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ABSTRACT   
 
We use the commercial computational fluid dynamics code Fluent to simulate the flow 
around a sphere in several different flow regimes; steady-state laminar flow at a Reynolds 
number (Re) of 100, time-dependent laminar flow at Re = 300, and turbulent flow at Re = 104 
and Re = 106. These simulations provide a test of the ability of the code to accurately 
reproduce typical flow structures observed in generic bluff body flows, such as those 
experienced by submarines and Unmanned Underwater Vehicles (UUVs). The simulations are 
compared both with experimental results and computations from other computer codes and it 
is found that Fluent is able to accurately simulate the fluid behaviour in each of the above 
flow regimes. 
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using the Fluent Code 

 
 

Executive Summary    
 
The use of Computational Fluid Dynamics (CFD) codes to simulate the flow around 
geometrically complicated shapes such as aeroplanes, cars and ships has become 
standard engineering practice in the last few years. The computer code Fluent is a 
commercial CFD code which is used routinely by members of the Hydrodynamics 
Group within DSTO’s Maritime Platforms Division (MPD) to simulate flows relevant 
to underwater vehicle design and surface ship wakes. In this report we test the ability 
of the code to accurately simulate the flow around a sphere over a large range of 
Reynolds numbers (Re). This is a stringent test of the code as it involves a number of 
very different flow regimes, varying from laminar steady-state flow near Re = 100 to 
time-dependent turbulent flow at Re = 106. 
 
These simulations are also intended to provide a benchmark comparison for the finite 
difference CFD code Vortel, currently under development at Naval Underwater 
Warfare Center, Newport, Rhode Island in collaboration with researchers at MPD. 
Vortel is based on the Lagrangian Vorticity method and offers advantages over 
commercial CFD codes for the simulation of flow around multiple bodies in relative 
motion. It has already been used to simulate unmanned undersea vehicle docking 
manoeuvres, as well as unsteady bow thruster hydrodynamics and the unsteady 
separated flow fields past an oscillating airfoil. 
 
Four different flow regimes are studied in detail: steady-state laminar flow at Re = 100, 
time-dependent laminar flow at Re = 300, turbulent flow with laminar boundary layers 
at Re = 104 and turbulent flow with turbulent boundary layers at Re = 106. The 
simulated flows were found to be in excellent agreement with both experimental 
results, where available, and with the results obtained by other authors using different 
simulation codes. The simulations described in this report illustrate the capability of 
the Fluent code to accurately reproduce typical flow structures observed on this 
generic bluff body flow for both time independent/time-dependent and 
laminar/turbulent flow regimes. 
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1. Introduction  

The use of computational fluid dynamics codes to simulate the flow around geometrically 
complicated shapes such as aeroplanes, cars and ships has become standard engineering 
practice in the last few years. A number of commercially available codes can be used to 
perform these studies, including the finite volume codes Fluent [11] and CFX [3], both of 
which are used routinely by the Hydrodynamics Group within DSTO’s Maritime Platforms 
Division (MPD) to perform computational fluid dynamics (CFD) studies on underwater flow 
problems relevant to underwater vehicle design. The strength of the commercial codes 
generally lies in their excellent pre-processor software, which allows robust meshes to be 
constructed around very complicated shapes, and the number of quite advanced turbulence 
models contained within them. Whilst these codes are now also developing the ability to 
handle problems with moving and deforming meshes, these features are typically structured 
around particular geometries of commercial importance, such as piston motion in cylinder 
blocks, fan blades in cyclones and stores separation from aircraft. The ability to simulate flow 
around an arbitrary number of bodies in relative motion, which is of interest to the MPD 
Hydrodynamics Group, is not intrinsically suited to these codes. 
 
One computer code which shows considerable promise in this area is Vortel, a finite difference 
code currently under development at NUWC, Newport, Rhode Island in collaboration with 
researchers at MPD [15]. Vortel is based on the Lagrangian Vorticity method [35] and will be 
used to simulate flow around multiple bodies in relative motion. It has already been used to 
simulate unmanned undersea vehicle docking manoeuvres [17,18] as well as unsteady bow 
thruster hydrodynamics [16] and the unsteady separated flow fields  past an oscillating airfoil 
[19]. As part of the development process Vortel is being tested against a number of benchmark 
problems, one of which is the simulation of the flow past a sphere over a large range of 
Reynolds numbers (Re). This is a stringent test of the code as it involves a number of different 
flow regimes, from laminar steady-state flow near Re = 100 to time-dependent turbulent flow 
at Re = 106. To provide verification, the Fluent code has been used to simulate the flow past a 
sphere in several flow regimes; steady-state laminar flow at Re = 100, time-dependent laminar 
flow at Re = 300, and turbulent flow at Re = 104 and Re = 106. 
 
As Fluent is used to perform the majority of the flow simulation studies performed by the 
Hydrodynamics Group, the computations reported here also provide a timely test of the 
ability of the code to accurately reproduce typical flow structures observed in generic bluff 
body flows. The simulations are compared both with experimental results and computations 
from other computer codes and it is found that Fluent is able to accurately simulate the fluid 
behaviour in each of the above flow regimes. At Re = 300 the laminar solver in Fluent 
accurately calculates the regular vortex shedding observed both experimentally and in many 
numerical simulations, while the new Large Eddy Simulation (LES) turbulence model 
available in the latest version of Fluent (Fluent 6.3) is shown to be able to simulate the drop in 
drag coefficient which occurs near Re = 3.8 × 105 due to the transition from laminar to 
turbulent boundary layer separation. Comparison with the simulation results obtained from 
the Vortel code are described elsewhere [15]. 
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2. Flow regimes as a function of Reynolds number 

The nature of the flow around a sphere changes dramatically as the Reynolds number of the 
flow increases. In general, the higher the Reynolds number, the more complex the flow. In this 
section we describe the nature of the flow for different Reynolds numbers in a range between 
Re = 20 and Re = 1.0×106. It should be noted that the Reynolds number range for each of the 
different flow regimes shows some variation depending on the individual researchers, so that 
the Reynolds numbers given here delineating one flow regime from another should be 
considered to have a small amount of uncertainty attached to them. 
 
2.1  Steady axisymmetric regime: 20 < Re < 210 

Experimental investigations of the steady wake behind a sphere at low Reynolds numbers 
have been performed by Taneda [48] and Nakamura [38]. Taneda found that for Reynolds 
numbers less than 24 the flow around the sphere is perfectly laminar, no flow separation 
occurs, and the flow on the downstream side of the sphere is identical to that on the upstream 
side.  
 
Above a Reynolds number of 25 the flow separates from the sphere close to the rear 
stagnation point and forms a closed recirculating wake in the shape of an axisymmetric vortex 
ring. As the Reynolds number increases both the separation angle and the length of the wake 
grow. Taneda showed that the size of the vortex ring was proportional to the logarithm of the 
Reynolds number and that the flow was stationary up to a Reynolds number of approximately 
130, after which oscillations began to appear at the rear of the vortex ring. Nakamura however 
found that the vortex ring was stable and axisymmetric up to a Reynolds number of 
approximately 190, and that a stable vortex ring formed at a Reynolds number as low as Re = 
7.  
  
Magarvey and Bishop [34] and Wu and Faeth [54] experimentally investigated the flow past a 
sphere over a larger range of Reynolds numbers and found similar behaviour to that found by 
Nakamura [38]. Wu and Faeth found that the flow was axisymmetric and stable up to Re = 
200, while Magarvey and Bishop found the same behaviour occurring up to Re = 210. These 
observations are in good agreement with the calculations of Natarajan and Acrivos [39], who 
investigated the linear stability of the steady axisymmetric flow past a sphere and found that 
the flow undergoes a regular bifurcation at a Reynolds number of about 210 and results in the 
development of a non-axisymmetric wake.  
 
2.2  Steady planar-symmetric regime: 210 < Re < 270 

 Above this transition point near Re = 210 Magarvey and Bishop [34] and Wu and Faeth [54] 
noted that the flow remained attached and stable but was no longer axisymmetric. The nature 
of the flow in this regime consists of two streamwise vortical tails of equal strength and 
opposite sign. Magarvey and Bishop [34] referred to this structure as a double threaded wake 
and were able to observe and photograph the phenomenon by following the drop of an 
immiscible fluid in a number of different liquid-liquid systems.  
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Although the flow no longer possesses axial symmetry the flow still exhibits planar symmetry 
in the plane containing the two vortical tails. The orientation of this symmetry plane is tilted 
off the streamwise axis and has been explained by Johnson and Patel [23] as being due to an 
azimuthal instability of the low pressure core of the wake vortex. The actual orientation of the 
plane is arbitrary and will be determined by random external influences, such as 
perturbations due to model supports in an experimental situation, or truncation errors or grid 
asymmetries in numerical simulations.  
 
The loss of axial symmetry results in the appearance of a lateral (lift) force which is directed in 
the plane of flow symmetry. The presence of this force was observed by Magarvey and Bishop 
[34] by noting that the liquid drops in their experiments deviated from a vertical line of fall. 
More recently the presence of a lateral force has been verified by several numerical 
simulations. Gushchin et al. [14] used an explicit second order finite difference scheme to 
perform direct numerical simulations of the flow around a sphere and found zero lift force at 
Re = 210 but a finite value at Re = 210.5. Johnson and Patel [23] found that the simulated lift 
force jumped by three orders of magnitude between Re = 211 and Re = 212.  
 
Tomboulides and Orszag [50] used direct numerical simulation based on spectral-type 
methods to simulate the flow between Re = 25 and Re =1000. Their simulations showed that 
the flow past a sphere is axisymmetric up to a Reynolds number of approximately 212, and 
that beyond this Reynolds number the flow undergoes a transition to three-dimensionality 
through a regular bifurcation. The characteristics of the resulting steady flow field, which they 
found to be stable up to a Reynolds number of approximately 270, corresponded to that of the 
double-thread wake reported by Magarvey and Bishop [34]. The simulations showed that the 
double thread wake consisted of two opposite-sign streamwise vortices which extend to 
infinity and appear in the experiment as two dye threads emanating from the end of the 
recirculation region.  
 
2.3 Unsteady planar-symmetric regime: 270 < Re < 400 

As the Reynolds number increases within this range a transition from the steady planar-
symmetric wake to a time-dependent planar-symmetric wake occurs. The unsteadiness first 
appears as a waviness in the double threaded wake. This form of instability in the wake exists 
only over a very limited large of Reynolds numbers, between Re = 270 and Re = 290. Above 
Re = 290 Magarvey and Bishop [34] found that the wake became unsteady and consisted of a 
series of interconnected vortex loops, while Wu and Faeth [54] found that the flow became 
unsteady and exhibited vortex shedding at a Reynolds number close to 280. Sakamoto and 
Haniu [43] conducted an extensive series of experiments on the flow past spheres in the 
Reynolds number range from 300 to 40,000 using hot-wire techniques in a low speed wind 
tunnel and flow-visualisation techniques in a water channel. They found that hairpin shaped 
vortices began to be shed periodically at Re = 300 with regularity in strength and frequency 
and that the planar symmetry of the flow was maintained.  
 
These experimental observations [34, 43, 54] are in broad agreement with a number of recent 
numerical simulations.  Johnson and Patel [23] performed numerical simulations at Re = 270 
and found a steady-state solution, while at Re = 280, the next highest Reynolds number 
considered in their calculations, the solution clearly became periodic. The results of their 
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simulation at Re = 300 showed a highly organised periodic flow dominated by vortex 
shedding, with a Strouhal number of 0.137 and a mean value for the drag coefficient Cd of 
0.656.  
 
Ploumhans, et al. [40] used three-dimensional vortex methods to simulate the flow past a 
sphere at Reynolds numbers of 300, 500 and 1000. At Re = 300 they found that the flow 
attained a time periodic regime with a Strouhal number of 0.135 and a mean value for Cd of 
0.683. A finite value for the lift coefficient was obtained and the flow exhibited planar 
symmetry in a plane passing through the wake centre line. 
 
The direct numerical simulations of  Tomboulides and Orszag [52] used a mixed spectral 
element/Fourier spectral method and found that the transition between three-dimensional 
steady flow with planar symmetry to single frequency periodic flow with vortex shedding 
occurred in the range between Re = 270 and Re = 285. They also performed a simulation at 
Re = 300 and found a Strouhal number of 0.136 and a mean drag coefficient of  0.671. They 
noted that the basic wake structure consisted of a succession of interconnected vortex loops 
which maintained the planar symmetry observed at lower Reynolds numbers.  
 
Mittal [37] performed numerical simulations of flow past prolate spheroids using a Fourier-
Chebyshev spectral collocation method for Reynolds numbers in the range from Re = 50 to 
Re = 500. At Re = 350 he found that the wake was characterised by the appearance of 
interconnected vortex loops which were shed from the sphere at a well defined frequency 
with a Strouhal number of 0.140. Planar symmetry could also be observed in the unsteady 
wake in a plane passing through the wake centre line.  
 
2.4 Unsteady asymmetric regime: 400 < Re < 1000 

In this range the planar symmetry of the flow is eventually lost because the azimuthal location 
at which the vortex loops are formed changes from cycle to cycle in an irregular fashion. The 
exact value of the Reynolds number at which this begins to happen is difficult to specify 
precisely. In the experiments of Sakamoto and Haniu [43] it was noted that the shedding of 
the vortices started to become irregular near Re = 420 and was completely random at Re = 480. 
Mittal [36] conducted a series of direct numerical simulations in the range 350 < Re < 425 to 
more accurately locate the upper extent of the planar symmetric range and found that the 
wake loses planar symmetry between Re = 350 and Re = 375. The cycle-to-cycle variations in 
the vortex formation angle at these Reynolds numbers where quite small however and did not 
become appreciable until Re = 425. Mittal [36] thus explained this apparent discrepancy with 
the results of Sakamoto and Haniu as being due to the inability of experimental flow 
visualisation techniques to detect small scale variations in the azimuthal angle of vortex 
formation. The numerical simulations of Dallmann et al. [9] however indicate that planar 
symmetry still exists in the flow at R = 400.  
 
At Re = 500 the simulations of Tomboulides and Orszag [50] showed a wake structure similar 
to the one observed at Re = 300, but the vortex loops were shed from the sphere with different 
orientations, hence the planar symmetry observed at Re = 300 was not preserved. Time 
spectra of the velocity at several locations showed that the flow had changed from a one-
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frequency flow at Re = 300 to an almost chaotic system at Re = 500, although a dominant peak 
at a Strouhal number of 0.167 could still be observed.  
 
A further transition in the nature of the flow occurs near Re = 800. Above this Reynolds 
number the measurements of Kim and Durbin [26] showed that two dominant modes of 
unsteadiness exist in the wake. These are associated with a small scale instability in the 
separating shear layer (the Kelvin-Helmhotz instability) and a large scale instability in the 
wake (the vortex shedding). The higher frequency component was only detected in the region 
immediately downstream of the sphere, leading Kim and Durbin to the conclusion that this 
mode was due to a Kelvin-Helmhotz instability in the separating shear layer. The Strouhal 
number associated with vortex shedding was found to be practically independent of Reynolds 
number for Re > 800 and had a value of approximately 0.2, while the Strouhal number 
associated with the Kelvin-Helmholtz instability increased with increasing Reynolds number. 
Similar results have also been found in the experiments of Sakamoto and Haniu [43] and 
Chomaz et al. [4]. The presence of a Kelvin-Helmholtz instability in the separating shear layer 
above Re = 800 has also been seen in the numerical simulations of Tomboulides and Orszag 
[50], who used a Spectral Element/Fourier Spectral method.  
 
2.5  Turbulent wake regime: Re > 1000 

Taneda [49] made visual observations of the flow past a sphere in a wind tunnel in the range 
104 < Re < 106 using a combination of the surface oil flow method, the smoke flow visualisation 
method and the tuft-grid method. For Reynolds numbers in the range 1.0 × 104 < Re < 3.8×105 
he showed that the wake undergoes a progressive wave motion in a plane containing the 
streamwise axis. The Strouhal number and drag coefficient remain approximately constant at 
0.2 and 0.5 respectively, but the plane containing the oscillations rotates slowly and irregularly 
around the axis. These observations are in agreement with those of Achenbach [1,2], who 
found that strong periodic fluctuations existed in the wake right up to the critical Reynolds 
number of 3 × 105, and that the vortex separation point rotated around the sphere.  
 
Above the critical Reynolds number around Re = 3.8 × 105  the near-wake recirculation region 
shrinks considerably, the drag coefficient decreases sharply to a value of Cd ≈ 0.08, and 
periodic vortex shedding is no longer able to be detected experimentally. The experiments of 
Taneda [49] show that in the range 3.8 × 105 < Re < 1.0 × 106 the sphere wake forms a pair of 
streamwise line vortices at a short distance from the streamwise axis and the vortex pair 
rotates slowly and randomly about that axis.  
 
Numerical simulations of flow for Reynolds numbers greater than 103 have been performed 
mainly using Large Eddy Simulation (LES) or Detached Eddy Simulation (DES) techniques, 
although a few authors have attempted to use either Reynolds Averaged Navier Stokes 
(RANS) or unsteady Reynolds Averaged Navier Stokes (URANS) methods, with limited 
success. Drikakis [10] computed the flow past a sphere at Reynolds numbers of 1.62 × 105 and 
5 ×106 using both a k-ε model and the Baldwin-Lomax model. Comparison with experiment 
was limited to plots of pressure coefficient versus polar angle. At the lower Reynolds number 
the k-ε model gave good agreement with the experimental results prior to the separation 
point, but limited agreement in the aft region. At the higher Reynolds number the k-ε model 
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performed poorly for most values of the polar angle. The Baldwin-Lomax model was very 
inaccurate at both Reynolds numbers.  
 
Constantinescu and Squires [6] simulated the flow over a sphere at Re = 104 using URANS, 
LES and DES techniques. The URANS calculations were performed using the k-ε, k-ω, V2f and 
Spalart-Allmaras models. Spatial discretisation was based on generalised curvilinear 
coordinates and high order finite difference approximations and time advancement was via 
the fractional step method. With the exception of the two-layer k-ε model, which performed 
poorly everywhere, the URANS predictions of the pressure coefficient and the streamwise 
drag coefficient were in reasonable agreement with experiment. The URANS simulations 
however were not able to accurately simulate the drag coefficient and the energy content 
associated with the main instability modes. Both the LES and DES computations showed the 
presence of a second high frequency band in the power spectra and the calculated Strouhal 
numbers for both the low frequency (vortex shedding) and high frequency (Kelvin-Helmholtz 
instability) modes were in good agreement with the experimental results of Sakomoto and 
Haniu [43]. None of the URANS simulations [6,10] showed the presence of the higher 
frequency band.  
 
Constantinescu and Squires [7] simulated the flow over a sphere using DES on a structured 
hexahedral mesh having 450,000 nodes for Reynolds numbers of 1.0 × 105, 4.2 × 105 and 

1.14 × 106. In the subcritical regime (Re = 1.0 × 105) with laminar boundary layer separation 
DES was able to capture the large scale vortex shedding as well as the formation of the vortex 
tubes in the separated shear layers due to the growth of Kelvin-Helmholtz instabilities in 
these layers. Good agreement was found with experimental data for drag coefficient, location 
of transition on the sphere, and the distribution of pressure and skin-friction coefficients. In 
the supercritical regime (Re = 4.2 × 105 and 1.14 × 106) DES accurately predicted the position of 
boundary layer separation and the distribution of the mean pressure coefficient over the 
sphere surface, but the skin friction coefficient was less accurately predicted. Improved 
agreement was obtained when the model was activated near the region where transition was 
observed in experiments.  
 
Kim [29] used LES on unstructured meshes to simulate flow around a sphere for Reynolds 
numbers of 1.0 × 104 and 1.14 × 106. Two different sub-grid scale stress models were used, a 
dynamic Smagorinsky model and a localised dynamic kinetic energy model, but there was 
little difference in the results predicted by the two models. At Re = 1.0 × 104 both models 
accurately predicted the magnitude of the drag coefficient, the vortex shedding Strouhal 
number and the separation angle. As Re increased further the magnitude of the drag 
coefficient was accurately predicted but the locations of the separation point and the onset of 
the transition from laminar to turbulent flow in the boundary layer were much less 
satisfactory. A summary of the different flow regimes is contained in Table 1.  
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Table 1: Summary of different flow regimes as a function of Reynolds number 
Re range Nature of Flow Drag coefficient Strouhal number 

20 ≤ Re ≤ 210 Steady axisymmetric flow with closed 
recirculating wake in the shape of a vortex ring. 2.7 → 0.7 Steady state flow 

210 ≤ Re ≤ 270 
Flow is attached, stable and consists of two 
streamwise vortical tails of equal strength and 
opposite sign. Flow exhibits planar symmetry. 

Cd continues to fall 
monotonically Steady state flow 

270 ≤ Re ≤ 300 

Transition to unsteady wake consisting of the 
periodic shedding of a series of interconnected 
vortex loops. Flow still exhibits planar 
symmetry. 

Mean value of 
Cd ≈ 0.66 - 0.68 St ≈ 0.14 

400 ≤ Re ≤ 800 

Vortex loops continue to be shed but the 
azimuthal angle at which they are formed 
begins to oscillate in an irregular fashion and 
the planar symmetry is lost.   

Mean value falls to 
0.5 at Re = 800 

St slowly increases 
to 0.2 at Re = 800 

800 ≤ Re ≤ 3.8 × 105 
Vortex loops continue to be shed but in a more 
irregular manner, although strong periodic 
fluctuations still exist in the wake.   

Cd ≈ 0.5 over entire 
range 

St ≈ 0.2 over entire 
range 

3.8 × 105 ≤ Re ≤ 1.14 × 106 
Near wake region shrinks considerably, drag 
decreases sharply, periodic vortex shedding is 
no longer able to be detected experimentally. 

Cd ≈ 0.08 at the critical 
point, then slowly 

rises to ≈ 0.12 

Considerable 
uncertainty exists 
in the literature 

 
 

3.  The Fluent Code 

Fluent is a computational fluid dynamics computer code developed and marketed by Fluent 
Inc. [11]. The code solves the equations for conservation of mass, momentum, energy and 
other relevant fluid variables using a cell-centred finite-volume method. First the fluid domain 
is divided into a large number of discrete control volumes (also known as cells) using a pre-
processor code which creates a computational mesh on which the equations can be solved. 
The meshing software available with Fluent is called Gambit. This software allows the use of 
several types of computational cells including triangular, quadrilateral, hexahedral, 
tetrahedral, pyramidal, prismatic and hybrid meshes. 
 
Once the fluid domain has been meshed, the governing equations (in integral form) are 
applied to each discrete control volume and used to construct a set of non-linear algebraic 
equations for the discrete dependent variables. Fluent then offers the user a number of choices 
for the algorithm used to solve these equations, including coupled explicit, coupled implicit, 
and segregated solvers.  In all the calculations reported here only the segregated solver has 
been used. In this approach the governing equations are solved sequentially. Since these 
equations are non-linear they are first linearised using an implicit method. This produces a 
scalar system of equations containing only one equation per computational cell per degree of 
freedom. A point implicit (Gauss-Siedel) linear equation solver is then used in conjunction 
with an algebraic multigrid (AMG) method to solve the resultant scalar system of equations 
for the dependent variable in each cell. Since the equations are non-linear several iterations of 
the solution loop must be performed before a converged solution is obtained. 
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3.1  Pressure-Velocity Coupling 

Using this approach, an equation for each component of the momentum equation and then 
the continuity equation are solved sequentially. Once the three components of velocity have 
been calculated for each cell using this sequential system the velocities may not satisfy the 
continuity equation and so a “Poisson-type” equation for a pressure correction is derived from 
the continuity equation and the linearised momentum equations. This pressure correction 
equation is then solved to obtain the necessary corrections to the pressure and velocity fields 
such that continuity is satisfied.  
 
Although the pressure variable appears in each of the component momentum equations each 
of these equations is solved by treating the relevant component of velocity as the unknown 
variable and the pressure field is taken to be that from the previous iteration. In this sequential 
procedure the continuity equation is used as an equation for the pressure. However pressure 
does not appear explicitly in the continuity equation for incompressible flows (which are the 
only flows considered in this report) and so a procedure must be devised to introduce 
pressure into this equation. Fluent provides methods based on the SIMPLE (Semi-Implicit 
Method for Pressure-Linked Equations) family of algorithms to do this.  
 
The basic SIMPLE algorithm uses a relationship between velocity and pressure corrections to 
enforce mass conservation and to obtain the pressure field. The SIMPLEC algorithm (SIMPLE-
Consistent) is a variation of the SIMPLE algorithm which uses a more refined expression for 
the variable flux through each of the cell faces. The PISO pressure-velocity coupling scheme 
(Pressure-Implicit with Splitting of Operators) is also part of the SIMPLE family of algorithms 
and is based on a higher degree of approximation for the relationship between the corrections 
for pressure and velocity. The PISO algorithm takes more CPU time per solver iteration, but it 
can dramatically decrease the number of iterations required for convergence, especially for 
transient problems. The PISO algorithm also allows Fluent to obtain solutions on highly 
skewed meshes in approximately the same number of iterations as required for more 
orthogonal meshes.  
 

3.2 Spatial Discretisation 

Fluent stores discrete values of the variables at the cell centres, however values of the 
variables are required at the cell faces for the convection terms in the equations and these 
must be interpolated from the cell centre values. In Fluent 6.1 this is accomplished using an 
upwind scheme and there are several alternatives: first-order upwind, second-order upwind, 
power law, and QUICK.  
 
In the first-order upwind scheme quantities at cell faces are determined by assuming that the 
cell-centre values of any variable represent a cell-average value and hold throughout the 
entire cell. Hence the face quantities are identical to the cell quantities. The Power-Law 
scheme is an improvement which interpolates the face value of a variable by using the exact 
solution to a one-dimensional convection-diffusion equation. When the flow is dominated by 
convection this implies that the face value of the variable is effectively equal to the cell value 
in the upwind direction. If the flow is weak and diffusion stronger then the Power-Law 
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scheme amounts to a simple linear average of the value of the variable at the current cell 
location and the upstream cell. The Second-Order Upwind Scheme provides true second order 
accuracy by performing a Taylor series expansion of the cell-centred solution about the cell 
centroid. The QUICK scheme also allows calculation of a higher-order value of the convected 
variable at the cell face by using a weighted average of second-order upwind and central 
interpolation.  
 
Fluent 6.2 contains enhanced discretisation schemes which have been motivated by the new 
LES and DES turbulence models available in this version of the code. Because accurate spatial 
discretisation is crucial in LES version 6.2 of Fluent contains a new second-order central 
differencing scheme for the discretisation of convective terms. Even higher order upwind-
biased schemes such as second-order upwind, QUICK and third-order MUSCL schemes 
introduce considerable amounts of numerical diffusion. This is particularly detrimental in LES 
calculations because numerical diffusion, no matter how small, can easily overwhelm physical 
diffusion. Central differencing schemes are well known to have either very low, or sometimes 
zero, numerical diffusion, and hence are ideal for LES calculations. This unfortunately can 
lead to another problem however, in that the lack of any numerical damping can allow 
unphysical oscillations in the solutions to develop. To overcome this possibility a bounded 
central differencing scheme was also introduced in version 6.2 of Fluent. This scheme 
essentially detects any oscillations in the solution field with a wavelength less than twice the 
local grid spacing. It then suppresses these oscillations by switching to upwind schemes of 
varying orders, depending on the severity of the oscillations, but only in the regions of space 
where these oscillations occur. Because of these features, Fluent version 6.2 was used for all 
the LES simulations described in section 6.  
 

4. Turbulence Models 

Turbulent flows are characterised by velocity fields which fluctuate rapidly both in space and 
time. Since these fluctuations occur over several orders of magnitude it is computationally 
very expensive to construct a grid which directly simulates both the small scale and high 
frequency fluctuations for problems of practical engineering significance. Two methods can be 
used to eliminate the need to resolve these small scales and high frequencies: Reynolds 
Averaging and Filtering.  
 
4.1 Reynolds Averaging 

In the Reynolds Averaged approach all flow variables are divided into a mean component 
(which can vary slowly in time) and a rapidly fluctuating component and then all equations 
are time averaged to remove the rapidly fluctuating components. In the Navier-Stokes 
equation the time averaging introduces new terms which involve mean values of products of 
rapidly varying quantities. These new terms are known as the Reynolds Stresses, and solution 
of the equations initially involves the construction of suitable models to represent these 
Reynolds Stresses. One approach is to treat the time averaged terms as additional viscous 
stresses produced by the turbulence in the flow. In the Boussinesq approximation the 
Reynolds Stresses are assumed to have a form identical to the viscous stresses in the 
momentum equation, apart from a multiplicative term known as the turbulent viscosity, μT. 
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Fluent provides several turbulence models based on the Boussinesq approach: the Spalart-
Allmaras model [45], the k-ε model [24, 30,53], and the k-ω model [53]. As discussed in section 
2 however, none of these models have proven to be particularly effective at capturing the time 
dependent features of the flow past a sphere at moderately large Reynolds numbers. This is in 
contrast to the findings of Iaccarino et al. [20], who carried out URANS (Unsteady Reynolds 
Averaged Navier Stokes) simulations of flow around square cylinders and a wall-mounted 
cube and found good agreement of the time-dependent features of the flow (such as the 
frequency of vortex shedding) with available experimental data. Constantinescu and Squires 
[7] however have noted that URANS simulations past spheres appear to be practically steady-
state when compared with the results obtained from URANS simulations past cylinders, and 
they attribute these differences to the fact that the coherence of the wake structures in the flow 
past spheres is less significant as compared to the flow past cylinders. 
 
Given the results of  Drikakis [10] and Constantinescu and Squires [7] showing that URANS 
calculations are unable to capture the full time-dependent structure of flow past a sphere, and 
the results of Tomboulides et al. [51], Constantinescu and Squires [7] and Kim [25], which 
demonstrate superior predictive capabilities using both LES (Large Eddy Simulation) and DES 
(Detached Eddy Simulation) schemes, no attempts were made to simulate turbulent flow 
structures around a sphere using URANS calculations. All turbulent flow calculations 
reported here used the LES scheme, which is described in more detail in the next section.  
 

4.2 Filtering  

The alternative to Reynolds averaging is filtering. The idea behind this approach is to filter the 
time-dependent Navier-Stokes equation in either Fourier (wave-number) space or 
configuration (physical) space. This filtering process effectively filters out turbulent eddies 
whose scales are smaller than the filter width, which is usually taken to be the mesh size. A 
simulation using this approach is known as a Large Eddy Simulation (LES). As with Reynolds 
averaging however, the filtering process creates additional unknown terms which must be 
modelled in order to provide closure to the set of equations. These terms are the sub-grid scale 
stresses and Fluent 6.2 provides several models for these stresses. The simplest of these is the 
model originally proposed by Smagorinsky [44], in which the sub-grid scale stresses (SGS) are 
computed using an isotropic eddy viscosity approach which sets the SGS equal to the product 
of an eddy-viscosity and the resolved rate of strain tensor. The eddy viscosity is then 
calculated from an algebraic expression involving the product of a model constant CS, the 
modulus of the rate of strain tensor, and an expression involving the filter width. The problem 
with this approach is that there is no single value of the constant CS which is universally 
applicable to a wide range of flows. Another problem is that the model is not applicable to 
transitional flows because the basic expression always gives a finite value for the SGS 
viscosity even in laminar regions of the flow, as long as there is a velocity gradient. An 
additional problem is that an ad hoc damping is needed in the near-wall region.  
 

Fluent 6.2 offers several LES models which overcome these failings of the original 
Smagorinsky model. The WALE model (Wall Adapting Local Eddy Viscosity) contains a near-
wall modification in the expression for the SGS viscosity which adapts to the local near-wall 
flow structure and accounts for wall damping effects without using a damping function 
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explicitly. Fluent 6.2 also contains the Dynamic Smagorinsky Model (DSM) devised by 
Germano et al. [12] and Lilly [33]. In this procedure CS is dynamically computed during the 
simulation using the information provided by the smaller scales of the resolved fields. CS 
determined in this way varies with time and space and this allows the Smagorinsky model to 
cope with transitional flows and to include near-wall damping effects in a natural manner.  
 
Another SGS LES model in Fluent 6.2 is the Localised Dynamic Kinetic Energy Model 
(LDKEM) of Kim and Menon [28,29]. In this model the SGS eddy viscosity is computed from 
an expression involving the filter width, the SGS turbulent kinetic energy, and a (dynamically 
computed) constant CS. This model is more involved in that an additional transport equation 
needs to be solved for the SGS turbulent kinetic energy, but the LDKEM has several desirable 
attributes which the DSM lacks. In particular, using the SGS turbulent kinetic energy to 
parameterise the SGS stress renders the LDKEM better suited to non-equilibrium flows. A 
problem with any LES calculation is the treatment of wall boundaries. In Fluent 6.2, if the 
mesh is fine enough to resolve the laminar sublayer (as is the case in the simulations discussed 
in Section 6) the use of wall functions is avoided by calculating the wall shear stress from the 
laminar stress-strain relationship.  
 
Another approach is known as Detached Eddy Simulation (DES). This was first proposed by 
Spalart [45, 46] in an attempt to combine the most favourable aspects of RANS and LES. DES 
reduces to a RANS calculation near solid boundaries and a LES calculation away from the 
wall. Fluent 6.2 offers a RANS/LES hybrid model based on the Spalart-Allmaras turbulence 
model near the wall and a one-equation SGS turbulence model away from the wall which 
reduces to an algebraic turbulent viscosity model for the SGS turbulence far from the wall.  
 
 

5.  Simulation Results for Laminar Flow 

5.1 Steady axisymmetric regime: 20 < Re < 210 

Section 2 describes the flow over a sphere as being both axisymmetric and steady up to a 
Reynolds number of approximately 210. To test the software in this range a run was first 
performed at Re = 100 on an axisymmetric mesh containing 198,694 quadrilateral cells. The 
sphere was located at the origin and had a diameter of 1.0 m. The flow was in the X direction 
with a velocity of 0.147 cm/s and the viscosity and density were those of ambient air, i.e. 
1.7894 × 10-5 kg/(m-s) and 1.225 kg/m3 respectively. The mesh extended from 10 m upstream 
of the sphere to 20 m downstream and the radial extent of the mesh was 12 m. The laminar 
calculation was run with the segregated solver in axisymmetric geometry using the cell based 
gradient option. The Pressure-Velocity coupling used the SIMPLE method and the 
momentum equations were solved using second-order upwind discretisation. The run had 
converged after approximately 1000 iterations and the calculated value of the drag coefficient 
was Cd = 1.087.  
 
In order to check any dependence of this result on the resolution of the grid a region of the 
mesh between X = –4 m to X = 4 m and Y = 0 to Y = 4 m was refined using the Fluent grid 
adaption feature. The method works by isotropically subdividing each cell, so that a 

 
11 



 
DSTO-TR-2232 

quadrilateral cell is split into four equivalent quadrilateral cells. This increased the number of 
cells on the mesh from 198 694 cells to 240 470 cells. The value of the drag coefficient from this 
simulation, to four significant figures, was again Cd = 1.087. 
 
To check any dependence of this result on the location of the boundaries a new mesh was 
constructed which extended from 15m in the upstream direction to 25 m in the downstream 
direction and out to 15 m in the radial direction. The grid spacing was kept to approximately 8 
mm along the sphere surface and the height of the first cell was approximately 4 mm, with 
successive cell heights increasing with a ratio of 1.02. The total number of cells in the mesh 
was 277 344. The calculated value of the drag coefficient was Cd = 1.086. This value was also 
confirmed to be independent of grid resolution by again adapting the grid in the region 
between X = –4 m to X = 4 m and Y = 0 to Y = 4 m. The calculated value of the drag coefficient 
was again found to be Cd = 1.086.  
 
The value for the drag coefficient calculated using Fluent on the smaller of the unrefined 
meshes (Cd = 1.087) compares favourably with the results found by many other authors. 
Tabata and Itakura [47] have performed a precise computation of the drag coefficient of a 
sphere in the range between Re = 10 and Re = 200 using two finite element schemes for 
axisymmetric flow problems. One is an extension of the standard mixed finite element method 
to axisymmetric problems while the other is an extension of the stabilised finite element 
method. The combination of these two methods results in a consistent flux method which 
allows them to obtain error estimates for the drag coefficient. Their method for Re = 100 gives 
Cd = 1.0900 ± 0.0003. Clift, et al. [5] cite a value of Cd = 1.087, while Le Clair, et al. [31] 
calculated a value of Cd = 1.096 at this Reynolds number. Mittal [37] has used a Fourier-
Chebyshev spectral collocation method for simulating flow past spheres and spheroids in the 
Reynolds number range between Re = 50 and Re = 500 and finds Cd = 1.09 at Re = 100.  
 
In order to further validate the software in this Reynolds number range a series of 
computations was performed on the smaller, unrefined mesh, between Re = 20 and Re = 200. 
Figure 1 shows the calculated values of the drag coefficient in this range, as well as the 
experimental correlation of Clift, et al. [5] and Putnam [41], the calculated values of Tabata and 
Itakura [47] and Mittal [37] and the experimental results of Roos and Willmarth [42]. There is 
excellent agreement between the Fluent simulations and the experimental and simulation 
results of other authors.  
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Figure 1: Comparison of computed drag coefficient with the experimental correlation of Clift, et al. 
[5], the calculated values of Tabata and Itakura [47] and Mittal [37], and the experimental 
results of Roos and Willmarth [42] 

 

5.2 Unsteady planar-symmetric regime:  Re = 300 

Because of the loss of axial symmetry at higher Reynolds numbers a three-dimensional grid is 
needed for all simulation runs conducted above Re = 210. This was constructed by creating a 
sphere of 1 m diameter at the origin and then enclosing the sphere in a larger sized cube. A 
smaller cube was then inserted inside the sphere and then six hexagons were created by 
connecting the corner points of the inner cubes to the corner points of the outer cube. All 
redundant geometrical entities were then deleted and only the sphere faces retained. The 
sphere surface was then meshed with quadrilaterals having side lengths of approximately 
5 mm and then hexagonal cells were created with the first cell height being approximately 
15 mm and further cell heights having expansion ratios of approximately 1.08. The three-
dimensional geometry was then meshed using the Gambit mapping option. The boundaries of 
the mesh extended from X = –8 m to X = 10 m, Y = –8 m to Y = 8 m and Z = –8 m to Z = 8 m. 
The total number of hexahedral cells was 965 120.  
 
The three-dimensional grid was first tested by running a simulation at Re = 100. The 
calculated drag coefficient had a value of 1.0979 and the value of the lift coefficient was 
1.4480 × 10-7, indicating that the solution is effectively axisymmetric even though the 
calculation was carried out on a three-dimensional mesh. The grid was then refined using grid 
adaptation in the region X = –2 m to X = 2 m, Y = –2 m to Y = 2 m and Z = –2 m to Z = 2 m. 
The converged value of the drag coefficient was then Cd = 1.0985, i.e. approximately 0.05% 
higher. This indicates that the mesh has sufficient grid resolution near the surface of the 
sphere. The value 1.0985 is approximately 1% higher than the value of 1.087 calculated on the 
axisymmetric mesh though and indicates that there may still be some slight dependence of the 
value on the location of the boundaries.  
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A time-dependent run on the three-dimensional mesh was then performed at a Reynolds 
number of 300. The simulation was again run in laminar mode using the segregated solver, 
the SIMPLE Pressure-Velocity coupling, second-order upwind discretisation and the cell 
based gradient option. The run was started from the time-independent solution found at 
Re = 100 and the simulation was allowed to run without perturbation until numerical round-
off errors resulted in the appearance of a regular periodic solution.  
 
It was found that a considerable period of time was required to elapse before the motion 
settled into a regular periodic pattern. Figure 2 shows a plot of the drag coefficient as a 
function of time between t = 480 seconds and t = 560 seconds. The mean drag coefficient and 
its rms amplitude calculated from Figure 1 are 0.668 and 0.004 respectively.  Johnson and Patel 
[23] obtained 0.656 and 0.004, Constantinescu, et al. [8] also obtained 0.656 and 0.003, while 
Tomboulides, et al. [50] calculated 0.671 and 0.003. Giacobello [13] calculated a mean drag 
coefficient of 0.658, while Kim, et al. [27] calculated a value of 0.657. The time step used for this 
run was 0.05 seconds. Reduction of this value to 0.025 seconds produced no change in the 
value of the mean drag coefficient. 
 
It should be noted that Johnson and Patel and Constantinescu, et al. used a very similar 
meshing scheme and that both had an effective blockage ratio, defined as the sphere’s frontal 
area divided by the computational grid’s frontal area, of about 0.11%. The mesh for the three-
dimensional calculations described here has a blockage ratio approximately three times this 
value, i.e. 0.31%. The simulation run on the three-dimensional mesh at Re = 100 resulted in a 
drag coefficient approximately 1% higher than the value calculated on the two-dimensional 
axisymmetric mesh (which had a blockage ratio of approximately 0.1%). If we assume that a 
similar reduction in the value of the drag coefficient would result from a Fluent run on a mesh 
having a blockage ratio of approximately 0.1% instead of 0.3% then the calculated value of 
0.668 would reduce to 0.661, which is less than one percent different from the result obtained 
by Johnson and Patel and Constantinescu and Squires. The blockage ratio for the calculations 
of Tomboulides, et al. [50] was 1.23%, which may explain their higher value of Cd = 0.671.  
 
The Strouhal number calculated from Figure 2 is 0.133. Johnson and Patel [23] obtained 
St = 0.137, Constantinescu et al. [8] found St = 0.136, while Tomboulides, et al. [50] obtained 
St = 0.136. Giacobello [13] calculated a value of 0.134 while Kim, et al. [27] also found a value of 
0.134. The value measured by Sakomoto and Haniu [43] at Re = 300 is in the range of 
0.15 - 0.16. The time step used by Johnson and Patel [23] was 0.05 seconds while 
Tomboulides, et al. [50] used a much smaller time step of 0.005 seconds. Whilst reducing the 
time step in our calculation from 0.05 seconds to 0.025 seconds produced no change in the 
mean value of the drag coefficient, it did result in a slight increase in the Strouhal number, 
from 0.133 to 0.136. This compares well with the values calculated by other authors and the 
experimental results. 
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Figure 2: Drag coefficient versus time at Re =300 

 
The periodicity of the flow at Re = 300 is due to the regular shedding of vorticity. As described 
by Magarvey and Bishop [34], the wake consists of a series of interconnected vortex loops 
above Re = 290, while Sakamoto and Haniu [43] show that hairpin shaped vortices begin to 
shed periodically at Re = 300. To observe the shedding of vorticity in the simulation results 
presented here we have used the Q method of vortex identification. This is one of several 
methods which have been proposed and discussed in the literature recently. Jeong and 
Hussain [22] conducted an extensive series of tests on several vortex identification methods to 
determine the most appropriate method of identifying a vortex in a turbulent flow. They 
considered the following methods: 

1. Local pressure minimum 

2. Closed or spiralling streamlines and pathlines 

3. Iso-contours of vorticity magnitude (i.e. |ω|, where ω is the vorticity, ω = ∇ × u, and u is 
the flow velocity) 

4. The occurrence of complex eigenvalues of the velocity gradient tensor ∇u, which is 
equivalent to the statement that the discriminant of the characteristic equation for the 
eigenvalues is positive 

5. The Q method, where Q is the positive second invariant of the deformation tensor. 
i.e. Q = ( Ωij Ωij – Sij Sij )/2, where Ωij = (∂ui/∂xj - ∂uj/∂xi)/2 and 
Sij = (∂ui/∂xj + ∂uj/∂xi)/2. A vortex exists when Q > 0 

6. The λ2 method, where a vortex is defined as a connected region of space with two 
negative eigenvalues of the tensor S2 + Ω2 (where S and Ω are defined above). Since 
S2 + Ω2 is symmetric and has three real eigenvalues λ1, λ2 and λ3 this definition is 
equivalent to the statement that λ2 < 0 if the eigenvalues are ordered such that 
λ1 ≥ λ2 ≥ λ3 
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Their conclusion was that only the λ2 method represented the topology and geometry of 
vortex cores correctly for the large variety of flows considered in their analyses, although they 
did also state that, in most cases, the Q and λ2 methods did result in similar vortex cores. 
Lesieur, et al. [32] have also done a comparison of vortex identification methods including 
local pressure minimum, iso-contours of vorticity magnitude, positive Q and negative λ2 and 
their results also show great similarities between vortex cores identified using the positive Q 
and negative λ2 methods. Giacobello [13] has recently simulated flow around a sphere at 
Re = 300 using a spherical polar coordinate system and a Fourier-Chebyshev collocated 
method as part of a broader study looking at the wake structure of transversely rotating 
spheres. He elucidated the vortex structure in the wake using iso-surfaces of streamwise 
vorticity, iso-surfaces of vorticity magnitude, the Q method, and the λ2 method, amongst 
others. He also concluded that the λ2 method provided the best representation of the vortex 
structure in the flow, although he also noted that the Q method and the λ2 criteria produced 
very similar vortex structures. Given that the two methods produce very similar structures for 
the flow around a sphere, and that the Q method is far easier to implement in Fluent, we have 
decided to use the Q method for the simulation results described here. 
 
Figure 3 shows contours of velocity magnitude plotted on iso-contours of Q at the time 
t = 675.35 seconds. Giacobello [13] noted that an important property of a vortex identification 
criteria (which is amply satisfied by the λ2 method) is that it should be insensitive to the 
threshold value used for the visualisation. We have also found this to be true in the case of the 
Q method as quite large changes in the iso value lead to identical vortex structures. Figure 3 
clearly shows the shear layer separating from the sphere surface and the tubular vortical 
structure in the far wake.  
 
Figure 4 shows a different perspective of the same plot. This clearly shows the planar 
symmetry which still persists in the flow at this Reynolds number, as noted by  Sakamoto and 
Haniu [43] experimentally, and as demonstrated by Mittal [36] in his numerical simulations. 
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Figure 3: Contours of velocity magnitude at Re = 300 plotted on iso-contours of the second invariant 
of the deformation tensor 

 

 

Figure 4: Contours of velocity magnitude at Re = 300 plotted on iso-contours of the second invariant 
of the deformation tensor 
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6. Simulation Results for Turbulent Flow 

As discussed in Section 2.5, URANS simulations are unable to capture the fine scale time 
dependent features of the turbulent flow around a sphere such as the high frequency (Kelvin-
Helmholtz instability) mode found in the experimental results of Sakomoto and Haniu [43], or 
the presence of the higher frequency band seen in the simulations by Constantinescu and 
Squires [7]. Fortunately Fluent 6.2 contains both LES and DES turbulence models as well as 
considerably enhanced discretisation schemes which are suited to the effective utilisation of 
these advanced models.  
 
As described in Section 4.2, Fluent 6.2 offers an LES model with the original Smagorinsky 
expression for the sub-grid scale stresses or three advanced LES models; WALE, LDKEM, or 
the Dynamic Smagorinsky model. The DES model in Fluent 6.2 uses a Spalart-Allmaras 
turbulence model near the wall and a one-equation SGS turbulence model away from the 
wall.  
 
Kim [25] has used the LES model on unstructured meshes to simulate flow around a sphere 
for Reynolds numbers of 1.0 × 104 and 1.14 × 106 using both the dynamic Smagorinsky model 
and the LDKEM, but found that there was little difference in the results predicted by the two 
models. Constantinescu, et al. [8] have also simulated the flow over a sphere at a Reynolds 
number of 1.0 × 104 using both LES and DES models and found that both methods gave 
essentially the same results. In this section we use the Fluent LES model with the Dynamic 
Smagorinsky SGS model to simulate flows at Re = 1.0 × 104 and Re = 1.0 × 106. Because the 
boundary layer is considerably thinner at these higher Reynolds numbers we increased the 
grid resolution in this region by constructing a new grid containing 2.6 million hexahedral 
cells. The method of construction and outer limits of the mesh remain the same as those of the 
earlier mesh but the cell density has been increased over the surface of the grid and in the 
near-wake region. 
 
6.1 Reynolds number = 104 

The time-dependent run was started from an initial mean flow calculated from a steady-state 
RANS calculation using the k-ε model. The inflow velocity was 0.146 m/s and the time step 
was 0.137 seconds. This corresponds to about 250 timesteps per oscillation based on a known 
experimental Strouhal number of approximately 0.2 at this Reynolds number. The flow 
structure at Re = 1.0 × 104 is remarkably different to that at Re = 300 as can be seen from 
Figure 5, which shows the vorticity structure of the flow using the Q method described in the 
previous section.  
 
The additional complexity in the flow is also evident in the plot of drag coefficient as a 
function of time, shown in Figure 6. In addition to the main frequency due to the vortex 
shedding, which occurs at a Strouhal number of 0.191 in Figure 6, the time history also shows 
an additional high frequency component in the range 1.65 to 1.82 which is associated with the 
Kelvin-Helmholtz instability in the detached shear layers, as noted by Constantinescu and 
Squires [7]. These results agree well with those of the LES simulations of Constantinescu, et al. 
[8], who found a value of  St = 0.195 for the fundamental shedding frequency, as well as a 
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second high frequency band occurring between St = 1.30 and St = 1.85. Kim [25] found 
St = 0.182 using an unstructured hybrid mesh of 2.46 million cells using LES with a Dynamic 
Smagorinsky SGS model. The mean drag coefficient calculated over the length of the run was 
0.387. Constantinescu, et al. [8] obtained 0.393 ± 0.014 while Kim [25] calculated a value of 
0.438. The experimental value (from Achenbach [2]) is Cd = 0.40 ± 0.01.  
 

 

Figure 5: Contours of velocity magnitude at Re = 1.0 × 104 plotted on iso-contours of the second 
invariant of the deformation tensor 

 
Figure 7 shows the Y component of the lateral force coefficient as a function of time. This 
displays a fundamentally different time structure to that shown by the drag coefficient. The 
Strouhal number estimated from Figure 7 lies in the range St = 0.151 – 0.158 and there is no 
evidence of a high-frequency component associated with the shear-layer instability. 
Constantinescu and Squires [7] found two dominant frequencies in the ranges St = 0.06 – 0.08 
and St = 0.15 – 0.16 and also noted the absence of a high-frequency component associated with 
the shear layer instability. They stated that this was explained by the fact that the vortex tubes 
shed at the higher Strouhal number are positioned approximately in planes perpendicular to 
the free stream direction and the resulting force on the sphere is therefore oriented parallel to 
this direction. They also noted that the difference in frequency between the lateral force 
oscillations and the oscillations in the drag coefficient also occur for cylinders.  
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Figure 6: Drag coefficient versus time at Re = 1.0 × 104 
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Figure 7: Y component of lateral force coefficient versus time at Re = 1.0 × 104 

 
Figure 8 shows streamlines over the surface of the sphere from two different viewpoints. 
These clearly show the location of boundary layer separation as well as the extent of variation 
in the azimuthal direction. From these figures we estimate that separation occurs at a polar 
angle of 88.0° ±1°. This is slightly larger than the value of 85.0° ± 1° found by Constantinescu, 
et al. [8] in their LES simulations although it is closer to the value found by Kim [25], who 
found a separation angle in the range 86° ∼ 87°. We note that the y+ value over the surface of 
the sphere near the separation region is in the range y+ = 0.2 to y+ = 0.7.  
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a b 

Figure 8: a) Surface streamlines viewed along the Y axis at Re = 104. b) Surface streamlines viewed 
along the Z axis at Re = 104. 

 
6.2 Reynolds number = 106 

To perform simulations at a Reynolds number of 106 the grid used for the previous simulation 
at Re = 104 was further refined in a region close to the sphere surface to ensure adequate 
resolution of the thinner boundary layer at this higher Reynolds number. The mesh contained 
3.3 million hexahedral cells and resulted in a wall y+ value which varied between 0.3 and 0.9 
over the surface of the sphere during the course of the simulation. 
 
The simulation was again started from an initial mean flow calculated from a steady-state 
RANS calculation using the k-ε model. The inflow velocity was 14.6 m/s and the time step 
used was 0.001 seconds. At this Reynolds number the flow is well above the “drag crisis” 
which occurs at approximately Re = 3.8 × 105 and we would therefore expect the sphere to 
exhibit a much lower drag coefficient and that separation would occur much closer to the 
downstream stagnation point. This is qualitatively evident from Figure 9, which shows the 
vorticity structure in the flow.  
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a 

 
b 

Figure 9: a) Contours of velocity magnitude at Re = 1.0 × 106 plotted on iso-contours of the second 
invariant of the deformation tensor. b) Contours of velocity magnitude at Re = 1.0 × 106 
plotted on iso-contours of the second invariant of the deformation tensor. Enhanced view of 
Figure 9a. 

 
The dramatic change in the flow structure is easily seen by comparing Figure 5 and Figure 9. 
The close-up view in Figure 9b in particular shows that the wake at the higher Reynolds 
number is much narrower, as expected, due to the delayed onset of flow separation in the 
now turbulent boundary layer. 
 
Figure 10 shows the drag coefficient as a function of time. The mean value is 0.104. Kim [25] 
found Cd = 0.139 using the dynamic Smagorinsky model and Cd = 0.142 using the LDKEM at 
Re = 1.14 × 106. Constantinescu and Squires [7] found Cd = 0.080 at Re = 1.14 × 106 in their DES 
simulation, and also found that Cd = 0.102 if they forced the boundary layer to remain fully 
turbulent before separation. Wang and Kannan [52] used an overset adaptive cartesion/prism 
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grid method with 2.1 million cells and a Spalart-Almaras turbulence model and found 
Cd = 0.09. Jindal, et al. [21] also conducted an LES simulation on a sphere at Re = 1.14 × 106 on 
an unstructured tetrahedral mesh with 2.5 million cells using the dynamic Smagorinsky 
model and the instantaneous logarithmic law of the wall to model the wall shear stress. They 
found Cd = 0.141. The experimental value from Achenbach [2] is Cd = 0.12. 
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Figure 10: Drag coefficient versus time at Re = 1.0 × 106 

 
Figure 11 shows streamlines over the surface of the sphere. Although there is obviously more 
variation in the location of the separation line in the azimuthal direction than occurred for the 
case of Re =1.0 × 104 it is still possible to estimate an average separation angle of 121° ± 2°. This 
compares well with the results of Constantinescu and Squires [7], who found θs = 120° ± 2° at 
Re = 1.14 × 106, and also with the experimental value from Achenbach [2] of θs = 120°. Wang 
and Kannan [52] found θs = 115°, Jindal, et al. [21] found θs ∼ 120°, while Kim [25] found 
θs ∼ 100°. As noted by Kim [25], the discrepancy in this case was undoubtedly due to 
insufficient resolution in the boundary layer.  
 
Figure 12 shows the frequency spectrum of the time history of the drag coefficient. Peak 
power is observed at St = 0.048 and this agrees well with the result found by Jindal, et al. [21] 
who found a peak at a Strouhal number of St ∼ 0.05. Constantinescu and Squires [7] however 
found a peak in the frequency spectrum at St = 1.30 for Re = 1.14 × 106.  
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a b 

Figure 11: a) Surface streamlines viewed along the Y axis at Re = 106. b) Surface streamlines viewed 
along the Z axis at Re = 106. 
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Figure 12: Plot of frequency spectrum as a function of Strouhal number calculated by taking the FFT 
of Cd versus time at Re = 1.0 × 106 
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7. Discussion and Conclusion 

In this section we briefly review the simulation results for the various flow regimes. A 
summary of the data for the computed mean drag coefficient (Cd), Strouhal number (St) and 
mean separation angle (θs) is given in Table 2. Between Re = 20 and Re =200, where the flow is 
steady-state, axisymmetric and laminar the simulated value for the drag coefficient was in 
excellent agreement with results found both experimentally and computationally by other 
authors. In particular, at Re = 100, the drag coefficient was calculated to be Cd = 1.086, which 
compares favourably with the experimentally calibrated value of Cd = 1.087 found by 
Clift, et al. [5] and the precise computation of Tabata and Itakura [47], which found 
Cd = 1.0900 ± 0.0003.  
 
At Re = 300 the flow becomes unsteady and transitions into periodic time-dependent 
behaviour due to the regular shedding of hairpin shaped vortices. The mean drag coefficient, 
after correction for blockage ratio effects, was calculated to have the value 0.661. This 
compares very favourably with the value of Cd = 0.656 obtained by both Johnson and Patel 
[23] and Constantinescu, et al. [8]. Giacobello [13] calculated Cd = 0.658, while Kim, et al. [27] 
calculated a value of 0.657. The corresponding Strouhal number calculated from this 
simulation was St = 0.133, which also compares favourably with the value found by 
Giacobello [13] and Kim, et al. [27], who both calculated St = 0.134, while Johnson and Patel 
[23] obtained St = 0.137 and  Constantinescu, et al. [8] found St = 0.136.  
 
At Re = 104 the flow in the wake becomes turbulent while the flow in the boundary layer 
remains laminar. An LES simulation using the Dynamic Smagorinsky sub-grid scale model 
with a fine mesh to resolve the laminar sublayer was used for this Reynolds number. The 
simulated results were in good agreement with both experimental results and other numerical 
simulations. The time-dependent behaviour becomes considerably more complex and in 
addition to the main frequency due to the vortex shedding, which now occurs at a Strouhal 
number of 0.191, the time history also shows an additional high frequency component in the 
range 1.65 to 1.82. These results agree well with those of the LES simulations of 
Constantinescu, et al. [8], who found a value of St = 0.195 for the fundamental shedding 
frequency, as well as a second high frequency band occurring between St = 1.30 and St = 1.85. 
The mean drag coefficient was 0.387, which agrees with the value obtained by 
Constantinescu, et al. [8] of 0.393 ± 0.014 and is very close to the experimental value of 
Cd = 0.40 ± 0.01 (Achenbach [2]).Streamline plots over the surface of the sphere showed that  
boundary layer separation occurs at a polar angle of 88.0° ±1°, which is slightly larger than the 
value of 85.0° ± 1° found by Constantinescu, et al. [8] but is closer to the value calculated by 
Kim [25], who found θs to be approximately 86° ∼ 87°. 
 
At a Reynolds number of approximately Re = 3.8 ×105 the boundary layer switches from being 
predominantly laminar to predominantly turbulent, hence the separation point moves further 
downstream, the wake narrows, and the drag coefficient drops considerably, from around 
Cd = 0.40 at Re = 1.0 ×104 to approximately Cd = 0.08. A further increase in Reynolds number 
then leads to a slow increase in the drag coefficient again until Cd ∼ 0.20 at Re ∼ 4.0 ×106. The 
Fluent LES simulation at Re = 1.0 ×106 adequately captured this behaviour. The vorticity 
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structure of the flow showed that the wake was much narrower at the higher Reynolds 
number. The average separation angle was found to be 121° ± 2°, which agrees with the 
results of Constantinescu and Squires [7], who found θs = 120° ± 2° at Re = 1.14 × 106, and also 
with the experimental value from Achenbach [2] of  θs = 120°.  
 
Table 2: Summary of simulation results as a function of Reynolds number 

Re 
Cd 

(Fluent) 
 

Cd (calc/expt) St 
(Fluent) 

St 
(calc/expt) 

θs 
(Fluent) 

θs 
(calc/expt) 

100 1.087 

1.087 [5] 
1.0900 [47] 
1.09 [37] 

1.096 [31] 

Not applicable Not applicable Not 
applicable Not applicable 

300 0.661 

0.656 [23] 
0.656 [8] 

0.657 [27] 
0.658 [13] 
0.671 [50] 
0.671 [49] 

0.133 

0.134 [13] 
0.134 [27] 
0.136 [8] 
0.136 [50] 
0.137 [23] 

 

Not 
applicable Not applicable 

1.0 x 104 0.387 
0.393 [8] 

0.438 [25] 
0.40±0.01 [2] 

0.191 (St1) 
 

1.65-1.82 (St2) 

0.195 [8] St1 
0.181 [25] St1 
1.30-1.85[8] 

88.0° ±1° 85.0° ±1  [8] °
86.5°±1° [25] 

1.0 x 106 0.104 

0.080 [7] 
0.09 [52] 
0.12 [2] 

0.139 [24] 
0.141 [21] 
0.142 [24] 

0.048 0.05 [21] 
1.30 [7] 121.0° ±2° 

100° [25] 
115° [52] 

120.0° ±2° [7] 
120° [2] 

120° [21] 

 
The simulation results described in this report have illustrated the capability of Fluent version 
6.2 to accurately reproduce typical flow structures observed on this generic bluff body flow 
for both time independent/time-dependent and laminar/turbulent flow regimes.  
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