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Simulation of HTS Saturable Core-Type
FCLs for MV Distribution Systems

S. B. Abbott, Member, IEEE, D. A. Robinson, S. Perera, Member, IEEE, F. A. Darmann, C. J. Hawley, and T. P. Beales

Abstract—The design principles and performance character-
istics of a prototype high-temperature superconductor saturable
magnetic core-type fault current limiter are described. These
are based on a distribution network service provider feasibility
specification that included the footprint and regulatory require-
ments for limiting fault currents. Time-domain simulations using
PSCAD/EMTDC are given to illustrate specific applications and
the transient behavior of the different distribution system config-
urations are investigated.

Index Terms—Distribution, fault current limiter (FCL), high-
temperature superconductor (HTS), saturable magnetic core, sub-
station, superconductor.

I. INTRODUCTION

I NCREASED fault-current levels due to load density growth
and a greater number of network interconnections in dis-

tribution networks are common. The need to replace existing
switchgear and their continuous upgrade as a result of increasing
fault levels impose high costs for the utilities and their cus-
tomers. In such a situation, the role of a fault-current limiter
(FCL) is to ensure that the fault-current level is kept below the
ratings of the existing switchgear, thus reducing or eliminating
the costs involved in their upgrade. The limits on fault levels at
electrical substations in New South Wales, Australia, are gov-
erned by guidelines recommended in [1], and there is a need to
investigate how these limits can be achieved with the best pos-
sible solution, especially with the aid of superconducting FCLs.

There is renewed interest in superconducting FCLs due to the
advantages offered by high-temperature superconductors (HTS)
using liquid nitrogen over their low-temperature counterparts.
This predominantly arises from an order of magnitude of sav-
ings in cryogenic equipment costs [2], and a reduction in opera-
tional costs by a factor of up to 100 [3]. Liquid nitrogen systems
are also less complex compared to liquid helium systems.

Superconducting FCLs that have been examined in the past
fall into two major categories: quench and nonquench types [4].
Quench-type FCLs rely on a fault current changing the effec-
tively zero impedance of a superconductor during normal op-
eration of the power system by quenching the superconductor,
causing a rapid increase in its impedance. Quench-type FCLs
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Fig. 1. Basic configuration of a saturable core-type FCL.

suffer from operational difficulties caused by their slower fault
response and recovery times. They also require additional equip-
ment to prevent the burnout of the superconductor and cryo-
genics during a fault. In addition, the design of FCLs relying
on power electronics is overly complex, and they have inherent
reliability problems.

HTS saturable core-type FCLs provide superior properties for
application in medium-voltage (MV) distribution systems. This
is mainly due to the rapid, multishot ability, providing compat-
ibility with reclosers, which clear more than 80% of overhead
line faults in distribution systems [5]. Much of the past work
on nonquench-type FCLs is covered in [4] and [6]. In a non-
quench-type FCL, the superconductor is always in its supercon-
ducting state and the fault-current limiting takes place as a result
of a change in magnetic saturation caused by the ac fault current.

The prototype saturable magnetic core-type FCL considered
in this study is constructed using HTS tapes [7]. The application
of HTS tapes in nonquench-type FCLs is most desirable from
commercial and operational viewpoints: they are the most ro-
bust, practicable, and reliable forms available compared to other
HTS forms. A description of the design principles applied to an
HTS saturable core-type FCL is provided. Although specific to
the presented scenarios, the design parameters of the FCL could
be easily adjusted to suit various substation configurations. The
concepts behind development of a time-domain model for the
FCL are also presented, followed by simulation results in re-
lation to the operation of the FCL for typical medium-voltage
(MV) distribution substation applications.

II. DESIGN PRINCIPLES OF SATURABLE CORE-TYPE FCLs

A. Configuration of the FCL and Its Principle of Operation

The basics of saturable core-type FCLs are documented in
several papers [3], [8]–[10] of which the essential features of a
single-phase device are illustrated in Fig. 1. Two magnetic cores
are required to cater for each half cycle of the ac fault current.

0885-8977/$20.00 © 2006 IEEE
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Fig. 2. Operating region of the saturable core-type FCL.

Each core carries a coil in which the ac line current flows.
An HTS coil carrying a dc bias current is also wound on
each core as illustrated in Fig. 1, where the dc bias current is
common to both coils. The dc bias current saturates the iron core
such that the inductance seen by the ac current during nonfault
operation is negligible.

The magnetomotive force (MMF) produced by the supercon-
ducting dc winding is given by

(1)

where is the number of turns in the dc winding, is the
current in the dc winding, is the average core width, is the
average core height, and is the magnetic field intensity due
to the dc current. For the simulation model, the dc bias current
is assumed constant. Practically, the ac fault current will have
an effect on the dc bias current and needs to be considered in
the design of the controlling power electronics.

The FCL inductance under normal power system conditions
needs to be as small as possible. Therefore, the normal operating
point is selected such that , where is the
saturation knee point indicated in Fig. 2.

When a fault current flows through the ac winding, each
core is alternatively taken out of saturation in each half cycle of

as a result of the relatively large MMF caused by the fault
current. To ensure that the FCL offers a large inductance during
a fault, the MMF cancelation in each core should be such that

(2)

where is the length of the flux path around the
core, is the number of turns in the ac winding, and is the
peak value of the fault current at which the FCL is designed to
operate.

The conceptual design of the single-phase configuration has
been extended to develop a three-phase FCL, where a single dc
winding is used to control all ac phases. The design is innovative
in that only one superconducting coil is used for all six of the
magnetic cores. The three-phase design has been patented by
Australian Superconductors [11].

III. DEVELOPMENT OF THE FCL SIMULATION MODEL

A. Mathematical Model of the FCL

The slope of the nonlinear steel characteristics that is required
to evaluate the terminal inductance of the FCL can be fitted by
a curve of the form

(3)

where , and are constants representing the magnetizing
properties of the steel core laminations. To determine the ter-
minal inductance of the FCL, the nonlinear B–H characteris-
tics of the laminated steel core for this model were represented
within the 0–30 000-A/m region.

Based on (3), the per phase inductance of the FCL due to
the core flux alone (i.e., ignoring leakage flux) as a function of

is given by

(4)

where is the iron core cross-sectional area. Determination of
the net magnetic field intensity in the core is achieved by
combining the effects of both the dc and ac fields

(5)

As illustrated in Fig. 1, there are two cores per phase; thus,
consideration of the dc and ac fields adding and subtracting is
required and has been incorporated into the model.

B. Model Implementation in PSCAD/EMTDC

PSCAD/EMTDC [12] simulation studies were undertaken as
a design verification tool and to examine the behavior of sat-
urable core-type FCLs in relation to MV distribution substation
applications.

The inductance associated with each phase of the FCL was
included in the simulations as an externally controlled element,
as illustrated in Fig. 3.

As shown in Fig. 3, the measured line current (i.e., is used
to establish the variable FCL inductance in relation to each indi-
vidual phase, and the remaining inputs (
and ), governing the physical parameters of the windings and
the core, are common to all of the FCL inductance calculations.
In the PSCAD/EMTDC model, the FCL can be taken out of the
simulation using the switched control element shown. Within
PSCAD/EMTDC, the types of faults and the time of applica-
tion can be easily controlled using the standard blocks.

Comparison of the PSCAD/EMTDC FCL model with ac-
tual measurements of the single-phase prototype FCL developed
by Australian Superconductors [7] is illustrated in Fig. 4 for
steady-state fault current, demonstrating reasonable agreement.
The differences between simulation and measurements are due
to the approximations involved in developing (3)–(5).

IV. APPLICATION STUDIES

Although several examples of substations were considered
for the feasibility study, only one representative substation
was chosen for simulation purposes and modeled in PSCAD/
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Fig. 3. PSCAD/EMTDC model setup for the calculation of the FCL
inductance of each phase.

Fig. 4. Comparison of PSCAD/EMTDC model and prototype FCL
measurements for steady-state fault current [7].

Fig. 5. Substation arrangement 1 with two FCLs in series with HV/MV
transformers.

EMTDC. Two different implementations of the FCL in the
substation were examined.

A. Initial Considerations

The first of the implementations is illustrated in Fig. 5,
which shows two 45-MVA, 132/11-kV transformers connected
to a common busbar supplying a mixture of several domestic
and industrial feeders. The 11-kV busbar normally operates
as a split-bus system in order to keep the fault-current level
under control. The operation of these two transformers in
parallel without the inclusion of any fault-current limiting
results in a fault level of 272 MVA (i.e., kA)

Fig. 6. Fault current on a transformer secondary without an FCL.

for a three-phase line-to-ground fault on the 11-kV busbar.
The stipulated regulations [1] require this level to be below
250 MVA ( kA).

Practically, space and other issues had to be given due to con-
sideration for the configuration in Fig. 5. Each FCL was de-
signed to fit into a space of approximately 2.2 2.2 2.5 m ,
incorporating existing 11-kV substation cables. Full details of
the proposed design are provided in [7]. Provisions were also
included to isolate the FCL. Each FCL was designed to be fitted
with a range of sensors to monitor the liquid nitrogen, cooling
system, and electrical supply to the FCL.

B. Simulation Results (Substation Arrangement 1)

All faults in the presented simulations were programmed to
occur at s. Fig. 6 shows the line current observed on
the secondary of either of the transformers during a three-phase
fault for the system of Fig. 5, without any external fault-current
limiting.

The transient and steady-state performance of the FCL is
very much dependent on the parameters , and .
Hence, several designs can be examined to meet different cri-
teria quite easily with the help of the simulations.

The FCLs can be designed to limit either the peak value of the
initial transient fault current or its steady-state value. One crite-
rion that can be used is to reduce the fault level for a three-phase-
bolted ground fault on the 11-kV busbar to meet the 250-MVA
regulation [1]. Fig. 7 shows the FCL inductance and the prefault
and postfault line current waveforms for one of the transformer
secondaries for a worst-case fault occurring at a voltage zero
crossing on one of the phases.

As the ac line current changes, it is possible to have the MMF
due to the ac line current completely counteracting the dc MMF,
leading to a situation where the flux density is zero. At this
point, based on the approach taken in modeling, the dynamic
impedance as given by (3)–(5), the dynamic inductance is equal
to zero. This behavior is evident from a close up view of the first
few peaks of the line current, as illustrated in Fig. 8.

In practice, the total inductance is never equal to zero, as the
leakage inductance of the ac winding is finite. Although the ac
line current seems to be clipped, a close-up view would reveal
that there are minute changes in the current resulting from the
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Fig. 7. Change in fault current and FCL inductance with time ( 580
turns, 360 A, 24 turns).

Fig. 8. Increased time step resolution view of a change in fault current and
FCL inductance with time ( 580 turns, 360 A, 24 turns).

Fig. 9. Change in fault current and FCL inductance with time for increased
and ( 660 turns, 360 A, 28 turns).

change in the inductance. As this behavior is influenced by the
leakage inductance of the ac coil, the finite per phase leakage
inductance (0.7 mH) was included in the mathematical model
for subsequent simulations.

Fig. 9 illustrates the behavior of the FCL system with an in-
creased number of turns in both ac and dc windings together

Fig. 10. Three-phase fault current with time for a line–line fault ( 580
turns, 385 A, 24 turns).

Fig. 11. Substation arrangement 2 with a single FCL on split bus.

with inclusion of the leakage inductance. As can be seen, the
fault current is limited to an approximate 8.5 kA peak, which
meets the fault level regulations. The corresponding maximum
inductance of the FCL per phase is 5.22 H.

The square wave clipping operation of the ac current during
fault-current limiting can lead to significant current harmonics.
Simulations have shown that resonance caused by these har-
monics due to system capacitance is unlikely. More practically,
the actual waveforms are closer to a modified sinusoidal shape
and not a full square wave, as indicated by Fig. 4 and, thus, will
contain less higher order harmonics and further reduce the like-
lihood of low-frequency resonance.

Another criterion in the design of the FCL was to limit the
first peak of the fault current on the 11-kV busbar to a maximum
of 18.6 kA, or 9.3 kA peak per transformer secondary. Such
a reduction in the fault current by the FCL is achieved using

A, A, and turns, corresponding
to a maximum inductance of the FCL of 3.85 H per phase.

Other fault types were also considered including single line-
to-ground and line–line faults. Fig. 10 shows the transformer
secondary currents for a line–line fault on the 11-kV busbar,
respectively. As expected, the line current is clipped at 9.3 kA.

C. Simulation Results (Substation Arrangement 2)

An alternative arrangement for the installation of an FCL in
a substation is shown in Fig. 11. This example only requires a
single FCL located on the MV busbar, joining the two busbars
that would normally be in a split-bus configuration.
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Fig. 12. Substation arrangement 2 transformer currents during fault (
turns, A, turns).

In this case, when a fault occurs on the busbar section closer
to transformer 2, only the current from transformer 1 will be
limited. As such, to obtain the same reduction in fault level, and
to bring the network in line with regulations, the FCL is required
to clamp the current from transformer 1 at a smaller magnitude
than that in the substation arrangement 1 example. It was found
that the current flowing through the FCL from transformer 1 had
to be limited to 7.5 kA peak. This could be achieved by modi-
fying the FCL design by increasing the value of and .

The currents passing through the FCL and transformer 1
during a fault at the location shown are illustrated in Fig. 12.
The FCL waveform is as per Fig. 9; however, the peak is now
limited to 7.5 kA. These waveforms result in an 11-kV bus
total fault level of 250 MVA, as stipulated by the regulations.
Transformer 1 current waveform is rounded at the peak max-
imum because, at this point, current is also flowing to the
load as the FCL impedance limits the flow of current to the
fault. By limiting the fault current from transformer 1, the sag
performance at the transformer 1 busbar can be improved for
faults further along the faulted feeder.

As seen in Fig. 12, a small amount of distortion is present on
the current waveform of transformer 1. The level of distortion is
minimal and is unlikely to affect other loads before the circuit
breakers (CBs) or reclosers clear the fault.

D. Other FCL Applications

In larger sized distribution systems, it may be feasible to
install HTS saturable core-type FCLs between the substation
busbar and an MV feeder. The design of such an FCL can be
based on reducing fault current to customers with insufficient
switchgear rating, or to provide improved sag performance to
customers connected to other feeders. Overlap with reclosers
and ensuring fault levels remains detectable by protection de-
vices and needs to be carefully considered for such applications.

FCL devices also have applications for interconnecting distri-
bution systems and at the connection points of large distributed
generators. This allows systems to be reconfigured to improve
reliability or protect customers from damaging sags and high
fault levels. The behavior of HTS saturated core-type FCLs for
such applications would be nearly identical to that demonstrated
in this paper.

Fig. 13. Transformer current and FCL inductance during loss of dc bias current
to both FCLs in substation arrangement 1.

E. HTS Saturable Core-Type FCL Protection Issues

Reliability of saturable magnetic core-type FCLs is superior
to other types of superconducting FCLs due to simplicity of
components and reduced cryogenic requirements. The cryo-
genics and dc current supply remain the critical components
for FCL operation and reliability.

Loss of dc bias current will cause some disruption to system
operation due to the resulting change in FCL impedance. Fig. 13
illustrates the impedance changes of the FCL during a loss of
dc bias current to both FCLs for the configuration of Substation
Arrangement 1. The dc bias current is removed from
to s, and a constant impedance load has been assumed.
Fast acting bypass switches and backup protection are required
for MV distribution system applications and are included in the
proposed design for substation arrangement 1 [7].

V. CONCLUSION

The design principles of a prototype HTS saturable magnetic
core-type FCL have been elucidated, and case studies in relation
to typical MV distribution substations have been examined.

The important parameters that govern the behavior of an FCL
were chosen to meet the physical constraints of the particular
substation under consideration, performance of the system, and
the regulatory requirements in force.

A mathematical model describing the FCL operation that al-
lows modification to the important design parameters has been
presented. Time-domain simulations were carried out to illus-
trate the behavior of such FCLs under fault conditions.

Further development of the single-phase prototype HTS sat-
urable magnetic core-type FCL is required to enable production
of a functional three-phase FCL unit suitable for practical MV
substation applications.
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