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Abstract. Resistivity logging instruments are designed to measure the electrical resistivity of a formation, and this can be
directly interpreted to provide a water-saturation profile. However, resistivity logs are sensitive to borehole and shoulder-
bed effects, which often result in misinterpretation of the results. These effects are emphasised more in the presence of tool
eccentricity. For precise interpretation of short- and long-normal logging measurements in the presence of tool eccentricity,
we simulate and analyse eccentricity effects by combining the use of a Fourier series expansion in a new system of
coordinates with a 2D goal-oriented high-order self-adaptive hp finite-element refinement strategy, where h denotes the
element size and p the polynomial order of approximation within each element. The algorithm automatically performs local
mesh refinement to construct an optimal grid for the problem under consideration. In addition, the proper combination of
h and p refinements produces highly accurate simulations even in the presence of high electrical resistivity contrasts.
Numerical results demonstrate that our algorithm provides highly accurate and reliable simulation results. Eccentricity
effects are more noticeable when the borehole is large or resistive, or when the formation is highly conductive.
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Introduction

Borehole resistivity logging can be used to directly determine
water-saturation profiles because the electrical conductivity of
rocks depends on pore volume, pore connectivity, and electrical
conductivity of pore fluid. Since the development of borehole
electrical methods by Doll (1951, 1953), Schlumberger Well
Surveying Corporation (SWSC) (Anon., 1949, 1969), and Pirson
(1963), resistivity logging measurements have been extensively
conducted for hydrocarbon reservoir characterisation and
surveillance. Even though resistivity logging devices have
been mainly developed for the oil industry, these tools have been
also widely used in ground water and engineering geophysical
problems. Nowadays, borehole resistivity measurements aim to
be applied for monitoring injected CO2 in a CO2 sequestration
site, which is a worldwide matter of primary concern due to
global warming. The main limitations of resistivity logging are
due to large-borehole effects and shoulder-bed effects on the
measurements.

Forward numerical modelling of resistivity logging
measurements is important for resistivity well logging data
interpretation since modelling techniques are used to understand
the main characteristics of logging devices. Electrical resistivity
logs have been simulated using differential equation methods

(e.g. Hakvoort et al., 1998; Tamarchenko et al., 1999), integral
equation methods (e.g. Howard and Chew, 1992), hybrid
methods (e.g. Tsang et al., 1984; Tamarchenko and Druskin,
1993), or neural networks approaches (e.g. Zhang et al., 2002).
These methods generate synthetic log responses for a given
resistivity earth model that often can be used to analyse borehole
effects or shoulder-bed effects.

The borehole effects and shoulder-bed effects are known
to be more profound when the tool is decentralised. If the
logging tool is eccentred from the axis of the borehole, the
resulting geometry is needs to be analysed in three spatial
dimensions. When we do not consider the actual logging
instrument, a Dirac delta source can be used for the simulation
of resistivity logging measurements. For the Dirac delta source,
it is possible to make a Fourier series expansion in one spatial
dimension and solve the resulting sequence of 2D problems
(one problem for each Fourier mode), which are independent
of eachother, and thus, canbe independently solvedbyusing a2D
simulator. This method using Fourier expansion reduces
the problem to a 2.5D one (Tabarovsky et al., 1996). A 2.5D
problem is the one that can be solved as a sequence of
2D problems. From the computational point of view, a 2.5D
problem is more expensive than a 2D problem, but cheaper
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than a 3D problem, which explains why it is referred to as
2.5D. However, the applicability of the 2.5D method is limited
since the actual logging instrument cannot be simulated.

In this paper, we simulate short- and long-normal resistivity
logging measurements in the presence of tool eccentricity. In
our simulations, we consider a logging tool with realistic tool
properties and dimensions, and thus the resulting 3D geometry
cannot be solved with a 2.5D method. The complexity of
arbitrary 3D geometries increases the computational
requirements. We reduce the computational complexity of 3D
algorithms by employing a particular system of coordinates
which separates the decentralised tool from the borehole. The
idea of mapping the 3D geometry into a particular system of
coordinates for these purposes was briefly introduced in Pardo
et al. (2008).

We construct a new system of coordinates z= (z1, z2, z3)
for which material properties are invariant with respect to the
quasi-azimuthal direction z2. Since any function in the new
system of coordinates is also periodic, it can therefore be
expressed in terms of its Fourier series expansion with respect
to z2. Using a Fourier series expansion in the new system of
coordinates, we can derive the corresponding 3D formulation
consisting of a sequence of 2D problems, in which each 2D
problem couples in a weak sense with the remaining 2D
problems. Thanks to the weak coupling between Fourier
modes, we can obtain a converged solution with a low
computational cost. This is the main advantage of our 3D
formulation over traditional formulations.

To solve the resulting coupled 2D problems in our 3D
formulation, we employ a goal-oriented, self-adaptive hp
finite-element (FE) method (Pardo et al., 2006b), where h
denotes the element size and p the polynomial order of
approximation within each element. The algorithm
automatically conducts local mesh refinements to construct an
optimal grid (with exponential convergence) for the problem
under consideration. In addition, the proper combination of h
and p refinements produces highly accurate simulations even
in the presence of high contrast of material properties. Numerical
results indicate that our 3D algorithm produces accurate
simulation of long- and short-normal logging measurements
in the presence of tool eccentricity with a small number of
Fourier modes and a limited computational cost.

Normal logging instrument

For the simulation of long- and short-normal logging
measurements, we implement a specific commercial tool
configuration (Figure 1), which has been used in the Korea
Institute of Geoscience and Mineral Resources (KIGAM) for
several years. Each electrode in the simulation has been placed at
the same location with the same vertical dimension as that of the
commercial tool. Potential electrodes for long- and short-normal
logging are located 64 inches above and 16 inches below the
current electrode, respectively (Figure 1). We assume that the
resistivity of all the electrodes is equal to 10�6W.m, while
the resistivity of the mandrel is 106W.m, resulting in a
resistivity contrast at the interfaces between electrodes and
insulator equal to 1012.

Simulation method

Variational formulation in the Cartesian system
of coordinates

Resistivity applications for normal logging devices are based on
the direct current (DC) assumption, and thus are governed by the

electrostatic equation in a (simply connected) spatial domain W,
given by

r � ðsruÞ ¼ r � jimp; ð1Þ
where s is the conductivity, jimp is the impressed electric current
density measured in A/m2 and u is the electrostatic potential
measured in volts. In the case of simply connected domains,
the electric field is given by E=�ru. On the boundary of the
domain far from the electrode, denoted by GD, where the electric
potential is approximately zero, a homogeneous Dirichlet
boundary condition is assigned for simplicity, i.e. ujGD

¼ 0:
Multiplication of equation 1 by a test function

n 2 H1
DðWÞ ¼ fu2L2ðWÞ:u jGD ¼ 0; ru2L2ðWÞg;

(where H1
D (W) is the space of admissible solutions, and L2 (and

L2) are the spaces of scalar (and vector, respectively) functions
whose square is integrable) and integration of the resulting
equation by parts over W, delivers a variational formulation for
the electrostatic equation

Find u2H1
DðWÞ such that :ð

W
srurndV ¼

ð
W
r � jimp ndV þ

ð
GN

gv dS; 8n2H1
DðWÞ;

8<
:

ð2Þ
where g= (sru) � n is a prescribed flux defined on GN, and n is
the unit normal outward (with respect to W) vector.

New system of coordinates for measurements with tool
eccentricity in vertical boreholes

For logging measurements with tool eccentricity (Figure 2a), we
employ a new system of coordinates z= (z1, z2, z3) (Figure 2;
Pardo et al., 2008) defined in terms of a Cartesian system of

10–6 Ω.m

106 Ω.m

10–6 Ω.m

Fig. 1. Configuration of a commercial normal logging tool with one current
electrode A, and two potential electrodes, ML and MS, for long- and short-
normal measurements, respectively.
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coordinates x= (x1, x2, x3) (with x3 positive downward along
the axis of the borehole) as

x1 ¼ f 1ðz1Þ þ z1 cos z2
x2 ¼ z1sin z2
x3 ¼ z3

8><
>: ; ð3Þ

where f1 is defined for given r1 and r2 as

f 1ðz1Þ ¼
r0 z1 < r1
r0ðz1 � r2Þ=ðr1 � r2Þ r1 � z1 �r2
0 z1 > r2g

8><
>: ; ð4Þ

with the corresponding derivative expressed as

f 01ðz1Þ ¼ f 01 ¼
0; z1 < r1�r0
r2 � r1

; r1 � z1 � r2

0; z1 > r2

8>><
>>:

; ð5Þ

where the surface z1 =r1 is the interface between subdomains 1
and 2, and the surface z1 =r2 is the interface between subdomains
2 and 3, as shown in Figure 2. Note that the new system of
coordinates is simply a cylindrical system of coordinates for each
of subdomains 1 and 3. Subdomain 1 is always defined in such a
way that it contains the logging tool, while subdomain 2 is
designed to glue subdomain 1 with subdomain 3 so that the
resulting system of coordinates is globally continuous, bijective,
and has a positive Jacobian. In the new system of coordinates,
material properties are invariant with respect to the quasi-
azimuthal direction z2.

Variational formulation in the new system of coordinates
and Fourier series expansion

The change of coordinates defined in equation 3 can be described
by the mapping x=c(z), which is bijective, with positive
Jacobian determinant and globally continuous, as needed for
proper finite element computations (see Demkowicz, 2006,
Chapter 12). Given any arbitrary scalar-valued function h, we
define ~h ¼ h � c. Using the chain rule, we obtain

ru ¼
X3
i; n¼ 1

q~u
qzn

qzn
qxi

exi ¼ ðJ�1ÞT q~u
qz

; ð6Þ

where exi is the unit vector in the xi-direction, q~u=qz is a vector
with the nth component being q~u=qzn, superscript T denotes
transposition, and the Jacobian matrix J (that is associated with
the change of coordinates) is given by

J ¼ qxi
qzj

� �
i; j¼1;2;3

¼
f 01 þ cos z2 �z1sin z2 0

sin z2 z1cos z2 0

0 0 1

0
B@

1
CA: ð7Þ

Equation 5 can be expressed in the new system of
coordinates z, as

Find ~u 2 ~H1
Dð~WÞ such that :

q~v
qz

; ~sNEW
q~u
qz

� �
L2ð~WÞ

¼ h~v; ~fNEW iL2ð~WÞ þ h~v; ~gNEW iL2ð~GN Þ

8~v 2 ~H1
Dð~WÞ;

8>>>><
>>>>:
where ~W ¼ W �c, and h ; iL2ðWÞis the L2-inner product of two
arbitrary (possibly complex-valued) functions h1 and h2, which is
defined as

hh1; h2iL2ðWÞ ¼
ð
W
h*1h2dz1dz2dz3;

ðwhere *means a complex conjugateÞ
ð9Þ

and

~H1
Dð~WÞ ¼ ~u 2 L2ð~WÞ : ~uj~GD

¼ 0; J�1T q~u
qz

2 L2ð~WÞ
� �

;

(a)

(b)

Fig. 2. (a) Cross-section of a well with an eccentred tool, corresponding to
z2 = 0 in a new system of coordinates. Both x3-direction (in a Cartesian system
of coordinates) andz3-direction (in anewsystemof coordinates) correspond to
the axis of the borehole with z3 positive downward along the axis of the
borehole. The new system of coordinates employs three domains having
different systems of coordinates. As described in both the cross section panel
(a) and the plan view panel (b), subdomain 1 is a part of the borehole that
includes the logging instrument, while subdomain 3 corresponds to the
formation. Subdomain 2 is the part of the borehole not contained in
subdomain 1, and glues subdomain 1 with subdomain 3 so that the
resulting non-orthogonal system of coordinates is globally continuous,
bijective, and with a positive Jacobian. The origin of both systems lies on
the axis of the borehole.

~sNEW :¼ J�1~sJ�1T jJj;
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~fNEW :¼ ~f jJj; ð f ¼ r � jimpÞ; and

~gNEW :¼ ~gjJS j;

where | J | is the determinant of the Jacobian matrix
associated with the above change of variables, and | JS | is the
determinant of the Jacobian matrix corresponding to GN . (In the
remainder of the paper, the symbol ‘~’ will be omitted for
convenience.)

Any function w in the new system of coordinates is periodic
(with a period equal to 2p) with respect to z2, and thus can be
expressed in terms of its Fourier series expansion as

w ¼
Xl¼¥

l¼�¥
wle

jlz2 ¼
Xl¼¥

l¼�¥
FlðwÞe jlz2 ; ð10Þ

where e jlz2 is the lth mode, and wl ¼ FlðwÞ ¼
1=2p

Ð 2p
0 we�jlz2dz2 is the lth modal coefficient that is

independent of z2.
Using the Fourier series expansion representation for u,

sNEW, fNEW and gNEW, selecting a mono-modal test
function v ¼ vke jkz2 (where the Fourier modal coefficient vk
is a function of z1 and z3), and considering orthogonality of
the Fourier modes in L2 ([0, 2p]), the variational
problem (equation 8) can be reduced by linearity to (Pardo
et al., 2008).

Find u ¼
X
l

FlðuÞe jlz2 2 Hl
DðWÞ such that :

Xl¼¥

l¼�¥
Fk

qv
qz

� �
;Fk�1ðsNEW ÞFl

qu
qz

� �� �
L2ðW2DÞ

¼ FkðvÞ;Fkð f NEW Þh iL2ðW2DÞ
þ hFkðvÞ;FkðgNEW ÞiL2ðGN ðW2DÞÞ8FkðvÞe jkz2 2 H1

DðWÞ;

8>>>>>>>>><
>>>>>>>>>:

ð11Þ

where W2D = {(z1, z2, z3)2W: z2 = 0}, and

Fk
qv
qz

� �
¼ qðFkðvÞe jkz2Þ

qz
e�jkz2 and

Fl
qu
qz

� �
¼ qðFlðuÞe jkz2Þ

qz
e�jkz2 :

ð12Þ

Considering a bilinear form b(a1, a2) and a linear form l(a3)
(which are linear in both variables a1 and a2, and linear in a
variable a3, respectively), we can define

Fig. 3. Two-dimensional self-adaptive goal-oriented hp-grid corresponding to a resistivity logging simulation in a borehole environment. The simulation
includes one transmitter (lower solid circle) and two receiver antennas (upper two solid circles). Different colours correspond to different polynomial orders
of approximation, from 1 (dark blue) up to 8 (pink).

bkl FlðuÞ ¼ bðFlðuÞ;FkðvÞÞ

¼ Fk
qv
qz

� �
; Fk�lðsNEW ÞFl

qu
qz

� �� �
L2ðW2DÞ

;
ð13Þ
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and

lk ¼ lðFkðvÞÞ ¼ hFkðvÞ;Fkðf NEW ÞiL2ðW2DÞ

þhFkðvÞ;FkðgNEW ÞiL2ðGN ðW2DÞÞ:
ð14Þ

Using the above definitions, we can express formula 11 in matrix
form for the case of, for example, seven Fourier modes
(�3� k� 3) as

b�3
�3 b�3

�2 b�3
�1 b�3

0 b�3
1 b�3

2 b�3
3

b�2
�3 b�2

�2 b�2
�1 b�2

0 b�2
1 b�2

2 b�2
3

b�1
�3 b�1

�2 b�1
�1 b�1

0 b�1
1 b�1

2 b�1
3

b0�3 b0�2 b0�1 b00 b01 b02 b03
b1�3 b1�2 b1�1 b10 b11 b12 b13
b2�3 b2�2 b2�1 b20 b21 b22 b23
b3�3 b3�2 b3�1 b30 b31 b32 b33

2
666666666664

3
777777777775

F�3ðuÞ
F�2ðuÞ
F�1ðuÞ
F0ðuÞ
F1ðuÞ
F2ðuÞ
F3ðuÞ

2
666666666664

3
777777777775

¼

l�3

l�2

l�1

l0

l1

l2

l3

2
666666666664

3
777777777775

ð15Þ

Each component in the above matrix represents a 2D problem in
terms of variables z1 and z3. For subdomains 1 and 3, we have
Fk–l (sNEW) = 0 if k– l „ 0, and thus the above stiffness matrix
becomes simply diagonal. Interaction among different 2D
problems only occurs in subdomain 2. The fact that the above
stiffness matrix in subdomains 1 and 3 becomes diagonal is a
major advantage of this formulation over traditional 3D
formulations.

A self-adaptive goal-oriented hp-FEM

We employed a 2D self-adaptive goal-oriented high order hp-
FEM algorithm (Pardo et al., 2006b), where h indicates the
element size and p the polynomial order of approximation, to
solve thefinal 3D variational formulation (equation 11). The self-
adaptive hp-refinement strategy automatically conducts an
iterative process of optimal (and local) mesh refinements in
both h and p. For an element being determined to be refined,
the algorithm selects an optimal hp-refinement for the element
(Demkowicz, 2006).

The self-adaptive goal-oriented hp-FEM algorithm provides
high-accuracy simulations since it converges exponentially fast
in terms of the error in the quantity of interest (solution at the
receiver electrode) versus the problem size (number of
unknowns). Note that the goal-oriented refinement strategy
makes optimal hp mesh refinements based on minimizing the
error of a prescribed quantity of interest mathematically
expressed in terms of a linear functional (Paraschivoiu and
Patera, 1998; Oden and Prudhomme, 2001; Prudhomme and
Oden, 1999; Heuveline and Rannacher, 2003). To deal with
the error in the quantity of interest when generating an optimal
grid is critical in the simulation of resistivity-logging
measurements, since the solution (electrical potential in this
study) at the receiver electrode is typically several orders of
magnitude smaller than that around the current electrodes, and
thus, a reasonably small (global) absolute error does not imply a
small relative error at the receiver.

For a further understanding of optimal hp-grids, Figure 3
shows an example of 2D self-adaptive goal-oriented
hp-grid corresponding to a resistivity logging simulation in
a borehole environment. We observe heavier refinements
(in both h and p) around the transmitter and the two
receiver antennas, as physically expected. The outstanding
performance of the self-adaptive goal-oriented hp-FEM

algorithm in simulating resistivity-logging measurements has
been reported in several papers (e.g. Pardo et al., 2006a,
2006b, 2007; Nam et al., 2009).

Numerical results

When plotting normal logs, we use the middle point between
the current electrode and a potential electrode as the reference
depth of the logging result. Thus,when the current electrode is at a
fixed depth, the logging depth of the long-normal logging is
40 inches above that of short-normal. Simulated potential is
transformed into apparent resistivity, ra, using the following
formula:

ra ¼
4pu
I

� lAB; ð16Þ

1 3 5 7 9 11
10

−2

10
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10
0

10
1

Number of Fourier modes

R
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Fig. 4. Convergence behaviour as a function of the number of Fourier
modes used in the simulation of short-normal logging measurements in a
vertical well penetrating a homogeneous formation whose resistivity is the
same as that of borehole, which is equal to 10W.m. The diameter of the
borehole is equal to 0.4m.

1000 Ω.m

1 Ω.m

300 Ω.m

1 Ω.m

0.1 Ω.m

1000 Ω.m

1/10 Ω
.m

Fig. 5. Formation including six horizontal layers of resistivities equal to
1000, 1, 300, 1, 0.1 and 1000W.m from top to bottom, and a vertical borehole.
The thicknesses of the second, third, fourth and fifth layers are 1.5, 3, 1,
and 2m. The borehole has a diameter equal to either 0.2 or 0.4m, and a
resistivity equal to either 1 or 10W.m.
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where u is the potential at a potential electrode, I is the
intensity of the survey current, which is equal to 1 A/m in
our simulations, and lAB is the distance between transmitter

and receiver electrodes, which is equal to 64 inches
and 16 inches for long- and short-normal measurements,
respectively.

(a) (b)
0

1

2

3

4

5

6

7

8

9

R
el

at
iv

e 
de

pt
h 

(m
)

1 mode
3 modes
5 modes
7 modes
9 modes
11 modes

1000 Ω.m1000 Ω.m

1 Ω .m1 Ω .m

300 Ω.m300 Ω.m

1 Ω.m1 Ω.m

0.1 Ω .m0.1 Ω .m

1000 Ω.m1000 Ω.m

Apparent resistivity (Ω.m)Apparent resistivity (Ω.m)
10

−1
10

0
10

1
10

2
10

3
 

1 mode
3 modes
5 modes
7 modes
9 modes

0

1

2

3

4

5

6

7

8

9

R
el

at
iv

e 
de

pt
h 

(m
)

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Fig. 6. Short-normal loggingmeasurements in the presence of tool eccentricity of 11.2 cm (panel a) for
a six-layered formation model (Figure 5) using various numbers of Fourier modes. The borehole with
a diameter equal to 0.4m and a mud resistivity of 10W.m penetrates vertically the six-layered formation
(1000, 1, 300, 1, 0.1, and 1000W.m from top to bottom). The thicknesses of the second, third, fourth,
and fifth layers (from top to bottom) are 1.5, 3, 1, and 2m, respectively. For the computation of
relative differences (panel b), short-normal logging measurements computed with 11 Fourier modes
are regarded as the fully convergent solution and compared with those computed with 1, 3, 5, 7 and
9 Fourier modes.
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Fig. 7. (a) Short-normal logging measurements in the presence of tool eccentricity in a borehole
with a diameter equal to 0.4m and a mud resistivity of 10W.m penetrating a six-layered
formation (1000, 1, 300, 1, 0.1, and 1000W.m from top to bottom). The thicknesses of the
second, third, fourth, and fifth layers (from top to bottom) are 1.5, 3, 1, and 2m, respectively.
(b) Relative differences in percent of the measurements with respect to measurements without tool
eccentricity.
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Verification of the 3D hp algorithm
To verify the accuracy and reliability of the 3D hp algorithm,
we consider a borehole 0.4m in diameter and 10W.m in
resistivity, and a homogeneous formation whose resistivity is

the sameas that of the borehole. Themodel is thus a homogeneous
medium except for the tool properties, and therefore normal
logging measurements should coincide with each other
regardless of the distances from the centre of the tool to the
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Fig. 8. (a) Short-normal logging measurements in the presence of tool eccentricity in a borehole with
diameter equal to 0.4m and amud resistivity of 1W.m penetrating a six-layered formation (1000, 1, 300,
1, 0.1, and 1000W.m from top to bottom). The thicknesses of the second, third, fourth, and fifth layers
(from top to bottom) are 1.5, 3, 1, and 2m, respectively. (b) Relative differences in percent of the
measurements with respect to measurements without tool eccentricity.
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Fig. 9. (a) Short-normal logging measurements in the presence of tool eccentricity in a borehole
with diameter equal to 0.2mand amud resistivity of 10W.m, penetrating a six-layered formation (1000,
1, 300, 1, 0.1, and 1000W.m from top to bottom). The thicknesses of the second, third, fourth, and
fifth layers (from top to bottom) are 1.5, 3, 1, and 2m, respectively. (b) Relative differences in percent
of the measurements with respect to measurements without tool eccentricity.
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centre of the borehole axis. Thus, the electric potential in the
direction of z2 is constant in subdomain 1, while it varies
in subdomains 2 and 3, because the tool is assumed to be
eccentred.

Figure 4 displays the relative differences between short-
normal logging measurements with tool eccentricity equal to
0.112m and those obtained with the centralised tool, as we
increase the number of Fourier modes. When the tool is
centralised, the corresponding problem reduces to 2D, and
thus we can do the simulation with our 2D algorithm. For the
2D simulation, we used a 2D hp-FEM algorithm which has
already been verified in Pardo et al. (2006b). Our 3D
formulation, with one Fourier mode, exhibits an error of ~8%,
which reduces to a level below 1% when more than three
Fourier modes are used. We obtain a convergent solution even
when using a small number of Fourier modes due to the fact that
the solution is smooth along z2, whichwas properly selected with
that specific objective in mind.

Eccentricity effects on logging measurements
For the analysis on eccentricity effects on normal logging
measurements, we consider a formation with six layers whose
resistivities are 1000, 1, 300, 1, 0.1, and 1000W.m from top to
bottom (Figure 5). The thicknesses of the second, third, fourth,
and fifth layers (from top to bottom) are 1.5, 3, 1, and 2m,
respectively. The relative depth of the interface between the first
and second layers is set to be zero. The formation has a vertical
borehole, which has a resistivity of either 1 or 10W.m, and a
diameter of either 0.2 or 0.4m. The logging tool is assumed to be
eccentred from the axis of the borehole by 0.048, 0.08, or 0.112m
in a borehole of diameter 0.4m, or 0.018, 0.03, or 0.042m in a
borehole with a diameter of 0.2m.

For further verification of the 3D algorithm, we present the
history of convergence of short-normal logging measurements

for the six-layered model as a function of the number of Fourier
modes (Figure 6). Differences between results using different
numbers of Fourier modes are almost unnoticeable on a log scale
(Figure 6a). Figure 6b compares relative differences of short-
normal logging measurements using one, three, five, seven, and
nine Fourier modes, respectively, with respect to short-normal
loggingmeasurements using 11 Fourier modes. Evenwhen using
one Fourier mode, the relative differences between the
measurements are below ~10%. Relative differences decrease
with increasing numbers of Fourier modes to a level of 10�2%
when using nine Fourier modes.

Eccentricity effects on short-normal measurements in a
borehole with a diameter of 0.4m and a mud resistivity of
10W.m (Figure 7) are largest in the most conductive layer and
increase with eccentricity distance specifically in conductive
layers; apparent resistivity values in the most conductive layer
decrease due to the eccentricity effects. Since more current tends
toflow into relativelymore conductive layers at the interfaces, the
eccentricity effects are large around the interfaces, resulting in a
decrease in apparent resistivity as the tool gets closer to thewall of
the borehole.

Figure 8 shows eccentricity effects in a conductive 1W.m
borehole with a diameter of 0.4m. Comparison between
eccentricity effects in conductive (Figure 8) and resistive
boreholes (Figure 7) concludes that a more conductive
borehole experiences smaller eccentricity effects than a less
conductive one. This is attributed to the fact that less current
can penetrate into the formation in conductive boreholes, which
means that more current travels inside the conductive borehole.

Eccentricity effects in the interior of the first, third and sixth
layers for both 10W.m and 1W.m boreholes (Figures 7b and 8b)
are negligible (below 1%), showing minimal increase with
eccentricity distance. Furthermore, the increase of eccentricity
effects in the 1W.m borehole is also negligible (below 1%) in the
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Fig. 10. (a) Long-normal logging measurements in the presence of tool eccentricity in a borehole
with diameter equal to 0.4m and a mud resistivity of 10W.m, penetrating a six-layered formation
(1000, 1, 300, 1, 0.1, and 1000W.m from top to bottom). The thicknesses of the second, third, fourth,
and fifth layers (from top to bottom) are 1.5, 3, 1, and 2m, respectively. (b) Relative differences in
percent of the measurements with respect to measurements without tool eccentricity.
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1W.m layer, even though the corresponding eccentricity effects in
the 10W.m borehole increase with increasing tool eccentricity
(Figure 7b). Thus, we can conclude that tool eccentricity has no
serious effects if the borehole is less resistive than formation,
because a change in the amount of current flowing into formation
is negligible even though the tool gets closer to the wall of
borehole; current more willingly flows along the borehole
regardless to the eccentricity distance.

Eccentricity effects in a10W.mboreholewith adiameter equal
to 0.2m (Figure 9) are smaller than those in a 10W.m borehole
with a diameter equal to 0.4m (Figure 7). Even though the
distance of tool eccentricity is similar, the eccentricity effects
are larger in the large borehole (compare eccentricity effects
with an eccentricity distance of 0.048m in Figure 7 with those
of 0.042m in Figure 9).

Figure 10 shows eccentricity effects on long-normal
measurements in a borehole with a diameter equal to 0.4m
and a mud resistivity of 1W.m. The eccentricity effects on
long-normal measurements are smaller than those on short-
normal measurements (compare long-normal measurements
(Figure 10) with short-normal measurements (Figure 7).

Conclusions

Wehave successfully simulated eccentricity effects on short- and
long-normal measurements by combining the use of a Fourier
series expansion in a new system of coordinateswith a high-order
self-adaptive hp finite-element method. In the 3D simulation, we
modelled a commercial tool that has been used in the Korea
Institute of Geoscience and Mineral Resources (KIGAM) for
several years. Numerical experiments indicate that our 3D
algorithm accurately simulates long- and short-normal logging
measurements in the presence of tool eccentricity using only a
small number of Fourier modes. Eccentricity effects are larger
with increasing distance of tool eccentricity. Resistive logging
measurements in a smaller borehole experience smaller
eccentricity effects than those in a larger borehole, while
eccentricity effects in a more conductive borehole are smaller
than in a resistive borehole. Eccentricity effects are more
emphasised when the formation is highly conductive.
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