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Abstract. Neuromodulators can have a strong effect on how organisms cooper-

ate and compete for resources. To better understand the effect of neuromodula-

tion on cooperative behavior, a computational model of the dopaminergic and 

serotonergic systems was constructed and tested in games of conflict and coop-

eration. This neural model was based on the assumptions that dopaminergic  

activity increases as expected reward increases, and serotonergic activity in-

creases as the expected cost of an action increases. The neural model guided the 

behavior of an agent that played a series of Hawk-Dove games against an oppo-

nent. The agent adapted its behavior appropriately to changes in environmental 

conditions and to changes in its opponent’s strategy. The neural agent tended to 

engage in Hawk-like behavior in low-risk situations and Dove-like behavior in 

high-risk situations. When the simulated dopaminergic activity was greater than 

the serotonergic activity, the agent tended to escalate a fight. These results sug-

gest how the neuromodulatory systems shape decision-making and adaptive be-

havior in competitive and cooperative situations. 

Keywords: Dopamine; Serotonin; Cooperation; Game Theory; Computational 

Neuroscience; Decision-Making. 

1   Introduction 

Neuromodulators, such as dopamine (DA) and serotonin (5-HT), are known to be 

important in predicting rewards, costs, and punishments. Dopamine activity (DA), 

which originates in the ventral tegmental area (VTA) and the substantia nigra (SN), 

appears to be linked to expected reward [1], and incentive salience or “wanting” [2]. 

Serotonin (5-HT), which originates in the Raphe nucleus, appears to be related to 

cognitive control of stress, social interactions, and risk taking behavior [3], [4]. The 

structures that are innervated by 5-HT and their connecting circuits modulate the 

behavioral response to threats and risks, that is, behaviors that are typically thought 

to reflect the anxiety state of the organism [3]. Whereas DA is related to the ex-

pected reward of a given decision, 5-HT could be related to the expected cost of a 

decision. 
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Game theory has been useful for understanding risk-taking and cooperation [5]. Of 

particular interest are studies in which neuromodulators were depleted or altered, 

while subjects play games. In one study, subjects, who were 5-HT depleted through 

dietary changes, cooperated less in a Prisoner’s Dilemma game [6]. In an Ultimatum 

game study, 5-HT depleted subjects tended to reject monetary offers more than con-

trol subjects when they deemed the offers to be unfair [4]. Moreover, a recent study 

has shown that individuals with lower levels of dopamine in the prefrontal cortex 

tended to take less risks in a gambling task [7].  

To better understand the roles of dopamine and serotonin during decision-making 

in games of conflict, we developed a computational model of neuromodulation and 

action-selection, based on the assumption that DA levels are related to the expected 

reward of an action, and 5-HT levels are related to the expected cost of an action.  An 

agent, whose behavior was guided by the neural model, played the Hawk-Dove game, 

where players must choose between confrontational and cooperative tactics [5], [8]. 

The model makes predictions of how neuromodulatory activity can shape behavior 

under different environmental and competitive situations. 

2   Methods 

Game Playing. A game consisted of two agents (Neural and Opponent) taking a 

single action in response to a territory of interest (TOI). At the start of each game, the 

agents were randomly placed in a square grid (not occupying the same area) and were 

modeled to approach the neutral TOI at the same speed. The agent that arrived at the 

neutral TOI first had the opportunity to take either of the two possible actions: Esca-

late (i.e., an aggressive, confrontational tactic) or Display (i.e., a nonviolent, coopera-

tive tactic). The agent that arrived second responded with one of the two aforemen-

tioned actions. After each game, payoff was calculated and plastic connections were 

updated. The payoff matrix for this game is given in Table 1. If both agents Escalate, 

they received a penalty that was either a serious injury (large penalty) or just a scratch 

(small penalty). The probability of serious injury was set to 0.25 or 0.75 at the start of 

the game. If both agents Display, they share the TOI resource. If one agent escalated 

and the other displayed, the agent that escalated gets the entire resource. A series 

consisted of 100 games with a given parameter set. At the start of each series, the 

neural network was initialized and the Neural agent was considered “naïve”, that is, 

the weights of the network were set to their initial values (see next section). For each 

parameter set, the two agents played 100 Hawk-Dove series with a different random 

number seed. 

Table 1. Payoff matrix for Hawk-Dove game between players A and B. V is the value of the 

resource and is set to 0.60. D is the damage incurred when both players escalate. D is set to 

1.60 for serious injury and 0.62 for a scratch. The probability of a serious injury is 0.25 or 0.75.  

 B. Escalate B. Display 

A. Escalate A: (V–D)/2, B: (V–D)/2 A: V, B: 0 

A. Display A: 0, B: V A: V/2, B: V/2 
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Fig. 1. The diagram shows the architecture of the neural model (two Neuromodulatory: Raphe 

and VTA; three TOI-State: Open, Escalate, and Display; and two Action: Escalate and Display). 

The solid arrows extending from the TOI-State neurons represent all-to-all connections. The 

thick arrows represent plastic pathways.  The dotted arrows and shaded ovals represent neuro-

modulatory pathways. Within the Action neurons, the line with the arrow at the end represent 

excitation, and the line with the dot at the end represent inhibition. 

Neural Agent. A neural network controlled the behavior of the Neural agent. The 

neural network had three areas: TOI-State, Action, and Neuromodulatory (Fig. 1). The 

TOI-State included three neurons that corresponded to the possible states of the TOI 

the Neural agent may observe: 1) Open. The Neural agent reached the TOI first. 2) 

Escalate. The Opponent agent reached the TOI first and escalated a conflict. 3) Dis-

play. The Opponent agent reached the TOI first but did not start a conflict. The equa-

tion for the activity of each of these neurons (ni) was set based on the current state of 

the TOI: 

n
i

=
0.75 + rnd (0.0,  0.25); i = TOIState

rnd (0.0,  0.25);                              Otherwise

⎧ 
⎨ 
⎩ 

 (1)

where rnd(0.0,0.25) was a random number uniformly distributed between 0.0 and 

0.25. The Action area included two neurons: 1) Escalate. The Neural agent escalated 

a conflict. 2) Display. The Neural agent did not start a conflict or retreated if the  

Opponent agent escalated. The neural activity was based on input from TOI-State 

neurons and neuromodulation. Lastly, the Neuromodulatory area included two  

neurons: 1) Raphe. A simulated raphe nucleus, which is the source of serotonergic  
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neuromodulation. 2) VTA. A simulated ventral tegmental area, which is the source of 

dopaminergic neuromodulation. The synaptic connectivity of the network is shown in 

Fig. 1 and in Table 2, and was all-to-all. Some of these connections were subject to 

synaptic plasticity and phasic neuromodulation, where the activity of Neuromodula-

tory neurons affected the synaptic efficacy. 

Table 2. Synaptic connections between neural areas 

From To Initial Weight Plastic Phasic Neuromodulation 

TOI-State Action 0.1 Y Y 

TOI-State Neuromodulatory 0.1 Y N 

Action-Escalate Action-Display 0.1 N N 

Action-Escalate Action-Display -0.1 N Y 

Action-Display Action-Escalate 0.1 N N 

Action-Display Action-Escalate -0.1 N Y 

 
The neural activity was simulated by a mean firing rate neuron model, where the 

firing rate of each neuron ranged continuously from 0 (quiescent) to 1 (maximal fir-

ing). The equation for the mean firing rate neuron model was: 

s
i

t( )= ρ
i
s
i

t − 1( )+ 1− ρ
i( )

1

1+ exp −5I
i

t( )( )

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟  (2)

where t was the current time step, si was the activation level of neuron i, ρi was a 

constant set to 0.1 and denoted the persistence of the neuron, and Ii was the synaptic 

input. The synaptic input of the neuron was based on pre-synaptic neural activity, the 

connection strength of the synapse, and the amount of neuromodulator activity: 

I
i

t( )= rnd −0.5,0.0( )+∑
j

nm t − 1( )w
ij

t − 1( )s
j

t − 1( ) 
(3)

where wij was the synaptic weight from neuron j to neuron i, and nm was the level of 

neuromodulator at synapse ij. Phasic neuromodulation had a strong effect on action 

selection and learning. During phasic neuromodulation, synaptic projections from 

sensory systems and inhibitory neurons are amplified relative to recurrent or associa-

tional connections [9]. In our model, the TOI-State to Action neurons represented 

sensory connections and the excitatory Action-to-Action neurons represented the asso-

ciational connections. To simulate the effect of phasic neuromodulation, inhibitory 

and sensory connections were amplified by setting nm (equation 3) to ten times the 

combined average activity of the simulated Raphe, and VTA neurons. Otherwise, nm 

was set to 1 for recurrent or association connections. The last column of Table 2 lists 

connections amplified by phasic neuromodulation. In simulation studies [10] and 

robotic experiments [11], this mechanism was shown to be effective in making the 

network exploitive when neuromodulation levels were high and exploratory when 

neuromodulation levels were low. 

Action selection depended on the summed activity of the Action neurons after the 

neural agent reached the TOI. When the Neural agent reached the TOI, neural activi-

ties of the Action and Neuromodulator neurons were calculated for ten time-steps 
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(equations 1-3). The Action neuron with the largest total activity during those ten 

time-steps dictated the action taken (e.g. if the total Display activity was greater then 

Escalate, the agent displayed). 

After both the Neural and Opponent agents chose a tactic, a learning rule, which 

depended on the current activity of the pre-synaptic neuron, the post-synaptic neuron, 

the overall activity of the neuromodulatory systems and the payoff from the game, 

was applied to the equation for the plastic connections (see Table 2): 

Δwij = α * nm t − 1( )s j t − 1( ) s
i

t − 1( )( )* R  (4)

where sj was the pre-synaptic neuron activity level, si was the post-synaptic neuron 

activity level, α was a learning rate set to 0.1, nm was the average activity of all neu-

romodulatory neurons, and R was the level of reinforcement based on payoff and cost 

(equation 5). The pre-synaptic neuron (sj) in equation 4 was the most active TOI-State 

neuron. The post-synaptic neuron (si) could either be the most active Action neuron, 

the Raphe neuron, or the VTA neuron. Weights were normalized by the square root of 

sum of squared weights. The level of reinforcement (R, equation 4) was:  

R =

(Reward - VTA) − (Cost − Raphe);      TOI - State  →   Action connection

Reward - VTA;                                TOI - State  →   VTA  connection

Cost − Raphe ;                                TOI - State  →   Raphe connection

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 (5)

where the Reward was the Neural agent’s payoff from Table 1 divided by the maxi-

mum possible reward. It was assumed that 5-HT plasticity was based on the predicted 

cost of an action and DA plasticity was based on the predicted reward of an action. If 

there was an error in this prediction, weights changed according to equations 4 and 5. 

If the Raphe or VTA accurately predicted the respective cost or payoff of an action, 

learning ceased. The Neural agent’s cost was 1 if seriously injured, the ratio of 

scratch to serious injury (i.e., 0.3875, Table 1) if scratched, or zero otherwise. The 

Neural agent’s reward was set to 1 if it won the resource, 0.5 if it split the resource, 

and zero otherwise. 
 

Opponent Agent. The Opponent followed one of three strategies. In one strategy, 

referred to as the Statistical model, the agent had a probability of escalation inde-

pendent of the Neural agent’s tactics, which was set at the beginning of the game to 

0.25 or 0.75. In the second strategy, referred to as Tit-For-Tat (TT), the computer 

model always repeated the Neural agent’s previous move. The only exception to this 

rule was if the Opponent agent reached the TOI first in the opening game, in which 

the Opponent opened with a Display. TT is a simple, yet effective strategy in game 

theory, which has shown to be successful in game playing tournaments [8]. In the 

third strategy, referred to as Win-Stay, Lose-Shift (WSLS), the Opponent agent would 

win and stay with the same action in the following situations: the Opponent agent’s 

Escalate is met with the Neural agent’s Display or the Opponent agent’s Display is 

matched by a Neural agent’s Display, otherwise the Opponent agent resorted to a lose 

and shift action [12]. As with the TT strategy, the WSLS opponent would open with a 

Display action if it arrived at the TOI first on the first game. 
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3   Results   

Adopted Strategies. During the course of a series, the Neural agent learned to adopt 

different strategies depending on the chance of serious injury and its Opponent’s 

strategy. To ensure that these strategies did not occur by chance, 100 randomly behav-

ing agents played against all three Opponents. The random agents had lesions (i.e. 

activity set to zero) of both the simulated VTA and Raphe, which resulted in no learn-

ing occurring (equation 4). The 95% confidence interval was used as the cutoff for 

gauging non-random behavior in the random agents. This cutoff corresponded to the 

probability of selecting a particular action in response to a given TOI-State greater 

than 65% or less than 35% of the time. 

The Neural agent adapted its behavior depending on its opponent’s strategy and 

environmental conditions (Fig. 2). In response to a given TOI-State, the agent could 

respond randomly (i.e. within the 95% confidence), or significantly tend toward esca-

lation or displaying. There are a total of 27 possible outcomes the Neural agent can 

take with respect to the three different states of the TOI. Only a few of these outcomes 

emerged in the simulations, and these outcomes are represented in Fig. 2 as a triplet 

pairing (i.e., EEE, DDE, UDE, etc.). The first value in the triplet pairing corresponds 

to the expected action when the TOI-State was Open. The second represents the an-

ticipated action when the TOI-State was Escalate. The third value denotes the ex-

pected outcome when the TOI-State was Display. These triplets are associated with a 

color spectrum, where aggressive outcomes (‘E’ in the triplet) are denoted red, pas-

sive outcomes (‘D’ in the triplet) are denoted in blue, and values that do not fall 

within either outcome (‘U’ in the triplet) are denoted in yellow.  

Against all three opponents, the Neural agent adopted Hawk-like behavior in “safe” 

environments, where the probability of serious injury was 0.25 (top row, Fig. 2), and 

Dove-Like behavior in “harsh” environments, where the probability of serious injury 

was 0.75 (bottom row, Fig. 2). Figure 2 shows an increase in the adoption of ‘DDE’ 

strategy (Neural agent displayed when the TOI-State was Open and Escalate, and 

escalated when the TOI-State was Display) as the probability of serious injury or an 

opponent escalating increased. This demonstrates that in situations where the Neural 

agent was in a competitive, antagonistic environment, the Neural agent tended to 

behave in a Dove-like way (displaying a large proportion of the games in a series). 

Conversely, Figure 2 also shows an increase in aggressive strategies (i.e., EEE, Neu-

ral agent escalated when the TOI-State was Open, Escalate and Display) as the prob-

ability of serious injury or an opponent escalating decreased. This illustrates that in 

circumstances where the Neural agent was in a cooperative, forgiving environment, it 

tended to adopt more Hawk-like behavior (escalating in a larger proportion of the 

games in a series). 

Simulated lesion experiments were carried out to test the effect of neuromodulation 

on behavior. An intact neuromodulatory system was necessary for appropriate behav-

ior (see Table 3). When the serotonin was removed from the system, by simulated 

lesions to the Raphe, the Neural agent’s behavior became more Hawk-like, even when 

the chance of serious injury was high (Harsh column in Table 3). When the simulated 

VTA was lesioned, effectively removing dopaminergic input to the system, the Neural 

agent’s behavior became more Dove-like (fewer escalations) in all environments. 
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Fig. 2. The pie charts show the proportion of probable actions taken by the Neural agent in 100 

series of games. There are three TOI-State areas (Open, Escalate, and Display), and three out-

comes the Neural agent can commit to: Escalate (E), Display (D) or Undecided (U). Undecided 

represents random choice between ‘E’ and ‘D’. The labels represent the Neural agent’s re-

sponse to the three TOI-State areas. Strategies that are Dove-like are displayed in blue, Hawk-

like are displayed in red, and arbitrary strategies displayed in yellow. 

Table 3.  Percentage of Escalation for the Neural agent 

 Control   Raphe Lesion VTA Lesion 

 Safe Harsh Safe Harsh Safe Harsh 

Statistical 97.65% 10.00% 99.06% 92.86% 34.79% 7.14% 

TT 34.15% 13.64% 81.82% 81.82% 24.74% 12.50% 

WSLS 93.22% 9.09% 96.88% 96.88% 20.93% 8.22% 

 
The Neural agent adapted its behavior to its Opponent’s strategy. Against the TT 

opponent, the Neural agent oscillated between escalating and displaying in successive 

games. In essence, the Neural agent learned to adopt a TT strategy against this oppo-

nent, which yielded approximately equal reward to both agents. The oscillating neu-

romodulatory activity corresponded to the alternating actions taken by both agents 

(Fig. 3A). Against the WSLS opponent, the Neural agent created opportunities for 

high payoffs. The high-expected cost and reward were reflected in the serotonergic 

and dopaminergic activity when both agents escalated (see Fig. 3B: bottom plot, 

games 79, 82, or 86). In these examples, the Neural agent escalated first and its Op-

ponent escalated second
 
(Fig. 3B: top plot, games 79, 82, or 86). The Neural agent 

learned that this tactic caused the Opponent agent to ‘lose-shift’ towards Display in 

the following game, which could be taken advantage of by escalating (Fig. 3B: top 

plot, games 80, 83, or 87). This tactic resulted in a maximal reward to the Neural  
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Fig. 3. Actions taken by the Neural and Opponent agents during the last 25 games of a single 

series, and the corresponding neuromodulatory activity for the Neural agent. The stair plots 

located on the top half of A and B, are the actions taken by both the Neural (green) and Oppo-

nent (black) agents. The line plots located in the bottom of A and B represent the neuromodula-

tory activity for the Neural agent during the same 25 games of the same series. The red line 

represents the Raphe activity, and the blue line represents the VTA activity. A. Control agent 

versus the TT opponent. B. Control agent versus WSLS opponent. 

agent but caused the Opponent agent to ‘lose-shift’ back to Escalate in the following 

game (see Figure 3B: top plot, games 81, 84, or 88).  

The neural response of the simulated neuromodulators appears to govern the Neu-

ral agent’s actions (Fig. 3). When the VTA activity dropped below the Raphe activity, 

the neural agent displayed. That is, Raphe activity may be acting as a threshold for the 

expected cost of upcoming actions, whereas the VTA activity rises and falls based on 
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the expected reward. When the expected reward is lower than the expected cost, the 

Neural agent tended to display. For example, when a Neural agent behaved Dove-like, 

its serotonin activity was high relative to the dopamine activity due to the low ex-

pected reward from displaying (see Fig. 3A: games 78-80). In addition, the oscillatory 

actions taken by the Neural agent (see top Fig. 3A: games 84-99), are exactly 

matched by the oscillatory VTA neuromodulatory activity (see Fig. 3A: games 84-99) 

rising above and falling below the Raphe neuromodulatory activity. The low fluctua-

tion in Raphe values from one game to the next in Fig. 3A result from the precision of 

predicted cost when playing a highly predictable opponent using the TT strategy. 

Predicted cost was not as regular for the Neural agent when playing against the WSLS 

opponent, which is why the Raphe neuromodulatory activity fluctuated more in Fig. 

3B (bottom plot). Although the Raphe activity fluctuated more when playing against 

the WSLS opponent, the actions taken by the Neural agent were consistent with the 

neuromodulatory activity. Thus, the results from the simulated neuromodulatory ac-

tivity of Fig. 3 suggest that the Raphe neural activity acts as a threshold for aggressive 

(escalate) or non-aggressive (display) actions taken by the Neural agent. 

4   Discussion 

In the present paper, we showed that an agent, whose behavior was guided by a com-

putational model of the neuromodulatory system, learned to adjust its strategy appro-

priately depending on environmental conditions and its opponent’s strategy in the 

Hawk-Dove game. The model makes several predictions on how the activity of neu-

romodulatory systems can lead to appropriate action selection in competitive and 

cooperative environments. 

In constructing the model, it was assumed that DA activity increased as expected 

reward increased, and that 5-HT activity increased as the expected cost of an action 

increased. DA appears to be important for reward anticipation [1], and the “wanting” 

of things, that is, the motivation process in acquiring an object [2]. Thus, having DA 

activity related to payoff in a game appears to be a reasonable assumption. 5-HT ac-

tivity appears to modulate behavioral response to risks, stress, threats [3], [13]and 

social anxiety in primates [14], all of which have a cost associated with them. More-

over, reduced 5-HT transmission is associated with a release of aversive or punishing 

responses [15]. These assumptions are similar to a model proposed by Daw Kakade 

and Dayan in which dopamine and serotonin levels track predicted rewards and pun-

ishments [16]. However, our model differs in that punishments and rewards are not 

necessarily mutually inhibitory. Our model takes into consideration that an action 

could have independent costs and rewards associated with it (i.e., an action may have 

a high predicted reward, and a high predicted cost). 

Given these assumptions, the Neural agent adjusted its strategy depending on envi-

ronmental conditions and on its Opponent’s strategy (Fig. 2). For example, in situa-

tions where it was more likely to sustain a serious injury, the Neural agent’s behavior 

became more Dove-like. Because the Neural agent learned that there was an increased 

cost and decreased reward to be expected by escalating a confrontation in these 

harsher conditions, it adapted its strategy to increase in Display actions (Fig. 2). No 

matter which Opponent the Neural agent faced, it learned to alter its strategy to take 
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advantage of a no cost escalation in response to its Opponent’s displaying first. This 

can be seen in Fig. 2 for all tactics that end in ‘E’ (e.g., DDE or EDE). 

The adaptive behavior demonstrated by the Neural agent required an intact neuro-

modulatory system in which the agent could evaluate the expected cost and the ex-

pected reward of a given action. Lowering the simulated serotonin levels resulted in 

Hawk-like tactics that were similar to uncooperative behavior seen in human studies 

where serotonin levels were lowered [4], [6]. Lowering dopamine levels resulted in 

the Neural agent avoiding risks that lead to a higher payoff. These results are in 

agreement with a study in which a blockade of dopamine resulted in rats not making 

an extra effort of climbing over a barricade to get a high reward [17], and a study in 

which individuals with a polymorphism that lowers levels of dopamine in the prefron-

tal cortex tended to take less risks in a gambling task [7]. 

The model makes the following predictions: 1) The interaction between the DA 

and 5-HT neuromodulatory systems allows for appropriate decision making in games 

of conflict. In our model, when the VTA activity, which tracked expected reward, 

exceeded the Raphe activity, which tracked the expected cost, the agent would tend to 

escalate a fight (see Fig. 3). 2) Impairment to either the dopaminergic or serotonergic 

system will lead to perseverant, uncooperative behavior. In our model, impairment of 

the dopaminergic system resulted in risk-averse behavior (Dove-like) caused by an 

inability to assess reward, and impairment of the serotonergic system resulted in risk-

taking behavior (Hawk-like) due to an inability to assess cost (see Table 3). 3) Al-

though dopamine and serotonin activity appears to be related to different expectations 

(e.g., predictive reward, anticipated cost), the action of these neuromodulators on 

downstream targets is similar in that it governs decision-making. That is, phasic neu-

romodulation shifts an agent’s behavior from random and exploratory to decisive and 

exploitive through differentially modulating synaptic pathways. 

The model constructed for the present experiments is based on the notion that all 

neuromodulators have the same effect on downstream targets, but that specific neu-

romodulator levels are driven by environmental stimuli [10]. Large, phasic increases 

in neuromodulator activity cause an organism’s behavior to be more exploitive or 

decisive, whereas lower levels of neuromodulatory activity result in the organism 

being more exploratory or indecisive. This is in agreement with the idea of choliner-

gic modulation of attention [18] and noradrenergic modulation of decision-making 

[19], but extends it to other neuromodulators such as dopamine and serotonin. Our 

model differs somewhat from the behavioral and neuroscience literature that suggests 

the role of dopamine is to calculate the reward prediction error, and that serotonin 

controls the timescale of the evaluation of delayed rewards in reinforcement learning 

[20], [21]. Instead it may be more in agreement with the proposal that neuromodula-

tors, such as dopamine and serotonin are involved with the discovery of new actions 

to outcome mappings [22].  

We designed our model to investigate how neuromodulation shapes behavior dur-

ing competitive and cooperative situations. Our model has similarities to other com-

putational models of neuromodulatory processes during decision-making [16], [20]; 

however, it tests a specific hypothesis of phasic neuromodulation, and applies it to 

game theory. Other computational models such as Evolutionary Algorithms and Rein-

forcement Learning have been effective in developing optimal strategies in games of 
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conflict [23], [24]. It may be of interest in the future to pit our neurobiologically in-

spired model against reinforcement learning and evolutionary algorithms.  
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