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Piezoelectric tube scanners are widely used in scanning probe microscopes to position the sample or
the probe. Fast and accurate scanning requires the suppression of dominant low-frequency
resonances as well as the compensation of dynamics-coupling effects. The present article gives a
detailed description of the fully coupled tube scanner dynamics over a wide frequency range
modeled by finite element �FE� analysis using the commercially available software package
ANSYS. The effect of a sample mass attached to the top of the tube is investigated by considering
its added mass and local stiffening. A model order reduction scheme is applied to obtain a low order
model that describes the lateral and vertical deflections as well as the voltage induced on quadrant
electrodes. Comparison to experimental data demonstrates a good agreement for both the full FE
model and reduced order model. © 2008 American Institute of Physics. �DOI: 10.1063/1.2826428�

I. INTRODUCTION

In the field of nanopositioning, piezoelectric tube scan-
ners are widespread due to their capability for three-
dimensional positioning with high resolution and speed.
They are simple to manufacture and are readily available at
low cost.1 Since their invention,2 the most common applica-
tion of piezoelectric tube scanners has been in positioning
stages for scanning probe microscopes.

The tube scanner apparatus is illustrated in Fig. 1. The
base of the tube is glued to a mounting fixture and a sample
holder is bonded to the top surface. Four quartered electrodes
are deposited onto the outer diameter of the piezoceramic
material, whereas the inner surface of the tube is coated with
a single electrode. During operation, one of the two outer
x-axis electrodes is driven with a voltage for the generation
of the lateral x-displacement by means of the indirect piezo-
electric effect. This configuration is commonly referred to as
antisymmetric excitation or single electrode excitation since
only one electrode of a pair is driven. The remaining x-axis
electrode can be used as a deflection sensor for feedback
control purposes. The induced voltage on the sensor elec-
trode is generated by the direct piezoelectric effect. In the
setup under consideration one of the two y-axis electrodes is
grounded while the other serves as sensor electrode for
y-axis dynamics.

Scanning accuracy is limited by a number of undesirable
effects, the foremost of which are hysteresis,3 creep,4 cou-
pling between the directions of motion,5 and induced
vibrations.6 The present work focuses on the modeling and
simulation of dynamics describing the two latter deficiencies.
Complementary to previous work,7 the simulation model
takes into account the local stiffening and added mass of the
sample holder. The finite element �FE� model obtained by the
use of ANSYS �Ref. 20� considers the piezoelectric tube as
well as the sample mass as flexible bodies perfectly glued to
each other with an appropriate coupling between the struc-
tural and electrical fields. Furthermore, the influence of ma-
chining tolerances and imperfections during the manufactur-
ing process of the tube on the dynamics-coupling-caused
errors in open-loop operation are investigated by simulation
studies. In this respect, two typical deviations from the nomi-
nal tube considered in the FE model are the nonconcentricity
of the inner and outer diameters8 and changes in the radial
positions or size of the outer electrodes. The coupled-field
finite element analysis �FEA� programed together with the
model order reduction9 applied in this article provides an
accurate description of all these effects in a single model.

Much effort has been spent on the improvement of po-
sitioning accuracy by means of feedforward10,11 and feed-
back control strategies.12 One limiting factor associated with
feedback control is the requirement for a displacement signal
that adds significant cost and complexity to a microscope.
This difficulty is partially circumvented by employing the
single electrode excitation setup with two sensor electrodes
for estimation of the tip displacement in the x- and
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y-directions. While this is investigated experimentally in
Ref. 13, the present paper introduces a modeling approach
using coupled-field FEA and the double piezoelectric effect.

II. MODELING

The FE method is used to obtain a very general and
accurate model of the piezoelectric tube scanner. For the pur-
pose of controller design and transient simulations, the high
order of the full FE model is effectively reduced in the de-
sired frequency range by model order reduction. This is
based on modal truncation and consideration of the Hankel
singular values of the desired input-output behavior. All
equations are stated in their general form, thus being valid
for the nominal tube scanner with or without sample mass as
well as for modeled imperfections, demonstrating the flex-
ibility of the approach.

A. Finite element method

Three-dimensional FEA is used in a variety of applica-
tions for the modeling of piezoceramic actuators and sensors,
e.g., beam actuators14 and smart structures.15 FE models of
piezoelectric tube scanners have so far only been used to
describe the resulting static deflections on application of a
driving voltage.16,17 Due to the modeling complexity, the
scanner dynamics are typically identified from experimental
data.6,18 In the present work, FEA is extended to gain a
deeper mechanical understanding of the case where a sample
holder is glued onto the scanner top. FEA also allows the
prediction of the influence of changing tube dimensions and
machining tolerances on the tube motion.

The constitutive equations for the fully coupled three-
dimensional piezoelectric material consisting of the direct
and indirect piezoelectric effects are given by19

T = cES − eE ,

D = eS + �SE ,

with mechanical stress matrix T, mechanical strain matrix S,
electric field vector E, and electric charge vector per unit
area D. The anisotropic material properties of the radially
polarized piezoceramic are described by the mechanical stiff-
ness matrix at constant electric field cE, the permittivity ma-
trix under constant strain �S, and the piezoelectric stress ma-
trix e. Assembly of the element matrices leads to the
equations of motion in the general FE formulation,

Mẍ + Cẋ + Kx = F , �1�

with mass matrix M, stiffness matrix K, and external loads
F. For simplicity, Rayleigh damping is assumed for the FE
model via the damping matrix C. The state vector x is com-
posed of the nodal displacements u and the nodal electric
potentials � accounting for the coupling between the struc-
tural and piezoelectric domains. The order of the fully
coupled finite element model is denoted as n. The general
form of Eq. �1� is not changed by considering the sample
mass, which is assumed to be perfectly glued onto the tube
and thus only adds degrees of freedom in the structural do-
main in form of the nodal displacements u.

The FE discretized model of the pietzotube is con-
structed with the commercial software ANSYS �Ref. 20� us-
ing three-dimensional solid piezoelectric elements. The ma-
terial properties of the piezoceramic PZT-5H used in the
simulations are given in Table I. One benefit of the FEA is
the classification of the eigenmodes of the piezoelectric tube
scanner by means of the three-dimensional mode shapes as
illustrated in Fig. 2 for the case without attached sample
mass. From this, an overview of the scanner dynamics for a
sufficiently fine meshed FE model stated in Table II is de-
duced. It can be observed that the low-frequency motion is
dominated by longitudinal Bernoulli beam type bending

TABLE I. Material properties of PZT-5H.

Property Values

Density � = 7500 kg/m3

Stiffness

cE = �
127.2 80.2 84.7 0 0 0

80.2 127.2 84.7 0 0 0

84.7 84.7 117.4 0 0 0

0 0 0 23.0 0 0

0 0 0 0 23.0 0

0 0 0 0 0 23.5

�
� 109 N/m2

Piezoelectric
constant e = � 0 0 0 0 17.030 0

0 0 0 17.030 0 0

− 6.623 − 6.623 23.240 0 0 0
�

� 1012 C/m2

Permittivity

� = �3130 0 0

0 3130 0

0 0 3400
�� 8.854 � 10−12 F/m

FIG. 1. Setup of the piezoelectric tube scanner, where v is the applied
voltage and mv is the measured voltage.
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modes. At higher frequencies, additional types of mode
shapes, such as circumferential shell bending modes, tor-
sional modes, and longitudinal extension, occur. All longitu-
dinal and circumferential bending modes appear twice due to
the axissymmetric geometry of the tube.

Table II further summarizes the change of eigenfrequen-
cies when the sample mass is attached to the top of the tube.
The sample holder consists of a hollow aluminum cube with
a cylindrical extension for concentric placement on the tube
scanner and is glued onto the free end of the tube. Its overall
weight is 2.01 g. As before, the simulated eigenfrequencies
accurately match the measurement results. It can be seen that
the longitudinal bending modes shown in Fig. 3 as well as
the torsional and longitudinal compression modes are shifted
to considerably lower eigenfrequencies due to the added
mass of the sample holder. In addition, the circumferential
bending modes which show large deformations towards the
free end of the tube without sample mass do not occur any
more, since the local stiffening of the sample holder glued to
the tube top suppresses this deflection shape. Instead, cir-
cumferential bending modes appear now at high frequencies,
with the mode shapes in Fig. 3 being similar to a tube
clamped at both ends. In summary, the sample holder leads
to a stiffening of the circumferential bending modes whereas

the longitudinal bending modes and the longitudinal exten-
sion modes are subject to softening effects.

The mesh density required for achieving accurate simu-
lation results leads to a model order of n�10 000 in the full
FE model of Eq. �1�. This high order precludes the full
model from controller design and transient simulations. In
the following section, a model order reduction process offer-
ing high flexibility with respect to the bandwidth of the re-
duced model as well as its number of inputs and outputs is
introduced.

B. Model order reduction

A detailed description of the model order reduction,
which is carried out in MATLAB after importing the FE model
from ANSYS, is given in Ref. 21. In the self-sensing con-
figuration, the potential electrodes are driven by external
voltages while the sensor electrodes, which are located pair-
wise opposite to the respective potential electrodes, are used
to measure the resulting voltage feedback signal. Partitioning
of the electrical degrees of freedom in the equations of mo-
tion of the full FE model in Eq. �1� into degrees of freedom
on the grounded electrodes �g, on the potential electrodes
�p, on the sensor electrodes �m, and in the interior of the
piezotube �i �Ref. 22� yields

TABLE II. Summary of the full FE modal analysis.

No.

Eigenfrequency without sample mass �kHz� Eigenfrequency with sample mass �kHz�

FE Expt. Classification FE Expt. Classification

1, 2 1.21 1.22 First longitudinal bending 0.83 0.84 First longitudinal bending
3, 4 6.49 6.55 Second longitudinal bending 4.89 4.84 Second longitudinal bending
5 6.97 ¯ Torsion 5.72 ¯ Torsion
6 11.30 11.30 Longitudinal extension 9.27 9.43 Longitudinal extension
7, 8 13.98 14.24 First circumferential bending 12.28 12.14 Third longitudinal bending
9, 10 14.50 15.21 Second circumferential bending 14.73 15.19 First circumferential bending
11, 12 15.38 15.79 Third longitudinal bending 16.30 16.68 Second circumferential bending

FIG. 2. Three-dimensional �3D� finite element mode shapes; from left to
right: first longitudinal bending mode, second longitudinal bending mode,
first circumferential bending mode, second circumferential bending mode,
and third longitudinal bending mode.

FIG. 3. 3D finite element mode shapes with sample mass; from left to right:
first longitudinal bending mode, second longitudinal bending mode, third
longitudinal bending mode, first circumferential bending mode, and second
circumferential bending mode.
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with the electrical charges qp, qg, and qm on the potential, grounded, and sensor electrodes, respectively. In Eq. �2�, damping
is omitted for brevity. The fifth line and column of Eq. �2� are deleted since the electrical potential on the grounded electrodes
vanishes. On each potential and sensor electrode, each node has the same electric potential. Thus, the electrical degrees of
freedom on the potential and sensor electrodes are combined into master degrees of freedom �ep and �em, respectively, by
applying the transformations

�p = Tp�ep and �m = Tm�em, �3�

with the coincidence transformation matrices Tp and Tm. Under the assumption of no structural loads f and internal charges qi

and by moving the excitation terms of the potential electrodes to the right side, the dynamic equations are written as

�4�

For harmonic excitation �ep=�0ej�t, the corresponding ei-
genvalue problem is given by

KEV�r = �r
2MEV�r, �5�

with the eigenvectors �r. The system is transformed into
modal coordinates with the transformation law u=�q,
where ��Rn�m is the modal matrix containing m�n
low-frequency mode shapes �r, r=1, . . ., m, i.e.,
�= ��1 , . . . ,�m�. Normalization of the modal mass and stiff-
ness matrices results in the identity matrix I�Rm�m and the
spectral matrix ��Rm�m, respectively, i.e.,

Mm = �TMEV� = I , �6�

Km = �TKEV� = � = diag��r
2� . �7�

This reduced system is typically referred to as the normal
mode model and is valid only for frequencies well below the
highest-frequency eigenmode kept in the truncated transfor-
mation matrix. In modal coordinates, the system is expressed
as

Iq̈ + �q = − �HSV
T Kexc�ep. �8�

A further reduction of the model order is obtained by
selecting those mode shapes of the system which are domi-
nant in terms of controllability and observability. The con-
trollability of a mode specifies its excitation by input actua-
tion, whereas observability describes the influence of the
modal states on the system outputs. Controllability and ob-
servability are quantified by the controllability Grammians
Wc and observability Grammians Wo, respectively, which
are diagonally dominant for systems in modal
representation,21 i.e., Wc�diag�wci

� and Wo�diag�woi
�,

where wci
and woi

are the modal controllability and observ-

ability coefficients of the ith mode. The transfer function of a
structural system is a composition of the modal transfer func-
tions Gmi

of the modes i, i.e., G���=�i=1
n Gmi

���. The modal
H�-norm "Gmj

"�=2� j, where � j denotes the Hankel singular
value �HSV� of the jth mode, is used as a measure of con-
tribution of the jth mode to the single-input, single-output
�SISO� transfer function G���. Furthermore, for systems
with low modal damping ratios �and thus for the special case
of piezoelectric tube scanners�, the HSVs are approximated
by �i=	wci

woi
.21 Modes with low HSVs and thus low modal

norms as well as low controllability and observability are not
taken into account in the reduction basis � of Eqs. �6� and
�7�, resulting in the transformation basis �HSV�Rn�mHSV.
The fully reduced system is now obtained by replacing �
with the truncated transformation matrix �HSV in Eqs. �6�
and �7�.

A calculation of the HSVs for the piezoelectric tube
scanner reveals that the torsional mode with the eigenvector
�5 has much lower influence on the input-output behavior
compared to other low-frequency modes. Thus, the torsional
mode shape �5 is neglected in the transformation basis
�HSV. Of each pair of the first three longitudinal bending
modes and first two circumferential bending modes,
one eigenvector, which is rotated to point along the
x-direction, is retained in the transformation matrix. Further-
more, the longitudinal extension �6 is taken into account.
Overall, the truncation basis is given by �HSV

= ��1 ,�3 ,�6 ,�7 ,�9 ,�11�, leading to a system order m=6 in
the second order system of Eq. �8�, compared to n�10 000
in Eq. �1�. By this truncation, the reduced order model is
valid in the frequency range up to approximately 15 kHz.

For controller design purposes, the reduced system is
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finally transformed into the modal state space representation
obtained form Eq. �8� as

�9�

with the state space vector x= �qT , q̇T�T and the input vector
u= ��ep�T. The output shape matrix c defines the desired de-
grees of freedom for the output y, which is given in physical
nodal quantities. The damping matrix � is generally derived
from the Rayleigh damping of the FEA with typical values of
piezoelectric materials for the damping coefficients. If mea-
surement results are available for specific tubes, the damping
matrix � can be easily changed to account for modal damp-
ing with the damping coefficients identified from experimen-
tal data. Thus, a model with an accurate description of the
output displacement is obtained.

III. MEASUREMENT SETUP

The piezoelectric tube scanner, shown in Fig. 4 �Boston
PiezoOptics, manufactured from high-density PZT-5H�, is
glued into a recessed aluminum base, which is mounted onto
an optical table. On the outer diameter, four equally spaced

silver electrodes are deposited in quadrature. Geometric di-
mensions of the tube are also given in Fig. 4.

A Polytec PI PSV300 laser doppler vibrometer is used to
measure the tip displacement frequency response by
excitation of one x-electrode with a 5.5 V periodic chirp
signal with a bandwidth of 25 kHz. The measured signals
were sampled at 52.1 kHz and a 6400 line fast Fourier
transform �FFT� is computed to obtain the frequency
response functions.

IV. RESULTS AND DISCUSSION

The simulations and experiments are carried out for an-
tisymmetric �single electrode� excitation. The frequency re-
sponse functions �FRFs� describe the x-, y-, and
z-displacements at the tip of the scanner-sample unit, i.e., at
the top of the sample holder, denoted by ux, uy, and uz, and,
in addition, the induced voltages at the x- and y-axis sensor
electrodes, mvx and mvy, respectively. The system of Eq. �9�
is thus single-input multiple-output, with the scalar input u
=vx denoting the driving voltage at the x-axis potential elec-
trode and the output vector y= �ux ,uy ,uz ,mvx ,mvy�T. In case
of the reduced model, the calculation time for the FRFs
drops to some seconds compared to approximately one hour
necessary to carry out the harmonic analysis of the full FE
model. However, note that the model reduction is of special
importance for the design of sophisticated controllers,23,24

where optimal controllers are typically of the same order as
the plant.25 The frequency responses of the experimental sys-
tem together with the full and reduced order FE models are
shown in Figs. 5–9. First, the dynamics resulting from the
nominal scan unit consisting of tube and sample holder are
considered. The effects of deviations from the nominal
model, i.e., from tube eccentricity and asymmetric electrode
placement, are then investigated by simulation studies. All
measured and computed FRFs include the sample mass at the
free end of the tube.

A. Nominal model

The FRFs for the x-axis displacement in Fig. 5 for the
full and low order FE models show an excellent agreement
to the measured data over a wide frequency range. This re-
sponse is strongly dominated by the three low-frequency lon-

FIG. 4. �Color online� Measurement setup of tube actuator with sample
holder glued into an aluminum base and tube dimensions in millimeters.

FIG. 5. Comparison of FRFs for x-displacement of
measurement �solid curve�, full finite element model
�dashed curve�, and reduced low order model �dashed-
dotted curve� for single electrode excitation.
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gitudinal bending modes since the excitation at the driving
electrode and the x-displacement output point in the same
direction. The good agreement for the longitudinal bending
modes is obvious from the almost perfectly matching eigen-
frequencies in Table II and is demonstrated in Ref. 7 for the
corresponding mode shapes. Note that by switching the
damping model from Rayleigh damping with standard pa-
rameters of piezoelectric materials to modal damping in the
reduced model, it is possible to accurately match the reso-
nance amplitudes in the simulation data, e.g., for the third
longitudinal bending mode at approximately 12 kHz in
Fig. 5.

For the y-axis displacement in Fig. 6, the FE model is in
accordance with the experimental amplitude response. At
high frequencies, the model underestimates the measured re-
sponse but reflects the main measured resonance peaks.
However, the amplitude and phase response of the reduced
model considerably deviates from the full model, which can
be explained by the low order, where only one eigenvector of
a pair of the bending mode shapes is contained in the trun-
cation basis. This single eigenvector does not completely ac-
count for the directional coupling between the x-axis excita-
tion and y-axis displacement output. The order of the HSV of
the eigenmodes in Sec. II B is arranged by mainly weighting
x- and z-axis displacement output behaviors. A reduction ba-
sis composed of all low-frequency bending mode shapes,
i.e., the corresponding pairs, accurately retains FE-model

dynamics even for the y-displacement �data not shown�. The
displacement coupling from the x-voltage excitation to the
y-displacement output amounts to 3.16% of the
x-displacement in the static limit, i.e., for a desired
x-displacement of 1 	m, the y-displacement from coupling
results in 0.03 	m. This is a considerable deviation from the
desired trajectory and should be compensated, e.g., by feed-
forward or feedback techniques. The coupling in the lateral
plane is caused by breaking the symmetry of the tube geom-
etry in the setup considered, where one y-electrode is
grounded while the other one is used as a sensor electrode.
This leads to an unequal charge distribution on these elec-
trodes, which in turn results in an undesired bending moment
along the y-axis. The phase mismatch of the FE models to
the measurement in Fig. 6 is associated to the smooth phase
decay in the experiment, such that the phase cannot be re-
stricted to a 360° range in contrast to the simulation.

The modeled displacements along the z-axis in Fig. 7 are
consistent with the measured amplitude response. The
model overestimates the static displacement and the influ-
ence of the second longitudinal bending mode but accurately
describes the dominance of the longitudinal extension mode
shape at approximately 9 kHz. For the x to z coupling,
the z-displacement constitutes about 17.7% of the
x-displacement in the simulation data and approximately
5.6% in the measured response.

The induced voltages in Figs. 8 and 9 are of interest for

FIG. 6. Comparison of FRFs for y-displacement of
measurement �solid curve�, full finite element model
�dashed curve�, and reduced low order model �dashed-
dotted curve� for single electrode excitation.

FIG. 7. Comparison of FRFs for z-displacement of
measurement �solid curve�, full finite element model
�dashed curve�, and reduced low order model �dashed-
dotted curve� for single electrode excitation.
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closed-loop control implementation. In the standard opera-
tion of piezoelectric tube scanners, the measurement of the
tube displacement requires additional sensors. This drawback
is circumvented by employing the induced voltages at the
sensor electrodes as feedback signals. Voltage measurement
does not require additional sensors and is thus relatively
simple to implement. The FE-modeled induced voltages at
the x-axis sensor electrode in Fig. 8 and the y-axis sensor
electrode in Fig. 9 both accurately match the measurement
outputs over the whole frequency range. The reduced order
model also shows good agreement with the experimental re-
sults but there appears to be a mismatch of a constant gain
compared to the FE model. This might be due to the exis-
tence of a feedthrough component for sensor voltages in the
model reduction process26 and is the subject of ongoing re-
search. Note that the longitudinal extension mode is more
pronounced in the sensed voltages compared to the corre-
sponding displacement outputs, leading to significantly
stronger coupling between x- and y-motions for the induced
voltages. It is pointed out that single electrode excitation to
enable induced voltage measurement at the sensor electrode
reduces the scan range by half compared to twin electrode
excitation.

B. Simulation study of geometrical variations

With respect to controller robustness, the closed-loop op-
eration of piezoelectric tube scanners is affected by plant

uncertainties. These uncertainties are partially due to ma-
chining imperfections in the manufacturing process of the
piezoelectric tube. Common problems are the concentricity
of the tube geometry and the exact location and shape of the
deposited electrodes on the outer tube diameter. The gener-
ality of the FE method allows the investigation of these de-
viations by simulation studies. Furthermore, the effect of
shortened electrodes on piezotube dynamics is analyzed,
which is of interest for gaining space towards additional ac-
tuator or sensor electrode placement, e.g., for distinct
z-displacement actuation.

The simulation data for several variations of the tube
geometry on the dynamics-coupling between x-axis
excitation and y-axis displacement response is shown in Figs.
10–12. In Fig. 10, the nominal tube is compared to a setup in
which both y-electrodes are grounded to restore a
symmetrical charge distribution with respect to the y-axis,
while the tube geometry and electrode locations are
conserved. Obviously, the dynamics-coupling effects in the
y-direction are drastically reduced by this measure, especially
for low frequencies.

The y-displacement coupling for an eccentric tube is il-
lustrated in Fig. 11 for eccentricities of 50 	m in the x- and
y-axes, respectively. Compared to the nominal model, the
coupling is amplified for all frequencies. Similar results are
obtained for a concentric tube geometry, but with the poten-
tial electrode radially shifted by 15° plotted in Fig. 12. In

FIG. 8. Comparison of FRFs for induced voltage on
x-electrode of measurement �solid curve�, full finite
element model �dashed curve�, and reduced low order
model �dashed-dotted curve� for single electrode
excitation.

FIG. 9. Comparison of FRFs for induced voltage on
y-electrode of measurement �solid curve�, full finite
element model �dashed curve�, and reduced low order
model �dashed-dotted curve� for single electrode
excitation.
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summary, every change to the scan unit, which breaks either
the geometrical or the electric field symmetry with respect to
the y-axis leads to an increase in lateral dynamics coupling.

Figure 13 describes the dynamics in the case of short-
ened electrodes, which cover only half of the axial length of
the piezoelectric tube. The x-axis displacement output in Fig.
13 is reduced to approximately 68% compared to the full
electrode length in the steady-state limit. This demonstrates,
that the scan range of the scanner is rigorously influenced by
the electrode length.

In summary, the main contributions of the measurement
and simulation are split into the following observations: �1�
the FEA gives a precise description of the piezoscanner dy-
namics with sample mass; �2� the induced voltages can be
employed as feedback signals; �3� dynamics-coupling effects
are mainly due to the electrode circuitry, tube eccentricity,
and dislocated electrodes; and �4� electrode size and shape
significantly changes the scanner dynamics and scan range.

V. CONCLUSIONS

Different aspects of the dynamic behavior of piezoelec-
tric tube actuators are investigated by FE-model simulation
carried out in ANSYS. Measurement results for a tube scan-
ner with sample holder attached to its free end demonstrate
the high accuracy of FEA. Furthermore, a model order re-
duction scheme, which keeps the nodal displacements as
well as the induced sensor electrode voltages as signal out-
puts, is presented. The reduced model is therefore suited for

model-based feedforward and feedback controller designs,
where an appropriate output signal which does not require
additional displacement sensors is made available by means
of the induced voltages. The foremost benefits of this mod-
eling approach are the possibility to model variations in the
piezoscanner setup �i.e., sample holder, tube eccentricity, and
electrode location/shape�, and the flexibility in the model or-
der reduction to obtain either single-input single-output
�SISO� or multi-input multi-output �MIMO� systems. Owing
to the ability of the model to realistically describe common
tube imperfections and dynamic variations, e.g., from vary-
ing sample mass, it is suited for the analysis of the robust-
ness of feedforward and feedback controllers. In particular,
the models capture all dynamics-coupling effects, with re-
sults presented for voltage excitation along the x-axis and
displacement outputs in y- and z-directions, enabling a
model-based compensation of coupling-caused errors in the
scan trajectory.

The main reason for dynamics-coupling effects in the
lateral plane is identified by simulation results as a breaking
of the tube symmetry relative to the x-or y-axis. It is shown
that this asymmetric configuration can either be caused me-
chanically by tube eccentricity or in the electric field distri-
bution by dislocated electrodes or by nonuniformly circuited
electrodes. The generality of the model is furthermore used
to investigate the dynamic behavior of the tube for shortened
electrodes, where a significant reduction in scan range is ob-
served. It is possible that the FE model could be used for the
optimization of the shape of the actuator and sensor elec-

FIG. 10. Simulation of coupling form x-excitation to y-displacement for
both y-electrodes grounded.

FIG. 11. Simulation of coupling form x-excitation to y-displacement for
eccentric tube.

FIG. 12. Simulation of coupling form x-excitation to y-displacement for
shifted potential electrode.

FIG. 13. Simulation of x-displacement for shortened electrodes.
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trodes towards a reduction of dynamics coupling and thus
increased scanning precision. This is the subject of present
research.
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