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Summary: A Markov chain model has been proposed as a mechanism that 
generates human sleep stages, A method for estimating the parameters of the 
model, i.e., the transition probabilities (rates) between sleep stages, has been 
introduced and applied to 95 hypnograms taken from 23 subjects. The rates 
characterize interindividual differences and nightly variations of the sleep 
mechanism, related to sleep-onset behavior, to the decreasing amount of slow 
wave sleep in the course of the night, and to the REM-NREM periodicity, The 
model simulates both probabilistic and the above-mentioned predictable dy
namics of sleep, but only if these time-varying, individual rates are applied. 
Key Words: Sleep-Models-Estimation-Simulation. 

In the course of a night, human sleep seems to travel through various stages fol
lowing a rather unpredictable pattern (Fig. 1). Despite the widely applied classification 
of sleep into a limited number of discrete stages [e.g., (I)], the precise definition and 
the functional significance of these stages is not clear, and other stages probably also 
exist (1-4). However, the classification is based upon clear electrophysiological events 
that occur during sleep, and many investigators have demonstrated the correlation be
tween these stages and not only various somatic, autonomic, and biochemical sleep
related phenomena [e.g., (4)] but also pathological aspects of sleep [e.g., (3,5-8)]. 
Therefore, it may be useful to develop a model that can simulate hypnograms, since 
this may suggest a sleep mechanism, parameters to characterize sleep (9), and methods 
to analyze sleep [cf. this article and also (10)]. 

No comprehensive model of a hypnogram-generating mechanism is available, but 
several models describe various aspects of it. A physiological model of the REM
NREM sleep cycle mechanism in the cat (11-13) can also be used to simulate various 
human sleep characteristics (14). Several phenomenological models have been based 
upon reproducible, predictable aspects of human hypnograms. There are two catego
ries of such models. (a) Deterministic models use time-varying functions to describe 
systematically occurring characteristics like the REM-NREM periodicity, the de
creasing amount of slow wave sleep (stages 3 and 4) in the course of the night, and the 
relationship between sleep and the circadian rhythm (14-19). (b) Probabilistic models 
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FIG. 1. Hypnograms of 9 nights of subject AD. Lights-off at 0 h. Sleep stages W, wakefulness; R, REM; I, stage I; 2, stage 2; 3, stage 3; 4, stage 4; and 
M, movement time. Note 90-min REM-NREM period and decreasing amount of stages 3 and 4 in the course of the nights. Dashes, REM "blocks." 
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SIMULATION OF HYPNOGRAMS BY A MARKOV CHAIN 407 

use stochastic processes to describe statistical properties of hypnograms like the vari
ability of the REM-NREM cycle, the short interruptions within REM "blocks" (Fig. 
I), and the random (in time and in direction) transitions between stages (20-23). 

Although some stochastic variation has been introduced into one of the deterministic 
models (19) and some time-varying functions into probabilistic models (21,23), the re
sulting mechanisms cannot, and were not intended to, simulate all probabilistic and 
deterministic aspects of hypnograms. To our knowledge, no simulated hypnogmms 
have been reported. 

In this article, we present a simple model that contains all the above-mentioned prob
abilistic and deterministic aspects of sleep. The model will be introduced in sufficient 
detail to enable, specify, and reproduce applications. We investigated its ability to 
characterize the nightly dynamics and the individuality of the sleep mechanism. Fi
nally, we will show some simulated hypnograms. 

MODEL 

We will conform here to the standardized form of hypnograms (1), in which sleep is 
classified into a set of seven stages: wakefulness, REM, stage 1, stage 2, stage 3, stage 
4, and movement time, abbreviated W, R, 1,2, 3, 4, and M, respectively (Fig. I). 

Transitions between these stages occur in unpredictable directions and at unpredict
able moments. However, they seem to obey a probability law in which the sojourn 
times (i.e., the intervals between two successive transitions, during which sleep re
mains in the same stage) have an approximately exponential distribution (10,21,24,25). 
This observation suggests that the transitions may be generated by a continuous-time 
Markov chain process [e.g., (26) ch. 3.3]. Such a model was proposed briefly in 1965 
by Zung et al. (20). Yang and Hursch (21) concluded that the model is inadequate 
because the sojourn times in a group of individuals do not fit geometric (the discrete
time analogue of continuous-time exponential) distributions. However, different indi
viduals show different sleep characteristics [e.g., (8»), that are also reflected by the 
model (as set forth in this article). Because of this and because the average of different 
(individual) geometric distributions is not geometric, the argument in (21) does not 
hold. Based on this argument, a semi-Markov model has been proposed (21), in which 
the sojourn times may have any (nonexponential) distribution function. These are two
dimensional functions, both of the clock time and of the sojourn time. Specification of 
the model is therefore almost impossible, and in all applications (21,22,27,28), only 
mean sojourn times (a function of clock time only) were considered. Because these are 
implicitly specified in the Markov model (26), all results obtained by these semi
Markov parameters can also be obtained by the Markov parameters. For the same 
reason, the attempt to validate the semi-Markov model (21), in fact, supports the 
Markov model. A continuous-time model is preferred because real sleep is not seg
mented into epochs (e.g., of 30 s), although hypnograms generally are. 

The mechanism of the continuous-time Markov model is rather simple. If sleep, h(t), 
at time, t, is in a certain stage, i, then there is for each j~i a probability, p{h(t + d) = 

j/h(t) = i}, that it will be in stage j after a time interval, d. The Markov property implies 
that this probability does not depend on sleep history. Because more than one transi
tion may occur in one interval, d, one usually specifies the transition rates, ~Ii(t), over 
infinitely small intervals (which cannot contain more than one transition): 

~I/t) = lim {p[h(t + d) = j/h(t) = i]/d} 
A-O 

(I) 
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408 B. KEMP AND H. A. C. KAMPHUISEN 

This means that ajli(t) . A is the probability that sleep jumps from i to j in the small 
interval, a. These transition rates specify compieteiy the process that simuiaies sleep 
from wakefulness to the end of the night. The average sojourn times can be derived 
from the rates. In the section Simulations the process will be discussed in greater de

taiL 
Time-dependent transition rates have been applied earlier to explain and to quantify 

the apparent, but variable, ultradian periodicities in the sleep of cats (29) and rats (23). 

ESTIMATION OF TRANSITION RATES 

The parameters of the model, i.e., the transition rates, have been estimated from 95 
hypnograms taken from 23 healthy male volunteers, aged 18 to 30 years, with previous 
experience as subjects for polygraphic sleep recordings. Records were scored by two 
analysts according to the Rechtschaffen and Kales criteria (see Acknowledgment). 

The maximum likelihood estimator for the transition rate, 3jli(t) , reads [(30) ch. 2.4] 

(2) 

where Ti(f,A) is the total time spent in stage i, and nW(t,A) is the number of transitions 
from stage i to stage j. Both Ti(t, A) and NjIi(t, A) are counted in an interval [(t - A/2),(t 
+ Al2)] of duration A around time t. The computation of aW(t,A) from more than one 
hypnogram, called averaging in the sequel, is performed by counting Ti(t,A) and njli(t,A) 
from all the corresponding intervals around t. In the following, the arguments (t) and 
(t,A) will be omitted for brevity. Within small (relative to the nightly variations of the 
sleep mechanism, e.g., the REM-NREM periodicity) intervals, A, the process is as
sumed to be homogeneous, i.e., the transition rates are constant. In that case, the 
estimator is unbiased, and its variance depends on Ti and ajli as follows [(28), example 
2.4.8] : 

(3) 

A 70% confidence interval for ajli can be approximated by ± I standard deviation, i.e.: 

- V <1j1/Ti ~ <1jli - ajli ~ Vajli/Ti (4) 

This can be transformed into two quadratic inequalities in ajli and ajli [(3 I) ch. 1.4]. 
Their solutions express the confidence interval as a function of njli and Ti: 

:1'11' + (1 - Va'I' . T + l)/T ~ a'I' ~ a'I' + (1 + Va'I' . T + l)/T (5) J 2 JI I 4 I JI JI 2 JI I 4 I 

or, equivalently 

(njli + ~ - V njli + ~)/Ti ~ ajli ~ (njli + ~ + V njli + ~)/Ti (6) 

If njli = 10, the size of this 70% confidence interval is 60% of ajli- If njli = 100, it is 20% 
of ~Ii' 

A first impression of the absolute value of the rates has been obtained by estimating 
average whole-night transition rates (Table I and Fig. 2) over an interval, A, spanning 
the first 8 h of the hypnogram and by averaging over 46 hypnograms (23 subjects, 2 
nights each). Although Fig. 2 allows a rapid inspection of some important sleep char
acteristics, it is biased because it neglects changes of the sleep mechanism that occur in 
the course of the night. Therefore, we investigated the time course of the transition 
rates of which the whole-night estimates were based upon at least 120 transitions (i.e., 
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SIMULATION OF HYPNOGRAMS BY A MARKOV CHAIN 409 

TABLE 1. Average whole-night transition rate estimates 

W R 2 3 4 M 

W 0.000149 0.007771 0.000130 0.000000 0.000000 0.000000 
R 0.000221 0.001409 0.000338 0.000000 0.000003 0.000003 
I 0.001363 0.003211 0.011243 0.000000 0.000000 0.000000 
2 0.000249 0.000405 0.001069 0.001033 0.000000 0.000021 
3 0.000137 0.000026 0.000231 0.005195 0.003734 0.000128 
4 0.000028 0.000000 0.000028 0.000198 0.005777 0.000156 
M 0.000000 0.000000 0.013492 0.017460 0.001587 0.000000 

Estimates, ~I; in s -] (i.e., average number of transitions-to-stage-j per second-in-stage-i). 
See Model section for definition of abbreviations. 

njli ~ 120). The 8-h interval has been divided into 32 intervals, A, of 15 min, each 
yielding an estimate if Ti > O. Averaging has been performed over the same 46 hypno
grams. Highly significant (p < 0.0001, i.e., >20 of the 32 confidence intervals did not 
include the whole-night average) inhomogeneities were present in five rates. In these 
cases, we proposed a subjectively smoothed (by hand) time course (Fig. 3). Besides 
some simple trends that seem to be related to sleep-onset and slow wave sleep, Fig. 3 
shows periodicities in aR12, a312, and aR11 that may account for the REM-NREM period
icity. Because such periodicities may be obscured by interindividual differences, we 
have estimated these time courses separately for the eight subjects from whom at least 
six (maximum 10) hypnograms were available. Only within-subject averaging has been 
performed over these six to 10 hypnograms. These individual estimates indeed show 
more pronounced periodicities, especially in subjects ND, AD, and NS (Fig. 4). The 
three rates seem to be synchronized, a312 being opposite to aRI2 and aRII' They show clear 
interindividual differences. 
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FIG. 2. Average whole-night sleep structure as estimated 
from 46 hypnograms of 23 subjects. Circle areas are propor
tional to the percentage of time spent in the corresponding 
stage (W, wakefulness; R, REM; I, stage I; 2, stage 2; 3, 
stage 3; 4, stage 4). Arrows indicate the directions of possible 
stage transitions. Arrow areas are proportional to the corre
sponding transition probabilities, i.e., rates (from Table I). 
Calibrations (lower right) of circles and arrows have areas 
1Td2/4 and d2 , which correspond to 10% and I/min, respec
tively. Stage M «0.1%) and some very unlikely transition 
possibilities « 1/100 min) are too small to be reproduced. 
Note, for example, that in stage I, the most likely transition 
is to stage 2. 
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FIG. 3. Nightly variations of average (23 subjects) transition rates. Circles, estimated rate, ajli' from 
stage i to stagej. Vertical bars, approximate 70% confidence interval. Dashes, whole-night average of Table I 
and Fig. 2. Solid line, smoothed (by hand) time course. Note the increasing tendency to fall asleep in al\W and 
aZ11 in the first hour and the periodicities in aR1 1' aR12' and 3312 in the first 3 hours. Note the decreasing 
tendency, 3312' to reach stage 3 in the second half of the night. aliR serves as an example of a very constant 
rate. 

SIMULA nONS 

In this section we describe how to generate simulations by the model. These enable 
both a general qualitative impression of its performance and statistical testing of any 
particular aspect. Some examples are given. 

When sleep resides in stage i, there are six possible transitions to the other six 
stages, j#i. Each transition may occur with a certain probability, as specified by the 
transition rates, ajli' This corresponds to the transitions being generated by Poisson 
point processes (28, ch. 2) with the same rates. As soon as one of these six Poisson 
processes generates a point, the corresponding transition, e.g., to stage k#i, occurs. 
Sleep now resides in stage k, and the process starts anew. 

The simulation based on Poisson point processes runs as follows. We start at time t 
at stage i. Six Poisson processes (with rates ajl) are active, and they are simulated 
simultaneously as follows. A random number generator is used to obtain six inde
pendent variables, Xj' that are uniformly distributed in the interval [0,1]. A logarithmic 
transformation yields the variables, -In(xj), that are exponentially distributed. These 
would equal the six waiting times, Wjlio for the first transitions to the six possible 
stages, j#i, if the Poisson processes were homogeneous with rates ajli = 1. The correct 
waiting times for our inhomogeneous processes are obtained by a transformation of the 
time axis. These are the times, Wjli, for which [(28), ch. 2]: 

t + Wili 

J. ajlb)&r = -In(xj) 
t 

(7) 
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FIG. 4. Individual time courses of transition rate estimates for subjects ND. AD. and NS. Solid line. 
smoothed time course (by hand, AD only). Note the constant, synchronized periodicities in AD and NS with 
periods of ~93 and 101 min. respectively. 

After the shortest, Wk1i , of these six waiting times, a transition at time t + Wk1i to stage 
k occurs. Thereafter, the simulation of the next transition starts. 

Figure 5 shows three types of simulation. The first two merely serve as a further 
illustration, besides Figs. 3 and 4, to the experienced hypnogram reader (others may 
use Fig. I as a reference) of the importance of time variability and individuality in the 
model. Simulations that neglect these (Fig. 5a and b, respectively) can be seen, even at 
first glance, to differ clearly from real hypnograms. Only the "individual" simulations 
in Fig. 5c show a nightly trend in the amount of slow wave sleep and a REM-NREM 
periodicity comparable with real sleep. 

DISCUSSION 

The proposed model suggests transition rates, ~Ii' as parameters that characterize 
the sleep mechanism. The rates reflect the well-known trends and periodicities in sleep 
as well as some interindividual differences. Simulations resemble real hypnograms. 
The arguments (21) against the model have been disproved. Therefore, the Markov 
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FIG. 5. Simulated hypnograms, based on (a) constant whole-group rates of Table 1; (b) as (a), but with the five smoothed time-varying whole-group rates 
of Fig. 3. (c) as (b), but with the three individual smoothed rates of Fig. 4, subject AD. Note the absent, weak, and comparable (to the real hypnograms of 
Fig. I) REM-NREM periodicity in a, b, and c, respectively. 
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SIMULATION OF HYPNOGRAMS BY A MARKOV CHAIN 413 

model deserves reconsideration, and this article provides the methods for its specifica
tion, application, and simulation. 

The transition rates in our simulations can have any time course, and they are set a 
priori and independent of each other, thus offering a very large degree of freedom. In 
fact, if the estimation interval, ~, becomes infinitely small, the model will exactly re
produce the one hypnogram to which it has been adapted. Validation of the Markov, 
and of any more complex, model is therefore difficult. Although it may be possible to 
apply statistics individually, based on many nights per subject, this would still account 
for only some aspects. Therefore, simulated hypnograms should also be subjected to 
the more comprehensive judgment of experienced sleep researchers. 

The model can probably be simplified, because the rates seem to be generated by 
mechanisms that impose simple time courses (e.g., a21I' aIIWI and a312) , interdepen
dencies between rates (e.g., aR12' aRI I' and a312 seem to be synchronized to each other), 
or sleep dependencies. Such mechanisms are also suggested by the deterministic sleep 
models mentioned in the introduction. It is possible to combine the Markov model and 
some deterministic models by interpreting the deterministic models as mechanisms 
that generate the rates for the Markov model. The result might be a model with few 
parameters that still simulates most probabilistic and deterministic aspects of sleep. 
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RESUME 

Un processus de Markov a ete propose comme modele pour Ie mechanisme qui produit les 
phases de sommeil humaines. Une methode a ete introduite pour I'estimation des parametres du 
modele, i.e., les probabilites de la transition (tau x) entres les phases du sommeil, et al ete appli
quee aux 95 hypnogrammes chez 23 sujets. Les taux caracterisent des differences interindivi
duelles et des variations nocturnes du mecanisme du sommeil, lie au nombre diminuant du "slow 
wave sleep" (vague lente de sommeil) dans Ie cours de la nuit, et la periodicite REM-NREM. Le 
modele simule les deux, Ie dynamisme probable, ainsi que Ie dynamisme predit sus-mentionne, 
mais seulement si ces taux individuels. variant en temps, sont appliques. 
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