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In this paper, we complete and improve the study of the simulation of the hitting times of some given
boundaries for Bessel processes. These problems are of great interest in many application fields as finance
and neurosciences. In a previous work (Ann. Appl. Probab. 23 (2013) 2259–2289), the authors introduced
a new method for the simulation of hitting times for Bessel processes with integer dimension. The method,
called walk on moving spheres algorithm (WoMS), was based mainly on the explicit formula for the dis-
tribution of the hitting time and on the connection between the Bessel process and the Euclidean norm
of the Brownian motion. This method does not apply anymore for a non-integer dimension. In this paper
we consider the simulation of the hitting time of Bessel processes with non-integer dimension δ ≥ 1 and
provide a new algorithm by using the additivity property of the laws of squared Bessel processes. We split
each simulation step of the algorithm in two parts: one is using the integer dimension case and the other one
considers hitting time of a Bessel process starting from zero.

Keywords: Bessel processes with non-integer dimension; hitting time; numerical algorithm

1. Introduction

This paper aims at constructing new and efficient methods for approximating hitting times of a
given threshold for Bessel processes with non-integer dimension δ ≥ 1. Diffusion hitting times
are important quantities in many fields such as mathematical science, finance, geophysics or
neurosciences.

In neurosciences for example, the interspike interval is identified with the first-passage time
of an Ornstein–Uhlenbeck process through some threshold and the spike train forms a renewal
process. The choice of the Ornstein–Uhlenbeck process is developed in Tuckwell [38] and in
Burkitt’s survey [4], see also the book [15] or the survey [33]. In Feller’s model, generalized
Bessel processes appear as a more realistic alternative to the Ornstein–Uhlenbeck process, see for
instance [33] for a description of this new model and [26] for a comparison of these models. That
is why, Feller’s model plays an important role in neuroscience even if it is hard to compute the
first passage problem to general boundaries. A modification of the Ornstein–Uhlenbeck model
and the Feller model also permits to deal with refractoriness [2].

Another typical example is the study of path dependent exotic options as barrier options in
finance. The study of a large class of options pricing in finance is based on the numerical approx-
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imation of relevant hitting times or passage times for specific stochastic processes, for instance
the Cox–Ingersoll–Ross process which can be expressed as a Bessel process after a change of
time transformation [21]. In particular, many studies consider the pricing of barrier options within
this scope. In Gobet [17,18] a numerical Monte Carlo based scheme is proposed for the approx-
imation of the price of barrier options. The method is based on the law of a real diffusion killed
as it goes out of a domain (interval of R), when the diffusion is approximated by its continuous
Euler scheme.

On one hand, analytic expressions for hitting time densities are well known and studied only in
some very particular situations. On the other hand, the study of the approximation of the hitting
times for stochastic differential equations is an active area of research since very few results exist
up to now. For the Brownian motion, we can approach this quantity simply by using Gaussian
random variables [23].

Several alternatives for dealing with the characterization of hitting times for the Brownian
motion and general Gaussian Markov processes exist. These methods aim to approximate the
probability distribution function or the hitting probabilities by using:

• Volterra integral equations, more precisely to obtain the approximate solutions for Brownian
motion or Gaussian Markov processes crossing continuously differentiable boundaries, the
tangent approximation and other image methods have been used by Strassen [37]; Daniels
[8]; Ferebee [13]; Lerche [27]. This method does not work in the general diffusion frame-
work as it relies on the explicit form of the transition probabilities;

• series expansions, as performed by Durbin [11,12]; Ferebee [14]; Ricciardi et al. [32];
Giorno et al. [16]. The numerical approach proposed in [3] seems to be particularly effi-
cient. This method can be adapted to more general diffusion processes as in Sacerdote and
Tomassetti [34];

• partial differential equation approaches, which are based on the explicit form of the prob-
ability distribution function of the Brownian motion. This method can be generalized for a
large class of diffusions as in Patie and Winter [29];

• or Monte Carlo methods as in the paper by Ichiba and Kardaras [24] that handles the repre-
sentation of the passage density as the mean of a three dimensional Brownian motion or in
the works of Pötzelberger and Wang [30,39] for the Brownian motion and some particular
transformations of the Brownian motion.

These methods are useful for approximating the distribution of the hitting time. If we have to
approximate directly the hitting time one needs to develop other methods.

For the general diffusion case, very few studies in this direction exist. The only methods that
can be used are the Monte Carlo methods and time splitting method like the Euler schemes.
An approximation of the hitting time can be obtained by using the hitting time of the boundary
for the Euler scheme. This will give an upper bound for the diffusion hitting time. In order to
improve this approximation we can use penalisation methods, that means construct boundaries
ε-close to the real boundary, with ε a small parameter. Some works have already been done in
the context of smooth drift and diffusion coefficient by Gobet and Menozzi [19,20].

Our study focuses on the numerical approach of the hitting time of a Bessel process. Bessel
processes and their hitting times are important issues either for theoretical research or for many
practical applications. Some issues on these subjects are: Alili and Patie [1] investigate the Bessel
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processes via some boundary crossing identities for diffusions having the time inversion property;
Salminen and Yor consider the hitting time of affine boundaries for the 3-dimensional Bessel
process [35]; Hamana and Matsumoto [22] give explicit expressions for the distribution functions
and the densities of the first hitting time of a given level for the Bessel process; Byczkowski,
Malecki and Ryznar [5] obtain uniform estimates of the hitting time density function by using an
integral formula for the density of the first hitting time of a given level for the Bessel process.

In all these papers, the formulas are explicit functions, often given as a series expansion, and
are thus hard to use for a numerical purpose as they include in their formulation Bessel functions.
The main idea of our present work, which completes and improves the results of our previous
work in Deaconu and Herrmann [9], is to get rid of this difficulty by using the properties of
Bessel processes.

The main result of this study is the construction of an iterative procedure for approximating
the hitting time by using the structure and the particular properties of the Bessel process. In par-
ticular, our approach avoids splitting time methods. More precisely, we consider the simulation
of the hitting time of Bessel processes with non-integer dimension and construct a new algorithm
by using the additivity property of the laws of squared Bessel processes. Each simulation step is
split in two parts: the first one uses the already known algorithm for the integer dimension case
and the second one constructs the hitting time of a Bessel process starting from zero.

More precisely, we aim to approximate τL the first passage time through the threshold L for the
Bessel process starting under the level L. Let us note that our study does not concern hitting times
for Bessel processes starting above the threshold: in such a case, the finiteness of the hitting time
is no longer ensured. We introduce a particular algorithm called (NI) based on a random process
(M(n),�n)n≥0 which satisfies the following properties:

1. The first coordinate (M(n))n≥0 is a [0,L]-valued random walk.
2. The second coordinate represents an increasing sequence of stopping times.
3. If Nε is defined by

Nε = inf
{
n ≥ 0 : M2(n) ≥ L2 − ε

}
,

then the random variable �Nε gives a ε-precise approximation for the hitting time τL.

Due to the stopping criterion of (NI) and since (�n)n≥0 is an increasing sequence, smaller is the
parameter ε higher is the number of iterations of the algorithm.

In this study, the convergence and the efficiency of this new algorithm is emphasized namely
by the main result.

Theorem 1.1. Let us consider a Bessel process of dimension δ ≥ 1. If the starting position of the
Bessel process is smaller than L, then the number of steps Nε of the Algorithm (NI) is almost
surely finite. Moreover, there exist constants C > 0 and ε0 > 0, such that

E
[
Nε

] ≤ C| log ε|, for all ε ≤ ε0.

Furthermore �Nε converges in distribution towards τL, the hitting time of the level L for the δ

dimensional Bessel process, as ε → 0.



Simulation of Bessel hitting times 3747

The paper is organized as follows. Section 2 introduces some important properties on Bessel
processes needed in the paper. Section 3 gives the construction of the algorithm. In Section 4,
we introduce some preliminary results in order to obtain the convergence of the algorithm in
Section 5. Finally, Section 6 presents and discusses some numerical results.

2. Bessel processes: Definitions and main properties

Let δ ≥ 0. We define the square of a δ-dimensional Bessel process started at y0, as the unique
strong solution of the following stochastic differential equation⎧⎨

⎩Y
δ,y0
t = Y

δ,y0
0 + 2

∫ t

0

√
Y

δ,y0
s dBs + δt,

Y
δ,y0
0 = y0, y0 ≥ 0,

(2.1)

where (Bt )t≥0 stands for the standard one-dimensional Brownian motion. The usual notation
for the distribution of the process (Y

δ,y0
t )t≥0 is BESQδ . This unique solution satisfies Y

δ,y0
t ≥ 0

for any t ≥ 0. It is therefore possible to consider its square root, the so-called Bessel process of
dimension δ starting at x0 ≥ 0, defined by:

X
δ,x0
t =

√
Y

δ,x2
0

t , for all t ≥ 0. (2.2)

Let us recall that the Bessel process is characterized either by its dimension δ or, alternatively,
by its index ν given by ν = δ/2 − 1.

For a fixed L > 0 let us denote by

τL = inf
{
t ≥ 0;Xδ,x0

t = L
}
, (2.3)

the first time that the process hits the threshold L. For the Bessel process case an explicit form
of the Laplace transform of τL exists:

Ex0

[
e−λτL

] = (x0)
−ν

L−ν

Iν(x0
√

2λ)

Iν(L
√

2λ)
, y > 0,

here Iν(x) denotes the modified Bessel function. Ciesielski and Taylor [6] proved that for δ ∈ N

the tail distribution is given by, when starting from 0

P(τL > t) = 1

2ν−1�(ν + 1)

∞∑
k=1

jν−1
ν,k

Jν+1(jν,k)
e
− j2

ν,k

2L2 t
,

where J· denotes the Bessel function of the first kind, and j·,k is the associated sequence of its
positive zeros. These formulas are restricted to the integer dimension case (see [22] for non-
integer dimensions) and are obviously miss-adapted and not suited for numerical approaches.
The Laplace transform of the first hitting time is also available for various generalizations of the
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Bessel process with integer dimension, namely for radial and squared radial Ornstein–Uhlenbeck
processes and for Bessel squared processes with negative dimensions [21].

Let us also recall some properties of Bessel processes (resp. squared Bessel processes) with re-
spect to their dimension as follows from Revuz and Yor [31] or Jeanblanc, Yor and Chesney [25]:

• for δ > 2 the process BESQδ is transient and, for δ ≤ 2, it is recurrent,
• for δ ≥ 2 the point 0 is polar and for δ ≤ 1 it is reached almost surely,
• for δ = 0 the point 0 is absorbing,
• for 0 < δ < 2 the point 0 is instantaneously reflecting.

Let us first introduce some relations connecting Bessel processes of different dimensions. The
first relation is based on Girsanov’s transformation and the second one gives a decomposition of
the squared Bessel process as a sum of two independent squared Bessel processes.

On the canonical space 	 = C(R+,R+), let Z be the canonical map and Ft = σ {Zs,0 ≤ s ≤ t}
be the canonical filtration. We denote by Pδ,x0 the law of the Bessel process of dimension δ

starting from x0, x0 > 0.
Let us state the following result from Jeanblanc, Yor and Chesney [25] (Proposition 6.1.5.1,

page 364).

Proposition 2.1. The following absolute continuity relation, between a Bessel process of dimen-
sion δ ≥ 2 and a Bessel process of dimension 2, holds

Pδ,x0 |Ft
=

(
Zt

x0

)δ/2−1

exp

{
− (δ/2 − 1)2

2

∫ t

0

ds

Z2
s

}
P2,x0 |Ft

, ∀t ≥ 0. (2.4)

For δ < 2, a similar absolute continuity relation holds before the first hitting time of 0.
It seems difficult to use the expression (2.4) in order to simulate Bessel hitting times for an

arbitrarily dimension δ even if it reduces to study only the 2-dimensional case. Thus, the use of
Radon–Nikodym’s derivative happens to be unuseful for numerical purposes.

An important property, due to Shiga and Watanabe [36], is the additivity property for the family
of squared Bessel processes. Let us denote by P1 ∗ P2 the convolution of P1 and P2, where P1

and P2 are probability measures. In the following, we denote by Qδ,y0 the law of the squared
Bessel process of dimension δ starting from y0.

Proposition 2.2. For every y0, y
′
0 ≥ 0 and for every δ, δ′ ≥ 0 we have

Qδ,y0 ∗Qδ′,y′
0 =Qδ+δ′,y0+y′

0 . (2.5)

3. Algorithm for approaching the hitting time

In a previous paper [9], the authors developed an algorithm in order to simulate, in just a few
steps, the Bessel hitting time. This was done for integer dimensions δ ≥ 1. The particular con-
nection between the Bessel process and the δ-dimensional Brownian motion gives in this case a
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geometrical interpretation in terms of the exit problem from a disk for a δ-dimensional Brownian
motion. This geometrical approach does not work any longer for non-integer dimensions. In or-
der to overcome this difficulty, we construct a new algorithm which essentially uses that we are
able to simulate, in just one step, each of the following stopping times:

• the first exit time of the multidimensional Brownian motion from a sphere with a particular
time-dependent radius (moving sphere) [9],

• the first passage time of a Bessel process starting from the origin through a particular curved
boundary (Section 4).

The main task is the choice of both the time-dependent radius and the curved boundary in such a
way that the simulation of the stopping times remains extremely simple.

Then the additivity property expressed in Section 2 permits to point out a procedure of sim-
ulation for a general Bessel process whatever the starting point or the dimension δ ≥ 1. Each
step of the algorithm is based on a couple of Bessel processes: one of dimension δ′ := δ − �δ�
starting in 0 and hitting a curved boundary and the other one of dimension �δ� starting away
from the origin and hitting a moving sphere. An intelligent combination of these two boundaries
permits to deal with the hitting problem of the general Bessel process. Before presenting the
Algorithm (NI), let us start by making some notations.

Some notations: Set a > 0 and δ > 0. Let us consider the following nonlinear boundary:

ψa,δ(t) =
√

2t log
a

�( δ
2 )t

δ
2 2

δ
2 −1

, for t ∈ Supp(ψ) := [0, Ta,δ], (3.1)

where Ta,δ is given by

Ta,δ :=
(

a

�( δ
2 )2

δ
2 −1

) 2
δ

. (3.2)

For a given dimension δ > 0 denote δ′ := δ−�δ�. Consider also γ ∈ [0,1) (close to 1) and L > 0.
We define, for x > 0

I (δ, x) := 2�δ�/2−1�

(�δ�
2

)( √
eγ (L2 − x2)√

(�δ� − δγ )x2 + δγL2 + √�δ�x2

)�δ�
(3.3)

and

N(δ, x) := 2δ′/2−1�

(
δ′

2

)( √
eγ (L2 − x2)√

(δ′ − δγ )x2 + δγL2 + √
δ′x2

)δ′

. (3.4)

Description of the algorithm for δ ≥ 1. Let us now introduce the algorithm.
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Algorithm (NI) Simulation of τL = inf{t ≥ 0 : Xδ,x0
t = L}

Initialization: �0 = 0, M(0) = x0, γ ∈ (0,1) a chosen parameter, close to 1.

Step n (n ≥ 1): The Bessel process starts at time �n−1 in M(n − 1).

While L2 − M2(n − 1) > ε do:

(n.1) Construct a Bessel process of dimension �δ� starting from M(n − 1) and stop this process at time

θ
(1)
n , the exit time of the �δ�-dimensional Brownian motion Bt from the moving sphere centered

in M(n − 1) := (M(n − 1),0,0, . . . ,0) ∈R�δ� and with radius ψαn,�δ�(t), where

αn = I
(
δ,M(n − 1)

)
,

following the definition given in (3.3). The exit time and the exit position are obtained by the
moving sphere algorithm (WoMS) [9].

(n.2) Construct also a second Bessel process, independent with respect to the previous one, of dimension

δ′ := δ − �δ� starting from 0. Stop this process the first time θ
(2)
n it hits the curved boundary

ψβn,δ′(t), where

βn = N
(
δ,M(n − 1)

)
,

following the definition given in (3.4). This hitting time is constructed in Section 4.
(n.3) Define the stopping time (comparison of the two hitting times)

θn = inf
{
θ
(1)
n , θ

(2)
n

}
. (3.5)

First notice that the additivity property of the Bessel processes ensures that (X
δ,M(n−1)
t )2 has the

same distribution as the sum of the two independent processes defined in steps (n.1) and (n.2).
We denote by (

Z
δ,M(n−1)
t

)2 = ∥∥M(n − 1) + Bt

∥∥2 + (
X

δ′,0
t

)2
.

The values of αn and βn have been chosen in order to ensure the following bound:

sup
t≤θn

(
Z

δ,M(n−1)
t

)2 ≤ sup
t≤θ

(1)
n

∥∥M(n − 1) + Bt

∥∥2 + sup
t≤θ

(2)
n

(
X

δ′,0
t

)2

(3.6)
≤ M2(n − 1) + γ

(
L2 − M2(n − 1)

)
.

In particular, since γ < 1,

sup
t≤θn

Z
δ,M(n−1)
t < L.

We lastly define M(n) = Z
δ,M(n−1)
θn

< L and �n = �n−1 + θn. This achieves the nth step.

Outcome: Nε is then the number of steps entirely completed, that is the first time n in the algorithm such
that L2 − (M(n))2 ≤ ε, �Nε the approximate hitting time and M(Nε) the approximate exit position.
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The realization of this algorithm and its convergence are developed in Section 5. The upper-
bound (3.6) will be discussed in the proof of Theorem 5.1 (see the bound (5.10) in Step 2).

4. Preliminary results

We start by recalling results and notations introduced in [9] that will be needed in the sequel.
Consider the first hitting time of a curved boundary for the Bessel process of dimension δ,

starting from the origin. Let ψ(t) denote the boundary, and introduce the following hitting time:

τψ = inf
{
t > 0;Xδ,0

t ≥ ψ(t)
}
. (4.1)

For some suitable choice of the boundary, the distribution of τψ can be explicitly computed. The
result is based on the method of images (see, for instance, [7], for the origin of this method,
and [27] for a complete presentation).

Proposition 4.1. Set a > 0 and δ > 0. Let us consider the nonlinear boundary ψa,δ given
by (3.1). We can express explicitly the distribution of τψ (simplified notation corresponding to
τψa,δ ). It has its support in Supp(ψ) and is given by

P0(τψ ∈ dt) = 1

2at

(
2t log

a

�( δ
2 )t

δ
2 2

δ
2 −1

) δ
2

1Supp(ψ)(t)dt

(4.2)

= 1

2at
(ψa,δ)

δ(t)1Supp(ψ)(t)dt.

Remark 4.2 (Scaling property). Let us stress a scaling property which will be used in the sequel.
By using relations (3.1) and (3.2), we obtain:

ψ2
a,δ(t) = 2t log

(
Ta,δ

t

) δ
2 = δTa,δ

(
t

Ta,δ

log

(
Ta,δ

t

))
= δTa,δ�

2
(

t

Ta,δ

)
, (4.3)

where

�(t) =
√

t log

(
1

t

)
1[0,1](t). (4.4)

Remark 4.3. Let us note that the maximum of the function ψa,δ(t) is reached for tmax(a) = Ta,δ

e

and equals

Wa,δ := sup
t∈Supp(ψ)

ψa,δ(t) =
√√√√δ

e

(
a

�( δ
2 )2

δ
2 −1

) 2
δ =

√
δ

e
Ta,δ. (4.5)
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Moreover the distribution ua,δ(t, x)dx := P(X
δ,0
t ∈ dx, τψ > t) has the form

ua,δ(t, x) =
(

1

2
δ
2 −1�( δ

2 )t
δ
2

exp

(
−x2

2t

)
− 1

a

)
xδ−1. (4.6)

Proof of Proposition 4.1. The proof was already presented in [9] for integer dimensions δ ∈N∗.
Using completely different arguments based on stochastic tools (which are inspired by arguments
developed for the Brownian motion by Lerche [27]), we extend the statement to any dimension
δ > 0.

We define first the squared Bessel process Yt = (X
δ,x0
t )2 by (2.2). Let us denote the transition

probabilities by py0(t,dx) := P((X
δ,x0
t )2 ∈ dx) = Py0(Yt ∈ dx) with y0 = x2

0 . The density is
given (see, for instance, Corollary 1.4, page 441 in [31]) by:

py(t, x) = 1

2t

(
x

y

)ν/2

exp

(
−x + y

2t

)
Iν

(√
xy

t

)
, for t > 0, y > 0, x ≥ 0, (4.7)

where ν = δ/2 − 1 and Iν(z) is the Bessel function:

Iν(z) =
∞∑

n=0

(
z

2

)ν+2n 1

n!�(ν + n + 1)
.

Moreover, for y = 0, we get

p0(t, x) = x
δ
2 −1

(2t)δ/2�(δ/2)
e− x

2t , x ≥ 0.

Step 1. Let us denote by P
t,y
x the distribution of the squared Bessel bridge starting at x and

hitting y at time t . Denote also by Px the distribution of the squared Bessel process starting from
x and by (Ft )t≥0 the filtration associated to the Bessel process.

Let t0 > 0. Simple computations (using the transition probabilities and the Markov property
of the Bessel process) allow to obtain the following Radon–Nikodym derivative for t < t0 (see,
for instance, Exercice 3.11 from [31], page 468):

dPt0,y
x

dPx

∣∣∣∣
Ft

= pYt (t0 − t, y)

px(t0, y)
, y > 0, x ≥ 0. (4.8)

Observe that this formula cannot be extended to t = t0 since P
t0,y
x is not absolutely continuous

with respect to Px on Ft0 . For y = 0, the result can be obtained by continuity:

dPt0,0
x

dPx

∣∣∣∣
Ft

= lim
y→0

pYt (t0 − t, y)

px(t0, y)
, x ≥ 0. (4.9)
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Let us compute explicitly the r.h.s. of (4.9). By (4.7) and for x > 0, we get

dPt0,0
x

dPx

∣∣∣∣
Ft

= lim
y→0

1
2(t0−t)

(
y
Yt

)ν/2 exp(− Yt+y
2(t0−t)

)Iν(
√

Yt y
t0−t

)

1
2t0

(
y
x
)ν/2 exp(− x+y

2t0
)Iν(

√
xy

t0
)

=
(

t0

t0 − t

)ν+1

exp

(
− Yt

2(t0 − t)
+ x

2t0

)
.

This result can be expressed both with respect to the transition probability and to the invariant
measure μ satisfying μ(x)px(t, y) = μ(y)py(t, x) that is μ(x) = xν . Defining

ξ(t, x) = p0(t, x)

μ(x)
= 1

(2t)δ/2�(δ/2)
e− x

2t , for x > 0, t > 0, (4.10)

we obtain finally for any t < t0:

Dt := dPt0,0
x

dPx

∣∣∣∣
Ft

= ξ(t0 − t, Yt )

ξ(t0, x)
. (4.11)

Moreover, this result can be extended continuously to the case x = 0 by defining ξ(t,0) =
limx→0 ξ(t, x) = (2t)−δ/2�(δ/2)−1. We can also notice that (Ds)s≤t is a martingale with respect
to Px for t < t0.

Step 2. We prove now that U(t0, x) defined by

U(t0, x)dx := P0
(
Yt0 ∈ dx, τψ2(Y ) > t0

)
satisfies

U(t0, x) =
(

1

(2t0)δ/2�(δ/2)
e
− x

2t0 − 1

2a

)
xν,

which directly implies (4.6).
By conditioning with respect to Yt0 , we obtain

U(t0, x) = P0
(
τψ2(Y ) > t0|Yt0 = x

)
p0(t0, x).

We employ now a time inversion transformation by using the Radon–Nikodym derivative given
in Step 1 in order to express the following equation, for x < ψ2(t0):

U(t0, x) = lim
t→t0,t<t0

Pt0,0
x

(
τ̂ (Y ) > t

)
p0(t0, x)

= lim
t→t0,t<t0

Ex[1{τ̂>t}Dt ]p0(t0, x)

= lim
t→t0,t<t0

Ex[Dt∧τ̂ ]p0(t0, x) − lim
t→t0,t<t0

Ex[1{τ̂≤t}Dτ̂ ]p0(t0, x),
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where

τ̂ = τψ2(t0−·). (4.12)

Since Dt is a continuous martingale, the optimal stopping theorem (in the time inverse filtration)
leads to Ex[Dt∧τ̂ ] = D0 = 1.

Moreover the function ψ2(t) has the following property:

• if 0 ≤ x < ψ2(t), then ξ(t, x) < 1
2a

,
• if x > ψ2(t), then ξ(t, x) > 1

2a
and ξ(t,ψ2(t)) = 1

2a
.

In other words, the stopping time τ̂ can be defined as follows:

τ̂ = inf

{
t > 0 : ξ(t0 − t, Yt ) ≥ 1

2a

}
= inf

{
t > 0 : Dt ≥ 1

2aξ(t0, x)

}
.

We deduce that

Ex[1{τ̂≤t}Dτ̂ ] = 1

2aξ(t0, x)
Px(τ̂ ≤ t).

Therefore,

U(t0, x) = p0(t0, x)

(
1 − 1

2aξ(t0, x)
lim
t→t0

Px(τ̂ ≤ t)

)
= p0(t0, x)

(
1 − Px(τ̂ ≤ t0)

2aξ(t0, x)

)
.

Since ψ is a continuous function and ψ(0) = 0, we deduce that Px(τ̂ ≤ t0) = 1. Thus, we obtain
the result

U(t0, x) = p0(t0, x)

(
1 − 1

2aξ(t0, x)

)
.

Step 3. As an immediate consequence, the expression of ua,δ(t, x) defined by (4.6) leads to

P0
(
τψ2(Y ) > t

) = P0
(
τψ(X) > t

)
=

∫ ψ2
a,δ(t)

0
U(t, x)dx

=
∫ ψa,δ(t)

0
2wU

(
t,w2)dw

=
∫ ψa,δ(t)

0
ua,δ(t,w)dw.

The density of the hitting time can be easily obtained by derivation, see Proposition 2.2 in [9]. �

5. Convergence of Algorithm (NI)

Let us now describe the realization and the proof of the convergence of the Algorithm (NI)
presented in Section 3.
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Realization of the algorithm

One particular important task in this procedure is the simulation of Z
δ,M(n−1)
θn

in the nth step.
The method we use is the following:

• If θn = θ
(1)
n , then∥∥M(n − 1) + Bθn

∥∥2 = M2(n − 1) + 2M(n − 1)π1(U)ψαn,�δ�(θn) + ψ2
αn,�δ�(θn)

(5.1)
= (

M(n − 1) + π1(U)ψαn,�δ�(θn)
)2 + (

1 − π2
1 (U)

)
ψ2

αn,�δ�(θn),

where π1 is the projection on the first coordinate and U is a random variable in R�δ� uni-
formly distributed on the sphere of radius 1. It suffices now to simulate X

δ′,0
θn

. Since θ
(1)
n and

θ
(2)
n are independent, we get

E
[
f

(
X

δ′,0
θn

)|θ(2)
n > θ(1)

n

] =
∫
R+

f (x)w(θn, x)dx,

where

w(t, x)dx = P
(
X

δ′,0
t ∈ dx|τψ > t

) = P(X
δ′,0
t ∈ dx, τψ > t)

P(τψ > t)
= u(t, x)∫ ψ(t)

0 u(t, x)dx

and u(t, x) stands here for uβn,δ′(t, x) which was already defined in the previous paper [9]
and was restated in (4.6). More precisely,

u(t, x) =
(

1

2δ′/2−1

1

tδ
′/2

1

�(δ′/2)
exp

(
−x2

2t

)
− 1

βn

)
xδ′−1.

Here for notational simplicity the index ψ of τψ stands for ψβn,δ′ . Let us just notice that the

support of w(θn, ·) is [0,ψβn,δ′(θn)]. In order to simulate X
δ′,0
θn

, given τψ > θn, we employ a
rejection sampling method. Let S be a random variable defined on the interval [0,ψβn,δ′(θn)]
with probability density function:

r(x) = δ′xδ′−1

(ψβn,δ′(θn))δ
′ , for 0 ≤ x ≤ ψβn,δ′(θn).

This variable can be easily sampled by using a standard uniform random variable V : S has
the same distribution as

ψβn,δ′(θn)V
1/δ′

.

Considering the following constant:

C = (ψβn,δ′(θn))
δ′

δ′

(
1

2δ′/2−1θ
δ′/2
n �(δ′/2)

− 1

βn

)
,
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Figure 1. A sample of 4 paths of the random walk (M(n),n ≥ 0) for δ = 2.6, γ = 0.9 and L = 5.

we observe that u(θn, x) ≤ Cr(x) for all x. Then the procedure is the following

1. Sample two independent r.v. U∗ and S on respectively, [0,1] and [0,ψβn,δ′(θn)]. The
first one is uniformly distributed and the p.d.f. of the second one is given by r(x).

2. If U∗ ≤ u(θn,S)
Cr(S)

define ξ ′ = S otherwise return to the first step.

With this algorithm, the p.d.f. of ξ ′ is equal to w(θn, x), it has the same distribution as X
δ′,0
θn

given θn = θ
(1)
n .

Finally, we obtain

Z
δ,M(n−1)
θn

=
√(

ξ ′)2 + M2(n − 1) + 2M(n − 1)π1(U)ψαn,�δ�(θn) + ψ2
αn,�δ�(θn).

• If θn = θ
(2)
n the result is quite similar. We obtain

Z
δ,M(n−1)
θn

=
√

ψ2
βn,δ′(θn) + M2(n − 1) + 2M(n − 1)π1(U)ξ + ξ2,

where ξ is obtained in a similar way as ξ ′. We just have to replace δ′ by �δ� and βn by αn.

Figure 1 presents several paths of the random walk (M(n),n ≥ 0) defined by the Algorithm
(NI) for δ = 2.7, γ = 0.9 and for the level L = 5.

Theorem 5.1. Set δ ≥ 1. Let us assume that the starting point of the Bessel process is such that
x0 < L. The number of steps Nε of the Algorithm (NI) is almost surely finite. Moreover, there
exist constants Cδ > 0 and ε0(δ) > 0, such that

E
[
Nε

] ≤ Cδ| log ε|, for all ε ≤ ε0(δ).

Furthermore �Nε converges in distribution towards τL, the hitting time of the threshold L for
the δ dimensional Bessel process, as ε → 0.
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Figure 2. Distribution of the hitting time �Nε . Histograms based on 1000 simulations and performed with
the following choice of parameters: γ = 0.9, L = 5 and ε = 0.001, δ = 1.5 on the left and δ = 7.5 on the
right.

The following histograms (Figure 2) give the distribution of the hitting times �Nε for δ = 1.5
and δ = 7.5. Higher is the dimension of the Bessel process, smaller is the hitting time.

Proof of Theorem 5.1. Instead of considering the Markov chain (M(n),n ≥ 0), we focus our
attention on the squared process R(n) = (M(n))2 and we stop the algorithm as soon as R(n)

becomes larger than L2 − ε.

Step 1. Definition and decomposition of the operator P . We estimate first the number of
steps. Let us remark that by definition (R(n),n ≥ 0) is an homogeneous Markov chain, as at
each step n we use the same construction which depends only on M(n − 1).

Let us start by computing the transition probabilities associated to R(n). We introduce the
operator Pf defined, for any non-negative measurable function f :R+ → R+:

Pf (x) := E
[
f

(
R(n)

)|R(n − 1) = x
] = E

[
f

(‖√x + Bθn‖2 + (
X

δ′,0
θn

)2)]
, (5.2)

where θn is defined in (3.5). Since R(n) is an homogeneous Markov chain, the transition Pf

does not depend on the time n. For notational simplicity, we neglect some indexes: the step n;
Xδ′,0 is replaced by X; θ

(i)
n by θ(i), for i = 1,2; αn is replaced by α and βn is replaced by β . We

will express (5.2) by splitting it into two parts Pif (x), i = 1,2 with

Pif (x) = E
[
f

(‖√x + Bθ(i)‖2 + (Xθ(i) )
2)1{θ=θ(i)}

]
.

Thus

Pf (x) = P1f (x) + P2f (x). (5.3)

The class of functions that will be considered in the following satisfies the hypothesis:

(H) The function f is such that

f (p) ≤ 0, ∀p ∈ {1,2,3,4},
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this means that the first four derivatives of f are negative. An example of such a function will be
used later on.

Step 2. Distributions associated with θ(i). Let us denote by Ui(t)dt the distribution of θ(i)

and its support [0, si]. With the notation in (3.2) we have

s1 = Tα,�δ� and s2 = Tβ,δ′ . (5.4)

These distributions are those of stopping times corresponding to the function ψa,δ(t), see (3.1),
with a suitable parameter a and a suitable dimension δ. By applying the scaling property (4.3)
we get

ψα,�δ�(t) = √�δ�s1�

(
t

s1

)
. (5.5)

By using the same arguments, the scaling property associated to θ(2) is

ψβ,δ′(t) =
√

δ′s2�

(
t

s2

)
, with δ′ = δ − �δ�.

Since

U1(t)dt = P0
(
θ(1) ∈ dt

)
= 1

2�(�δ�/2)2�δ�/2−1s
�δ�/2
1 t

(
2t log

(
s1

t

)�δ�/2)�δ�/2

1[0,s1](t)dt

= c�δ�
t

��δ�
(

t

s1

)
dt,

with cd = 1
�(d/2)

( d
2 )d/2, we obtain the scaling property:

U1(s1t) = c�δ�
s1t

��δ�(t) and U2(s2t) = cδ′

s2t
�δ′

(t). (5.6)

With our choice of α and β , we have

s1 = Tα,�δ� =
[

α

�(
�δ�
2 )2

�δ�
2 −1

] 2
�δ�

= eγ 2(L2 − x)2

(
√

(�δ� − δγ )x + δγL2 + √�δ�x)2
(5.7)

= s2.

By using (4.5), we get

Wα,�δ� = sup
t∈[0,s1]

ψα,�δ�(t) =
√�δ�

e
s1 (5.8)
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and the same property holds for s2

Wβ,δ′ = sup
t∈[0,s2]

ψβ,δ′(t) =
√

δ′
e

s2. (5.9)

Since we stop the Markov chain R(n) in order not to hit L2, we have

(
√

x + Wα,�δ�)2 + W 2
β,δ′ = x + �δ�

e
s1 + 2

√
x

√�δ�
e

s1 + δ′

e
s2

= x + δ

e
s1 + 2

√
x

√�δ�
e

s1 (5.10)

= x + γ
(
L2 − x

)
,

by using the choice of s1 = s2 and the value of s1 given in (5.7). We deduce that for x close to 0,
s1 is close to γ eL2/δ and for x close to L2, s1 is of the same order as eγ 2(L2 − x)2/(4�δ�L2).

Step 3. Computation of P1f (x). Using the definition of P1f , the identity (5.1) and the distri-
bution of θ(1) denoted by U1(t)dt we get

P1f (x) = E
[
f

(‖√x + Bθ‖2 + (Xθ )
2)1{θ=θ(1)}

]
=

∫
S1

∫ s1

0
E

[
f

((√
x + π1(z)ψα,�δ�(t)

)2 + ψ2
α,�δ�(t)

(
1 − π2

1 (z)
) + X2

t

)
1{θ(2)>t}

]
(5.11)

× U1(t)dtσ (dz)

=
∫
S1

∫ s1

0
E

[
f

(
x + 2

√
xπ1(z)ψα,�δ�(t) + ψ2

α,�δ�(t) + X2
t

)
1{θ(2)>t}

]
U1(t)dtσ (dz).

We denote here by S1 the unit sphere in R�δ�, σ(dz) the uniform surface measure on this sphere
and π1(z) the projection on the first coordinate and α is chosen so that (5.7) is satisfied. Let
us notice that the variable x + 2

√
xπ1(z)ψα,�δ�(t) + ψ2

α,�δ�(t) + X2
t always stays in the interval

[0,L2] on the event θ(2) > t . Consider the Taylor expansion of f in a neighborhood of x. By
using (H) we have that f (4)(t) ≤ 0 on the whole interval [0,L2]. Hence,

P1f (x) ≤ f (x)G1 + f ′(x)G2 + 1

2
f ′′(x)G3 + 1

6
f (3)(x)G4. (5.12)

It suffices now to compute Gk for k = 1,2,3,4 where Gk is defined by

Gk :=
∫
S1

∫ s1

0
E

[(
ψ2

α,�δ�(t) + 2
√

xπ1(z)ψα,�δ�(t) + X2
t

)k−11{θ(2)>t}
]
U1(t)dtσ (dz). (5.13)

In particular G1 = P[θ(2) > θ(1)]. Using symmetry arguments, the term associated to the projec-
tion vanishes, and we can split G2 into two parts, G2 = G2,1 + G2,2:

G2,1 :=
∫ s1

0
ψ2

α,�δ�(t)P
(
θ(2) > t

)
U1(t)dt and G2,2 :=

∫ s1

0
E

[
X2

t 1{θ(2)>t}
]
U1(t)dt.
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By changing the variable s1u = t and the scaling properties developed in Step 2, we obtain:

G2,1 =
∫ 1

0
ψ2

α,�δ�(s1u)P
(
θ(2) > s1u

)
U1(s1u)s1 du

=
∫ 1

0
s1�δ��2(u)

(∫ 1

u

U2(s1w)dw

)
c�δ�
s1u

��δ�(u)s1 du.

Using now the equality s1 = s2 and a suitable change of variable, we get

G2,1 = s1�δ�c�δ�
∫ 1

0

∫ 1

u

1

u
��δ�+2(u)s1U2(s1v)dv du = s1κ2,1, (5.14)

where

κ2,1 := �δ�c�δ�cδ′
∫ 1

0

∫ 1

u

1

uv
��δ�+2(u)�δ′

(v)dv du > 0. (5.15)

Notice that κ2,1 is a constant which depends only on the dimension δ. We can also prove that
there exists a constant κ2,2 independent of x such that G2,2 = s1κ2,2. Indeed, we have

G2,2 =
∫ s1

0
E

[
X2

t 1{θ(2)>t}
]
U1(t)dt = s1

∫ 1

0
E

[
X2

s1u
1{θ(2)>s1u}

]
U1(s1u)du

=
∫ 1

0
E

[
X2

s1u
1{∀r≤s1u:Xr≤ψβ,δ′ (r)}

]c�δ�
u

��δ�(u)du.

Using the scaling property of the Bessel process, we get

G2,2 =
∫ 1

0
E

[
s1X

2
u1{∀r≤u:Xr≤ψβ,δ′ (s1r)/

√
s1}

]c�δ�
u

��δ�(u)du = s1κ2,2

since s1 = s2 and thus ψβ,δ′(s1r)/
√

s1 = √
δ′�(r) does not depend on x but only on δ. To sum

up, we have proved the existence of two constants κ2,i , i = 1,2, independent of x satisfying

G2 = κ2s1, where κ2 = κ2,1 + κ2,2. (5.16)

Let us now focus our attention on G3 defined in (5.13).
While developing the square of ψ2

α,�δ�(t) + 2
√

xπ1(z)ψα,�δ�(t) + X2
t , we obtain 6 terms:

H1 = ψ4
α,�δ�(t), H2 = 4xπ2

1 (z)ψ2
α,�δ�(t), H3 = X4

t ,

H4 = 4ψ3
α,�δ�(t)

√
xπ1(z), H5 = 4

√
xπ1(z)ψα,�δ�(t)X2

t , H6 = 2ψ2
α,�δ�(t)X2

t .

Therefore G3 can be split into 6 terms: G3 = ∑6
j=1 G3,j with

G3,j :=
∫
S1

∫ s1

0
E[Hj1{θ(2)>t}]U1(t)dtσ (dz).
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Now, let us compute G3,j for j = 1, . . . ,6. First, we note that, due to symmetry properties of the
variable z, G3,4 = G3,5 = 0. By similar arguments as those included in the computation of G2,
we get:

G3,1 = s2
1κ3,1 with κ3,1 := �δ�2c�δ�cδ′

∫ 1

0

∫ 1

u

1

uv
��δ�+4(u)�δ′

(v)dv du > 0, (5.17)

G3,2 = xs1κ3,2 with κ3,2 := 4κ2,1

∫
S1

π2
1 (z)σ (dz) > 0, (5.18)

G3,3 = s2
1κ3,3 with κ3,3 :=

∫ 1

0
E

[
X4

u1{∀r≤u:Xr≤
√

δ′�(r)}
]c�δ�

u
��δ�(u)du > 0, (5.19)

G3,6 = s2
1κ3,6

(5.20)

with κ3,6 := 2
∫ 1

0
E

[
X2

u1{∀r≤u:Xr≤
√

δ′�(r)}
]c�δ�

u
�δ���δ�+2(u)du > 0.

To sum up, there exist two positive constants κ3 and κ̃3 independent of x such that

G3 = κ3xs1 + κ̃3s
2
1 . (5.21)

Finally, we consider the expression G4 defined by (5.13). We are not going to compute it explic-
itly as we have just performed it already for the first terms. Due to the symmetry property of the
variable z, the expansion of G4 coupled to the computation of (ψ2

α,�δ�(t)+2
√

xπ1(z)ψα,�δ�(t)+
X2

t )
3 leads to terms which are either positive or equal to 0. Hence, we can conclude that

G4 ≥ 0. (5.22)

Step 4. Computation of P2f (x). Using the definition of P2f , we obtain:

P2f (x) = E
[
f

(‖√x + Bθ‖2 + (Xθ )
2)1{θ=θ(2)}

]
=

∫ s2

0
E

[
f

(‖√x + Bt‖2 + ψ2
β,δ′(t)

)
1{θ(1)>t}

]
U2(t)dt

=
∫ s2

0
E

[
f

(
x + 2〈√x,Bt 〉 + ‖Bt‖2 + ψ2

β,δ′(t)
)
1{θ(1)>t}

]
U2(t)dt.

By hypothesis (H), f ′′ is non positive on the support of the Markov chain. Then, by using a
Taylor expansion, the following bound holds: for any x ∈ [0,L2 − ε]

P2f (x) ≤ f (x)P
(
θ(1) > θ(2)

)
+ f ′(x)

∫ s2

0
E

[(
2〈√x,Bt 〉 + ‖Bt‖2 + ψ2

β,δ′(t)
)
1{θ(1)>t}

]
U2(t)dt.

The integral expression contains three distinct terms. The first one associated to the scalar product
is equal to zero since the distribution of Bt given {θ(1) > t} is rotationally invariant. The second
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and third terms are positive. We therefore deduce that for any function f satisfying (H), the
following bound holds:

P2f (x) ≤ f (x)P
(
θ(1) > θ(2)

)
. (5.23)

Step 5. Application to a particular function f . Let us introduce the function fε : [0,L2) �→R

defined by

fε(x) = log

(
L2 − x

(1 − γ )ε

)
, (5.24)

where γ < 1 is the constant close to 1 already introduced in (5.10). Let us assume that the Markov
chain M starts with the initial value x ∈ [0,L2 −ε] that is R(0) = x. We will prove that fε(R(1))

is a non-negative random variable. Indeed for any y in the support of R(1) we have:

0 ≤ y ≤ (
√

x + Wα,�δ�)2 + W 2
β,δ′ ,

where Wα,�δ� is defined by (5.8) and Wβ,δ′ by (5.9). Using the identity (5.10), we obtain

fε(y) ≥ log

(
(L2 − x)

ε

)
≥ 0

since L2 − x ≥ ε. We deduce that fε is a non-negative function on the support of the Markov
chain stopped at the first exit time of the interval [0,L2 − ε].

Let us now apply the operator P defined by (5.2) to the function fε . Since

f ′
ε(x) = − 1

L2 − x
< 0, f (k)

ε (x) = − (k − 1)!
(L2 − x)k

< 0, for k = 2,3,4

the condition (H) is satisfied and we obtain by (5.12) and the computation of G1, . . . ,G4:

P1fε(x) ≤ fε(x)P
(
θ(2) > θ(1)

) − s1

(L2 − x)2

(
κ2

(
L2 − x

) + κ3x
)
, (5.25)

by using (5.16) and (5.21).
Due to the explicit expression of s1 in (5.4), there exists a constant κ > 0 independent of x and

ε such that

P1fε(x) ≤ fε(x)P
(
θ(2) > θ(1)

) − κ, ∀x ∈ [
0,L2 − ε

)
. (5.26)

Combining this with (5.23), we get

Pfε(x) − fε(x) ≤ −κ, ∀x ∈ [
0,L2 − ε

]
.

By using a comparison theorem of the classical potential theory, see Norris [28] (Theorem 4.2.3,
page 139), we deduce that

Ex

[
Nε

] ≤ fε(x)

κ
. (5.27)

In particular, for x = 0, the desired result in the statement of the theorem is proved.
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Step 6. The time �Nε given by the algorithm is close to the first hitting time τL.
Let us denote by F (resp. Fε) the cumulative distribution function of the random variable τL

(resp. �Nε ). We construct these two random variables on the same paths; the law of the squared
Bessel process of dimension δ is obtained as a succession of sums of two independent squared
Bessel processes of dimension �δ� denoted by Y �δ�,k and δ′ denoted by Ŷ δ′,k on random time
intervals [�k−1,�k) until the hitting time �Nε and afterwards, the paths are generated just by a
squared Bessel process of dimension δ starting in M(Nε) and independent from the past. Since
τL ≥ �Nε a.s. we immediately obtain the first bound

F(t) ≤ Fε(t), t ≥ 0.

Furthermore, for any small α > 0,

1 − F(t) = P(τL > t) = P(τL > t,�Nε ≤ t − α) + P(τL > t,�Nε > t − α)

≤ P(τL > t,�Nε ≤ t − α) + P(�Nε > t − α) (5.28)

≤ P(τL > t,�Nε ≤ t − α) + 1 − Fε(t − α).

At time �Nε the sum of the two squared Bessel processes is in the small neighborhood of the
threshold L2, namely L2 − ‖Y �δ�,Nε

�Nε
‖2 − ‖Ŷ δ′,Nε

�Nε
‖2 ≤ ε. Using the strong Markov property, we

obtain

P(τL > t,�Nε ≤ t − α) ≤ Fε(t − α) sup
y∈[

√
L2−ε,L]

Py(τL > α). (5.29)

Applying Shiga and Watanabe’s result (2.5), the Bessel process of dimension δ > 1 is stochas-
tically larger than the Bessel process of dimension 1 which has the same law as |Bt |. Here B

stands for a 1-dimensional Brownian motion. By these observations, the following upper bound
holds, for any y ∈ [√L2 − ε,L]:

Py(τL > α) ≤ PLε (τL > α) ≤ PLε

(
sup

0≤t≤α

|Bt | < L
)
, with Lε =

√
L2 − ε

≤ PLε

(
sup

0≤t≤α

Bt < L
)

≤ P0

(
sup

0≤t≤α

Bt < L − Lε
)

(5.30)

≤ P0

(
sup

0≤t≤α

Bt <
ε

L

)
≤ ε

L
√

2απ
.

By combining (5.28), (5.29) and (5.30), we have

Fε(t − α)

(
1 − ε

L
√

2απ

)
≤ F(t) ≤ Fε(t), t ≥ 0. (5.31)

Furthermore, by construction, �Nε is an increasing sequence of positive random variables as ε

goes to 0. We deduce that, for any fixed t ≥ 0, Fε(t) decreases as ε goes to 0. Moreover, the
right-hand side of (5.30) ensures a lower bound for the sequence which leads to the convergence
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of Fε(t). The limit is denoted by F 0(t) and (5.30) implies that F 0(t) = F(t) for any t ≥ 0.
Consequently, �Nε converges to τL in distribution as ε goes to 0. This ends the proof. �

Remark 5.2. The first step of the algorithm could be simplified when the starting position x0

is equal to 0. The procedure then consists in first choosing α1 such that ψα1,δ(t) < L for all
t ≥ 0. Then we simulate the first hitting time of this moving boundary which is given by a
transformation of the Gamma distribution. We denote this random variable by θ1 and we compute
the value of the process at this time:

M(1) = ψα1,δ(θ1).

Finally, we set �1 = �0 + θ1. Even if this modified version of the Algorithm (NI) seems simpler
(just the first step is different), in the following we prefer to illustrate the convergence results
associated to the Algorithm (NI).

6. Numerical results

In this section, we will discuss some numerical results based on the algorithm for approaching the
hitting time (developed in Section 5). A particularly important task in such an iterative method
is to estimate the number of steps or even the number of times the uniform random generator
is used. The Algorithm (NI) presented in Section 5 allows to simulate hitting times for Bessel
processes of non-integer dimensions δ > 1. We will therefore only present results in that context
and refer to the previous work [9] for Bessel processes of integer dimensions.

6.1. Number of steps versus ε

The number of steps of the algorithm is of prime interest. Classical time splitting method, in
order to simulate particular paths of stochastic processes, can be used for classical diffusion
processes with regular diffusion and drift coefficients if the study is restricted to some fixed time
intervals. Here the diffusion is singular, the classical methods could not be applied, nevertheless
the approximation procedure (NI) developed in Section 5 is different from classical splitting
methods and holds for any given time. In particular, we are not able to compare our algorithm
with other methods and we will just describe the relevance of (NI) by the estimation of the
average number of steps. The algorithm used in order to simulate the hitting time of the level L

by the Bessel process, gives an approximated hitting time �Nε and the corresponding position
M(Nε) which satisfies:

L2 − (
M

(
Nε

))2 ≤ ε.

The number of iterations will decrease with respect to the parameter ε. The average number
of steps E[Nε] is bounded from above by the logarithm of ε up to a multiplicative constant
(Theorem 5.1). Let us therefore choose different values of ε and approximate through a law
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Figure 3. The average number of steps Nε for different precisions εk = 0.5k together with its
95%-confidence interval (dashed lines) based on ℵ = 1000 simulations of the hitting time, for dimension
δ = 2.2 (left) and δ = 4.7 (right).

of large number this average (we denote by ℵ the number of independent simulations; here
ℵ = 1000).

εk = 0.5k, k = 1, . . . ,15.

The results concern two different dimensions of the Bessel process δ = 2.2 and δ = 4.7 and we
fix the parameter γ = 0.95 in the Algorithm (NI) (this parameter is fixed for the whole numerical
section). Note that each step of the (NI) algorithm is associated to a comparison between partic-
ular hitting times θ

(1)
n and θ

(2)
n , the first one is associated with a Bessel process of dimension �δ�

and the second one is associated with a Bessel process of dimension δ −�δ�. In the following we
are also interested in the average number of steps Nε

integer satisfying

Nε
integer := #

{
1 ≤ n ≤ Nε : θ(1)

n < θ(2)
n

}
.

The Figures 3 represent both the estimated average number of steps E[Nε] and its confidence in-
terval (three upper curves) and the estimated average number E[Nε

integer] and its 95%-confidence
interval (three lower curves).

6.2. Number of steps versus the dimension of the Bessel process

In [9], the authors pointed out that the number of steps of the WoMS algorithm increases as the
dimension of the integer Bessel process becomes larger. This means in particular that each step
of the Algorithm (NI) will take more time as the dimension of the Bessel process becomes large.
This feature can be illustrated by a simple experiment: let us sample a sequence of independent
random variables (Un)n≥1 uniformly distributed on the sphere in Rδ , with δ ∈ N, centered in
(0.5,0,0, . . . ,0) and with radius 0.5. We stop the trials as soon as one random variable Un

belongs to the ε-neighborhood of the unit sphere. We observe that the averaged number of trials
increases with the dimension since the proportion of the small sphere surface which is close to
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Figure 4. Logarithm of the average number of trials before hitting a ε-neighborhood (ε = 0.1) of the unit
sphere in dimension δ (δ = 1, . . . ,20) based on 10 000 simulations.

the unit sphere decreases with the dimension. Figure 4 represents the logarithm of the average
number of trials when the dimension increases.

This simple experiment heuristically explains why in the integer dimension case, the walk
on moving spheres needs more steps as soon as the dimension increases. We can illustrate this
feature by the cpu time needed by the Algorithm (NI).

Let us focus our attention on the non-integer case. We observe unexpected effects with respect
to the dimension: on one hand if �δ� is fixed and the dimension increases then the average number
of steps decreases, on the other hand if δ − �δ� is fixed and the dimension increases, so does the
number of steps. For the simulation, we set ℵ = 1000, ε = 0.01 and the level height L = 5
(Figure 5).

Let us explain what happens in a simplified way. Each step of the Algorithm (NI) is based on
the simulation of two independent random variables: A the value of the squared Bessel process of
integer dimension �δ�, B the value of the squared Bessel process of dimension δ′, both stopped

Figure 5. The average number of steps Nε for varying δ. We set ℵ = 1000, ε = 0.01 and the level height
L = 5. On the right �δ� is fixed and on the left δ − �δ� is fixed.
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Figure 6. Averaged proportion E[Nε
integer/N

ε] versus δ with ℵ = 1000 (left) and average cpu time (sec-
onds) for Algorithm (NI) on a 2.3 GHz Intel Core i5 processor with the Scilab software versus δ with
ℵ = 100 on a (right). For both figures, we set ε = 0.01 and the level height L = 5.

as soon as one of them is sufficiently large (let us say: larger than λA and λB ). Then the algorithm
stops if the sum A + B is sufficiently large, say larger than λA + λB . What should be observed
in such a context?

• If B/λB is stochastically much larger than A/λA, then it is particularly difficult for the
sum A + B to reach the level λA + λB . Therefore, the algorithm needs a lot of steps for
the condition to be satisfied. This situation appears in fact when δ′ is small: the proportion
Nε

integer/N
ε is much smaller than 50% (see Figure 6).

• If B/λB is stochastically of the same order as A/λA, then the sum A + B is more likely
to overcome the threshold λA + λB ; therefore the algorithm needs less steps. This situation
appears when δ′ is close to 1: the proportion Nε

integer/N
ε is close to 50% (see Figure 6).

We observe the averaged proportion E[Nε
integer/N

ε] as the dimension of the Bessel process in-
creases, see Figure 6. This proportion seems to depend mainly on the fractional part of the di-
mension. One way to increase the efficiency of Algorithm (NI) would be to choose other values
for λA and λB in such a way that the proportion always stays close to 50%. The thresholds λA

and λB in this informal discussion corresponds in fact in the Algorithm (NI) to the coefficients
I (δ, x) and N(δ, x) defined by (3.3) and (3.4). The only condition required for the convergence
of the Algorithm is:

γ
(
L2 − x

) = 2
√

x

√�δ�√
e

(
I (δ, x)

�(
�δ�
2 )2�δ�/2−1

)1/�δ�
+ �δ�

e

(
I (δ, x)

�(
�δ�
2 )2�δ�/2−1

)2/�δ�

+ δ′

e

(
N(δ, x)

�( δ′
2 )2δ′/2−1

)2/δ′

,

where δ′ = δ − �δ�. We observe that there is one degree of freedom in the choice of the couple
(I (δ, x),N(δ, x)).
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Figure 7. Averaged number of step versus the level L. Numerical results obtained for ℵ = 1000, ε = 0.01
with dimension δ = 3.8 (on the left) and δ = 5.2 (on the right).

Let us finally note that, for small δ′, several steps concern extremely small stopping times.
We recommend in this situation to remove these small stopping times (for instance smaller than
10−30), it is just a slight modification of the algorithm.

6.3. Number of steps versus the level height

In the previous simulations, the threshold to reach was fixed at 5. Let us now study the depen-
dence of the number of steps with respect to the threshold. The numerical results are obtained for
ℵ = 1000, ε = 0.01 and two different Bessel processes (of dimension δ = 3.8 and 5.2). Let us
note that this dependence is sublinear and rather weak, the dimension of the Bessel process seems
to play a more important role as illustrated in Figure 7. Observe also that ε is an upper-bound of
L2 − (M(Nε))2. We deduce that

L − M
(
Nε

) ≤ ε

2L
,

and therefore the error of the approximation diminishes as L increases. This particular remark is
also emphasized by the dependence of L in the bounds (5.31). We present an illustration of this
phenomenon in Figure 8 for which ε/L is fixed and equal to 0.01.

6.4. Number of generated random variables

Finally, let us study the number of random variables used in the simulation of the Bessel hitting
times. Each step of the Algorithm (NI) requires many calls of the uniform random generator in
order to simulate the first coordinate of the uniform variable on the sphere of dimension �δ�,
the Gamma distributed variable which appears in the simulation of the hitting times of curved
boundaries (here we use Johnk’s algorithm, see, for instance, [10], page 418), and finally the
rejection method for the conditional law described in the Realization of the algorithm. The Fig-
ures 9 represent simulations for the parameters L = 5 and ε = 0.01.
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Figure 8. Averaged number of steps versus L for ℵ = 1000, ε/L = 0.01 and δ = 3.8.

We observe also that the Algorithm (NI) is rather difficult to use when the fractional part of
the dimension δ i.e. δ −�δ� is small, the number of steps becomes huge. Furthermore, intuitively
the parameter γ should be equal to 1. However, for technical reasons in the proof of the main
result we have to consider γ < 1. Thus, for numerical purposes we suggest to take the parameter
γ as close as possible to 1 as it has a weak impact on the convergence rate of the algorithm.
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