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ABSTRACT 

By oscillation of an array of turbulence-generating grids in still water, 

the turbulent fluid velocity field m shoaling waves near the bottom is simu- 

lated in a laboratory channel.  Solid particles with fall velocities varying 

between 1 and 40 mm/sec are introduced into the test volume from above. Mul- 

tiple-image photography using ultraviolet lighting techniques and a suitably 

placed mirror allow recording of the gram trajectories as functions of time 

and three space dimensions simultaneously.  The Lagrangian intensities of 

turbulence and diffusion coefficients are then directly measured from the 

photographic data.  The scale times, scale lengths, and the frequencies of 

the power spectra modes can then be calculated.  Properties of the fluid tur- 

bulence are inferred from the quasi-neutral particles. The analysis, which 

is restricted to the component of diffusion in the hori2ontal direction normal 

to the grid motion, shows that the turbulent velocity distributions of both 

fluid and heavy particles are Gaussian, and that their standard deviations 

(intensities of turbulence) increase regularly with increasing grid Reynolds 

numbers (grid speeds).  Diffusion coefficients likewise generally increase 

with increasing grid Reynolds numbers.  Diffusivities of the heavy particles 

relative to the fluid are a function of both particle fall velocity and the 

structure of the fluid turbulence itself. 

I. INTRODUCTION 

With the advent of fluorescent sand tracers in the marine environment, 

much attention has recently been focused on the dispersion of solid particles 

by waves.  In this regard, studies by Bowen and Inman (1966) and Murray (1967) 

suggest that the role of turbulent diffusion must be investigated. The basic 

aims of this study, therefore, are (1) to determine the effect of increasing 

terminal fall velocity on the turbulent diffusion of solid particles inside 

shallow-water waves, (2) to investigate the applicability of the statistical 

theory of turbulence to heavy particles, and (3) to compare the internal 

properties of the fluid and particle turbulence. 

In unidirectional flow the mean velocity m any direction k is generally 

defined by 

t +1/2 T 
o. 

"k-f f\
dt
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o 
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where u^ is the velocity at any instant and T xs taken sufficiently long to 

yield a stable average.  The difference between u, and u. 

"k 
=
 "k" "k 

(2) 

is referred to as the turbulent velocity.  In the case of the periodically 

varying velocities within waves it is less evident how to define mathemati- 

cally the average and turbulent terms. Knowledge of turbulence in waves is 

scant.  Stewart and Grant (1962) measured the turbulent energy spectra in the 

presence of surface waves and illustrated a low-frequency peak attributed to 

orbital motions.  Perhaps turbulence in waves can be defined m terms of such 

deviations in the energy spectra.  In any case, the flow in nature is clearly 

not laminar, and a turbulence term must exist which in turn gives rise to the 

diffusion effects which are the basic aim of this study. 

The complexities of the problem demand an experimental approach, and, 

since the available wave tank was not of sufficient size to generate fully 

turbulent waves, a simulation technique was devised. This technique consists 

essentially of oscillating an array of grids through still water in a sinus- 

oidal manner. Variation of the grid oscillation speed allows the generation 

of several turbulent-flow fields.  Fluorescent lighting techniques, combined 

with multiple-image photography, provide records of the coordinates of individ- 

ual particles in time and three-dimensional space for further analysis. The 

experimental work, which was conducted in the Fluid Mechanics Laboratory of 

the Delft Technological University, the Netherlands, has direct implications 

on the dynamics of suspended sediment in the surf zone. 

II.  THEORETICAL CONSIDERATIONS 

Of the several theories describing and predicting the turbulent spread- 

ing of a collection of particles, the "single particle" theory of G. I. 

Taylor (1921, 1935) offers the best framework for the present study.  Taylor 

expressed particle displacement caused by turbulence :x£ as a time-integrated 

effect of the turbulent velocity u£ 

- f^  CO dt. (3) 

Considering a collection of many particles and taking the mean square of all 

such net displacements as the appropriate statistical measure of the particle 

dispersion yields the Taylor diffusion equation 

02(T) = 2 u£
2
 j j^  (g) d? dt. (4) 

o 

Here eg is_the variance of the displacements of the particles from their initial 

position,(u£
2
J is the square of the turbulence intensity—alternatively known 

as the root mean square turbulent velocity—which should be approximately con- 

stant in a given flow field, Rk is the Lagrangian autocorrelation function of 

the velocity, and 5 is the autocorrelation lag time.  The subscript k refers 
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to any direction and (4) applxes equally to the x, y, or z direction when 

only turbulent motions are present with the corresponding velocities u', v', 

and w'. For a detailed derivation of (4) see Haltiner and Martin (1957, p. 276). 

For large values of the lag time 5 the velocity autocorrelation R^CS) 

approaches zero and the area c under the autocorrelation function versus time 

curve—that is, the inner integral of (4)—becomes constant 

Ac 
5) d5 = c, . (5) 

Henceforth all equations will be written in the y direction.  Performing the 

second integration of (4) leads to 

o- 
2
(T) = 2 v'

2
 c T. 06) 

y        y 

Taking the first derivative of (6) 

2 

= 2 v'
2
 c , (7) 

da 

dT 

which shows that, for long elapsed diffusion times, the slope of the o* - 1 

curve is a constant, a result we shall use later. For very short diffusion 

times the autocorrelation is unity and (4) reduces to 

a
2
 = v'

2
 T

2
. C8) 

y 

This equation applies only up to about .04 seconds, as deduced from Frenzen's 

results (1963) under conditions similar to ours. The resolution of our data 

is insufficient for (8) to be of any use. The area under the Lagrangian 

autocorrelation coefficient is generally referred to as the scale time of the 

turbulence, denoted by t„ (9), 

t* =  c , C9) 
y  y 

** = (v^)
1/2

 t*, CIO) 
y \     /y      y 

2 

K 
y -(%)=(nv-H1,2v 

The scale time t can be considered to measure the lifetime of the largest 

turbulent cell (Inoue, 1960).  The Lagrangian scale length I*  (10) is usually 

interpreted as a measure of the average turbulent eddy size. It is analogous 

to the "mixing length" of Prandtl's earlier theory.  The Lagrangian diffusion 

coefficient K? is equal to one half the ultimate rate of particle spread (11), 

and using (7) and (10) it can be expressed in terms of the turbulence inten- 

sity, the scale time, and the scale length.  In addition, t„ can be inter- 

preted in terms of the distribution of energy in the Lagrangian power spectrum 
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through a Fourier cosine transform (Taylor, 1938). Frenzen (1963, p. 67) 

shows that the mode of the power spectrum n in cycles per second can be 

closely approximated by 

n  = 1/2 (TTt*)"
1
. (12) 

The complete integral solution of (4) requires knowledge of the form 

of the autocorrelation function Rv(£). Inoue's theoretical analysis (1951) 

predicts the autocorrelation function to approximate the form 

Ry(?) = exp (-5/cy) , (13) 

which was verified experimentally by Kalinske and Pien (1944) and Frenzen 

(1963) for unstratified flows.  Substituting (13) into (4) and integrating 

yields a general diffusion equation 

a
2
 = 2 v'

2
 c T - 2 v'

2
 c

2
 + 2 v'

2
 c

2
 exp (-T/c ),        0-4) 

y      y        y      y      y 

showing that in a fluid velocity field composed only of turbulent motions the 

dispersion of a collection of particles is a function of the turbulence in- 

tensity, the elapsed diffusion time, and the scale time of the turbulence. 

III.  EXPERIMENTAL PROCEDURES 

The use of turbulence-generating grids has yielded great advances m 

the knowledge of turbulence in air streams, but they have been used only 

rarely in hydrodynamics.  The disturbances generated in the lee of a grid 

(with either the fluid or the grid in motion) has been shown by Taylor (1935) 

to transform rapidly into a quasi-isotropic turbulent field.  For an excel- 

lent photograph of this phenomenon showing the initial vortices degenerating 

into a homogeneous turbulent field, see Prandtl (1939). Although it is well 

recognized that quasi-isotropic grid—produced turbulence only crudely resem- 

bles the turbulent shear flows of nature, its study has precipitated great 

progress in the understanding of the mechanics of turbulence itself. Frenzen 

(1963) describes detailed experiments in which a single grid is towed through 

a water channel so that the turbulent trajectories of particles may be studied 

without the disadvantage of a mean flow moving the particles rapidly out of the 

field of view. As a variation of Frenzen's technique, in this study a series 

of grids is oscillated in simple harmonic motion in still water. 

To rationalize the analogy between turbulence in shallow-'water waves 

and grid-produced turbulence, consider Figure 1. Diagram A of thib figure 

shows the well known result that in idealized water waves to the first 

approximation the orbital velocity varies smusoidally in time.  If the 

wave flow were turbulent, the velocity trace would presumably resemble Fig- 

ure 1 B, since the "turbulent fluctuations are approximately proportional 

to the mean velocity" (Sutton, 1953, p. 251).  The elimination of the sinus- 

oid from Figure 1 B represents a turbulence field (Fig. 1 C) without the 
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Fig. 1.  Sketch to Illustrate 

similarity of oscillating grid- 

produced turbulence to turbulent 

wave flow. 

disturbance of orbital motions.  The 

present experiments attempt to simulate 

Figure 1 C by sinusoidally oscillating 

a grid in still water.  In Eulerian 

coordinates the turbulent velocity so 

produced (see Figure 1 D) will abruptly 

peak as the grid passes; this will be 

followed by a gradual decay until the 

next grid passage, and a crude approxi- 

mation to the turbulence shown in dia- 

gram C will ensue. However, as will be 

shown later, the observed frequency 

distributions of the turbulent velocity 

are Gaussian in nature, so perhaps the 

results concerning the particle diffu- 

sion apply equally as well to turbulent 

fields in general.  The laboratory flow 

is a simulation or model of turbulent 

wave flow in nature only in the sense 

of this paragraph. 

The grids which fill the 50 cm 

wide channel are composed of steel rods 

1 cm in diameter and 5 cm apart.  The 

array, consisting of three grids, each- 30 cm apart, has a stroke length kept 

constant at 40 cm. For the experiments average grid velocities of 16, 30, 

and 45 cm/sec are determined by variation of the oscillation period. The 

grid Reynolds number Re is defined by the mean fluid velocity U, the grid 

mesh length M, and the Kinematic viscosity of the fluid v 

Re 
g 

U M 

v C15) 

With U considered as the average grid speed, (15) defines three grid Reynolds 

numbers: 0.66 x 10*, 1.2 x 10*, and 1.9 x 10*. Water depth is kept constant 

at 40 cm.  The elimination of data taken (a) within 5 cm of the walls be- 

cause of boundary effects and (b) within the 10 cm section at each end of 

the grid stroke leaves an experimental volume inside the tank 80 cm long, 

30 cm high, and 40 cm across. 

In conventional studies of grid-produced turbulence a correction for 

the time decay of the turbulence is generally made.  In this study a new 

burst of turbulence, associated with the oscillating grids, reinforces the 

velocity field every few seconds (cf. Fig. 1 D). The particle trajectories 

from which the data are taken encompass the entire volume and time duration 

of an experiment. Thus the trajectories are a direct result of several 

turbulent bursts, and their sampling (at 1-second intervals) is considered 

to produce an average which represents an effective turbulence field, no 

decay corrections being required. 

As a means of observing particle diffusion, solid, wax-like particles 
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2 mm xn diameter d are impregnated with a fluorescent powder and injected 

into the test volume from above. The density of such particles (diameter 

remains constant) can be varied to evaluate changes in the diffusion brought 

on by the terminal fall velocities.  Repeated timing of the duration of fall 

through a column of water determines terminal fall velocities w of 0.2, 1.0, 

2.0, 3.0, and 4.0 cm/sec.  Table 1 lists the corresponding particle Reynolds 

numbers (Rep = w„ d/v) and sedimentation diameters ds—that is, the size of 

spherical quartz grains having the same fall velocities as our test particles 

(Brown, 1950).  The 0.2 cm/sec particle is referred to as the fluid or quasi- 

neutral particle and is used to infer the statistics of the fluid turbulence. 

Table 1 

Properties of the Test Particles 

w cm/sec 
P 

0.2 1.0 2.0 3.0 4.0 

Re 
P 

2.4 16.6 33.3 50.0 66.6 

d (mm) 
s 

0.03 0.12 0.18 0.24 0.38 

Two 500-watt mercury vapor lamps are directed diagonally down into the 

test volume to provide illumination of the fluorescent particles and several 

centimeter scales.  The camera is situated 3 m  in front of the water channel 

and aimed at the center of the front glass experimental area. A red filter 

on the lens insures that the only light to strike the 10 cm x 12 cm negative 

comes from the red-emitting objects treated with the fluorescent powder—that 

is, the particles and the centimeter scales. To achieve the multiple-image 

effect, a metal disc pierced with six holes along its periphery rotates in 

front of the camera lens.  The holes act as a rapidly repeating camera shut- 

ter.  In order to see both a front and a top view of the experimental volume 

simultaneously in the same photograph—that is, all three dimensions at 

once—a high-quality glass mirror is rigidly suspended over the channel. 

One essential feature of this photographic technique is that the grids are 

invisible to the camera. 

Rouse (1939) describes a device used in a study of vertical particle 

diffusion which is mechanically similar to the one discussed above. Rouse 

calculated diffusion coefficients from the concentration statistics of a 

collection of particles. 

IV. ANALYSIS AND RKSULTS 

Fifteen photographs (2 grain trajectories per photograph) were taken 

of each fall velocity at each grid Reynolds number. After development of 

the film 50 cm x 60 cm enlargements were made in the photographic labora- 

tories of both the Delft Technological University and the Coastal Studies 

Institute.  Figure 2 is an example of one data—bearing photograph.  The 

lower half is the front view, giving the x and z coordinates, z being the 

vertical direction; the upper half is the image in the mirror, giving the 

x and y coordinates, the y direction being across the channel width.  In 

this photograph there are eighteen particle images per second, a fall 
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Fig. 2.  Example of a data-bearing photograph; 

grid speed of 30 cm/sec, 18 images per second. 

velocity of 0.2 cm/sec, 

and an average grid speed 

of 30 cm/sec. Four fall 

velocities are examined 

at the lowest value of 

Re and five, at the two 

higher.  Thus there are 

fourteen data sets, each 

composed of thirty grain 

trajectories.  The grains 

are followed in the x, y, 

and z directions for about 

10 seconds. 

Scale overlays are 

constructed to facilitate 

the reading of the particle 

coordinates from the photo- 

graphs, and by counting the 

number of images we can 

tell the duration of elapsed 

time from the start of the 

trajectory. As a means of 

distinguishing the end of 

the trajectory from the be- 

ginning, the last few sec- 

onds of the photograph are 

made with the disc stopped 

and a hole directly in front 

of the lens so that the par- 

ticle makes an easily dis- 

tinguished continuous streak 

on the negative. 

The x coordinate is common to both halves of the photograph, which helps 

in correlating the front and top views. With practice the paths of the parti- 

cles can be followed in all three dimensions and time quite well.  The particle 

coordinate is read each second up to 10 seconds for the data analysis.  This 

sampling procedure controls the frequency band within which we are viewing 

the particle movements.  For N observations taken AT seconds apart the spectral 

band we are viewing is given approximately by 

2NAT 
< f < 

1 

2AT 
(16) 

where f is the frequency in cycles per second.  In the present experiments 

AT = 1 second and N = 10, so our observations are restricted to the range he- 

tween 0.Q5 and 0.5 cps. 

Because of the proximity of the camera to the experimental tank there 

is a significant parallax error. A centered difference correction technique 
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is employed which reduces this error to at most 4 percent. 

In the remainder of the paper discussion will be restricted to the com- 

ponent of diffusion in the y direction; that is, horizontal diffusion later- 

ally across the channel, normal to the grid motion.  The component of particle 

motion in the y direction is obtained simply by projecting the particle onto 

the y axis.  In a sense we are then observing the particle moving back and 

forth along a single line—the y axis. 

The particle motion along the x axis is difficult to interpret because 

of dragging effects of the grids.  This is not a serious drawback, however, 

as the turbulence characteristics m any horizontal direction should be ap- 

proximately the same m our simplified flow field; i.e., the x-direction 

data should approximate that of the y direction.  The data on diffusion in 

the vertical (z) direction, including the interaction of turbulence and fall 

velocities, will be presented elsewhere.  The three-dimensional value of any 

of the turbulence parameters can be obtained, if desired, by calculation of 

the resultant vector. 

Particle Spread 

We now have the particle coordinates as a function of time.  In order to 

utilize equation (6), we calculate the variance (crs)of particle displacements 

from the initial position for each 1-second time increment using 

2     n  (y    - y ) 

\  
(T

> 
=
 

T n     • C17) 

' 1 

where n refers to the number of particles, y0 to the initial and y^ to the 

subsequent coordinates. Unlike the more conventional mean, y0 will vary with 

each particle, but in a field of homogeneous turbulence this is inconsequen- 

tial. A plot of Oy against time T should then, from (7), become linear after 

a few seconds, with the slope equal to twice the product of the turbulence 

intensity (squared) and the scale time; or, alternatively, the diffusion 

coefficient is equal to one half of this slope (see equation 11).  In prac- 

tice we calculate the slope of the least squares regression line passing 

through the points for t * 2 sec. These slopes, together with the corres- 

ponding correlation coefficients r, are presented in Table 2. 

The uniformly high values of the correlation coefficients indicate the 

linear spread law holds valid after 2 seconds in our experiments for both the 

fluid and the heavy particles at all values of Re . 

Turbulent Velocities 

The data on the time change of the particle coordinates also allow 

measurement of the turbulent velocities v' from 

v. . yCt) - yCAt) _ (18) 

At 
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Table 2 
Ultimate Slope of Dispersion Curves 

Re 
g 

0.66 3 10
4 

w (cm/sec) 0.2 1.0 2.0 3.0 

da
2 

dT 
2K* (cm

2
/sec) 8.8 4.8 5.0 4.4 

r .98 .96 .99 .98 

Re 
g 

1.2 x 10
4 

w (cm/sec) .2 1.0 2.Q 3.0 4.Q 

da
2 

dT 
*   2 

2K (cm /sec) 7.6 18 16 7.4 9.5 

r 
• 89 .99 .98 .93 .94 

Re 
g 

1.9 x 10
4 

w (cm/sec) .2 1.0 2.0 3.0 4.Q 

A     
2 

da 
dT ~ 

2K (cm /sec) 25 22 18 14 22 

r .96 .98 .99 .97 .97 

Since At = 1 second the difference in successive particle coordinates is a 

direct measurement of the turbulent velocity.  In a given data set there are 
thirty particles followed for 5 to 10 seconds, resulting in about 200 meas- 
urements of the turbulent velocity per data set. Percent distribution 
(histograms) of turbulent velocities and corresponding Gaussian curves of 

best fit are plotted in Figure 3, where N is the number of observations. 
At this point there are three notation changes: 

1. We shall use the notation y' for the intensity of turbulence; 
that is, y' H (v'2)l/2; 

2. The subscript o, e.g., yj,, refers to a property of the fluid, 

the subscript p refers to a property of a heavy particle, e.g., 
yl, lack of a subscript refers to both phases; 
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Reg = 0 66xl04 Reg = 12xl04 

W--0 2  cm/sec 

Re„ = 19xl04 

-6 0 t-8 

wn
=2.0_,cm/sec 

6  -8 

TURBULENT   VELOCITIES   cm/sec 

Fig. 3. Distributions of turbulent velocities v' as func- 

tions of grid Reynolds number Re , and particle fall ve- 

locity w . S 

3.  The subscript y will hereafter be omitted and understood unless 

otherwise noted. 

Much previous work, suggests that the dis.trihution of the fluid turbulence 
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should be Gaussian, and our data (w =0.2 cm/sec) agree quite well.  Liu 

(1956) states that the heavy particle turbulent velocities should also be 

Gaussian m distribution, which our present data likewise corroborate.  Since 

the observations that make up any single velocity frequency distribution are 

scattered m time and space from many flow realizations, they lend strong 

support to the assumptions of long-term stationarity and homogeneity of the 

flow. 

From elementary statistics we know the variance a-' of a quantity v' 

a
2
(v') =(v'

2
) - (v

1
)
2
, (19) 

or, transposing and taking roots, 

= [o
2
(v') + (v')

2
] 1/2. (20) 

Thus the intensity of turbulence v' may be evaluated directly from the vari- 

ance and mean of our velocity frequency distributions. For a zero jnean the 

intensity of turbulence is by definition equal to the standard deviation. 

Values of the mean {v'),   the standard deviation Co)> and intensity of turbu- 

lence (y
1
) are given in Figure 3. Velocity means as anticipated are close 

to zero and show no preferential direction, supporting the absence of a mean 

flow. 

Values of y' are presented 

For all values of w , higher grid 

sities of turbulence.  If Wp » 0 

Fig. 4. The effect of the parti- 

cle fall velocity wp on the turbu- 

lence intensity y' for the three 

grid Reynolds numbers Reg. 

in Figure 4 as a function of Re„ and wp. 

Reynolds numbers produce higher inten- 

then v' •+ 0, since a particle with suffi- 

cient mass will not respond to even 

the highest fluid velocity fluctua- 

tions. At Re = 0.66 x lO^, y' ap- 

parently decreases monotomcally with 

increasing values of w , but at higher 

grid Reynolds numbers a tendency is 

evident for an initial increase in y' 

before the descent to zero begins. 

These enhanced velocities are per- 

haps the result of centripetal accel- 

erations; that is, the heavy particles 

are unable to maintain the rate of 

curvature of the fluid eddy and so 

are thrown from the eddy.  This ten- 

dency decreases as the relative inertia 

increases, as postulated by Smgamsetti 

(1966). 

The ratio Wp/w0 was suggested by 

Rouse (1939) as a possible control on 

the mixing coefficient. Figure 5 is 

a nondimensional plot of y'/Wp against 

Wp/w'Q where w'0 is the fluid intensity 

or turbulence in the direction of fall. 
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2.0 
w
p/wo 

Fig. 5. Nondimensional representation 

of the effect of the particle fall 

velocity on the turbulence intensity. 

The points of Figure 4 now fall on 

a single smooth curve.  This curve 

can predict the horizontal turbu- 

lence intensity of the particle 

phase from that of the vertical fluid 

phase for a given particle fall 

velocity.  This curve suggests 

that the initial increase in vl 

with increasing wp is now present 

to some degree for all values of 

v^.  The critical value of Wp/w^,, 

computed from Figure 5, where vl 

begins to decrease (that is, where 

gravitational forces become domi- 

nant over mertial forces), varies 

.7 < Wp/w^, <  .9 as a function of 

w^.  The onset of dominant particle 

gravitational effects is therefore 

not controlled by a critical par- 

ticle Reynolds number as suggested 

for investigation by Rouse (1939). 

In our quasi-isotropic flow 

field there is, of course, an inti- 

mate relation between w^, and vl. 

Substitution of v^ for w^ in the 

abscissa variable of Figure 5 gives 

a very similar curve but with a little more scatter.  Future work in a non- 

lsotropic fluid must decide which of the two turbulence intensity components 

is the real controlling factor. 

Other Fluid Turbulence Characteristics 

Using our measured values of the time change of variance dajj/dt (Table 2) 

and fluid turbulence intensity vl (Table 3) we can calculate other fluid prop- 

erties such as scale time (c ^ tg)from (6), scale length H*  from (9), diffusion 

coefficient K* from (10), and the location of the mode of the Lagrangian power 

spectrum n0 from (11).  These four quantities, together with the fluid turbu- 

lence intensity and energy per unit volume, are presented as a function of 

grid Reynolds number Re„ in Figure 6. As shown in (12), the scale time t* can 

be interpreted in terms of the location of the mode of the Lagrangian power 

spectrum.  In this regard it is generally found (see, e.g., Taylor, 1939) that 

the turbulence generated by grids at low values of Re„ is deficient in small- 

scale eddies; that is, the energy is concentrated at low frequencies.  Increase 

of the grid Reynolds number should result in the production of relatively more 

high-frequency energy, producing a corresponding shift of the spectral mode 

toward high frequencies.  This effect is seen both in the present study (Fig- 

ure 6 C, D) and in that of Frenzen (1963) for the initial increase in grid 

Reynolds number.  Our increase in the frequency of the spectral mode is evi- 

dently so severe as to force a slight increase in the diffusion coefficient 

K^ since, combining (10) and (11), 
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Fig. 6.  Properties of the fluid turbulence produced by moving grids. 

K* = (v')
2
/2Tm (21) 

Taylor (1935) showed the energy of turbulence E0 per unit volume of 
fluid to be 

.2x E0=f (3v^). (22) 

Figure 6 B demonstrates that there Is considerably more energy produced by 
the oscillating grids (this study) than by the single pass of a solitary grid 
(Frenzen).  If the first increase in Re„ has excited considerable high-frequency 
energy, a further increase in the grid Reynolds number could conceivably be un- 
able to shift the spectral mode any higher.  In fact, owing to the overall 
increase in energy over the entire spectrum, the peak could shift back again 
toward lower frequencies, as suggested by Frenzen (1963) in a slightly differ- 
ent context. This did not, as a rule, occur in Frenzen's experiments but, as 
seen in Figure 6 B, at the highest grid Reynolds number we have considerably 
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Table 3 
Characterxstics of Fluid and Particle Turbulence 

Re 
g 

0.66 x 1Q
4 

w cm/sec 
P 

0.2 1.0 2.Q 3.0 

v' cm/sec 2.3 2.2 1.8 1.3 

* 
t sec .83 .49 0.77 1.3 

* 
I    cm 1.91 1.1 1.4 1.7 

*  2, 
K cm /sec 4.4 2.4 2.5 2.2 

n cps .19 .32 .21 .12 

Re 
g 

1.2 x 10
4 

w cm/sec 
P 

0.2 1.0 2.0 3.0 4.0 

v' cm/sec 2.8 2.8 3.2 2.5 2.5 

* 
t  sec 0.48 1.1 .78 0.59 .77 

* 
I    cm 1.4 3.2 2.5 1.5 1.9 

*  2 
K cm /sec 3.8 9.0 8.0 3.7 4.8 

n cps .33 .14 .20 .27 .21 

Re 
g 

1.9 x 10
4 

w cm/sec 
P 

0.2 1.0 2.0 3.0 4.0 

v' cm/sec 3.4 3.4 3.7 3.3 3.8 

* 
t sec 1.0 .95 .66 .64 .76 

* 
I    cm 3.5 3.2 2.4 2.1 2.9 

*      2, 
K cm /sec 12 11 9.0 7.0 11 

n cps .16 .17 .24 .25 .21 

more energy than he did—17 ergs/cm-* as against 3.4 ergs/cm^.  This is likely 

the cause of the decrease in the frequency of the spectral mode nQ, the in- 
crease in the scale time t*, and the corresponding sharp increase in the 
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diffusion coefficient K* at the high value of Reg. 

lows the same trend as the scale time t„. 

The scale length l*  fol- 

The relative particle diffuslvlty—that is, the ratio of the particle 

diffusion coefficient to that of the fluid K?/K^—is presented m Figure 7 as 

a function of particle fall velocity and grid Reynolds number.  For the lowest 

and highest values of Re„ the relative diffusivity decreases fairly regularly 

with increasing particle fall velocity.  For the middle value of Re„ there is 

a sharp increase in the relative diffusion, three out of four heavy particles 

diffusing at a higher rate than the fluid (quasi-neutral) particles. As can 

be seen in Table 3, this relative diffusion peak is entirely the result of 

the unexpectedly low value of the fluid diffusion coefficient (w_ = 0.2 cm/sec) 

at the intermediate grid Reynolds number Reg = 1.2 x 10^.  To add to our sus- 

picion of this value, the heavy particle diffusion coefficients at this grid 

Reynolds number have values which are fairly consistent with the two other 

data sets. 

Nonetheless, a detailed recheck of the raw data revealed no errors in 

the analysis.  In its support it should be noted that the diffusion coefficient 

is directly measured (not computed) from the time change of particle displace- 

ment; as such it is based on approximately 150 points. Furthermore, the tur- 

bulent velocity frequency distribution of wp = Q.2 cm/sec at Reg = 1.2 x lO
1
*, 

which is based on the same raw data as the diffusion coefficient in question, 

is very well behaved.  This distribution (cf. Fig. 3) fits a Gaussian curve 

extremely well and has a standard deviation (intensity of turbulence) falling 

midway between those of neighboring Reynolds numbers.  Thus the relative dif- 

fusion anomaly is apparently quite real and must be related to shifts in the 

power spectra along the frequency axis, as discussed earlier (cf. equation 21). 

The unresolved question is why at the intermediate Re„ there is a lack of 

coupling between the fluid and the heavy particles With respect to diffusion, 

but coupling with respect to particle velocity. 

 1 1 
It is generally 

believed that the more 

turbulent the flow the 

higher the degree of 

mixing (diffusion) of 

such properties as 

heat, momentum, sedi- 

ment, aerosols, etc. 

Despite the relative 

diffusion anomaly in 

our data, this, ten- 

dency is still clearly 

shown for our experi- 

ments in Figure 8, even 

allowing for scatter 

caused by varying par- 

ticle fall velocity. 

There is also some 

evidence for a corre- 

lation (see Figure 9) 

between relative 
Fig. 7 

of the 

.  The relative diffusivity K_/K* as a function 

particle fall velocity w_. 
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particle velocity Vp/v^ and relative particle diffusivity Kp/KQ.  The rate of 

increase of the relative particle diffusivity accelerates greatly after the 

ratio vL/vL  exceeds approximately unity. 

The particle turbulence intensity vl is equal to the ratio of the scale 

length l*  and the scale time tJ 

v' = I    t   . 
~P   P P 

(23) 

It is of interest to investigate the interrelation of these three quantities. 

Figure 10 shows that the particle scale length (average eddy size) increases 

with increasing particle turbulence intensity, but with appreciable scatter 

because of fall velocities and frequency shifts in the power spectra. With 

this constraint as particle turbulence intensity increases, the scale time 

may then either be a constant or increase at various rates. A plot of our 

data is inconclusive as to the behavior of t„ withv_, except that tp is not 

a constant. Apparently, fall velocity effects, power spectra shifts, and 

other unknown interactions control the particle scale time.  This conclusion 

applies also to the frequency of the peak of the particle power spectrum np. 

The frequency of the power spectral modes, both fluid and particle 

phases, do, however, fall in the range predicted by (16) as available to our 

observation. 
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• a 

v'Q= 2 3 cm/sec 

VQ=2 8 cm/sec 

v'0—3 4 cm/sec   > 

2   3 

cm/sec 

Fig. 10. The Lagrangian heavy par- 

ticle length scale ip as a function 

of the turbulence Intensity. 

Further Discussion 

All of the resulta up to this 

point have been independent of any 

assumption concerning the nature of 

the Lagrangian autocorrelation func- 

tion.  If we assume the often observed 

negative exponential shape for this 

function the general diffusion equa- 

tion (14) results.  Through (11) this 

equation could be written directly in 

terms of our measured quantities v' 

and K*. Figure 11 shows a selection 

of the theoretical relations predicted 

by (14)—using our measured values of 

v
1
 and K*—compared to the experimen- 

tally observed values of particle vari- 

ance a~  at a given time t.  In general, 

the agreement is good.  Part of the 

agreement is forced, of course, since 

the linear slope of the solid lines is 

computed from the observed points, but 

the line itself is free to wander in 

the cr^-t plane.  Certain systematic 

deviations of the observed values from the theoretical predictions (such aa 

Re„ = 1.2 x 10*, wp = 2.0 cm/sec in Figure 11) are perhaps caused by the fact 

that the heavy particle autocorrelation functions do not follow the exponential 

decay rule.  This general agreement, however, supports the application of the 

Taylor diffusion theory to heavy particles. 

A further check on the suitability of the Taylor theory can be made 

starting from (13).  The exponential term is negligible after 2 seconds.  By 

rearranging the remaining terms on the right hand side into the slope- 

abscissa intercept form of the linear equation, it is seen that the abscissa 

intercept of the linear portion of the cp-t curve is equal to the scale time 

t*. Using (11) and the measured values of K*, it is now possible to calcu- 

late values of the turbulence intensity. These are compared to the experi- 

mentally observed values in Table 4. 

Table 4 

Value of Turbulence Intensity cm/sec 

Re    x 10 
4 

8 
0.66 1.2 1.9 

w    * 
P 

.2 1 2 3 .2 1.0 2.0 3.0 4.0 .2 1 2 3 4 

v'   Obs.   * 2.3 2.2 1.8 1.3 2.8 2.8 3.2 2.5 2.5 3.4 3.4 3.7 3.3 3.8 

y'   Calcu.* 2.5 2.8 3.6 1.5 3.4 2.6 2.7 1.8 3.2 2.9 2.8 6.1 11 4.0 

* cm/sec 



TURBULENT DIFFUSION 463 

X  o^-°'066 x JO
4 

3 0 cm/sec 

72 x JO4        ' 
/ 

2.0 cm/sec : 

- / 

1 

/ 
/ 

A 

/ 
1.9 x JO4    J     / 

4.0 cm/sec /-«- /— — Eq. 14 
1     /* 

'•y< /o ,* 

9 /      / 
/ /     S*   72 

• 

x  JO4 

in      S 
//.y*     02 cm/sec 

*^     1           1 i             i 

. 0    2 
t  sec 

Pig. 11. A selection of experimental data on the time change of the 

variance of particle displacements a^ compared to a form of the Taylor 

diffusion equation. 

The average error for the fourteen observations is i23 percent, which 

is not unreasonable considering the large error in t and v' produced by a 

relatively small error in the linear slope of the cr
2
-t curve.  Orlob Q.959) 

describes yet another method of calculating diffusion parameters from par- 

ticle spread. 

V. SUMMARY AND CONCLUSIONS 

The turbulent diffusion of quasi-neutral and heavy particles is studied 

in a turbulence field generated by an array of oscillating grids. Particle 

displacements caused by turbulence are measured by means of multiple—image 

photography.  Diffusion coefficients and intensities of turbulence are di- 

rectly measured from the photographic data.  Other turbulence parameters can 

then be calculated. 

The principal conclusions concerning the horizontal component of the 

turbulence are as follows: 

(1) The simple experimental technique of oscillating an array of 

grids at various speeds produces turbulent fields with suffi- 
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cient homogeneity and stationarity to permit accurate study 

of heavy particle diffusion. 

(2) The turbulent velocity distributions of both the fluid (quasi- 

neutral particles) and the heavy particles are Gaussian, with 

no evidence of a mean flow. 

(3) The turbulent intensity of the heavy particle phase is closely 

controlled by the particle fall velocity and the fluid turbu- 

lent intensity in the vertical direction.  Gravitational ef- 

fects begin to dominate the heavy particle turbulence intensity 

after Wp/w^ exceeds approximately 0.8. 

(4) Taylor's statistical theory of turbulence effectively describes 

the horizontal diffusion of heavy particles suspended in a fluid. 

(5) In general, the heavy particle diffusion coefficients and the 

scale length of the particle eddies increase with increasing 

fluid turbulent intensity. 

(6) Relative diffusion (ratio of heavy particle diffusivity to fluid 

diffusivity) is a function of particle fall velocity and inter- 

nal characteristics of the turbulence such as frequency shifts 

in the power spectra. This suggests that the turbulence spectrum 

as well as the orbital velocities may exert control on grain dif- 

fusion by waves. 
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NOTATION 

c the area under the autocorrelation curve 

d the dxameter of the test particles (2mm) 

d the sedimentation diameter 
s 

E the energy of the turbulence 

K the diffusion coefficient 

I the scale length of the turbulence 

M the grid mesh length 

n the frequency of the power spectrum mode or the number of 

observations 

N the number of observations 

Re the grid Reynolds number 

Re the particle Reynolds number 

t, T time 

t the scale time of the turbulence 

U the mean horizontal velocity, or its experimental equivalent 

the average speed of the sinusoidal grid motion 

u', v', w' turbulent velocity in the x, y, or z direction 

2~~l/2 
(v' )   , v' the turbulence intensity in the y direction 

w the terminal fall velocity of a particle in still water 

w' the fluid turbulence intensity m the vertical direction 

x, y, z the direction, respectively, of the grid motion, horizontal 

across the grid motion, in the vertical 

v the kinematic viscosity 

£ the autocorrelation lag time 

p the fluid density 

2 
a the statistical variance of a quantity 

( ) the subscript refers to fluid or quasi-neutral particle or to 

initial particle position 

( ) the subscript refers to a heavy particle 
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