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Simulation of high-resolution x-ray zone plates
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A full-wave approach to quantitative characterization of x-ray zone plate lenses is proposed. Distributed fo-
cusing efficiency 7(z) of a multifocus optical element is defined as the energy flux through the Airy disk of a

reference perfect lens with variable focal length z.
and spatial resolution of the zone plate foci.
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zone profiles.
plate imaging performance.

Maxima of this function characterize diffraction efficiencies
The parabolic wave equation is used to take into account diffrac-
Rough and fuzzy interface models are introduced to describe realistic
Numerical simulation reveals the limited capability of zone width reduction to improve the zone
The possibilities of second-order focus enhancement by optimization of the zone

plate thickness, line-to-space ratio, and zone tilt are studied numerically. © 2002 Optical Society of America
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1. INTRODUCTION

In this paper our goal is quantitative characterization of
the optical performance of state-of-the-art Fresnel micro-
lenses (zone plates) used or designed for x-ray
microscopy' as a function of zone plate geometry, The
zone plate is a diffractive multifocus optical element com-
posed of opaque or semitransparent concentric rings cov-
ering alternate Fresnel zones in order to provide con-
structive interference of the radiation passing through
the open zones at the focal point /. The simplest geo-
metrical considerations yield the well-known law for the
Fresnel zone radii,

r, = [nAf + (nA\/2)2]V2, (1)

describing a quasi-periodic structure with slowly varying
local period

rn-1~ JYNfIn(n > 1).

Here n = 1,2,..., N is the zone number and \ is the
wavelength. In the case of visible-light optics, the zone
plate usually can be treated as a plane screen, and the
Fresnel-Kirchhoff diffraction theory? gives the focal spot
radius 6 ~ 1.22Ar, where Ar = ry — ry _ 1 is the outer-
most zone width, and allows one to calculate diffraction
efficiencies 7,, (relative energy flux directed toward dif-
ferent zone plate foci)."® The higher-order foci m = 1
are located at the distances f,, = f/m and can provide
better resolution, but usually they are not bright enough.
For an idealized opaque, thin Fresnel zone plate, diffrac-
tion efficiency to the first order 7; = 1/7% ~ 10% of the
incident radiation, 50% and 37.5% are the absorbed and
scattered radiation, respectively, and the remaining 2.5%
are distributed between the higher-order foci.’® Diffrac-
tion efficiency into the mth order is 7,, = 1/7?m? for odd
numbers m and zero for even orders (for a realistic thick
zone plate, the even-order foci may have significant
efficiencies).*® In visible-light optics, zone plates are not
widely used because of their poor imaging performance
compared with that of high-quality lenses. However, in
the soft-x-ray spectral range, zone plate microlenses now
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are the main instrument of imaging and scanning micros-
copy. For current state-of-the-art Fresnel microlenses in
the soft-x-ray range (A = 0.3—5 nm), the number of zones
can reach 300-1000, the last zone width is ~20-30 nm,
numerical aperture NA = 0.04-0.06, and the thickness
b = 50-500nm.® Prospective zone plates will have
greater numerical apertures, and the last zone width Ar
~ 10 nm, to get closer to the diffraction resolution limit.
As such a complication causes considerable manufactur-
ing difficulties, one must be sure that these efforts will
give the desired result. Even for the currently used zone
plates their characteristics (resolution and efficiency) are
usually worse than the common theoretical predictions.
Evidently, for future high-performance zone plates, sim-
plified theories may give incorrect (too optimistic) esti-
mates.

In the x-ray spectral band, zone plates are inevitably
thick compared with the wavelength, so a full-wave
theory is necessary to describe diffraction effects inside
the zone plate volume that determine its optical perfor-
mance. Coupled-wave theory”® and the parabolic equa-
tion method*® reveal a complicated redistribution of the
transmitted radiation between different diffraction or-
ders. As a result, the plane-screen diffraction theory,
even modified to take into account the contribution of the
x-ray radiation penetrating through the semitransparent
zone material,® gives but a qualitative estimate of the fo-
cal spot brightness. Although for most of currently used
zone plates such a simple theory gives satisfactory re-
sults, it cannot explain the drastic drop of efficiency en-
countered in the attempt to build a high-resolution zone
plate with the last zone narrower than 20 nm.'° More-
over, by its nature it ignores some important effects, such
as aberrations, caused by the finite zone plate thickness
and unexpectedly high efficiency of the second-order fo-
cus. As the focusing efficiency and spatial resolution are
crucial parameters for x-ray microscopy, accurate wave
theory plays an important role in the development of new
high-resolution zone plates.

In this paper some results of numerical simulation are
presented. We perform the verification of experimental-
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ists’ ideas of improving the performance of prospective
x-ray zone plates (increasing numerical aperture, the use
of second-order focus and zone tilt) in order to understand
how justified are the expectations based on qualitative es-
timates.

2. MATHEMATICAL BASIS

As was stated above, for the accurate simulation of thick
inhomogeneous optical elements, one should apply full-
wave theory to describe x-ray beam propagation through
the element volume. It should be pointed out from the
very beginning that simplified scalar one-way wave equa-
tions appear to be an adequate approximation for most of
the applications in diffractive x-ray optics. The reasons
are the small refractivity of all materials in this spectral
range and the small numerical apertures of current x-ray
microscopes. Mathematically, this means that each com-
ponent of the electromagnetic field E exp(—iwt) can be
represented as a modulated plane wave E(x,y,z)
= u(x,y, z)exp(tkz) with the slowly varying complex am-
plitude u(x,y,z). The aforementioned approximations
lead to the so-called parabolic wave equation (PWE)
u Pu Pu
20k — + — + —5 +k¥e—-1u=0 (2
0z ox ay

originally introduced by Leontovich! and Fock!? in the
theory of radio propagation, or some of its more accurate
versions. Here 2 = w/c = 27/\ is the wave number, and
e =n?
= (1 — 6+ iB)? is complex relative dielectric permittiv-
ity, with weak refraction § < 1 and absorption 8 < 1 in
the material taken into account. The parabolic equation
method proved to be an efficient analytic and computa-
tional tool for a wide variety of high-frequency diffraction
problems, including x-ray optics.*'® Two advanced ap-
proaches to calculate the wave field produced by a realis-
tic x-ray zone plate are used. Actually, both of them are
based on the numerical solution of the parabolic wave
equation (2).

A. Coupled-Wave Method

The coupled-wave approach considers the zone plate as a
graded-period diffraction grating with a slowly varying
period. Therefore the solution in such a locally periodic
medium is sought as a superposition of local Floquet
modes.”® In this way the problem reduces to an infinite
system of linear ordinary differential equations for the
coupled-mode amplitudes, so the solution of its truncated
counterpart can be found by standard numerical algo-
rithms. Usually the second derivatives in the propaga-
tion direction are neglected, which makes this approach
equivalent to one of the PWE versions. Finally, to obtain
an approximate solution of the primary problem, one just
has to take into account the slow period variation d,
~ M\f/r, in accordance with the zone radii law r,
~ JnNf. The output intensity of the mth diffraction or-
der, as a function of radius r, immediately gives the par-
tial diffraction efficiency of the corresponding zone plate
segment (local grating contribution into mth focus). The
overall zone plate efficiency can be estimated as an inte-
gral of these partial efficiencies over the zone plate
aperture.14
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Taking into account zone plate geometry and material,
as well as the basic diffraction phenomena in the thick
quasi-periodic zone plate structure, the coupled-wave
method considerably improves the predictions of diffrac-
tion efficiency compared with those of the commonly used
plane-screen theory. The truncated system of the
coupled-wave equations yields simplified analytic formu-
las useful for qualitative analysis of the element imaging
performance.'*1® More accurate dependence of diffrac-
tion efficiency on the local period and zone plate thickness
can be obtained by numerical integration of the full set of
coupled-wave equations,”® which opens a way to the de-
sign of an optimized zone plate with variable thickness
and improved zone positions, different from the tradi-
tional Fresnel law Eq. (1). At the same time, this ap-
proach has a number of limitations concerning its accu-
racy and applicability:

e Transition from the model periodic diffraction grat-
ing to a graded-period zone plate involves an additional
approximation.

e It is difficult to apply the method to describe realis-
tic nonrectangular zone profiles.

e Generally, because of unaccounted-for phase rela-
tions, integrated partial efficiencies give too-optimistic an
estimate of the overall zone plate diffraction efficiency.

B. Finite-Difference Partial-Wave-Equation Solution
inside Optical Elements

It follows from the above considerations that the coupled-
wave theory gives a good but not quite exact estimate of
the overall zone plate diffraction efficiency. In order to
get ultimate quantitative characteristics of the zone
plate’s imaging performance, it is desirable to apply a
straightforward numerical approach that gives the global
field distribution throughout the optical system. An effi-
cient computational method, avoiding the approximate
substitution of the zone plate with a locally periodic dif-
fraction grating, is the direct numerical solution of the
PWE (2) describing one-way narrow-angle propagation in
weakly nonuniform media.* Being independent of spe-
cific assumptions about the element structure, it allows
the simulation of more realistic or more sophisticated
zone plates not described by the regular rectangular zone
model.

Numerical solution of the standard Leontovich para-
bolic wave equation (2) and its wide-angle modifications
has been thoroughly studied.'®> As shown in Ref. 4, for
the case of axial symmetry the most adequate is the
Crank—Nicholson six-point implicit finite-difference

scheme,
n+1 n
Uy T Uy
2ik
T
n+1_2n+1+ n+1+n —oum + yn
Um+1 Um Um—1 Um+1 Um Um-1
2h*
n+1 n+l n n
Umpm+1 = Upm—1 + Ump+1 — Un-1 2, n+1/2
- + R2(LTV2 - 1)
4mh
w4+ u
X T = 0, (3)
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reducing the PWE to a three-diagonal set of linear alge-
braic equations. Here, 7 and & are the mesh steps in the
z and r directions, and u), ~ u(n7,mh). The linear
equations (3), written for m = 0,1,..., M = A/h, along
with the appropriate boundary conditions, form a consis-
tent set of equations that can be solved step by step, from
n to n + 1, by the marching method.'® Note that the
three-diagonal character of the transition matrix reduces
the computational time considerably compared with the
direct matrix inversion.

The approximation error of the finite-difference equa-
tions (3) has an order of magnitude O(h% + 72). Physi-
cally, it is evident that the mesh steps 2 and 7 must be
small compared with the transversal and longitudinal
scales of the optical element: h < Ar, 1< b. More so-
phisticated numerical error analysis, including wave-
front correction and perfectly absorbing (transparent)
boundary conditions,? allows one to ensure high accuracy
in a large computational domain, up to the image plane.

C. Modeling Realistic Zone Profiles

When simulating realistic zone plates, one should take
into account miscellaneous manufacturing errors inevita-
bly leading to some, maybe considerable, deterioration of
the imaging performance. Among these errors, deforma-
tion of annular zones, nonrectangular zone profiles, and
stochastic positioning errors are usually mentioned.?
Another type of manufacturing error—nanometer-scale
roughness and fuzziness of the interfaces due to the
grainy structure of the zone material and interdiffusion—
usually remains beyond the simulation model. Contrary
to analytical approaches, numerical solution of the para-
bolic wave equation can easily cope with these effects. A
model example illustrating the influence of the zone inter-
face roughness on the zone plate output field is given in
Fig. 1. In Fig. 1(a) the intensity distribution over one pe-
riod of an idealized zone plate with sharp rectangular
zone profile is shown. The specific field pattern caused
by edge diffraction and total external reflection!® is
clearly seen. The interface roughness [Fig. 1(b)] splits
the field distribution, which leads to a noticeable modifi-
cation of the output amplitude and local grating diffrac-
tion coefficients (~5% in this example); see Fig. 2. In this
illustrative example both rough interfaces are chosen
symmetrically. Actually, the zone profiles are rather sto-
chastically independent.

In order to simplify further simulation we replace the
true permittivity distribution e(r, z) near the stochastic
boundary r = r, + 8(z) with a smooth transition layer
€avg(r) averaging e(r,z) along the horizontal lines r
= const, 0 <z < b. Asis seen from Figs. 1(c), and 2,
such a fuzzy interface model yields an output field pattern
very close to its rough counterpart. Moreover, such a
transition layer is a physically adequate description of the
interdiffusion processes at the interfaces between two dif-
ferent zone materials. In what follows, the interfaces be-
tween the neighboring zones are smoothed with a transi-
tion function T(x) = [1 + exp(—x/a)]”!, where x is the
normal distance from a reference interface and a is a
characteristic thickness of the transition layer. This
fuzziness parameter can be chosen adequately for differ-
ent manufacturing processes; for a state-of-the-art zone
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plate we assume it to be approximately 2 nm X 4 nm.®

This model gives a more realistic zone profile with
rounded tops reminiscent of the SEM images of realistic
x-ray zone plates® (see Fig. 3), which must improve the
predictions of zone plate focusing efficiency. As will be
demonstrated below, such zone-profile fuzziness may con-
siderably affect the optical performance of newly designed
high-resolution zone plates.

D. Output-Field Analysis
Although the finite-difference algorithm is capable of cal-
culating the global wave-field distribution throughout the

(a)

40 |,

Ar, nm

Ar, nm

Ar, nm
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Z,nm

Fig. 1. Intensity distribution over one period of an (a) idealized,
(b) realistic rough, and (c) fuzzy zone plate.

5 10 15 20 25 30 35 40 45
Ar, nm

Fig. 2. Half a period fragment of output field amplitude corre-

sponding to Fig. 1 (solid curve, sharp; dots, rough; dashed curve,

fuzzy interface).
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Fig. 3. Segment of fuzzy zone plate profile; fuzzy layer thickness
a = 1 nm, zone width Ar = 10 nm.

reference lens

Fig. 4. Airy disk r = §(z) = 3.83z/kA of the reference perfect
lens used in the definition of DFE.

optical system,* for quantitative characterization of zone
plate imaging performance it suffices to know the struc-
ture of the focal spot. This task can be performed faster
and more accurately with a hybrid approach: Kirchhoff
integral representation in the focal spot starting from the
zone plate output field supplied by the finite-difference
PWE solution inside the zone plate body.

To calculate high-NA zone plates or to describe higher-
order foci, one has to go beyond the standard narrow-
angle PWE [Eq. (2)], keeping the fourth-order phase
terms. So, simplifying the general Kirchhoff formula,?
we obtain an approximate integral representation of the
complex wave amplitude,

k kr
u(r,z) =~ ;exp[ik(rzlzz)A]fouo(p)Jo 2P

e P
ik —— —
2z 823

with accuracy sufficient to describe the main and higher-
order focal patterns and to take into account spherical ab-
erration arising for higher numerical apertures NA
~ A/z or that is due to the imperfections of the optical
element. Here z, r are cylindrical coordinates, and uy(p)
is the axially symmetric output field at the current inte-
gration point on the back side of the x-ray optical element.
This formula can be used for quantitative analysis of any

X exp pdp, (4)
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transmission x-ray optical element—in particular, for the
estimation of the focal brightness of a realistic x-ray zone
plate. First of all, it must be emphasized that the com-
monly used concept of diffraction efficiency, borrowed
from the theory of gratings, does not yield a satisfactory
measure of the zone plate focus quality, being unable to
take into account how precisely the energy of the corre-
sponding diffraction order is pointed toward the focus.
Therefore a more adequate definition of focusing effi-
ciency will be given.

It is well known that a perfect lens of external radius A
and focal length f directs ~84% of the overall power 7A?2
toward the main bright circle 0 < r < A = yf/kA of the
Airy pattern emerging in the focal plane z = f.12 Here
v =~ 3.83 is the first zero of the Bessel function J;(¢).
This quantity serves as a reference value for diffraction
efficiencies of other focusing devices. To characterize the
performance of a multifocus optical element, such as a re-
alistic zone plate, we calculate the energy flux passing
through an Airy disk of increasing radius &(z)
= 3.83z/kA as a function of the range variable z and nor-
malize it to the reference value 0.847A? corresponding to
the perfect lens; see Fig. 4. This leads to the following
definition of the distributed focusing efficiency (DFE) of
an arbitrary optical element:

2.39 (42 )
n(z) = el lu(r, z)|*rdr. (5)
For computational purposes it is convenient to obtain
from Eq. (2) the following expression for the longitudinal
derivative,

dn ky A p
— ~239——Im f uo(p)d | y—
dz 0

A3z A
R o
X exp|ik % 8.8 pdpJO ug(o)d, yZ
o2 ot
X —ik| — - —| |od 6
exp| —i (22 823) o o-} (6)

and then find the DFE 7(z) by integration.

Formula (5) is quite general and can be used to charac-
terize lenses of utterly different nature and construction
(including such singular ones as gravitational lenses'’
forming a continuous focal line instead of the bounded fo-
cal spot). For a conventional lens, the initial field ampli-
tude has the form of a single geometrical optics term:

ug(p) ~ A(p)exp{ik[S(p) — p*/2f + p*/8f?1}, (T

where S(p) is the initial wave-front deviation from a per-
fect sphere. In this case, a single focus appears near the
point z = f, and formulas (4) and (5) yield an accurate
measure of aberration consonant with the classical Strehl
brightness definition.? In our case of a multifocus
Fresnel zone plate, its output field distribution is a two-
scale quasi-periodic function,

©

uo(p) = Uglpt(p)] = 2 Cp(plexpl—imt(p)], (8)

m=-m

where the fast variable ¢ is an inverse of Eq. (1):
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Fig. 5. DFE #(z) of a multifocus optical element (zone plate).
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Fig. 6. DFE for two zone plates: solid curve, exact zone law
[Eq. (1)]; dashed curve, simplified Fresnel law r,, = n\f.

t(p) = mn = k(N1 + p*/f? — 1) ~ k(p*2f — p*/8f?)
9)

and C,,(p) = A,,(p)exp[ikS,,(p)] are the slowly varying
complex amplitudes of the corresponding diffraction or-
ders determined by the local grating parameters. Substi-
tuting Fourier series (8) into Egs. (4) and (5), we obtain an
explicit representation of the DFE having sharp maxima
near the points z,, = f/m, being the positions of different
zone plate foci. Their efficiencies are roughly propor-
tional to the integrated partial intensities Afn( P,
whereas the phase shifts S,,(p) modify the focal pattern
and determine the behavior of 7(z) near the mth focus,
clearly indicating the presence or absence of spherical ab-
erration; see Fig. 5. To give an example, the DFEs of two
zone plates with 10-nm outermost zone width and differ-
ent zone-position laws are plotted in Fig. 6. The dashed
curve corresponding to the simplified Fresnel zone law
r, = \n\f shows a rather low, aberrated maximum,
whereas the improved zone law [Eq. (1)] gives a perfect
bright focus (solid curve).

It must be emphasized that DFE equation (5) is a rec-
tification of the commonly used estimate zone plate dif-
fraction efficiency®!* defined as an integral of local energy
contributions into the corresponding diffraction order
|C,,(p)|? but ignoring phase variations S,,(p). In fact,
depending not only on the zone plate throughput but also
on the accuracy of directing the energy flux to the focal
point z
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= f, the value »,, = 7(f,,) gives a true measure of zone
plate focusing ability. Of course, the Airy disk of a refer-
ence perfect lens is but an a priori estimate of zone plate
spatial resolution, which may be slightly different. How-
ever, this replacement usually does not lead to a notice-
able change in the resulting values of the DFE. In dubi-
ous cases, the focal pattern u(r, f) can be calculated with
Eq. (5) to find the exact value of the lateral resolution 6.

As follows from the above analysis, focal brightness
and aberrations of realistic Fresnel zone plates depend in
a rather sophisticated manner on the zone position law r,
[by means of the inverse function ¢(p)] and the phase of
local grating contributions C,,(p) to the corresponding
diffraction order. Therefore simplified approaches may
give misleading (e.g., too-optimistic) results. A full-wave
theory is to be used for both the reliable zone plate output
field calculation and the accurate analysis of the focal pat-
tern structure.

3. OPTIMIZATION OF ZONE PLATE
IMAGING PERFORMANCE

Spatial resolution is one of the crucial parameters of an
imaging optical element. It is well known that the lat-
eral resolution of an idealized Fresnel zone plate is set by
the width of the outermost zone dy ~ J\f/N ~ A/N, so
the main manufacturing efforts are aimed at increasing
the number of zones N and refining the zone plate micro-
structure. At present, the electron-beam writing tech-
nique has reached nanometer accuracy, and the prospects
of producing zone plates with the outermost zone of ~10
nm are considered. In what follows, some basic limita-
tions imposed by diffraction effects are discussed, and
some possible zone plate constructions are quantitatively
characterized.

A. Limitation of Improving the Main Zone Plate Focus
Straightforward increase of the zone plate NA seems to be
a simple way to improve spatial resolution of the imaging
with the first diffraction order. It is believed that in-
creasing the number of zones N, while maintaining the
exact Fresnel zone position law, Eq. (1), to compensate for
spherical aberration, would reduce the lateral resolution
scale & in accordance with the refinement of the outer-
most zone Ar. However, our calculations show that the
partial diffraction efficiency of the outer zone plate seg-
ments decreases drastically starting from a certain radius
R, which stops further improvement of spatial resolu-
tion with enlarging numerical aperture. This effect
seems to have a basic cause and can be confirmed analyti-
cally by the coupled-wave method, revealing a strong at-
tenuation of the scattering amplitude in the outer part of
the zone plate. Roughly speaking, as the outer zones do
not contribute energy to the focal spot, the effective nu-
merical aperture and corresponding spatial resolution are
limited by the cutoff radius R,. This effect is even more
pronounced for a realistic zone plate with a nonrectangu-
lar fuzzy zone profile.

Figure 7 depicts the focusing efficiency to the first order
of a family of zone plates with fixed focal length f
= 0.45mm for A = 2.4nm and increasing radius A. A
typical material, nickel, is chosen for this simulation.
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Fig. 7. First-order focusing efficiency as a function of zone plate
radius: circles, idealized zone profile; squares, fuzzy profile;
dashed curves, efficiency for thinner zone plates.

The starting parameters (A = 18 um, N = 300, [
= 0.45mm, A, = 30nm, b = 240 nm) are close to those
used in the high-resolution x-ray microscope of the Center
for X-Ray Optics at Lawrence Berkeley National
Laboratory.'®* When the zone plate radius varies from
A = 18 um to 65 um, the number of zones grows more
than ten times and the outer zone width reaches the ex-
tremely small values Ar ~ 8 nm accessible with present
manufacturing technologies. However, the effect of such
technological complication may fall short of the experi-
mentalist’s expectations. In fact, even for an idealized
zone plate with sharp rectangular zones, the first-order
focus efficiency 7; = 71(A) (circles in Fig. 7) decreases by
a factor of 2 from 23% for the currently used prototype
(A=18um, N =300) to 11% for A =66um, N
= 4000. The calculated spatial resolution in the ex-
treme case Ar ~ 8 nm is ~13 nm instead of the expected
value 6 =~ 1.22Ar =~ 10nm. For a realistic fuzzy profile
with the transition layer thickness a = 2 nm (squares in
Fig. 7) the outcome is even worse: 7; = 8.5% for A
= 66 um and 6 = 15nm, =~ 2Ar which is far from the
commonly used estimates. These numerical simulations
make doubtful the possibility of achieving a lateral reso-
lution in the main zone plate focus better than §
~ 15nm by simply increasing the number of zones.

This crucial drop of diffraction efficiency with decreas-
ing outer zone width is especially pronounced for high-
aspect-ratio zone plates when the phase inversion effect
at the optimum zone plate thickness of approximately,
200-250 nm is used. For currently used zone plates with
lower values of aspect ratio (b ~ 60—90 nm), diffraction
efficiency predicted both by the full-wave simulation and
simplified formulas® falls off less rapidly'®; however, the
absolute values 7 ~ 3—5% in this case are far from the
desired theoretical maximum 7, ~ 25%; see dashed
curves in Fig. 7.

B. Imaging with Second-Order Focus
Another way to achieve better resolution consists of using
higher-order diffraction foci instead of the main one, as
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spatial resolution should improve as an inverse ratio of
the focus number: &,, = 8;/m."® Still, one should not
be very hopeful about high orders, because the expected
efficiency 7,, drops proportionally to m ~2 according to the
predication of planar Kirchhoff theory. Furthermore, the
efficiency must be more sensitive to the imperfections of
the zone interfaces as the contributions of the Fresnel
subzones lying within one zone plate zone mutually
cancel.! From these considerations, the second order
would be preferable if it were not for its absence for the
typical 1:1 line-to-space ratio, according to Kirchhoff
theory. But, as full-wave simulation shows, for a realis-
tic thick zone plate the second-order focus is bright
enough even for standard zone geometry,*® which moti-
vates further study of the possibilities for its optimiza-
tion. Thus improved, second-order focus might provide a
reasonable balance between spatial resolution and bright-
ness.

30 T T T T T

Fadius r, pm

m
T

a

] 100 200 300 400 500 600
Thickness b, nhm

Fig. 8. Partial diffraction efficiency to second order of a nickel

zone plate as a function of radius and zone plate thickness for

N =24nm, f, = 225 um, L:S = 1:1.
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Fig. 9. Second-order focus efficiency 7, of a nickel zone plate as
a function of zone filling coefficient « = L/d; N = 2.4nm, f,
= 225 pum, zone plate thickness b = 480 nm.
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1. Varying Line-to-Space Ratio

As stated above, the second-order diffraction efficiency de-
pends primarily on the line-to-space ratio L:S, where L
and S are widths of the neighboring opaque and open
zones, the local period being d = L + S. The plane-
screen model® predicts that for a standard 1:1 Fresnel
zone plate the second order is simply absent while the
maximum efficiency 7, = 1/4w? ~ 2.5% is achieved for
L:S = 1:3 or L:S = 3:1. For realistic thick zone plates,
the relation among diffraction efficiency, line-to-space ra-
tio and thickness is rather complicated. Coupled-wave
calculations show that the common 1:1 Fresnel zone plate
also can provide a considerable contribution to the second
order for a properly chosen thickness. As an example,
partial diffraction efficiency as a function of radius r and
zone plate thickness b is plotted in Fig. 8 for a L:S
= 1:1 nickel zone plate of focal length f, = 225 um at the
soft-x-ray wavelength A\ = 2.4nm. It can be seen that
for any chosen thickness b the function 7,(r) is strongly
nonuniform with a maximum achieved in a narrow annu-
lar segment. The dependence of the second-order focus-
ing efficiency of this zone plate on the zone filling coeffi-
cient « = L/d for a fixed thickness & = 480 nm is shown
in Fig. 9 (solid curve, full-wave calculation; dashed curve,
reference thin zone plate). It is clear that the two models
have little resemblance in their behavior. According to
the full-wave calculations, the optimum efficiency is
reached near the common zone plate geometry a = 0.5
(L:S = 1:1). It gives the maximum value of the partial
diffraction efficiency of ~8% for r ~ 15 um and total cu-
mulative second-order focusing efficiency 7y ~ 4%; see
Fig. 9. This example shows that there is still room for
further optimization by designing zone plates of variable
line-to-space ratio and variable thickness. However, nu-
merical experiments show that it seems unlikely to sur-
pass in this way efficiencies of ~6—8%.

To give a realistic example, let us consider a possible
prospective zone plate construction for operation in the
second diffraction order in the water window spectral re-
gion (A = 2.4nm). Its parameters could be as follows:
diameter D = 0.1 mm, number of zones N = 1160, main
focus position f = 0.9mm, the smallest period dy
= 43nm. Estimating the achievable minimum feature
size as 10 nm, we choose the line-to-space ratio L:S
= 1:3. Optimized for second-order focus brightness, the
constant thickness & = 220 nm gives the following imag-
ing characteristics: focusing efficiency 7, ~ 5%, spatial
resolution 8, ~ 13nm, which agrees with the Rayleigh
criterion 6y = 1.22d/4\.

2. Specular Enhancement of Second-Order Focus

As shown in Subsection 3.B.1, without a considerable
change in the zone plate construction it is impossible to
get diffraction efficiency to the second order exceeding a
few percent. Keeping in mind further improvement, let
us turn to the promising idea of slanting the opaque zones
in order to exploit total external reflection from their
skew interfaces.” A sketch of such a zone plate with
tilted zones is shown in Fig. 10. Recent numerical simu-
lation of tilted gratings by the coupled-wave method
shows that it is possible to achieve very large diffraction
efficiencies into the higher orders, up to ~60%.1° The
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reason for such impressive enhancement is that each illu-
minated opaque zone interface acts as a mirror reflecting
the incident radiation toward the desired order. Posi-
tioning of the zones according to the Fresnel law, Eq. (1),
should provide the constructive interference of the radia-
tion, reflected from each interface, in the focal spot. One
can easily see that the tilt angle between the zone inter-
face and the optical axis should grow with radius r. Con-
sider, for example, a plane-wave focusing into the mth or-
der: Each horizontal ray is to be deflected by the angle
¢.(r) = atan(r/f,,), where r is the distance from the op-
tical axis. For small NA, the zone tilt angle ¢,,(r), being
half of the deflection angle, is approximately proportional
to the radius:

(1) = & (r)2 ~ mr/2f. (10)

It is expected that a zone plate with zone tilt law (10) will
demonstrate crucial enhancement of the mth focus.

In order to verify this hypothesis for a realistic zone
plate model, we performed a series of full-wave simula-
tions. In what follows we study the influence of the zone
tilt on the second-order focusing efficiency of the prospec-
tive zone plate considered in Subsection 3.B.1. The
coupled-wave calculation for this case shows that the lo-
cal grating efficiency in the outer part of the zone plate
reaches values up to 50%, see Fig. 11. Here the contour
lines of the partial diffraction efficiency to the second or-
der 7(r,b), being a function of radius and zone plate
thickness, are shown. To calculate the cumulative
second-order focusing efficiency we use the combined
technique described in Subsections 2.B and 2.D: finite-
difference PWE (1) solution inside the zone plate volume,
and energy-flow calculation (5) via Kirchhoff integration
(4). For the thickness b = 850 nm, which is optimal for
the outer part of the zone plate, the second-order focusing
efficiency sums up to 22%, which, although not so striking
compared with the prediction of the coupled-wave grating
theory,!? still exceeds all known experimental results for
higher-order foci and is comparable with the typical first-
order efficiencies of the best soft-x-ray zone plate.®

Although it is apparently worth trying to fabricate such
blazed zone plates, this approach has not been carried out
so far because of the difficulties in the implementation of
reactive ion etching for producing deep, slanted interzone
grooves. Another way to achieve similar performance
may consist in bending an ordinary thick zone plate
slightly as a whole in such a way that it would take on a
spherical shape with the center at the double focal length
of the corresponding order (second in our case); see Fig.
12. It can be easily seen that for small NA the relation
[relation (10)] between the zone tilt angle and radius will
be approximately satisfied. For the example considered,
the maximum tilt angle is approximately B = A/f
~ 3.2°, which seems to be achievable by modern manu-
facturing technologies.

3. Optimal Thickness of Tilted Zone Plates

The discrepancy between very optimistic predictions of
grating theory and more moderate results of the full-wave
zone plate simulation has a simple explanation: Not only
the zone tilt angle but also the optimum thickness de-
pends on the local grating period.!® Therefore not all
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Fig. 10. Sketch of a tilted zone plate: ¢ = ¢ (r) is variable tilt
angle; dashed curves show optimal thickness b(r).
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Fig. 11. Local grating efficiency to the second order (coupled-
wave calculation). The bold curve shows the optimum geometri-
cal thickness.

segments of the zone plate with constant thickness show
optimal performance, which is confirmed by local Fourier
analysis of the output wave field. For the purpose of fur-
ther improvement, it is useful to estimate the optimum
thickness of a tilted zone plate from simple geometrical
considerations. Roughly, in this case each incident ray
entering the open zone should undergo a single reflection
from the tilted opaque zone interface and leave the zone
plate volume unobstructed, contributing to the desired
diffraction order; see Fig. 13. Such geometry, eliminat-
ing reflections from the opposite opaque zone that would
redirect a part of beam energy toward the undiffracted
zero order, determines the proper thickness b, as a func-
tion of local period and tilt angle. For the case of a plane
wave incident along the optical axis, the optimal thick-
ness found from Fig. 13 is b, ~ S/, where S is the open
zone width (space) and ¢ is the zone tilt angle. If ¢ is
chosen to enhance the reflection into mth order, ¢ = ¢,,
~ (m\)/(2d), then the proper thickness is

2Nf?

—_— 11
(1 + L/S)mr? (1)

bopt(r) ~

Despite the unaccounted-for small diffraction effects,
this simple formula (Fig. 11, bold curve) is in a good
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agreement with the optimum thickness found from
coupled-wave calculations (the ridge of the grating effi-
ciency relief shown by the contour lines in Fig. 11).

These geometrical considerations clarify the role of the
line-to-space ratio for tilted zone plate construction. Ne-
glecting diffraction effects and radiation penetrating
through the opaque zones, one can estimate the local
grating efficiency roughly as S/d, which tends to 100%
with diminishing width of the opaque zone L/S — 0.
Reaching this optimum is limited by apparent technologi-
cal constraints, and, further, the laws of reflection become
more complicated when the material layer thickness L is
comparable with the penetration depth A ~ [k(42,,
— V217! [here, o = (1 — Re &2 is the angle of to-
tal external reflection; for the outer zones in our zone
plate example, A is ~5 nm, which means that the geo-
metrical reflection model here may have only qualitative
character].

Another technological difficulty revealed by the geo-
metrical formula (11) is the very high value of the opti-
mum zone plate thickness in its central part (see Fig. 10),
which would lead to practically unachievable aspect ra-
tios (thickness to period, b:d). However, this part of the
zone plate, giving small contribution to the focus and be-
ing blocked in most optical schemes, is of little
importance.l® For larger radii, the optimum thickness
bopt(r) has the reasonable order of magnitude
b~ 1pum.

Consider now the zone plate of Subsection 3.B.2 to see
how its performance could be improved by means of thick-
ness variation. Let us confine ourselves to aspect ratios
of ~20, which gives maximum thickness b, = 2 um for
the inner =zones. Starting from the radius R,
= AISM(L + 8)by]V? ~ 27 um, the zone plate thickness

bopt b
— \l <

Fig. 13. Geometrical illustration of the optimal thickness for a
tilted zone plate.
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Partial diffraction efiicisncy to 2% order
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Fig. 14. Partial diffraction efficiencies obtained from the zone
plate output-field analysis for a constant-thickness zone plate
(squares) and its optimized variable-thickness modification
(circles).

Table 1. Dependence of Second-Order Focusing
Efficiency 7, on Fuzzy Layer Thickness a for a
Constant Thickness Zone Plate and Its
Variable-Thickness Modification

a (nm)
72 (%) 0 1 2 3 4
b = 850 nm 22.0 214 19.2 16.5 13.7
b = by 32.0 30.0 25.8 22.3 16.9

decreases to its minimum value 6(A) in accordance with
the geometrical formula (11):

b:bO’ 7"<R0,

b = by(Ry/r)?, r>R,. (12)

From the numerical simulation it follows that such
change of zone plate construction would increase its fo-
cusing efficiency 7y to 32%. This is due to the more uni-
form distribution of the partial diffraction efficiency along
the zone plate radius, and hence a larger part of the zone
plate makes a considerable contribution to the focal spot.
Figure 14 depicts the radial distribution of the local grat-
ing efficiency for this variable-thickness zone plate
(circles) in comparison with its constant-thickness proto-
type of Subsection 3.B.2 (squares). Numerical experi-
ments show that this value of focusing efficiency into the
second order (~30%) is close to the absolute maximum ac-
cessible within the chosen technological constraints
(thickness, aspect ratio, line width, etc.).

4. Influence of Manufacturing Errors
An important question remains: How sensitive will the
imaging performance of such atypical zone plates be to
manufacturing errors, such as the imperfections of the
zone interfaces? We can account for the interface rough-
ness with the fuzzy-zone model of Subsection 2.C.

Table 1 illustrates the dependence of the blazing effect
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on the interface quality for two tilted zone microlenses of
Subsections 3.B.2 and 3.B.3. One can see that in both ex-
amples the focusing efficiency into the second-order 7,
as a function of the fuzzy-layer thickness a, drops by a
factor of 1.5 to 2 when turning from an idealized perfectly
smooth interface to a more realistic value ¢ = 4 nm.
Moreover, the optimized zone plate with b = b,(7) will
appreciably surpass its constant-thickness counterpart
= 850nm only if a good interface quality of approxi-
mately ¢ = 2 nm is maintained.

4. CONCLUSION

In this paper an accurate and efficient simulation tech-
nique has been developed for quantitative characteriza-
tion of the focusing ability of a diffraction-limited multi-
focus optical element. This method was applied to
studying the imaging performance of prospective soft-x-
ray zone plate lenses. Numerical simulation has demon-
strated that spatial resolution better than 15 nm is
hardly achievable by simply increasing the number of
zones because of the basic diffraction effects that limit the
first-order focus brightness. It turns out that the focus-
ing efficiency drops to values less than 10% with decreas-
ing zone width. This effect depends crucially on the in-
terface roughness, which can be described with a fuzzy-
zone model.

The second-order focus may show better performance
provided that zone plate thickness and line-to-space ratio
are optimized. The effect of specular reflection from the
tilted zone interfaces could be used for increasing the
second-order focus efficiency up to approximately 25-30%
if the manufacturing complications (large aspect ratio,
variable zone plate thickness, and appropriate variable
zone tilt) were overcome.
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