic wave

calculations. Geophys., 53(5):625–637, 1988. doi: 10.1190/1.1442497.
P. H. Geubelle and J. R. Rice. A spectral method for three-dimensional elastodynamic fracture

problems. J. Mech. Phys. Solids, 43(11):1791–1824, 1995. doi: 10.1016/0022-5096(95)00043-
I.

B. Gustafsson. The convergence rate for difference approximations to mixed initial boundary
value problems. Math. Comp., 29(130):396–406, 1975.

B. Gustafsson, H.-O. Kreiss, and J. Oliger. Time Dependent Problems and Difference Methods.
Wiley-Interscience, 1996.

T. Hagstrom, A. Mar-Or, and D. Givoli. High-order local absorbing conditions for the wave
equation: Extensions and improvements. J. Comput. Phys., 227(6):3322–3357, 2008. doi:
10.1016/j.jcp.2007.11.040.

N. Kame and T. Yamashita. Simulation of the spontaneous growth of a dynamic crack
without constraints on the crack tip path. Geophys. J. Int., 139(2):345–358, 1999. doi:
10.1046/j.1365-246x.1999.00940.x.

Y. Kaneko, N. Lapusta, and J.-P. Ampuero. Spectral element modeling of spontaneous earth-
quake rupture on rate and state faults: Effect of velocity-strengthening friction at shallow
depths. J. Geophys. Res., 113:B09317, 2008. doi: 10.1029/2007JB005553.

P. M. Knupp and S. Steinberg. The Fundamentals of Grid Generation. CRC Press, 1993.
J. E. Kozdon and E. M. Dunham. Rupture to the trench in dynamic models of the Tohoku-

Oki earthquake. Abstract U51B-0041 presented at 2011 Fall Meeting, AGU, San Francisco,
Calif., 5–9 Dec., 2011.



Dynamic Earthquake Ruptures in Complex Geometries 35

J. E. Kozdon and E. M. Dunham. Rupture to the trench: Dynamic rupture simulations of the
11 march 2011 tohoku earthquake. Bull. Seism. Soc. Am., submitted: 9 April 2012. URL
www.stanford.edu/∼jkozdon/publications/kozdon dunham tohoku BSSA12.pdf.

J. E. Kozdon, E. M. Dunham, and J. Nordström. Interaction of waves with frictional interfaces
using summation-by-parts difference operators: Weak enforcement of nonlinear boundary
conditions. J. Sci. Comp, 50(2):341–367, 2012. doi: 10.1007/s10915-011-9485-3.

H.-O. Kreiss. Initial boundary value problems for hyperbolic systems. Com. Pure Appl. Math.,
23(3):277–298, 1970. doi: 10.1002/cpa.3160230304.

H.-O. Kreiss and J. Lorenz. Intial-boundary value problems and the Navier-Stokes equations.
Academic Press, Inc., 1989.

H.-O. Kreiss and G. Scherer. Finite element and finite difference methods for hyperbolic partial
differential equations. In Mathematical aspects of finite elements in partial differential

equations; Proceedings of the Symposium, pages 195–212, Madison, WI, 1974.
H.-O. Kreiss and G. Scherer. On the existence of energy estimates for difference approximations

for hyperbolic systems. Technical report, Dept. of Scientific Computing, Uppsala University,
1977.

N. Lapusta, J. R. Rice, Y. Ben-Zion, and G. Zheng. Elastodynamic analysis for slow tectonic
loading with spontaneous rupture episodes on faults with rate- and state-dependent friction.
J. Geophys. Res., 105:23765–23790, 2000.

S. Ma and P. Liu. Modeling of the perfectly matched layer absorbing boundaries and intrinsic
attenuation in explicit finite-element methods. Bull. Seism. Soc. Am., 96(5):1779–1794,
2006. doi: 10.1785/0120050219.

R. Madariaga, K. Olsen, and R. Archuleta. Modeling dynamic rupture in a 3D earthquake
fault model. Bull. Seism. Soc. Am., 88(5):1182–1197, 1998.

L. E. Malvern. Introduction to the Mechanics of a Continuous Medium. Prentice Hall, 1st
edition, 1977.

K. Mattsson and J. Nordström. Summation by parts operators for finite difference
approximations of second derivatives. J. Comp. Phys., 199(2):503–540, 2004. doi:
10.1016/j.jcp.2004.03.001.

S. Miura, N. Takahashi, A. Nakanishi, A. Ito, S. Kodaira, T. Tsuru, and Y. Kaneda. Seismic ve-
locity structure off Miyagi fore-arc region, Japan Trench, using ocean bottom seismographic
data. Frontier Res. Earth Evolut., 1:337–340, 2001.

S. Miura, N. Takahashi, A. Nakanishi, T. Tsuru, S. Kodaira, and Y. Kaneda. Structural
characteristics off Miyagi forearc region, the Japan Trench seismogenic zone, deduced from
a wide-angle reflection and refraction study. Tectonophys., 407(3-4):165–188, 2005. doi:
10.1016/j.tecto.2005.08.001.

T. Miyatake. Numerical simulations of earthquake source process by a three- dimensional
crack model. part I. rupture process. J. Phys. Earth, 28(6):565–598, 1980.

P. Moczo, J. Kristek, M. Gallis, P. Pazak, and M. Balazovjecha. The finite-difference and
finite-element modeling of seismic wave propagation and earthquake motion. Acta Phys.

Slovaca, 57(2):177–406, 2007.
S. Nilsson, N.A. Petersson, B. Sjogreen, and H.-O. Kreiss. Stable difference approximations

for the elastic wave equation in second order formulation. SIAM J. Numer. Anal., 45(5):
1902–1936, 2007. doi: 10.1137/060663520.

H. Noda, E. M. Dunham, and J. R. Rice. Earthquake ruptures with thermal weakening and
the operation of major faults at low overall stress levels. J. Geophys. Res., 114:B07302,
2009. doi: 10.1029/2008JB006143.

J. Nordström. Conservative finite difference formulations, variable coefficients, energy esti-
mates and artificial dissipation. J. Sci. Comp., 29(3):375–404, 2006. doi: 10.1007/s10915-
005-9013-4.

J. Nordström and M. H. Carpenter. High-order finite difference methods, multidimensional
linear problems, and curvilinear coordinates. J. Comp. Phys., 173(1):149–174, 2001. doi:
10.1006/jcph.2001.6864.

D. D. Oglesby, R. J. Archuleta, and S. B. Nielsen. Earthquakes on dipping faults: The effects of
broken symmetry. Science, 280(5366):1055–1059, 1998. doi: 10.1126/science.280.5366.1055.

P. Olsson. Summation by parts, projections, and stability. II. Math. Comp., 64(212):1473–
1493, 1995.

C. Pelties, J. de la Puente, J.-P. Ampuero, G. B. Brietzke, and M. Käser. Three-Dimensional
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