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Abstract. The problem of scarcity of ground-truth expert delineations of medi-
cal image data is a serious one that impedes the training and validation of medi-
cal image analysis techniques. We develop an algorithm for the automatic  
generation of large databases of annotated images from a single reference data-
set. We provide a web-based interface through which the users can upload a 
reference data set (an image and its corresponding segmentation and landmark 
points), provide custom setting of parameters, and, following server-side com-
putations, generate and download an arbitrary number of novel ground-truth 
data, including segmentations, displacement vector fields, intensity non-
uniformity maps, and point correspondences. To produce realistic simulated 
data, we use variational (statistically-based) and vibrational (physically-based) 
spatial deformations, nonlinear radiometric warps mimicking imaging non-
homogeneity, and additive random noise with different underlying distributions. 
We outline the algorithmic details, present sample results, and provide the web 
address to readers for immediate evaluation and usage. 

Keywords: validation, segmentation, deformation, simulation, vibration, varia-
tion, non-uniformity. 

1   Introduction 

Medical images provide a wealth of data about internal anatomy and physiology es-
sential for computer-aided modeling, diagnosis, treatment, and tracking of diseases. 
This, in turn, imposes high demands for automated, accurate, fast, and robust medical 
image analysis methods. This need has resulted in a plethora of alternative medical 
image segmentation, registration, and shape correspondence algorithms. Ironically, 
the wealth of data, from the ever growing high-dimensional images of millions of 
pixels and meshes with thousands of vertices, is also the cause of scarcity of ground-
truth data sets of labeling, spatial transformation, and point correspondences, on 
which the medical image analysis algorithms must be evaluated and validated.  

Aside from a few exceptions [26][34][35], assessing the performance of image 
analysis algorithms requires ground-truth data, such as expert-labeled images, physi-
cal or computational phantoms with known segments, deformations, or corresponding 
intrinsic landmarks or external markers [36][33][20]. Some of the notable efforts for 
providing simulated and ground-truth data include BrainWeb simulated brain  
MR images [4], the internet brain segmentation repository [15], PET-SORTEO for 
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simulated PET data [24], and STAPLE for image segmentation validation [31]. 
Frameworks for evaluating and validating medical image registration techniques in-
clude the retrospective image registration evaluation projects [32][12][21][14], the 
non-rigid image registration evaluation project  (NIREP) [3], and others [23][2]. 
Gerig et al. were the first to assess and visualize differences between multiple seg-
mentations through their publicly available VALMET software [13]. Standard ap-
proaches for evaluating segmentation results given ground-truth segmentation include 
the Hausdorff distance, Dice coefficient [9], and the Jaccard index [16]. More  
recently, alternative approaches were proposed [25][10][11][30]. Evaluating point 
correspondence between pairs or within a group of shapes is also of interest in the 
computational anatomy community, which is primarily based on either geodesic dis-
tances between corresponding points found by the algorithm and known ground-truth, 
or via assessing the statistical shape model’s generality, specificity, or description 
length [17][28][29][8]. 

In addition to validating medical image analysis algorithms, large amounts of 
ground-truth data is important for machine learning and statistical modeling tech-
niques, such as learning relationships (e.g. regression) between shape and appearance 
[5]. In medical imaging, learning techniques suffer from the problem of high-
dimensional, small sample size datasets (“the curse of dimensionality”), in which 
even the smallest of typical 2D scalar medical images (few hundred pixels, squared) 
can be seen as samples in tens-of-thousands dimensional space. Clearly, the situation 
is much more severe for 3D, or 4D (3D+time) data sets with vector (e.g. color or 
displacements) or matrix (e.g. diffusion tensor) entries. 

To the best of our knowledge, none of the existing ground-truth databases or vali-
dation methods allows the user to simulate novel data from a single reference dataset 
(an image, its segmentation, and its landmark points) capturing the exact anatomy on 
which the developed algorithms need to be trained or validated. In this work, we  
contribute to addressing the problem of scarcity of ground-truth data through the 
simulation of an arbitrarily large number of novel ground-truth datasets from a single 
reference data set and the creation of a web interface to this simulation tool. Although 
it is difficult to evaluate the validity and realism of the simulated data, we employ a 
physically- and statistically-based generative model to ensure data realism to a large 
degree by adopting the formulation proposed in [7]. We also extend [7] to operate on 
images rather than landmarks along contours of shapes, and extend it from 2D to 3D. 
While we focus on data simulation for validating or training generic, modality-
independent segmentation algorithms, the simulated images will possess appearance 
characteristics according to the modality of the reference data set. 

2   Methods 

Combinations of statistically- and physically-based spatial deformations, smoothly 
varying intensity non-uniformity warps, and random noise are applied to a reference 
data set which is uploaded by the user through our web-interface, in order to generate 
new ground-truth data. The reference set consists of a reference image Ii, its corre-
sponding binary or multi-label segmentation Si, and a set of landmark coordinates Li. 
A few user-selected parameters, including the number of desired ground-truth data, 
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are also supplied as input to the algorithm. The user is then notified via email of the 
URL from which to download the generated novel ground-truth data.  

2.1   Spatial Transformations 

Spatial deformations of the image are generated as follows1. An M×N uniform grid of 
control points x={(cxij,cyij); i=1 to M; j=1 to N} is initialized in the image plane. The 
control points are displaced as described below and the displacements are interpolated 
over the image plane. Displacements can be either random, where each component of 
the displacement vector field is sampled from a uniform random distribution ([-a,a]×[-
a,a]); from a statistically-driven point distribution model (PDM) [6]; through a physi-
cally-based, vibrational model; or a combined model [7] as described below. 

2.1.1   Generative Statistically-Based Model 
Given a training set of deformed grids of control points, each represented as a 2MN-
vector, their linear variational modes can be obtained via principal component analy-
sis of their covariance matrix S  [6]. A PDM approximates control point grids as the 
sum of a mean grid and t<2MN main modes of variation: = +x x Pb , where x  is a 

2MN-vector of average locations of the control points and P  is a 2MN×t matrix of 
principal components. By choosing different weights (within ±3std) for the t-vector 
b , new control point locations are obtained and used to synthesize new images. 

2.1.2   Generative Physically-Based Model 

We follow Cootes and Taylor’s approach to calculating the vibrational modes of 
shapes [7]. However, in this work, the coordinates of the grid of control points are 
treated as the shape’s landmarks. Physically-based vibrational modes of the grid are 
generated through modal analysis of a finite element model (FEM). This gives rise to 
control points’ displacements, which are then used to synthesize new deformed im-
ages. The grid of control points are considered nodes with masses interconnected by 
springs with constant stiffness and with rest lengths equal to the distance between the 
locations of the control points in the original, undeformed grid. New control point 
locations are then generated using ˆ= +x x !u , where x̂  is a 2NM-vector of the 

original locations of the coordinates in the grid, !  is a 2MN square matrix of eigen-
vectors representing the vibrational modes, and u  is a 2MN-vector of weights. The 

matrix !  is the solution of the generalized eigen-system 2
= ΩK! M! , where 

K is a 2MN square stiffness matrix calculated as in [7], =M I  is a 2MN square 
mass matrix, ( )2 2 2 2

1 2 2, ,...,
MN

diag ω ω ωΩ =  is a matrix of eigenvalues associated with 

the eigenvectors in ! , and 
i

ω  is the frequency of ith vibrational mode. 

2.1.3   Combined Vibrational-Variational Model 

FEM generates new control point locations through vibrations of a single grid. PDM 
generates new grids by sampling the allowable space constructed from a training set. 

                                                           
1 Our simulation can generate 2D or 3D data. We only write the 2D equations for clarity. 
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We generate new grids with displaced control points similar to the PDM approach  

but relying on a combined covariance matrix ( )1
1

m T

c i ii
mα

=
= + !S S ! "! , where 

( )2
i

diag ω
−

="  is used to generate more low frequency vibrations and less high 

frequency, m is the current number of available grid samples, and !  balances varia-
tional vs. vibrational deformations. Starting with a single uniform grid (m=1), 0S =  
and hence only vibrational modes generate new shapes. As more grids are available, 

we gradually reduce the effect of vibrational modes by setting 1 mα α= , where α1 

is a constant. 

2.2   Intensity Non-uniformity Via Radiometric Warps 

Intensity non-homogeneity is modeled via a smoothly varying, additive intensity 
field, parameterized by the number U of modes (minima or maxima) in the field. U 
spatial locations {(uxi,uyi);i=1,2,…,U} are sampled from a bivariate uniform distribu-
tion extending throughout the image domain, or selected on a uniform grid. At each 
location, a random, uniformly-distributed bias in [–b:b]×Imax is generated, where Imax 
is the maximum intensity bias. 

2.3   Spatial and Radiometric Interpolation 

Different types of interpolation are involved in the simulation of novel ground-truth 
data. We interpolate the spatial displacements of the gray-level and segmentation 
image domains, and of landmark coordinates using bi-cubic interpolation. There are 
several possible interpolation methods for interpolating the pixel intensities from the 
original spatially un-warped intensity image [19]. To generate the results in this pa-
per, we used bi-linear intensity interpolation in 2D and thin plate splines in 3D. We 
used nearest-neighbor interpolation for warping the ground-truth labels to avoid erro-
neous interpolated labels. We interpolate the intensity non-uniformity fields from the 
intensity biases at the non-uniformity mode centers using bi-cubic interpolation. To 
resemble ground-truth segmentation, the warped segmentation images are not affected 
by intensity non-uniformity or by noise. 

2.4   Additive Noise 

The warped intensity images are deteriorated by additive Gaussian noise [18] or other 
distributions (e.g. uniform or impulse noise) by specifying the appropriate parameters 
(e.g. the mean and variance of Gaussian noise). 

2.5   Web Simulation Tool and Implementation Details 

The simulation code is written in MATLAB (Mathworks, Natwick, MA). MATLAB 
Compiler for Linux is used to compile M files into stand-alone executables. The web-
server interface and MATLAB Component Runtime (MCR) alleviate the need for 
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MATLAB during run-time. The web interface is created using XHTML, CSS and 
DHTML. PHP handles the form submissions, uploading the reference images, invoking 
the simulation code, creating and compressing the appropriate folders and ground-truth 
files, sending email notifications, and updating an XML file queue to handle the differ-
ent user submissions. To access the web-based tool, visit http://mialweb.cs.sfu.ca/. 
There, the user selects 2D or 3D simulation, uploads an image (I) and corresponding 
segmentation (S) and landmark coordinates (L), and specifies simulation parameters. 
The parameters are: density of the control grid (M×N); extent of random spatial dis-
placement (a);  number of variational modes (t), or alternatively, fraction of explained 
variance; parameter balancing variational vs. vibrational modes (!1); number of modes 
for the intensity non-uniformity (U), and whether the mode locations are at uniform grid 
points; extent of non-uniformity (b); noise parameters (e.g. mean and variance of Gaus-
sian); and number of simulated samples to generate (G). The user is then notified by 
email of the URL from which the generated files can be downloaded. This data includes 
G samples of each of the following: spatially warped intensity images; spatially warped 
segmentation labels; warped intensity + non-uniformity; warped intensity + noise; 
warped intensity + non-uniformity + noise; the noise field; the non-uniform intensity 
bias field; and the displacement vector field. 

(a) (b) (c) (d) (e) (f) (g)  

Fig. 1. 2D Simulation: (a) Reference image with different grid displacements (small arrows), 
(b) deformed checkerboard, (c) deformed image, (d) non-uniformity field, (e) ‘c+d’, (f) 
‘e+noise’, (g) simulated segmentation (reference segmentation not shown) 
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3   Results 

Figure 1 shows sample simulations of novel 2D MR brain images, deformations and 
displacement vector fields, segmentations, non-uniformity maps, and noisy images. 
Figure 2 shows sample simulations of 3D pelvic CT data. Figure 3 shows sample 
simulations of 2D and 3D ground-truth point correspondences. Figure 4 shows snap-
shots of the progress of using the simulation web-interface.  

 

(c) 

(a) 

(d)) (e) 

(b) 

(f) (g) 
 

Fig. 2. 3D Simulation: Three orthogonal views of (a) reference CT pelvic volume, (b) one of 
the simulated volumes, (c) displacement vector field and surface rendering of simulated pelvic 
and neighboring bone, (d) close-up on simulation result, (e) simulated segmentation (checker-
board overlay with reference segmentation), (f) checkerboard overlay of reference and simu-
lated data, (g) several other simulated datasets shown with different colors 

(a)

(b)

(c)

(d)

)

)  

Fig. 3. Simulating 2D and 3D ground-truth point correspondence. (a,b) 2D reference image 
(left), close up on reference landmarks (middle), and simulated corresponding landmarks 
(right). (c,d) Two examples of reference thoracic segmentation and landmarks (left) and simu-
lated segmentation and corresponding landmarks (right). 
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Fig. 4. Simulation progress. The user fills a web-form (sample fields are shown top-left) and 
receives an email notification (bottom) to download the simulated images (top-right). 

4   Conclusions 

Lack of sufficient ground-truth data in medical imaging is evident, despite the press-
ing need to validate a large number of medical image analysis algorithms and to ad-
dress the high dimension, small sample size problem plaguing machine learning. We 
present a preliminary proof-of-concept system for simulating ground-truth data, 
which requires a single reference dataset, generates physically and statistically plausi-
ble deformations, applies radiometric warps and noise, and is easily accessed through 
a web-interface. Although the resulting simulated data may not represent “real” 
changes, they still appear realistic and are useful for validation, benchmarking, and 
machine learning (e.g. capturing relationships between spatial warps and intensity 
variations). Further, the so-called “unrealistic” simulations may stand in lieu of un-
predictable, pathological cases, which unfortunately have not been properly addressed 
by almost all existing algorithms, let alone validated. The work presented here is only 
a first step towards a more elaborate ground-truth simulator under development. Fu-
ture work includes adopting advanced models of intensity non-uniformity (e.g. 
[27][22]), modal analysis reflecting real tissue properties (from the literature or via 
MR elastography measurements), modality-specific customization of the simulated 
data (e.g. to simulate diffusion tensor images, one must ensure that the diffusion ten-
sor in each voxel is transformed correctly [1]). 
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