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Abstract—A simple and powerful method for simulating ground motions is to combine parametric or

functional descriptions of the ground motion’s amplitude spectrum with a random phase spectrum

modified such that the motion is distributed over a duration related to the earthquake magnitude and to

the distance from the source. This method of simulating ground motions often goes by the name ‘‘the

stochastic method.’’ It is particularly useful for simulating the higher-frequency ground motions of most

interest to engineers (generally, f > 0:1 Hz), and it is widely used to predict ground motions for regions of

the world in which recordings of motion from potentially damaging earthquakes are not available. This

simple method has been successful in matching a variety of ground-motion measures for earthquakes with

seismic moments spanning more than 12 orders of magnitude and in diverse tectonic environments. One of

the essential characteristics of the method is that it distills what is known about the various factors

affecting ground motions (source, path, and site) into simple functional forms. This provides a means by

which the results of the rigorous studies reported in other papers in this volume can be incorporated into

practical predictions of ground motion.

Key words: Stochastic, simulation, ground motion, random vibration, earthquake, strong motion, site

amplification.

Introduction

Keiiti Aki was one of the first seismologists to derive an expression for the

spectrum of seismic waves radiated from complex faulting. In a 1967 paper (AKI,

1967) he used assumptions about the form of the autocorrelation function of slip as a

function of space and time to derive an x-square model of the spectrum (and he

coined the term ‘‘x-square model’’ in that paper). He then used the assumption of

similarity to derive a source-scaling law, showing that the spectral amplitude at the

corner frequency goes as the inverse-cube power of the corner frequency. He

explicitly recognized that this is a constant-stress-drop model. His work has been

used knowingly and unknowingly by several generations of seismologists to predict

ground motions for earthquakes, particularly at high frequencies where the space-

and time-distribution of fault slip is complicated enough to warrant a stochastic

description of the source. Usually these predictions are for a specified seismic
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moment, and this is another place in which Kei’s work had a long-term impact: in

1966 (AKI, 1966) he determined the seismic moment of an earthquake for the first

time and also explicitly related the seismic moment to the product of rigidity, slip,

and fault area. His research on the shape and scaling of source spectra and on seismic

moment form the basis for the method for simulating ground motions discussed in

this paper. In recognition of its use of a partially stochastic, rather than a completely

deterministic, description of the source and path, this method is often referred to as

‘‘the stochastic model’’ or ‘‘the stochastic method.’’ A word about terminology may

be in order here: I refer to the means of simulating ground motions as the ‘‘stochastic

method,’’ whereas a particular application of the method results in a ‘‘stochastic

model’’ of the ground motion (often associated with a particular study, such as the

FRANKEL et al. (1996) model). The terminology is not standardized, however, and

more usually (and loosely) people refer to any application of the stochastic method as

the stochastic model; the distinction between the two is important, because the

ground motions for different applications of the method (different models) might be

very different.

There are several methods that use stochastic representations of some or all of

the physical processes responsible for ground shaking (e.g., PAPAGEORGIOU and AKI,

1983a; ZENG et al., 1994). In this paper I review the particular stochastic method that

I and a number of others developed in the last several decades. The paper includes a

few new figures and an improvement in the calculation of random vibration results

that previously appeared only in an USGS open-file report (BOORE, 1996), Other

authors have published papers applying the stochastic method and extending the

method in various ways. Table 1 contains a partial list of papers primarily concerned

with development of the method; a table of references applying the method is given

later.

Most of the discussion assumes that the motions to be simulated are S waves—

these are the most important motions for seismic hazard. The method can be

modified to simulate P -wave motions, as was done in BOORE (1986).

The Essence of the Method

The stochastic method described in this paper has its basis in the work of Hanks

and McGuire, who combined seismological models of the spectral amplitude of

ground motion with the engineering notion that high-frequency motions are basically

random (HANKS, 1979; MCGUIRE and HANKS, 1980; HANKS and MCGUIRE, 1981).

Assuming that the far-field accelerations on an elastic half space are band-limited,

finite-duration, white Gaussian noise, and that the source spectra are described by a

single corner-frequency model whose corner frequency depends on earthquake size

according to the BRUNE (1970, 1971) scaling, they derived a remarkably simple

relationship for peak acceleration that was in good agreement with data from 16
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earthquakes. I generalized their work to allow for arbitrarily complex models,

extended it to the simulation of time series, and considered many measures of ground

motions, the most important of which are response spectra (BOORE, 1983). The

underlying simplicity of the method, however, remains unchanged. The essence of the

method is shown in Figure 1: The top of the figure shows the spectrum of the ground

motion at a particular distance and site condition for magnitude 5 and 7 earthquakes,

based on a standard seismological model; by assuming that this motion is distributed

with random phase over a time duration related to earthquake size and propagation

distance, the time series shown in the bottom of the figure are produced.

The essential ingredient for the stochastic method is the spectrum of the ground

motion—this is where the physics of the earthquake process and wave propagation

are contained, usually encapsulated and put into the form of simple equations. Most

of the effort in developing a model is in describing the spectrum of ground motion.

As is traditional, I find it convenient to break the total spectrum of the motion at a

site (Y ðM0;R; f Þ) into contributions from earthquake source (E), path (P ), site (G),

and instrument or type of motion (I), so that

Y ðM0;R; f Þ ¼ EðM0; f ÞP ðR; f ÞGðf ÞIðf Þ ; ð1Þ

where M0 is the seismic moment, introduced into seismology in 1966 by K. AKI (AKI,

1966). I usually use moment magnitude M rather than seismic moment as a more

familiar measure of earthquake size; there is a unique mapping between the two:

M ¼ 2

3
logM0 � 10:7 ð2Þ

(HANKS and KANAMORI, 1979).

Seismic moment has a number of advantages as the predictor variable for

earthquake size in applications:

� It is the best single measure of overall size of an earthquake and is not subject to

saturation.

� It can be determined from ground deformation or from seismic waves.

Table 1

Some references on methodology

BERESNEV and ATKINSON (1997, 1998a), BOORE (1983, 1984, 1989b, 1996, 2000),

BOORE and JOYNER (1984), CAMPBELL (1999), CARTWRIGHT and LONGUET-HIGGINS (1956),

CORREIG (1996), ERDIK and DURUKAL (2001), GHOSH (1992), HANKS and MCGUIRE (1981),

HERRMANN (1985), JOYNER (1984, 1995), JOYNER and BOORE (1988), KAMAE and IRIKURA (1992), KAMAE

et al. (1998), KOYAMA (1997), LAM et al. (2000), LIAO and JIN (1995), LIU and PEZESHK (1998, 1999), LOH

and YEH (1988), MILES and HO (1999), ÓLAFSSON and SIGBJÖRNSSON (1999), OU and HERRMANN

(1990a, 1990b), PAPAGEORGIOU and AKI (1983a), PEZESHK et al. (2001), RATHJE et al. (1998), SABETTA and

PUGLIESE (1996), ŞAFAK and BOORE (1988), SCHNEIDER et al. (1991), SHAPIRA and VAN ECK (1993),

SILVA (1992), SILVA and LEE (1987), SILVA et al. (1988, 1990, 1997), TAMURA et al. (1991),

WENNERBERG (1990), YU et al.
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� It can be estimated from paleoseismological studies.

� It can be related to slip rates on faults.

� It is the variable of choice for empirically and theoretically based equations for the

prediction of ground motions.

Figure 1

Basis for stochastic method. Radiated energy described by the spectra in the upper part of the figure is

assumed to be distributed randomly over a duration equal to the inverse of the lower corner frequency (f0).

Each time series is one realization of the random process for the actual spectrum shown. When plotted on a

log scale, the levels of the low-frequency part of the spectra are directly proportional to the logarithm of

the seismic moment and thus to the moment magnitude. Various peak ground-motion parameters (such as

response spectra, instrument response, and velocity and acceleration) can be obtained by averaging the

parameters computed from each member of a suite of acceleration time series or more simply by using

random vibration theory, working directly with the spectra. The examples in this figure came from an

actual simulation and are not sketched in by hand.

638 David M. Boore Pure appl. geophys.,



By separating the spectrum of ground motion into source, path, and site

components, the models based on the stochastic method can be easily modified to

account for specific situations or to account for improved information about

particular aspects of the model.

The Source ðEðM0; f ÞÞ

Both the shape and the amplitude of the source spectrum must be specified as a

function of earthquake size. This is the most critical part of any application of the

method. References given later should be consulted to see how various authors have

approached this issue. The most commonly used model of the earthquake source

spectrum is the x-square model, a term coined by AKI (1967). Figure 2 shows this

spectrum for earthquakes of moment magnitude 6.5 and 7.5. The scaling of the

spectra from one magnitude to another is determined by specifying the dependence of

the corner frequency f0 on seismic moment. AKI (1967) recognized that assuming

similarity in the earthquake source implies that

M0f
3
0 ¼ constant ; ð3Þ

Figure 2

Source scaling for single-corner-frequency x-square spectral shape. For constant stress drop M0f
3
0 is a

constant (AKI, 1967), and this dependence of the corner frequency f0 on the moment M0 (given by the

shaded line) determines the scaling of the spectral shapes.
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where the constant can be related to the stress drop (Dr). Following BRUNE (1970,

1971), the corner frequency is given by the following equation:

f0 ¼ 4:9� 106bsðDr=M0Þ1=3 ; ð4Þ

where f0 is in Hz, bs (the shear-wave velocity in the vicinity of the source) in km/s, Dr

in bars, and M0 in dyne-cm.

Although the x-square model is widely used, in practice a variety of other

models have been used with the stochastic method. Figure 3 shows a number of those

that have been used to predict ground motions in eastern North America. It turns out

that the source spectra for all of the models can be given by the following equation:

EðM0; f Þ ¼ CM0SðM0; f Þ ; ð5Þ

where C is a constant, given below, and SðM0; f Þ is the displacement source spectrum,
given by the equation

SðM0; f Þ ¼ SaðM0; f Þ � SbðM0; f Þ ; ð6Þ

and Sa, Sb for the various models shown in Figure 3 are given in Table 2. The

moment dependence of the two factors Sa and Sb is given by the relations between the

Figure 3

Fourier spectrum of acceleration at R = 1 km, according to the source spectral models given in Tables 2

and 3 (from ATKINSON and BOORE, 1998). (The roll-off at high frequencies is produced by using equation

(19) with fmax ¼ 50 Hz).
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corner frequencies fa and fb appearing in the factors and the seismic moment, as

shown in Table 3 (which also contains the scaling for the ATKINSON and SILVA (2000)

model for California; a number of illustrations later in the paper use their model).

The constant C in equation (5) is given by

C ¼ hRHUiVF =ð4pqsb3sR0Þ ; ð7Þ

where hRHUi is the radiation pattern, usually averaged over a suitable range of

azimuths and take-off angles (BOORE and BOATWRIGHT, 1984), V represents the

partition of total shear-wave energy into horizontal components (¼ 1=
ffiffiffi

2
p

), F is the

effect of the free surface (taken as 2 in almost all applications, which strictly speaking

Table 2

Shape of source spectral ðSðf Þ ¼ Saðf Þ 
 Sbðf ÞÞ

Model� Sa Sb

BC92 f < fa : 1

f � fa : fa=f

1

ð1þðf =fbÞ2Þ1=2

AB95 1��
1þðf =faÞ2

þ �
1þðf =fbÞ2

1

Fea96* 1

1þðf =faÞ2
1

H96 1

ð1þðf =faÞ8Þ1=8
1

ð1þðf =fbÞ8Þ1=8

J97 1

ð1þðf =faÞ2Þ3=4
1

ð1þðf =fbÞ2Þ1=4

AS00 1��
1þðf =faÞ2

þ �
1þðf =fbÞ2

1

� The references to the models are as follows: BC92 = BOATWRIGHT and CHOY (1992);

AB95 = ATKINSON and BOORE (1995); Fea96 = FRANKEL et al. (1996); H96 = HADDON (1996);

J97 = JOYNER (1997), as modified in a written communication to D. Boore; AS00 = ATKINSON and

SILVA (2000) for California.

* This is the x-square model.

Table 3

Corner frequencies and moment ratios

Model log fa log fb log �

BC92 M ‡ 5.3:� 3.409 ) 0.681M 1.495 ) 0.319M –

M < 5.3: 2.452 ) 0.5M 2.452 ) 0.5M –

AB95 M ‡ 4.0:� 2.41 ) 0.533M 1.43 ) 0.188M 2.52 ) 0.637M

M < 4.0: 2.678 ) 0.5M 2.678 ) 0.5M 0.0

Fea96* 2.623 ) 0.5M – –

H96 2.3 ) 0.5M 3.4 ) 0.5M –

J97 2.312 ) 0.5M 3.609 ) 0.5M –

AS00 M ‡ 2.4:� 2.181 ) 0.496M 2.41 ) 0.408M 0.605 ) 0.255M

M < 2.4:

1.431 ) 0.5(M ) 2.4)

1.431 ) 0.5(M ) 2.4) 0.0

� The specified magnitude corresponds to the point at which fa = fb.

� The specified magnitude corresponds to the point at which � ¼ 1:0.
* This is the x-square model, for which log f0 ¼ 1:341þ logðbðDrÞ1=3Þ � 0:5M, with b ¼ 3:6 km/s and

Dr ¼ 150 bars.
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is only correct for SH waves), qs and bs are the density and shear-wave velocity in the

vicinity of the source, and R0 is a reference distance, usually set equal to 1 km. In

applications, care must be taken if mixed units are used. For example, if ground

motion is to be in cm and qs, bs, and R0 are in units of gm/cc, km/s and km,

respectively, then C in equation (7) should be multiplied by the factor 10�20. It is
probably safer to convert all quantities into common units.

The Path ðP ðR; f Þ; durationÞ

Now that the source has been specified, it remains to discuss the other

components of the process that affect the spectrum of motion at a particular site. The

next component is the path effect. For some applications involving a specific path

from source to site it might be desirable to convolve the radiation from the source

with theoretically calculated path effects. An example of calculated path response is

shown in Figure 4 for a four-layer model of the crust in the central United States.

The response is complicated because of the critical-angle arrivals and reverberations

of the waves. Even though complicated, however, the response is probably simpler

than reality because the crust may not be laterally uniform and because scattering has

not been included. For most applications it is advisable to represent the effects of the

path by simple functions that account for geometrical spreading, attenuation

(combining intrinsic and scattering attenuation), and the general increase of duration

with distance due to wave propagation and scattering.

Figure 4

Synthetic seismograms for a 4-layer model of the crust in the central United States, showing the complexity

of the waveforms and duration due to reverberations within the crust (written commun., R. HERRMANN,

2000).
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The simplified path effect P is given by the multiplication of the geometrical

spreading and Q functions

P ðR; f Þ ¼ ZðRÞ exp ½�pfR=Qðf ÞcQ� ; ð8Þ

where cQ is the seismic velocity used in the determination of Qðf Þ, and the

geometrical spreading function ZðRÞ is given by a piecewise continuous series of

straight lines:

ZðRÞ ¼

R0
R

R � R1

ZðR1Þ
�

R1
R

�p1
R1 � R � R2

..

.

ZðRnÞ
�

Rn
R

�pn
Rn � R .

8

>

>

>

>

>

<

>

>

>

>

>

:

ð9Þ

In applications, R is usually taken as the closest distance to the rupture surface,

rather than the hypocentral distance. In some applications it may be appropriate to

include a period and/or moment dependent ‘‘pseudo-depth’’ h in a manner consistent

with the effectively point-source models used in fitting empirical strong-motion data.

For example, following BOORE et al. (1997) R would be given by R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 þ h2
p

,

where D is the closest distance to the vertical projection of the rupture surface onto

the ground surface, and h is taken from the empirical results in BOORE et al. (1997).

Other empirically-based prediction equations use different relations to determine the

distance—see the review by CAMPBELL (2002)—but the idea is the same. By defining

R in this way rather than as hypocentral distance, the method is more applicable to

extended ruptures. As an example of ZðRÞ, Figure 5 shows the three-segment

geometrical spreading operator used in ATKINSON and BOORE’s (1995) predictions of

ground motions in eastern North America. For this example, R0 ¼ 1, R1 ¼ 70,

p1 ¼ 0:0, R2 ¼ 130, and p2 ¼ 0:5.

The form of the attenuation operator is motivated by K. Aki’s compilation of

seismic attenuation Q shown in Figure 6. As a simple way of capturing the variation

of Q, the attenuation operator is made up of three piecewise-continuous line

segments (Fig. 7). The outer lines are specified by slopes and intercepts at specified

reference frequencies, and the middle line joins the outer lines between frequencies ft1

and ft2. In applications the various parameters describing the attenuation operator

can be obtained from analysis of weak-motion data, if available. If determined from

data, it is important to keep in mind the tradeoffs between geometrical spreading and

attenuation. Both functions are needed in fitting data, and for consistency, the same

functions must be used in applications. An example of the combined path effect is

shown in Figure 8, which compares observed spectral amplitudes as a function of

distance with geometrical spreading and attenuation operators fit to the data. In this

case the geometrical spreading function is that shown in Figure 5, and the Q function

is given by Q ¼ 680f 0:38, which is the s2 branch in Figure 6 (the data were not

sufficient to determine the longer-period s1 branch).
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The distance-dependent duration is an important function, for the peak motions

decrease with increasing duration, all other things being equal. Although the Fourier

amplitude spectrum of the ground motion (equation (1)) is not dependent on the

duration, I include a discussion of duration here because it is a function of the path,

as well as the source; the way it is used in the calculations of ground motion is given

later. The ground-motion duration (Tgm) is the sum of the source duration, which is

related to the inverse of a corner frequency (e.g., 0:5=fa for the AB95 and 1=fa for the

Fea96 models in Tables 2 and 3) and a path-dependent duration. Empirical

observations and theoretical simulations suggest that the path-dependent part of

the duration can be represented by a connected series of straight-line segments. The

function used in ATKINSON and BOORE (1995) is shown in Figure 9, along with the

data from which the function was determined.

The Site ðGðf ÞÞ

In the strictest sense, the modification of seismic waves by local site conditions is

part of the path effect. Because local site effects, however, are largely independent of

the distance traveled from the source (except for nonlinear effects for which the

amplitudes of motion are important), it is convenient to separate site and path

Figure 5

The geometrical spreading function used in applications in central and eastern North America by

ATKINSON and BOORE (1995) and FRANKEL et al. (1996).
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Figure 7

Illustration of the specification of Qðf Þ: it is made up of three lines in log–log space. The lines shown are an
approximation of the Qðf Þ function shown in the previous figure.

Figure 6

Observed inverse shear-wave Q from Aki (AKI, 1980, summarized by CORMIER, 1982); the heavy solid line

is an ‘‘eyeball’’ average of the observations. (Figure modified from BOORE, 1984.)
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Figure 8

Observed attenuation of motions with distance in eastern North America for a narrow range of

magnitudes (data: written commun. from G. ATKINSON, 2000), along with the combination of geometrical

spreading and whole path attenuation used by ATKINSON and BOORE (1995) and FRANKEL et al. (1996) in

simulating ground motions in central and eastern North America.

Figure 9

Observed duration (after subtracting source duration) from earthquakes in eastern North America. The

data were used by ATKINSON (1993) and ATKINSON and BOORE (1995) to define path-dependent durations

for use in stochastic method simulations. The solid circles are averages within 15-km-wide bins, and the

error bars are plus and minus one standard error of the mean. The three-part solid line is the duration

function used by ATKINSON and BOORE (1995) in simulations of ground motions in eastern North America.
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effects. Much effort can go into accounting for the modifications of the ground

motion due to local site geology. This is a situation where site-specific effects might

best be used. On the other hand, in many cases the simulations from the stochastic

method are intended to be used for the prediction of motion at a generic site—such as

a generic rock or a generic soil site. In such cases, a simplified function can be used to

describe the frequency-dependent modifications of the seismic spectrum. I find it

convenient to separate the amplification (Að f Þ) and attenuation (Dð f Þ), as follows:

Gð f Þ ¼ Að f ÞDð f Þ : ð10Þ

The amplification function Að f Þ is usually relative to the source unless amplitude

variations due to wave propagation, separate from the geometrical spreading, have

been accounted for. In contrast, the diminution function Dð f Þ is used to model the

path-independent loss of energy (the path-dependent part is modeled by the

exponential function in equation (8)). It is important in applications to be specific

about the reference conditions for theA andD functions. In general,G can be a function

of the amplitude of shaking, but I do not account for nonlinear effects in my method,

preferring to compute rock motions using a linear model and account for nonlinear

effects as part of an additional site-response calculation. W. Silva, however, has

incorporated nonlinear effects into his version of the stochastic method (SILVA et al.,

1991).

The starting point for deriving the amplification Að f Þ is a function of shear-wave
velocity vs. depth. Figure 10 shows such a function for a generic rock site appropriate

for coastal California. The top 100m is based on averaging of travel timesmeasured in

boreholes, while the deeper parts of the curve are based on judgment and a few data

(BOORE and JOYNER, 1997). The amplification Að f Þ can be given by wave-calculation
solutions that account for reverberations, or approximately and more simply by

assuming that the amplification of the waves is given by the square root of the

impedance ratio between the source and the surface. The algorithm is the following:

Að f ðzÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Zs=�ZZð f Þ
q

; ð11Þ

where the seismic impedance near the source (Zs) is given by

Zs ¼ qsbs ; ð12Þ

and qs and bs are the density and shear-wave velocity near the source. �ZZð f Þ is an
average of near-surface seismic impedance; it is a function of frequency because it is a

time-weighted average from the surface to a depth equivalent to a quarter

wavelength:

�ZZðf Þ ¼
Z

tðzðf ÞÞ

0

qðzÞbðzÞ dt



Z

tðzðf ÞÞ

0

dt ; ð13Þ
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in which the upper limit of the integral is the time for shear waves to travel from

depth zð f Þ to the surface. The depth is a function of frequency and is chosen such

that z is a quarter-wavelength for waves traveling at an average velocity given by
�bb ¼ zð f Þ=

R zðf Þ
0

½1=bðzÞ� dz. The condition of a quarter-wavelength z ¼ ð1=4Þ�bb=f then

yields the following implicit equation for zð f Þ:

f ðzÞ ¼ 1




4

Z

zðf Þ

0

1

bðzÞ dz

2

6

4

3

7

5
: ð14Þ

In practice, it is easiest to compute f and �ZZ for a given z. By changing variables from

time to depth, equation (13) becomes

�ZZðf Þ ¼
Z

zðf Þ

0

qðzÞ dz



Z

zðf Þ

0

1

bðzÞ dz : ð15Þ

Equation (15) can be simplified to

Figure 10

S-wave velocity versus depth used by BOORE and JOYNER (1997) for computing amplifications on generic

‘‘soft’’ rock sites (adapted from BOORE and JOYNER, 1997.)
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�ZZð f Þ ¼ �qq�bb ; ð16Þ

where

�qq ¼ 1

zð f Þ

Z

zðf Þ

0

qðzÞ dz ; ð17Þ

and

�bb ¼ zð f Þ
"

Z

zðf Þ

0

1

bðzÞ dz
#�1

: ð18Þ

Figure 11 compares the amplification computed using equation (11) for the generic

rock velocity profile in Figure 10 and wave propagation for two angles of incidence.

Figure 11

Amplification vs. frequency. The wide shaded line is computed using the root-impedance approximation

and the velocity profile shown in the preceeding figure. The results from plane SH waves incident at the

base of a 8-km thick stack of constant-velocity layers (with Q ¼ 10000) closely approximating the

continuous shear-wave velocity in the previous figure are shown by the light lines for angles of incidence of

30 and 45 degrees; the results were computed from the Haskell matrix method, as implemented by program

Rattle by C. Mueller. The segmented-line function used in the stochastic method is given by lines joining

the plus symbols. (Adapted from BOORE and JOYNER, 1997.)
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For application, it is convenient to approximate the amplification by a series of

connected line segments; these are also shown in Figure 11.

The attenuation, or diminution, operator Dðf Þ in equation (10) accounts for the

path-independent loss of high-frequency in the ground motions. This loss may be due

to a source effect, as suggested by PAPAGEORGIOU and AKI (1983b) or a site effect, as

suggested by a number of authors, including HANKS (1982), or by a combination of

these effects. If a source effect, D may also depend on the size of the earthquake. It is

not my intention to argue for a particular cause, but only to point out that a simple

multiplicative filter can account for the diminution of the high-frequency motions.

Two filters are in common use: the fmax filter

Dð f Þ ¼
�

1þ ð f =fmaxÞ8
��1=2

; ð19Þ

(HANKS, 1982; BOORE, 1983), and the j0 filter

Dð f Þ ¼ expð�pj0f Þ ; ð20Þ

(ANDERSON and HOUGH, 1984). Of course, both filters can be combined in an

application.

The combined effect of amplification and attenuation for a series of diminution

parameters j0 is shown in Figure 12 for a generic rock site in coastal California.

Comparisons with data suggest that j0 near 0.04 is appropriate (BOORE and JOYNER,

1997). Filters for other types of site geology can be obtained by combining the results

Figure 12

Combined effect of the site amplification in the previous figure and path-independent diminution.

(Adapted from BOORE and JOYNER, 1997.)
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in Figure 12 with the site effects from empirical attenuation curves. The results are

shown in Figure 13 (for more detail, see BOORE and JOYNER, 1997).

Accounting for Type of Ground Motion ðIð f ÞÞ

The particular type of ground motion resulting from the simulation is controlled

by the filter Iðf Þ. If ground motion is desired, then

Ið f Þ ¼ ð2pfiÞn ; ð21Þ

where i ¼
ffiffiffiffiffiffiffi

�1
p

and n ¼ 0; 1; or 2 for ground displacement, velocity, or acceleration,

respectively. For the response of an oscillator, from which response spectra or Wood-

Anderson magnitudes can be derived,

Ið f Þ ¼ �Vf 2
ð f 2 � f 2r Þ � 2ffrfi

; ð22Þ

for an oscillator with undamped natural frequency fr, damping f, and gain V (for

computation of response spectra, V ¼ 1).

Figure 13

The product of Fourier spectral amplifications and the diminution factor expð�pj0f Þ for various site

conditions, as measured by the average shear-wave velocity in the upper 30 m. (From BOORE and JOYNER,

1997.)
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Integral Measures of Ground Motion

Measures of ground motion based on some average of the motion over time or of

the spectrum over frequency are sometimes used in seismic hazard (e.g., JIBSON, 1993;

JIBSON et al., 1998; WILSON, 1993). The most common of these may be the Arias

intensity (Ixx), defined as

Ixx �
p

2g

Z

td

0

aðtÞ2 dt ; ð23Þ

where g is the acceleration of gravity, a is the ground acceleration, and td is the

duration of the motion (ARIAS, 1970). This intensity measure can be easily computed

within the context of the stochastic method, as shown below.

Obtaining Ground Motions

Given the spectrum of motion at a site, there are two ways of obtaining ground

motions: 1) time-domain simulation and 2) estimates of peak motions using random

vibration theory.

Simulations of Time Series

Time-domain simulations are easy to obtain. This is illustrated in Figure 14 for

an actual application, using the AS00 model as given in Tables 2, 3, and 4 (this model

is used for all but the last of the remaining figures). White noise (Gaussian or

uniform) is generated for a duration given by the duration of the motion (Fig. 14a);

this noise is then windowed (Fig. 14b); the windowed noise is transformed into the

frequency domain (Fig. 14c); the spectrum is normalized by the square-root of the

mean square amplitude spectrum (Fig. 14d); the normalized spectrum is multiplied

by the ground motion spectrum Y (Fig. 14e); the resulting spectrum is transformed

back to the time domain (Fig. 14f). SAFAK and BOORE (1988) show that the order of

windowing and filtering is important; if the white noise is first filtered and then

windowed the long-period level of the motion is distorted.

The shaping window applied to the noise (Fig. 14b) can be either a box window

or a window that gives a more realistic shape for the acceleration time series (as will

be shown shortly, the decision to use a shaped rather than a box window is based

more on aesthetics than on differences in the derived ground-motion parameters). By

studying a number of recorded motions, SARAGONI and HART (1974) found that the

following function is a good representation of the envelope of acceleration time

series:
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Figure 14

Basis of the time-domain procedure for simulating ground motions using the stochastic method. These are

from an actual simulation, using the AS00 model as specified in Tables 2, 3, and 4. An acausal low-cut filter

with a cut-off frequency of 0.02 Hz was applied to the acceleration time series. Various other measures of

ground motion, such as peak velocity, peak displacement, Arias intensity, and response spectral

amplitudes, can be computed from the simulated acceleration.
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wðt; �; g; tg;Þ ¼ aðt=tgÞb expð�cðt=tgÞÞ ; ð24Þ

where the parameters a, b, and c are determined such that wðtÞ has a peak with value
of unity when t ¼ �� tg and wðtÞ ¼ g when t ¼ tg (see Fig. 15). The equations for a,

b, and c follow:

b ¼ �ð� ln gÞ=½1þ �ðln �� 1Þ� ; ð25Þ
c ¼ b=� ; ð26Þ

Table 4

Parameters for AS00 model (from ATKINSON and SILVA, 2000)

• qs;bs; V ; hRHUi; F ;R0: 2.8, 3.5, 0.707, 0.55, 2.0, 1.0
• Geometrical spreading (including factors to insure continuity of function):

r < 40 km : 1=r

40 km � r : ð1=40Þð40=rÞ0:5
• Q; cQ : 180f

0:45; 3:5 km/s

• Source duration: 0.5/fa
• Path duration: 0.05 R

• Site amplification: BOORE and JOYNER (1997) generic rock (as shown in Figure 11).

• Site diminution parameters ðfmax;jÞ : 100:0; 0:030.

Figure 15

Exponential window and the variables controlling its shape.
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and

a ¼ ðexpð1Þ=�Þb : ð27Þ

As discussed in BOORE (1983), a can also be chosen such that the integral of the

square of wðtÞ equals unity; this is appropriate if the spectrum of the windowed noise

is not normalized so that it has a mean square amplitude of unity. The time tg is given

by

tg ¼ fTgm � Tgm ; ð28Þ

where Tgm is the durationof groundmotion.BasedonSARAGONI andHART (1974), I use

� ¼ 0:2 and g ¼ 0:05 in applications. I find a good comparison between response

spectra computed using the box and exponential windows if fTgm ¼ 2:0. A comparison

of accelerations derived from the box and the exponential windows is given in Figure

16. Also shown are the 5%-damped pseudo-velocity response spectra obtained from

averaging the response spectra computed from 640 simulated accelerations. It is clear

that the response spectra obtained from the two windows are similar.

Figure 16

Comparison of waveforms and response spectra for time-domain simulations using the box and the

exponential windows to shape the noise. The response spectra are averages from a suite of 640 simulations,

whereas the time series are for a single realization. The simulations are for the AS00 model, as specified in

Table 2, 3, and 4.
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In applications, it is most common to compute the ground acceleration

(Ið f Þ ¼ ð2pf
ffiffiffiffiffiffiffi

�1
p

Þ2 in equation (1)) and then derive other measures of ground

motion from the time series of ground acceleration. Figure 17 shows examples of

various types of motion for magnitude 4 and 7 earthquakes; magnitude was the only

thing that changed in the program input. Individual time series should be used with

caution, however, for there is no guarantee that the spectrum of each realization will

be close to the ‘‘target’’ spectrum Y ðM0;R; f Þ; it is only the mean of the individual

spectra for a number of simulations that will match the target spectrum. An example

of this is shown in Figure 18, in which the mean of the spectra from 640 realizations

is almost indistinguishable from the target spectrum, although the spectrum of a

randomly chosen individual realization deviates significantly from the mean at some

frequencies.

It is important to note that the variability of ground-motion parameters obtained

from a suite of simulations does not represent the variability observed in real ground-

motion parameters. Simulating the observed variability requires running the

simulations for model parameters chosen from distribution functions for those

parameters (see, e.g., EPRI, 1993).

Figure 17

Time series for magnitude 4 and 7 earthquakes. The acceleration was computed using the stochastic

method and the AS00 model, as specified in Tables 2, 3, and 4, and the velocity and response of a Wood-

Anderson seismometer were obtained from the simulated accelerations; an acausal low-cut filter with a

cut-off frequency of 0.02 Hz was applied to the acceleration time series before the velocity and Wood-

Anderson response were computed.

656 David M. Boore Pure appl. geophys.,



Peak Motions from Random Vibration Theory

A very rapid way of obtaining measures of peak motion (response spectra, peak

acceleration, peak velocity, peak displacement, peak response of instruments for

magnitude determination, Arias intensity, etc.) is to use random-vibration theory. In

essence, random-vibration theory provides an estimate of the ratio of peak motion

(ymax) to rms motion (yrms), and Parseval’s theorem is used to obtain yrms in terms of

an integral of the squared amplitude spectrum jY j2, where jY j2 contains the response
of the particular measure of ground motion (e.g., equation (21) or (22)) for which

peak values are desired.

The ratio of peak to rms motion is given by equations from CARTWRIGHT and

LONGUET-HIGGINS (1956), who used the analysis in RICE (1954) to develop a method

for predicting extrema of ocean waves from spectral characteristics of a continuous

record of sea heights. In order to use their results for the extrema of transient

Figure 18

The model (target) spectrum, the spectrum from a single realization, and the spectrum from an average of

640 realizations. Any one realization can differ markedly from the model spectrum, but on average the

simulations match the model spectrum. The simulations are for the AS00 model, as specified in Table 2, 3,

and 4.
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earthquake ground motions, I had to pay special attention to the definition of

duration used in the equations, as described below.

After a change of variable to remove an integrable singularity, CARTWRIGHT and

LONGUET-HIGGINS’ (1956) equation (their equation (6.8)) for the ratio of peak to rms

motion is

ymax
yrms

¼ 2

Z

1

0

f1� ½1� n expð�z2Þ�Neg dz ; ð29Þ

where

n ¼ Nz

Ne
; ð30Þ

and Nz, Ne are the number of zero crossings and extrema, respectively (extrema

correspond to all places where the first derivative of the time series equals zero; for a

broadband function, there can be numerous local extrema). For large N

ymax

yrms
¼ ½2 lnðNzÞ�1=2 þ

0:5772

½2 lnðNzÞ�1=2
: ð31Þ

The integral in equation (29) is well-behaved numerically, and therefore in my

applications it, rather than the asymptotic equations in equation (31), is used.

In the equations above, the number of zero crossings and extrema are related to

the frequencies of zero crossings ( fz) and extrema ( fe) and to duration (T ) by the

equation

Nz;e ¼ 2 ~ffz;eT ; ð32Þ

where the frequencies are given by

~ffz ¼
1

2p
ðm2=m0Þ1=2 ; ð33Þ

and

~ffe ¼
1

2p
ðm4=m2Þ1=2 : ð34Þ

In these equations,mk; k ¼ 0; 2; 4 aremoments of the squared spectral amplitude. These

play a fundamental role in random vibration theory and are defined for any integer k as

mk ¼ 2

Z

1

0

ð2pf ÞkjY ð f Þj2 df ; ð35Þ

where the spectrum Y is given by equation (1) and includes the specific type of

ground motions, as specified by equations (21) or (22). yrms is simply
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yrms ¼ ðm0=T Þ1=2 : ð36Þ

Being an integral of the squared acceleration, the Arias intensity is closely related to

the 0-th spectral moment:

Ixx ¼
p

2g
m0 : ð37Þ

Seismic waves from earthquakes are inherently nonstationary, and the response of

resonant systems (local site layering or mechanical oscillators) to those waves will

have significant correlation between adjacent peaks. Both of these characteristics

violate basic assumptions of the random vibration theory just discussed. Despite this,

the theory works very well in predicting ground motions, although some simple

refinements are needed for oscillator response when the oscillator period is longer

than the duration of ground motion or for lightly damped oscillators, for which the

response continues well past the random ground-motion excitation. Examples of

these cases, computed using time-domain simulations, are shown in Figure 19. For

the small earthquake, the 10-sec oscillator response is almost equal to the ground

displacement and has a short duration. On the other hand, the response of the

oscillator to the larger earthquake rings on for a duration significantly in excess of

the ground motion duration. The problem is in defining durations to use in

determining rms and in determining the number of cycles of quasi-stationary motion

to be used in the relation between ymax and yrms. BOORE and JOYNER (1984) found

that good results could be obtained if two durations were used: one duration (Trms)

for the computation of the rms in equation (36), and the other, smaller, duration for

the determination in equation (32) of the number of zero crossings (Nz) or extrema

(Ne) used in evaluating ymax=yrms. For the latter BOORE and JOYNER (1984) use the

duration of ground motion (Tgm), such as that shown in Figure 9. From

considerations of oscillator response and numerical experiments with time-domain

simulations, they proposed the following equation for the time Trms to be used in the

computation of rms:

Trms ¼ Tgm þ To
cn

cn þ a

� �

; ð38Þ

where c ¼ Tgm=To and the oscillator duration is given by To ¼ 1=ð2pfrfÞ. For small
and large earthquakes Trms approaches Tgm and Tgm þ To, respectively, which is

consistent with the oscillator responses shown in Figure 19. The constants n and a

were determined from numerical experimentation, with values n ¼ 3 and a ¼ 1=3.

Recently, LIU and PEZESHK (1999) have found somewhat better comparisons

between time domain and random vibration theory results by setting n ¼ 2 and

a ¼ 2p 1� m2
1

m0m2

� �� �1=2

; ð39Þ

Vol. 160, 2003 Simulation of Ground Motion 659



where mi; i ¼ 0; 1; 2 are given by equation (35). According to Liu and Pezeshk,

equation (39) accounts for the bandwidth of the ground motion. Comparisons of

response spectra computed using time-domain calculations (for 10, 40, 160, and

640 simulations) and random-vibration calculations with both the Boore-Joyner

and the Liu-Pezeshk oscillator corrections are shown in Figures 20 and 21. The

figures show good agreement between the time-domain and the random-vibration

theory calculations, with the Liu-Pezeshk correction giving somewhat better

answers for M 7 earthquake at periods between 5 and about 12 secs (Fig. 21).

The comparisons between the different ways of doing the oscillator correction,

however, is model- and period-dependent. For example, the comparison in Liu

and Pezeshk’s paper indicates that their correction is significantly better than the

Boore-Joyner correction for small earthquakes, which is a different conclusion

than obtained from the comparisons shown in Figure 20. Figures 20 and 21 also

indicate that more than 40 simulations may be required adequately capture the

mean of the ground motions.

Figure 19

Simulated acceleration time series and computed response of 10.0-sec, 5-percent-damped oscillator for

magnitude 4 and 7 earthquakes at 10 km. Because the relative shape is important, each trace has been

scaled individually (the actual amplitudes are given to the left of the y-axis—acceleration in cm/s2 and

oscillator response in cm), The simulations are for the AS00 model, as specified in Table 2, 3, and 4. The

accelerations differ from those in Figure 17 because the seeds used in generating the random numbers

needed in the simultations were not the same.
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Applications

The stochastic method has been widely applied, but rather than attempt to

discuss a number of specific applications, I have included in Table 5 a fairly

comprehensive list of applications, separated by primary geographic region. There

are many ways in which the stochastic method has been used, and the effectiveness of

the method has been demonstrated by fitting observations ranging from negative-

magnitude rockbursts to great earthquakes at teleseismic distances. Calibrations of

the method, which may involve finding the parameters so as to fit empirically-derived

equations for predicting ground motions, and validations of the method, which

consist of checking predictions against data (but not the same data used in deriving

the necessary parameters) are included in a number of the references. The method

can be used in absolute or relative senses. For example, predicting ground-shaking

going from the source to the site is an absolute prediction, whereas predicting the

ratio of ground-shaking for two source models is a relative prediction. Examples of

both of these uses are given in Figure 22—an admittedly complicated figure, but one

Figure 20

Comparison of simulations using the time-domain calculations with various values of the number of

simulations, with a different seed for the random-number generator for each set of simulations. The

random-vibration results are shown for comparison, using both the BOORE and JOYNER (1984) and LIU

and PEZESHK (1999) modification of random-vibration theory for oscillator response. The calculations are

for magnitude 4 at 10 km. The simulations are for the AS00 model, as specified in Table 2, 3, and 4.
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which makes a number of points; see BOORE (1999) for details. In Figure 22 the

circles are absolute predictions of response spectra for magnitude 5.6 and 7.6

earthquakes using the stochastic method. For comparison, the dashed lines are

response spectra from empirical analyses of data, and the heavy solid line for

M ¼ 5:6 is the observed spectrum for a recording of the 1990 Upland, California,

earthquake; the light solid line is the response spectrum computed for just the S-wave

portion of the record, and excludes the longer-period surface waves. The absolute

predictions for M ¼ 5:6 are in reasonable agreement with the observations for

shorter periods and for longer periods when the surface waves are excluded; the

mismatch for longer-period response spectra obtained from the whole record is due

to the lack of the surface waves in the stochastic method, which is a limitation of the

method as usually applied. The heavy solid line for M ¼ 7:5 is based on the observed

spectrum of the smaller earthquake, corrected by the relative difference of motions

for magnitude 7.5 and 5.6 earthquakes, as predicted by the stochastic method. The

relative prediction of ground motions has also been used by CAMPBELL (1999) in

the hybrid prediction of ground motions in eastern North America, in which he uses

Figure 21

Comparison of simulations using the time-domain calculations with various values of the number of

simulations, with a different seed for the random-number generator for each set of simulations. The

random-vibration results are shown for comparison, using both the BOORE and JOYNER (1984) and LIU

and PEZESHK (1999) modification of random-vibration theory for oscillator response. The calculations are

for magnitude 7 at 10 km. The simulations are for the AS00 model, as specified in Table 2, 3, and 4.
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the stochastic method to modify empirically derived western U.S. ground motions

for differences in source, propagation, and site.

Other general areas in which the stochastic method has been applied include:

� Generate suites of ground motions for many magnitudes and distance, and use

these to derive ground-motion prediction equations and tables of motion. This is

the basis for the CEUS motions used in the U.S. National Hazard Maps.

� Use as a basis for design-motion specification of critical structures.

� Find parameters controlling spectral content (e.g., Dr, j).

� Use in parameter sensitivity studies.

� Relate time-domain measures of ground motion to frequency-domain descriptions.

� Generate time series for use in nonlinear analyses (structural, site response,

landslides, liquefaction).

� Use to compute subfault motions in simulations of extended ruptures.

One topic I have not discussed is that of uncertainties in the predictions; this has

been a major focus of a study by EPRI (1993) (see also SILVA, 1992; TORO et al.,

Table 5

Some references for applications of the stochastic method

Western North America

ANDERSON and LEI (1994), ATKINSON (1995, 1997), ATKINSON and BOORE (1997b), ATKINSON and

CASSIDY (2000), ATKINSON and SILVA (1997, 2000), AVILES and PEREZ-ROCHA (1998), BEN-ZION and ZHU

(2002), BERESNEV (2002), BERESNEV and ATKINSON (1998b), BOORE (1986a, 1995, 1999), BOORE and

JOYNER (1997), BOORE et al. (1992), CHIN and AKI (1991, 1996), HANKS and BOORE (1984), HARTZELL et al.

(1999, 2002), IGLESIAS et al. (2002), LUCO (1985), MAHDYIAR (2002), MCGUIRE and HANKS (1980),

MCGUIRE et al. (1984), PAPAGEORGIOU and AKI (1983b), SCHNEIDER and SILVA (2000), SCHNEIDER et al.

(1993), SILVA and WONG (1992), SILVA et al. (1991), SINGH et al. (1989), VETTER et al. (1996),

WENNERBERG (1996), WONG and SILVA (1990, 1993, 1994), WONG et al. (1993), YOUNGS and SILVA (1992)

Central and Eastern North America

ATKINSON (1984, 1989, 1990), ATKINSON and BERESNEV (1998, 2002), ATKINSON and BOORE (1987, 1990,

1995, 1997a, 1998), ATKINSON and HANKS (1995), ATKINSON and SOMERVILLE (1994), BERESNEV and

ATKINSON (1999), BOLLINGER et al. (1993), BOORE (1989a), BOORE and ATKINSON (1987), BOORE and

JOYNER (1991), CAMPBELL (2002), CHAPMAN et al. (1990), EPRI (1993), FRANKEL et al. (1996), GREIG and

ATKINSON (1993), HANKS and JOHNSTON (1992), HARIK et al. (1997), HERRMANN and AKINCI (2000),

HWANG (2001), HWANG and HUO (1994, 1997), HWANG et al. (1997, 2001a, 2001b), KUMAR (2000), SILVA

et al. (1989), TORO (1985), TORO and MCGUIRE (1987), TORO et al. (1988, 1992, 1997), WEN and WU (2001)

Other Parts of the World or Several Regions Combined

AKINCI et al. (2001), ASCE (2000), ATKINSON and GREIG (1994), BERARDI et al. (1999), BERESNEV and

ATKINSON (2002), BOORE (1986b), CASTRO et al. (2001), CHEN and ATKINSON (2002), CHERNOV and

SOKOLOV (1999), DE NATALE et al. (1988), FACCIOLI (1986), HARTZELL and HEATON (1988), HARMSEN

(2002), HLATYWAYO (1997), MALAGNINI and HERRMANN (2000), MALAGNINI et al. (2000), MARGARIS and

BOORE (1998), MARGARIS and HATZIDIMITRIOU (2002), MARGARIS and PAPAZACHOS (1999), MCGUIRE

(1984), ÓLAFSSON et al. (1998), MIYAKE et al. (2001), PITARKA et al. (2000, 2002), ROUMELIOTI and

KIRATZI (2002), ROVELLI et al. (1988, 1991, 1994a, 1994b), SATOH (2002), SATOH et al. (1997), SCHERBAUM

(1994), SCHERBAUM et al. (1994), SILVA (1997), SILVA and COSTANTINO (1999), SILVA and DARRAGH

(1995), SILVA and GREEN (1989), SILVA et al. (2000a, 2000b, 2002), SINGH et al. (1999, 2002), SOKOLOV

(1997, 1998, 2000a, 2000b), SOKOLOV et al. (2000, 2001), SUZUKI et al. (1998), TREMBLAY and ATKINSON

(2001), TSAI (1997, 1998a, 1998b), WONG et al. (1991)
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1997). An example of this uncertainty was shown in Figure 3, which displays the

range of Fourier spectra for predictions of ground motions in eastern North America

(the variations in predicted ground motions are similar to the variations in Fourier

spectra). ATKINSON and BOORE (1998) showed that the ATKINSON and BOORE (1995)

model best fits response spectra computed from earthquake records in eastern North

America and from other tectonically comparable areas. More than half of the events

providing data used in the comparisons, however, had magnitudes less than or equal

to 5. For this reason uncertainty exists in how applicable any one of the proposed

source models would be in predicting ground motions from earthquakes in eastern

North America large enough to constitute significant seismic hazard. A sensible way

of dealing with this uncertainty is to base hazard calculations on a weighted average

of ground motions from a number of the proposed source models (but all

calculations still employ the stochastic-method simulations). The choice of weights

then becomes the issue; this topic has been dealt with for eastern North America by

Figure 22

5%-damped, pseudo-velocity response spectra (PSV ) for a small earthquake (M ¼ 5:6) and a large

earthquake (M ¼ 7:5) (heavy solid lines). The PSV for the large event has been derived from the small event

assuming ATKINSON and BOORE (1998) (AB98) source models. Also shown are the predictions from two

regression analyses (dashed lines) and from stochastic-method simulations (solid circles). The light solid

line for the M ¼ 5:6 event was computed from the S-wave portion of the event (the first 35 sec of the

recorded motion). (Modified from BOORE, 1999.)
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expert elicitations (SAVY et al., 1998) using the concepts discussed in BUDNITZ et al.

(1997, 1998) and for the development of the National Hazard Maps by informed

subjective opinion, based on a series of regional workshops (e.g., FRANKEL et al.,

1996 (currently being updated—see http://geohazards.cr.usgs.gov/eq/)).

Limitations and Improvements

Comparisons of stochastic-method predictions with empirically-determined

ground motions indicates that the stochastic method is useful for simulating mean

ground motions expected for a suite of earthquakes having a specified magnitude and

fault–station distance. Care must be used, however, when the method is used to

simulate site-specific and earthquake-specific ground motions. As described in this

paper, the method does not include any phase effects due to the propagating rupture

and to the wave propagation enroute to the site (including local site response). In

addition, the differences between the various components ofmotion and different wave

types are ignored. For these reasons, fault-normal effects, phase differences over

horizontal distances, spatial correlations, directivity, etc. are not captured by the

simulated motions. It should be possible to include some of these effects in the method,

and I am aware of some efforts along these lines (e.g., LOH, 1985; LOH and YEH, 1988;

TAMURA et al., 1991; TAMURA and AIZAWA, 1992).

As noted before (Figure 18), the Fourier spectrum of each time series realization

may diverge from the ‘‘target’’ Fourier spectrum Y ðM0;R; f Þ. For this reason, when
the method is used to simulate a suite of time series for use in engineering design, it is

important to check the Fourier or response spectrum of each simulation to be sure

that it does not deviate too far from the desired spectrum. In practice, this will mean

choosing the best subset from a number of simulations. This approach has been used

by WEN and WU (2001) and by HARMSEN (2002), both of whom used the similarity to

a specified response spectrum as the basis for choosing the time series (but the two

papers used different ‘‘goodness-of-fit’’ criteria).

The method also assumes stationarity of the frequency content with time. As the

example in Figure 22 shows, this is a poor assumption for situations, such as deep

sedimentary basins (e.g., JOYNER, 2000), where long-period surface waves occur. It

should be possible to incorporate these waves into the method.

The duration in applications of the method is independent of frequency. RAOOF

et al. (1999), however, find that duration is frequency-dependent. Modifications of

the method to account for frequency-dependent duration would be relatively easy for

time-domain simulations (simulating the motions for a series of narrow-band filters),

but might be more difficult for simulations of motions using random-vibration

theory.

An apparent limitation often expressed is that most of the models based on

the stochastic method are fundamentally point-source models. This may not be as
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important a limitation as might at first be thought. Although it is true that near-

and intermediate-field terms are lacking, in most applications the frequencies are

high enough that the far-field terms dominate, even if the site is near the fault.

Furthermore, the effects of a finite-fault averaged over a number of sites

distributed around the fault (to average over radiation pattern and directivity

effects) can be captured in several ways: 1) using the closest distance to faulting

(as is done in empirically derived ground-motion prediction equations) as the

source-to-site distance; 2) using a two-corner source spectrum (ATKINSON and

SILVA, 2000); 3) allowing the geometrical spreading to be magnitude dependent

(SILVA et al., 2002). In addition, it should be possible to extend the method to

account for specific fault-station geometries in a simple way, perhaps combining

the simple computation of envelopes of acceleration (MIDORIKAWA and

KOBAYASHI, 1978; COCCO and BOATWRIGHT, 1993) with statistical descriptions

of the source (e.g., LOMNITZ-ADLER and LUND, 1992; HERRERO and BERNARD,

1994; JOYNER, 1995; BERNARD et al., 1996; HISADA, 2000). The overriding

philosophy of such an effort would be to capture the essence of motions from an

extended rupture without sacrificing the conceptual simplicity of the stochastic

method.

Conclusions

The stochastic method is a simple, yet powerful, means for simulating ground

motions. It is particularly useful for obtaining ground motions at frequencies of

interest to earthquake engineers, and it has been widely applied in this context.

My source codes, written in FORTRAN, and executables that can be used on a PC

can be obtained from my web site (http://quake.usgs.gov/�boore) or via anonymous
ftp on samoa.wr.usgs.gov in directory get. Programs are included both for time-domain

and for random-vibration simulations. The user should download the files

README.TXT, SMSIMxxx.ZIP, SITEAxxx.ZIP, and SMSIM_MANUAL.PDF

where ‘‘xxx’’ is the current version number, and follow the instructions in

README.TXT to extract and to use the programs. SMSIM_MANUAL.PDF

contains the manual for the program (BOORE, 2000). The manual is also available

online at http://geopubs.wr.usgs.gov/open-file/of00-509/.
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ŞAFAK, E. and BOORE, D. M. (1988), On Low-frequency Errors of Uniformly Modulated Filtered White-

noise Models for Ground Motions, Earthq. Eng. Struct. Dyn. 16, 381–388.

SARAGONI, G. R. and HART, G. C. (1974), Simulation of Artificial Earthquakes, Earthq. Eng. Struct. Dyn.

2, 249–267.

SATOH, T. (2002), Empirical frequency-dependent radiation pattern of the 1998 Miyagiken-nanbu earthquake

in Japan, Bull. Seism. Soc. Am. 92, 1032–1039.

SATOH, T., KAWASE, H., and SATO, T. (1997), Statistical Spectral Model of Earthquakes in the Eastern

Tohoku District, Japan, Based on the Surface and Borehole Records Observed in Sendai, Bull. Seismol.

Soc. Am. 87, 446–462.

Vol. 160, 2003 Simulation of Ground Motion 673



SAVY, J. B., FOXALL, W., and ABRAHAMSON, N. (1998), Guidance for Performing Probabilistic Seismic

Hazard Analysis for a Nuclear Plant Site: Example Application to the Southeastern Unted States,

NUREG/CR 6607, UCRL-ID-133494.

SCHERBAUM, F. (1994),Modeling the Roermond Earthquake of 1992 April 13 by Stochastic Simulation of its

High-frequency Strong Ground Motion, Geophys. J. Int. 119, 31–43.

SCHERBAUM, F., PALME, C. and LANGER, H. (1994), Model parameter optimization for site-dependent

simulation of ground motion by simulated annealing - reevaluation of the Ashigara valley prediction

experiment, Natural Hazards 10, 275–296.

SCHNEIDER, J. and SILVA, W. J. (2000), Earthquake Scenario Ground Motion Hazard Maps for the San

Francisco Bay Region, Final report, USGS Grant award #98-HQ-GR-1004.

SCHNEIDER, J. F., SILVA, W. J., CHIOU, S.-J., and STEPP, J. C. (1991), Estimation of Ground Motion at Close

Distances Using the Band-limited-white-noise Model, Proc. Fourth International Microzonation Conf. II,

187–194.

SCHNEIDER, J. F., SILVA, W. J., and STARK, C. L. (1993), Ground Motion Model for the 1989 M 6.9 Loma

Prieta Earthquake Including Effects of Source, Path and Site, Earthquake Spectra 9, 251–287.

SHAPIRA, A. and VAN ECK, T. (1993), Synthetic Uniform-Hazard Site Specific Response Spectrum, Natural

Hazards 8, 201–215.

SILVA, W. J. (1992), Factors Controlling Strong Ground Motions and their Associated Uncertainties, Proc.

Dynamic Analysis and Design Considerations for High Level Nuclear Waste Repositories, Structures Div./

Am. Soc. Civil Eng., 132–161.

SILVA, W. J. (1997), Characteristics of Vertical Strong Ground Motions for Applications to Engineering

Design, Proc. Of the FHWA/NCEER Workshop on the National Representation of Seismic Ground

Motion for New and Existing Highway Facilities (I.M. Friedland, M.S. Power, and R.L. Mayes, eds.),

Technical Report NCEER-97-0010.

SILVA, W. J. and COSTANTINO, C. (1999), Assessment of Liquefaction Potential for the 1995 Kobe, Japan

Earthquake Including Finite-source Effects, Final Report, U.S Army Engineer Waterways Experiment

Station, Corps of Engineers Contract #DACW39-97-K-0015.

SILVA, W. J. and DARRAGH, R. B. (1995), Engineering Characterization of Strong Ground Motion Recorded

at Rock Sites, Electric Power Research Institute, Palo Alto, Calif., Report No. TR-102262.

SILVA, W. J. and GREEN, R. K. (1989), Magnitude and Distance Scaling of Response Spectral Shapes for

Rock Sites with Applications to North American Tectonic Environment, Earthquake Spectra 5, 591–624.

SILVA, W. J. and LEE, K. (1987),WES RASCAL code for Synthesizing Earthquake Ground Motions, State-

of-the-Art for Assessing Earthquake Hazards in the United States, Report 24, U.S. Army Engineers

Waterways Experiment Station, Misc. Paper S-73-1.

SILVA, W. J. and WONG, I. G. (1992), Assessment of Strong Near-field Earthquake Ground Shaking Adjacent

to the Hayward fault, California. In Proc. Second Conf. on Earthq. Hazards in Eastern San Francisco Bay

Area (Glenn Borchardt and others, eds.), Calif. Dept. of Conservation, Div. of Mines and Geology

Special Publication 113, 503–510.

SILVA, W. J., TURCOTTE, T., and MORIWAKI, Y. (1988), Soil Response to Earthquake Ground Motion,

Electric Power Research Institute, Palo Alto, California, Report No. NP-5747.

SILVA, W. J., DARRAGH, R. B., GREEN, R. K., and TURCOTTE, F. T. (1989), Estimated Ground Motions for

a New Madrid Event, U.S. Army Engineers Waterways Experiment Station, Misc. Paper GL-89-17.

SILVA, W. J., DARRAGH, R., STARK, C., WONG, I., STEPP, J. C., SCHNEIDER, J., and CHIOU, S.-J. (1990), A

Methodology to Estimate Design Response Spectra in the Near-source Region of Large Earthquakes Using

the Band-limited-white-noise Ground Motion Model, Proc. Fourth U.S. Conf. on Earthq. Eng. 1, 487–

494.

SILVA, W. J., WONG, I. G., and DARRAGH, R. B. (1991), Engineering Characterization of Earthquake Strong

Ground Motions with Applications to the Pacific northwest, U.S. Geol. Surv. Open-File Rept. 91-441-H.

SILVA, W. J., ABRAHAMSON, N., TORO, G., and COSTANTINO, C. (1997), Description and Validation of the

Stochastic Ground Motion Model, Final Report, Brookhaven National Laboratory, Associated

Universities, Inc. Upton, New York.

SILVA, W. J., MCGUIRE, R., and COSTANTINO, C. (1999), Comparison of Site Specific Soil UHS to Soil

Motions Computed with Rock UHS, Proc. of the OECE-NEA Workshop on Engineering Character-

ization of Seismic Input, Nov. 15–17, 1999, NEA/CSNI/R(2000)2.

674 David M. Boore Pure appl. geophys.,



SILVA, W. J., DARRAGH, R., GREGOR, N., MARTIN, G., KIRCHER, C., and ABRAHAMSON, N. (2000a),

Reassessment of Site Coefficients and Near-fault Factors for Building Code Provisions, Final Report,

USGS Grant award #98-HQ-GR-1010.

SILVA, W. J., YOUNGS, R. R., and IDRISS, I. M. (2000b), Development of Design Response Spectral Shapes

for Central and Eastern U.S. (CEUS) and Western U.S. (WUS) Rock Site Conditions. Proc. of the

OECE-NEA Workshop on Engineering Characterization of Seismic Input Nov. 15–17, 1999 NEA/

CSNI/R(2000)2.

SILVA, W., GREGOR, N., and DARRAGH, R. (2002), Department of Regional Hard Rock Attenuation

Relations for Central and Eastern North America, ftp:// ftp.pacificengineering.org/CEUS/

SINGH, S. K., ORDAZ, M., ANDERSON, J. G., RODRIGUEZ, M., QUAAS, R., MENA, E., OTTAVIANI, M., and

ALMORA, D. (1989), Analysis of Near-source Strong-motion Recordings along the Mexican Subduction

Zone, Bull. Seismol. Soc. Am. 79, 1697–1717.

SINGH, S. K., ORDAZ, M., DATTATRAYAM, R. S., and GUPTA, H. K. (1999), A Spectral Analysis of the 21

May 1997, Jabalpur, India, Earthquake (Mw= 5.8) and Estimation of Ground Motion from Future

Earthquakes in the Indian shield region, Bull. Seismol. Soc. Am. 89, 1620–1630.

SINGH, S. K., MOHANTY, W. K., BANSAL, B. K., and ROONWAL, G. S. (2002), Ground motion in Delhi from

future large/great earthquakes in the central seismic gap of the Himalayan arc, Bull. Seism. Soc. Am. 92,

555–569.

SOKOLOV, V. (1997), Empirical Models for Estimating Fourier-amplitude Spectra of Ground Acceleration in

the Northern Caucasus (Racha Seismogenic Zone), Bull. Seismol. Soc. Am. 87, 1401–1412.

SOKOLOV, V. Y. (1998), Spectral Parameters of the Ground Motions in Caucasian Seismogenic Zones, Bull.

seismol. Soc. Am. 88, 1438–1444.

SOKOLOV, V. (2000a), Spectral Parameters of Ground Motion in Different Regions: Comparison of Empirical

Models, Soil Dyn. Earthq. Eng. 19, 173–181.

SOKOLOV, V. Y. (2000b), Hazard-consistent ground motions: Generation on the basis of the uniform hazard

Fourier spectra, Bull. Seism. Soc. Am. 90, 1010–1027.

SOKOLOV, V., LOH, C. H., and WEN, K. L (2000), Empirical Model for Estimating Fourier Amplitude

Spectra of Ground Acceleration in Taiwan region, Earthq. Eng. Struct. Dyn. 29, 339–357.

SOKOLOV, V., Loh, C. H. and Wen, K. L. (2001), Empirical models for site- and region-dependent ground-

motion parameters in the Taipei area: A unified approach, Earthquake Spectra 17, 313–331.

SUZUKI, S., HADA, K., and ASANO, K. (1998), Simulation of Strong Ground Motions Based on Recorded

Accelerograms and the Stochastic Method, Soil Dyn. Earthq. Eng. 17, 551–556.

TAMURA, K. and AIZAWA, K. (1992), Differential Ground Motion Estimation Using a Time-space Stochastic

Process Model, Proc. Japan Soc. Civil Eng. 8, 217–223.

TAMURA, K., WINTERSTEIN, S. R., and SHAH, H. C. (1991), Spatially Varying Ground Motion Models and

their Application to the Estimation of Differential Ground Motion, Proc. Japan Soc. Civil Eng. 8, 153–161.

TORO, G. R. (1985), Stochastic Model Estimates of Strong Ground Motion, Section 3 of Seismic Hazard

Methodology for Nuclear Facilities in the Eastern United States, Report Prepared for EPRI, Project

Number P101-29.

TORO, G. R., and MCGUIRE, R. K. (1987), An Investigation into Earthquake Ground Motion Characteristics

in Eastern North America, Bull. Seismol. Soc. Am. 77, 468–489.

TORO, G. R., MCGUIRE, R. K., and SILVA, W. J. (1988), Engineering Model of Earthquake Ground Motion

for Eastern North America, Electric Power Research Institute, Palo Alto, Calif., Rept. No. RP-6074.

TORO, G. R., SILVA, W. J., MCGUIRE, R. K., and HERRMANN, R. B.(1992), Probabilistic Seismic Hazard

Mapping of the Mississippi Embayment, Seism. Res. Lett. 63, 449–475.

TORO, G. R., ABRAHAMSON, N. A., and SCHNEIDER, J. F. (1997), Model of Strong Ground Motions from

Earthquakes in Central and Eastern North America: Best Estimates and Uncertainties, Seism. Res. Lett.

68, 41–57.

TREMBLAY, R. and ATKINSON, G. M. (2001), Comparative study of the inelastic seismic demand of eastern

and western Canadian sites, Earthquake Spectra 17, 333–358.

TSAI, C. C. P. (1997), Ground Motion Modeling for Seismic Hazard Analysis in the Near-source Regime: An

Asperity Model, Pure Appl. Geophys. 149, 265–297.

TSAI, C. C. P. (1998a), Ground Motion Modeling in the Near-source Regime: A Barrier Model, Terrestrial

Atmosph. Oceanic Sci. 9, 15–30.

Vol. 160, 2003 Simulation of Ground Motion 675



TSAI, C. C. P. (1998b), Engineering Ground Motion Modeling in the Near-source Regime Using the Specific

Barrier Model for Probabilistic Seismic Hazard Analysis, Pure Appl. Geophy. 152, 107–123.

TUMARKIN, A. G. and ARCHULETA, R. J. (1994), Empirical Ground Motion Prediction, Annali di Geofisica

37, 1691–1720.

VETTER, U. R., AKE, J. P., and LAFORGE, R. C. (1996), Seismic Hazard Evaluation for Dams in Northern

Colorado, USA, Natural Hazards 14, 227–240.

WEN, Y. K. and WU, C. L. (2001), Generation of Ground Motions for Mid-America Cities, Earthquake

Spectra 17, 359–384.

WENNERBERG, L. (1990), Stochastic Summation of Empirical Greens Functions, Bull. Seismol. Soc. Am. 80,

1418–1432.

WENNERBERG, L. (1996), Comment on ‘‘Simultaneous Study of the Source, Path, and Site Effects on Strong

Ground Motion During the 1989 Loma Prieta Earthquake: A Preliminary Result on Pervasive Nonlinear

Site Effects’’ by Byau-Heng Chin and Keiiti Aki, Bull. Seismol. Soc. Am. 86, 259–267.

WILSON, R. C. (1993), Relation of Arias Intensity to Magnitude and Distance in California, U. S. Geol. Surv.

Open-File Rept, 93-556 42 pp.

WONG, I. G. and SILVA, W. J. (1990), Preliminary Assessment of Potential Strong Earthquake Ground

Shaking in the Portland, Oregon, Metropolitan Area, Oregon Geology 52, 131–134.

WONG, I. G. and SILVA, W. J. (1993), Site-specific Strong Ground Motion Estimates for the Salt Lake

Valley, Utah, Utah Geological Survey Misc. Publ. 93-9.

WONG, I. G. and SILVA, W. J. (1994), Near-field Strong Ground Motions on Soil Sites: Augmenting the

Empirical Data Base through Stochastic Modeling, Proc. Fifth U.S. National Conference on Earthquake

Engineering, Chicago, July 10–14, 1994, III, 55–65.

WONG, I. G., SILVA, W. J., DARRAGH, R. B., STARK, C., and WRIGHT, D. H. (1991), Applications of the

Band-limited-white-noise Source Model for Predicting Site-specific Strong Ground Motions, Proc. Second

Int. Conf. on Recent Advances in Geotech. Earthq. Eng. and Soil Dynamics, Paper 9.13, 1323–1331.

WONG, I. G., SILVA, W. J., and MADIN, I. P. (1993), Strong Ground Shaking in the Portland, Oregon,

Metropolitan Area: Evaluating the Effects of Local crustal and Cascadia Subduction Zone Earthquakes

and Near-surface Geology, Oregon Geology 55, 137–143.

YOUNGS, R. R. and SILVA, W. J. (1992), Fitting the x�2 Brune Source Model to California Empirical Strong
Motion Data (abs.), Seism. Res. Lett. 63, 34.

YU, G., ANDERSON, J. G. and SIDDHARTHAN, R. (1993), On the Characteristics of Nonlinear Soil Response,

Bull. Seismol. Soc. Am. 83, 218–244.

ZENG, Y. H., ANDERSON, J. G., and YU, G. A. (1994), Composite Source Model for Computing Realistic

Synthetic Strong Ground Motions, Geophys. Res. Lett. 21, 725–728.

(Received July 2, 2000, accepted February 21, 2001)

To access this journal online:

http://www.birkhauser.ch

676 David M. Boore Pure appl. geophys.,


