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Simulation of Interfacial Phonon
Transport in Si–Ge
Heterostructures Using an
Atomistic Green’s Function
Method
An atomistic Green’s function method is developed to simulate phonon transport across a
strained germanium (or silicon) thin film between two semi-infinite silicon (or germa-
nium) contacts. A plane-wave formulation is employed to handle the translational sym-
metry in directions parallel to the interfaces. The phonon transmission function and
thermal conductance across the thin film are evaluated for various atomic configurations.
The contributions from lattice straining and material heterogeneity are evaluated sepa-
rately, and their relative magnitudes are characterized. The dependence of thermal con-
ductance on film thickness is also calculated, verifying that the thermal conductance
reaches an asymptotic value for very thick films. The thermal boundary resistance of a
single Si/Ge interface is computed and agrees well with analytical model predictions.
Multiple-interface effects on thermal resistance are investigated, and the results indicate
that the first few interfaces have the most significant effect on the overall thermal
resistance. �DOI: 10.1115/1.2709656�

Introduction
The characteristic feature sizes of modern electronic devices are

rapidly approaching nanometer scales, and nanoengineered mate-
rials such as superlattices and quantum wires have been shown to
possess excellent thermoelectric properties �1�. Heat transport in
these systems, particularly across embedded interfaces, is critical
to their performance and can exhibit significant differences as
compared to conventional Fourier heat conduction. In this paper,
an atomistic Green’s function method is developed to study cross-
plane heat conductance through a strained thin film between two
semi-infinite contacts and the thermal boundary resistance be-
tween two dissimilar diamond-structure crystals.

The atomistic Green’s function method is an effective tool to
simulate ballistic transport in nanoscale devices and has been
widely used in the simulation of electron transport �2�. The pri-
mary advantage of this approach is its efficiency in handling in-
terfacial and boundary scattering, two important mechanisms in
nanoscale devices. The dominant phonon mean free path �MFP� in
silicon at room temperature is approximately 300 nm �3�. When
the device characteristic length is much smaller than the MFP,
ballistic transport dominates, and the major resistance to heat flow
is imposed by interfaces and boundaries.

Several theoretical models exist to estimate thermal boundary
resistance �TBR�. The acoustic mismatch model �AMM� by �4�
accounts for long-wavelength phonons and relates the transmis-
sion coefficient to acoustic impedances of the two adjacent mate-
rials; therefore it is strictly valid only at low temperatures. The
diffuse mismatch model �DMM� by �5� assumes complete diffuse
scattering of phonons at interfaces and ascribes the thermal inter-
face resistance to mismatches of phonon density of states. In order
to estimate thermal boundary resistance with the DMM, the pho-

non density of states must be supplied, either from a priori calcu-
lations or experiments. Neither the AMM nor DMM includes the
details of interfacial microstructure, i.e., in both models, thermal
boundary resistance is determined solely by the two joining ma-
terials without regard to how they are joined. This approximation
limits the application of these two models �6�.

Several numerical tools have been employed to simulate sub-
continuum heat conduction. One of them is based on the phonon
Boltzmann transport equation �BTE�, which describes phonon
transport by a statistical distribution function. The BTE can be
solved by making an analogy to the equation of radiative transport
�ERT� �7�, using finite volume methods �8� or with Monte Carlo
methods �9�, with various assumptions and simplifications.
Yazdani and Asheghi �10� used the acoustic mismatch model to
predict interface resistance between strained Si/SiGe and solved
the BTE for phonons with a single mode relaxation time assump-
tion in a strained silicon transistor. Prasher and Phelan �7� devel-
oped a scattering-mediated AMM with the BTE to investigate
bulk scattering effects on thermal boundary resistance. In both
studies, the phonon density of states and group velocity were sup-
plied as assumed quantities, and different polarization branches
needed to be considered separately. Further, the nature of phonon
interfacial transport was simplified through AMM, DMM, or other
models.

Another relevant computational tool is molecular dynamics
�MD�, which is computationally expensive and treats atomic vi-
brational modes classically. Thus, strictly speaking, it is not appli-
cable at temperatures much lower than the Debye temperature.
Picu et al. �11� employed equilibrium molecular dynamics to
study strain and size effects in solid Ar nanostructures and con-
cluded that lattice thermal conductivity in strained nanostructures
under plane stress is controlled by boundary scattering. Abramson
et al. �12� used nonequilibrium molecular dynamics to study in-
terface and strain effects in Kr and Ar heterostructures and ob-
served that an imposed tensile strain resulted in a significant de-
crease in thermal conductivity. Schelling et al. �13� used MD to
simulate phonon wave-packet dynamics through perfectly coher-
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ent interfaces between two materials with different masses and
obtained energy transmission coefficients that were similar to
those of Young and Maris �14�.

The atomistic Green’s function method is based on a quantum
mechanical description of the phonon energy distribution, rather
than the classical description employed in MD. Therefore, the
atomistic Green’s function method has significant advantages over
MD at low temperatures. As long as the harmonic assumption is
satisfied, the atomistic Green’s function �AGF� method retains
these advantages over MD. Practical examples include nanostruc-
tures with characteristic lengths that are much smaller than pho-
non mean free paths �typically 100–300 nm at room temperature�
and transport across interfaces. Computationally, the calculation
of interfacial phonon transmission using Green’s functions is
much faster than that by MD. Many numerical challenges such as
finite-size effects in MD are also mitigated.

Unlike the BTE with a boundary scattering model or a continu-
ous acoustic wave model �15�, atomistic numerical methods �in-
cluding MD, lattice dynamics, and the atomistic Green’s function
method� provide sound solutions without excessively complicated
appreciation of phonon transport fundamentals �16�. To date,
atom-based simulations of phonon interfacial transport have not
been widely investigated and documented. Young and Maris �14�
investigated phonon transmission between two identical semi-
infinite �face centered cubic� �FCC� lattices with different masses
and spring constants using lattice dynamics, and the spectral de-
pendence of the phonon transmission coefficient was calculated.
Their method was later extended by Pettersson and Mahan �17� to
handle dissimilar lattices. However, this method requires two lat-
tices fully connected at the interface, whereas the atomistic
Green’s function method can be used in cases where the two ma-
terials are connected by a nonperiodic junction, such as a point
contact or a nanowire. Sui Herman �18� used a modified Keating/
valence-force-field model to study the effect of strain on phonon
dispersion and elastic constants of Group IV semiconductors, but
thermal transport calculations were not reported.

The atomistic Green’s function method, as shown in this paper,
provides an accurate and versatile approach to perform nanoscale
heat transport simulations. The atomistic Green’s function method
is based on a dynamical equation and the quantum mechanical
phonon energy distribution. The method incorporates the phonon
density of states into transmission function calculations. Therefore
no a priori knowledge of phonon density of states is required. The
inputs are equilibrium locations of atoms and interatomic poten-
tials, and experimentally fitted phonon dispersion curves are not
needed. Under harmonic transport, the transmission function and
thermal conductance given by the atomistic Green’s function
method are exact. The wave nature of phonon transport is also
captured, and a method to introduce the effect of anharmonicity
has recently been developed �19�. The atomistic Green’s function
method also holds the promise to provide boundary conditions for
mesoscale simulation tools, such as BTE solvers.

Strained silicon technology provides a means to increase carrier
mobility in the channel region of a metal–oxide–semiconductor
field effect transistor �MOSFET� by altering electron energy
bands to reduce effective mass and intervalley scattering rates.
MOSFETs based on this technology exhibit 10–25% improve-
ments in device performance metrics as compared to conventional
unstrained silicon transistors �20�. Pop et al. �21� used a Monte
Carlo method to simulate electron–phonon interactions in order to
determine the phonon generation rate and associated Joule heating
effects in bulk and strained silicon. They found that generated
phonon distributions are different in bulk and strained silicon at
low fields. Phonon transport simulations with the atomistic
Green’s function method in this emerging technology can provide
not only insights into heat transport through the strained silicon
layer, but also a potentially common framework to simulate

electron–phonon scattering and related local heat generation
and dissipation processes when combined with electron transport
solvers.

The theoretical framework of the atomistic Green’s function
method in phonon transport simulations has been described pre-
viously and implemented for a nanowire system in Refs. �22,23�.
The theory is extended in this paper to handle a thin-film system.
The transmission function and thermal conductance �resistance�
for strained thin films are evaluated, and their dependencies on
thickness, temperature, and other factors are discussed. A special
case is also considered in which the thermal boundary resistance
between two dissimilar materials is predicted. The general AGF
method presented in this paper can be readily extended to more
complicated nanostructures �such as nanowires or nanocrystals
with defects� between two bulk contacts.

Problem Definition
Actual atomic configurations at heterogeneous interfaces are

very complicated and vary significantly with deposition condi-
tions �24�. To define atomic locations in a reasonably simple way,
an idealized geometry has been chosen and is shown in Fig. 1.
The atomic lattice is based on an undistorted diamond lattice and
is later modified using Poisson’s ratio to reflect changes due to
strain.

In Fig. 1, each square represents a unit cell in a crystal lattice.
“Contact1” �including atom Groups LCB and LC� and “Contact2”
�including atom Groups RCB and RC� are two semi-infinite ther-
mal reservoirs at constant temperatures T1 and T2, respectively.
Atom Group LC includes atoms in “Contact1” that bond with the
thin-film atoms. Atoms in Group LCB do not have any bonds with
the thin-film atoms. Therefore, the dynamical properties of these
two regions �LCB and LC� are different. Similar definitions apply
to atom groups RC and RCB. A thin film �including atom groups
LD, D, and RD� of infinite extent in the x and y directions is
placed between the two contacts. Atom Groups LD and RD in-
clude thin-film atoms that bond with “Contact1” and “Contact2”
atoms, respectively. Atoms in Group D have no bond with either
contact. In the cases discussed later, the contact and thin-film ma-
terial can be either germanium or silicon, and their �100� direc-
tions are oriented along the z axis.

The size mismatch between silicon and germanium lattices cre-
ates either tensile or compressive strains on the thin film. The
semi-infinite contacts are assumed to remain unstrained due to
their bulk volumes. In this paper, we assume that the lattice mis-

Fig. 1 Schematic diagram of a five-unit-cell thin film between
two semi-infinite contacts. The definitions of different groups
of atoms are shown. In this case, Region D includes three unit-
cell layers.
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match creates a pure-strained thin film without inducing disloca-
tions. Such lattices typically occur in extremely thin films, while
thicker films usually include buffer zones and relaxed lattices
�25�. In the Ge/Si/Ge case �Ge contacts, Si thin film�, germanium
contacts stretch the silicon thin film by 4% in the in-plane direc-
tion �xy plane�, creating biaxial strains of 0.04 in both x and y
directions. The silicon thin-film lattice tends to maintain its vol-
ume, and consequently, it contracts in the z direction. We assume
that the z strain can be calculated using the bulk Poisson’s ratio
�0.28 for silicon �100� and 0.26 for germanium �100� �26��. Thus,
the z distance between any two atoms is reduced by a factor of
approximately 0.01 �biaxial strain multiplied by Poisson’s ratio�.
Similar lattice adjustments have been applied to the Si/Ge/Si
case.

Theory

Harmonic Matrix and Interatomic Potential. The atomistic
Green’s function method starts by building harmonic matrices.
Prior work �22� has shown that anharmonic scattering in Si at
room temperature can be neglected if the device’s characteristic
length is less than 20 nm, and even at the 45 nm semiconductor
technology node, many film structures possess cross-plane thick-
nesses less than 20 nm. In such cases, a harmonic potential can be
used to build the harmonic matrix H, which represents interac-
tions among different degrees of freedom �d.o.f�. The mathemati-
cal definition of the harmonic matrix is �22�

H = �Hij� =
1

�MiMj�−
�2U

�ui�uj
, if i � j

− 	
r�j

�2U

�ui�uj
, if i = j 
 �1�

where ui and uj refer to any two atomic displacement degrees of
freedom respectively; and U represents the total bonding energy.
Mi and Mj are atomic masses associated with degrees of freedom
ui and uj, respectively. The dynamical equation of the entire lattice
can be written as

��2I − H�ũ = 0 �2�

where ũ is a column vector of degrees of freedom. We use Harri-
son’s interatomic potintial �27� to evaluate the harmonic matrix H

�Ui =
1

2
C0

�di − di,e�2

di,e
2 +

1

2
C1���i�2 �3�

where di represents the bond length; and di,e represents the equi-
librium bond length. ��i is the change to the equilibrium tetrahe-
dral angle �i �1.9106 rad�. Although this simple potential model
has only two independent parameters, C0 and C1 �see potential
parameters in Table 1�, it includes bond-stretching/bending poten-
tials and reproduces bulk phonon dispersion curves reasonably
well �27�. This potential model was used to predict the thermal
conductivity of silicon nanowires, and the numerical results agree
well with experimental data �28�. Because of the harmonic as-
sumption, potential variations in the vicinity of the equilibrium
atomic positions are the only information needed to evaluate har-

monic matrices. Near the equilibrium locations, more complicated
inter-atomic potentials can be simplified parabolically to a form
that is consistent with Harrison’s potential. However, we also note
that the bond-stretching and bond-bending parts of the potential
are actually correlated, and other advanced potentials have been
developed to address this problem �29�.

Plane-Wave Formulation in Thin Films. The system of inter-
est in this work is infinitely large in the x and y directions and
contains infinite degrees of freedom. Therefore the harmonic ma-
trix defined in Eq. �1� is infinitely large. For these directions we
use the wave vector representation, in terms of k� �, to build har-

monic matrices �H̃� with the assumption of ideal translational in-
variance in x and y directions. The thin film and contacts are
divided into unit-cell layers along the z axis. One unit cell in each
layer is sufficient to represent the whole layer. A 6�6 harmonic

matrix H̃p is defined to represent the intralayer interaction in layer

p, while another 6�6 harmonic matrix T̃p,q is defined to represent
the interlayer interaction between layer p and the layer to its right
�q�

H̃p�k� �� = 	
n=0

4

Ht,ne−ik� �R
�

n �4�

T̃p,q�k� �� = 	
m=1

4

Ht,me−ik� �·R
�

m �5�

where t is an arbitrary unit cell on layer p. The index n loops
through the neighboring unit cells of unit cell t that are in the
same layer �p�, including itself �n ranges from 0 to 4 for a �100�
diamond lattice�, and the index m loops through the neighboring
cells in the next layer q �m ranges from 1 to 4 for a �100� diamond
lattice�. Ht,n �or Ht,m� is the regular harmonic matrix that links

unit cells t and n �or m�. With these two types of matrices �H̃p and

T̃p,q�, the complete harmonic matrix for any system can be as-
sembled. For example, the matrix to represent an l-layer thin film
is

H̃tf�k� �� = �
H̃1 T̃1,2 0 ¯ 0

T̃2,1 H̃2 T̃2,3 ¯ 0

] ] ] ] ]

0 ¯ 0 T̃l,l−1 H̃l

 �6�

where T̃p,q= T̃q,p
† �conjugate transpose�. k� � in Eqs. �4�–�6� is an

arbitrary two-dimensional �2D� lattice wave vector. Each

wavevector �k� � =kxb1
� +kyb2

� � represents phonons traveling in one
distinct x-y direction. The 2D lattice perpendicular to the �100�
direction is a square lattice, and its first Brillouin zone is a square
�kx� �−�2� /a ,�2� /a� ,ky � �−�2� /a ,�2� /a��, as shown in Fig.
2. Because of translational invariance in the x and y directions, the

Table 1 Computational parameters used in the construction of
Si and Ge harmonic matrices. The first number in C0 is the
unstrained value and the second number is the strained value.

Silicon Germanium

Atomic mass m �kg� 4.664�10−26 1.206�10−25

Lattice constant �Å� 5.43 5.65
C0 in Harrison’s potential �eV� 49.1/44.8 47.2/51.2
C1 in Harrison’s potential �eV� 1.07 0.845
Poisson’s ratio 0.28 0.26

Fig. 2 The 2D direct lattice „left… and reciprocal lattice „right… in
a fcc structure. A 10Ã10 mesh is placed on the first Brillouin
zone in the right subfigure.
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transmission function for each k� � can be solved independently,
and the total heat flux can be expressed as an integral of the
independent heat fluxes for each k� �. We emphasize that this sim-
plification would not be valid if the x and y translational symme-
tries were broken, such as in the case of a point contact. The total
heat flux calculation must account for phonons traveling in all
directions. Thus, it is expressed as an integral over k� � as shown in
the next section.

Green’s Function Matrices. The response of a dynamic sys-
tem �defined by Eq. �2�� to an infinitesimal perturbation can be
described by a Green’s function. In the present work, the Green’s
functions gLCB and gRCB represent the responses of the two semi-
infinite contacts, respectively

gLCB��,k� �� � lim
�→0

���2 + �i�I − H̃LCB�k� ���−1 �7�

gRCB��,k� �� � lim
�→0

���2 + �i�I − H̃RCB�k� ���−1 �8�

where HLCB and HRCB are the dynamical matrices of the left and
right contacts. gLCB and gRCB are determined by decimation tech-
niques �30,31�, and their imaginary parts are directly associated
with phonon density of states �32�. In Eqs. �7� and �8�, � is a small
number corresponding to phonon energy dissipation in contacts
whose role is elaborated in Ref. �33�. The choice of � affects the
energy resolution of the uncoupled Green’s function and subse-
quent calculations. A smaller � value gives better energy resolu-
tion but requires longer computational times. A method to choose
an appropriate value of the perturbation � is documented in Ref.
�22�.

Referring again to Fig. 1, atoms in LC �or RC� are different
than other atoms in “Contact1” �or “Contact2”� because they are
bonded to atoms in the thin film. Therefore, gLC �gRC� must be
defined separately and differs from gLCB �gRCB� in a general het-
erogeneous system. Green’s function matrices gLC and gRC are
defined as

gLC��,k� �� � ��2I − H̃LC�k� �� − T̃LC,LCBgLCBT̃LCB,LC�−1 �9�

gRC��,k� �� � ��2I − H̃RC�k� �� − T̃RC,RCBgRCBT̃RCB,RC�−1 �10�

where H̃LC and H̃RC are intralayer matrices �see Eq. �4�� for re-
gions LC and RC, respectively.

The Green’s function of the device is defined as

G��,k� �� � ��2I − H̃tf − �L − �R�−1 = �GLD,LD GLD,D GLD,RD

GD,LD GD,D GD,RD

GRD,LD GRD,D GRD,RD


�11�

where H̃tf is the harmonic matrix of the thin film �see Eq. �6��. �L
and �R are self-energy matrices that physically represent changes
to the thin film’s dynamical behavior caused by contacts

�L��,k� �� � ��L 0 0

0 0 0

0 0 0
 �12�

�R��,k� �� � �0 0 0

0 0 0

0 0 �R
 �13�

�L and �R are defined as

�L��,k� �� � T̃LD,LCgLCT̃LC,LD �14�

�R��,k� �� � T̃RD,RCgRCT̃RC,RD �15�

where T̃LD,LC, T̃LC,LD, T̃RD,RC, and T̃RC,RD are matrices that link
contact and thin-film atom groups �see Eq. �5��. Matrices �L and
�R, later used in the expression of the transmission function, are
defined as

�L��,k� �� � i��L − �L
†� �16�

�R��,k� �� � i��R − �R
†� �17�

and i is the unitary imaginary number.

Transmission and Heat Flux. Our ultimate goal is to calculate
the heat flum and thermal conductance across thin films. The
propagation of phonons between two contacts is determined by
the transmission function � �� ,k� �� �34�

���,k� �� = Trace��LGLD,RD�RGLD,RD
† � �18�

GLD,RD in Eq. �18� is the top right block matrix in the device
Green’s function matrix �see Eq. �11��. The total heat flux is de-
fined as an integral over frequency and k� �

J =�
0

	�
k� �


�

2�
�Ñ������,k� ��

dk� �

�2��2d� �19�

The integral over k� � in Eq. �19� can be converted to a summation
over a finite number of k� � upon discretizing the first Brillouin
zone �see Fig. 2� with an N�N uniform mesh

J =
1

s�0

	

�

2�
�Ñ� 1

N2	
k� �

���,k� ���d� �20�

where s is the cross-sectional area of one unit cell. If the tempera-
ture difference between the two bulk contacts is sufficiently small,

the phonon occupation difference �Ñ��� in Eq. �19� becomes

�Ñ��� =

�

kBT2

e
�/kBT

�e
�/kBT − 1�2�T �21�

Otherwise, actual occupation numbers can be used to calculate the

phonon occupation difference ��Ñ= Ñcontact1− Ñcontact2�. The ther-
mal conductance across a thin film is then defined as the ratio of
heat flux to temperature difference

� =
J

�T
� W

m2 K
� �22�

Thermal resistance �R� is the inverse of conductance and has units
of �m2 K/W�.

Results and Discussion
The atomistic Green’s function method described above has

been used to simulate ballistic phonon transport in a thin-film
system. Several numerical benchmarks, such as the known para-
bolic frequency dependence of a pure material’s transmission
function at low frequencies �28�, were conducted before the fol-
lowing numerical investigations. The thermal conductance of a
pure material has also been verified to exhibit a T3 dependence at
low temperatures. Upon testing for grid independence, a
Brillouin-zone mesh of 100�100 was needed to achieve thermal
conductances that converged to within 1%. The computational
time varies from several minutes to several hours on a common
workstation in the following cases.

The Effects of Heterogeneous Materials and Strains. In the
Si/Ge/Si and Ge/Si/Ge heterogeneous thin-film cases, thermal
resistance occurs due to two factors. One factor is the
heterogeneous-material effect, which causes mismatches of pho-
non density of states and group velocity. Another factor is lattice
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strain, which displaces atoms and alters bond strength. Several
computational examples are constructed here to demonstrate the
relative significance of these two effects.

Transmission functions of these different atomic configurations
are compared in Figs. 3 and 4. A strained heterogeneous case in
which a stretched silicon thin film is placed between two germa-
nium contacts �represented by “Strained Ge/Si/Ge”� and another

strained heterogeneous case in which a compressed germanium
thin film is placed between two silicon contacts �represented by
“Strained Si/Ge/Si”� are included. Strains displace atoms away
from their equilibrium positions. Therefore, both the geometric
configuration of atoms �bond length and bond angles� and the
force constants between atoms need to be modified. Based on
Grüneisen’s rule, we estimate that the change in the primary force
constant �C0 in Table 1� is four times that of the bond length.

The “No-strain Ge/Si/Ge” and “Strain-only Ge/Ge/Ge” cases
shown in Figs. 3 and 4 are not physical but are included as infor-
mative thought experiments. The “No-strain Ge/Si/Ge” case is
derived from the pure germanium case, in which germanium at-
oms in the thin-film region are replaced by silicon atoms while the
lattice in the thin-film region remains a germanium lattice. In this
case, only the heterogeneous effect exists because strain has been
artificially removed. The “Strain-only Ge/Ge/Ge” case is derived
from the “Strained Ge/Si/Ge” case such that silicon atoms in the
thin-film region are replaced with germanium atoms, but the thin-
film lattice remains stretched as in the “Strained Ge/Si/Ge” case.
In this case, only lattice-straining effects exist because all atoms
are germanium. In all cases discussed in this subsection, the film
thickness equals the thickness of one unit cell in the �100�
direction.

In pure materials, the phonon transmission function at one fre-
quency depends only on the number of available phonon modes at
that frequency. Pure germanium is known to have a higher density
of states at low frequency than pure silicon �35�. Therefore, its
transmission is higher than that of pure silicon at low frequencies.
This trend is confirmed by predictions from the atomistic Green’s
function method, as shown by the pure Si and pure Ge results in
Fig. 3�a�. Pure silicon also has a more extensive spectrum than

Fig. 3 Comparisons of full-spectrum transmission functions

Fig. 4 Comparison of the straining effect with the
heterogeneous-material effect on phonon transmission func-
tions across a one-unit-cell thin film at low frequencies

Journal of Heat Transfer APRIL 2007, Vol. 129 / 487



pure germanium. The maximum phonon frequency is approxi-
mately 98�1012 rad/s in silicon and approximately 58
�1012 rad/s in germanium.

The results of these calculations indicate that the straining ef-
fect is small in the ballistic transport regime in comparison to the
heterogeneous-material effect. As shown in Fig. 3�b�, no signifi-
cant difference exists between the pure Ge and the strain-only
Ge/Ge/Ge cases. If we compare the strained Ge/Si/Ge case to
the no-strain Ge/Si/Ge case, the difference is also negligible.
However, the difference between the pure Ge case and the no-
strain Ge/Si/Ge case is large, as is the difference between the
strained Ge/Si/Ge case and the strain-only Ge/Ge/Ge case �see
Fig. 3�b��. The Si–Ge lattice mismatch is only 4%. The difference
between silicon and germanium atomic masses is more than 50%,
and the difference between their group velocities is approximately
40% �see Tables 1 and 2�. This large difference in group velocities
causes heterogeneous effects to be more prominent.

The transmission functions at low frequencies converge to two
curves, corresponding to pure Si and pure Ge �see Fig. 4�. We note
that for the ultralow frequencies considered in Fig. 4 �for which
the transmission function goes to zero�, a much finer Brillouin
zone mesh �3000�3000� was employed to produce the parabolic
frequency dependence. The straining and heterogeneous-material
effects both vanish because the lattice vibrates very slowly at low
frequencies, and the whole solid resembles a rigid body, with
neighboring atoms vibrating nearly in phase. Therefore,
heterogeneous-material and straining effects are minor at low fre-
quencies. This phenomenon also causes the low-temperature con-
ductances to collapse to those of two pure materials, because low-
frequency phonons dominate thermal transport at low
temperatures. However, at room temperature, the heterogeneous
interface effect is significant. The conductance of Ge/Si/Ge is
approximately half that of pure Ge at room temperature, and the
room-temperature conductance of Si/Ge/Si is 30% that of pure
Si. At room temperature and higher, the conductance of Ge/Si/Ge
is close to the conductance of Si/Ge/Si �see Fig. 5�. This result is
related to the fact that the areas under the Si/Ge/Si and Ge/Si/Ge
transmission curves are comparable around the dominant phonon
frequency at room temperature.

In the ballistic transport regime, scattering is only caused by
interfaces and boundaries, and the scattering rate is roughly a
constant that is independent of temperature. Therefore, thermal
conductance is governed by the average phonon energy and has
the same temperature dependence as thermal capacitance. Conse-
quently, as shown in Fig. 5, thermal conductance increases with
temperature and reaches a plateau at temperatures significantly
higher than the Debye temperature.

Film Thickness Dependence. Figure 6 shows the thermal con-
ductance through a Ge/Si/Ge system as a function of film thick-
ness at different temperatures. The thickness of the thin film is

expressed in terms of the number of unit cells. For a strained
silicon thin film, one unit cell has a thickness of 2.69 Å. In the
ballistic transport regime, the film thickness dependence of con-
ductance is mainly attributed to the coupling and decoupling of
phonon wave functions. If the two interfaces are extremely close,
phonons can easily propagate from one side to another; thus the
conductance in the one-unit-cell case is the largest. As the film
thickness increases, thermal conductance decreases. Finally the
conductance converges to the value corresponding to an infinitely
thick, scattering-free film.

Thermal Boundary Resistance Across a Single Si/Ge
Interface. TBR is present across interfaces between any dissimi-
lar materials, and it results from differences in lattice vibration
properties. If the material in the thin-film region is selected to be
the same as that of one contact region, a single interface between
the thin film and the other contact is created. Consequently, the
atomistic Green’s function method described above can be used to
calculate TBR. However, the straining effect cannot be easily in-
cluded in this structure because the three-dimensional layout of
the interfacial atoms is complicated and difficult to predict. Thus,
we choose to simulate the TBR between Si and Ge, assuming that

Table 2 Zero-frequency group velocities of longitudinal
acoustic „LA… phonons and transverse acoustic „TA… phonons
calculated by Harrison’s potential „the first number…, compared
with the zero-frequency group velocities estimated from elastic
constants by Hollanda

„the second number…. Harrison’s poten-
tial is known to underestimate the zero-frequency group veloci-
ties. Densities of Si and Ge are shown as well. These values
obtained from Harrison’s potential are used in the acoustic
mismatch model to predict the thermal boundary resistance
across a Si/Ge interface.

Silicon Germanium

LA group velocity �m/s� 6877/8480 4114/4920
TA group velocity �m/s� 3535/5860 1978/3550
Density �kg/m3� 2330 5323

aSee Ref. �42�.

Fig. 5 Comparison of the thermal conductances of heteroge-
neous materials and those of homogeneous materials across a
one-unit-cell thin film

Fig. 6 Thickness dependence of thermal conductance in the
Ge/Si/Ge configuration. Each unit cell is 2.69 Å.
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they both have germanium lattice distances.
Direct TBR measurements of Si/Ge interfaces are not readily

available because most prior work �36,37�, has reported only the
thermal conductivity of Si/Ge superlattices. It remains unclear
how to convert the thermal conductivity of a nanometer-size pe-
riodic structure to the thermal conductance of a single interface. In
one attempt �38�, the converted thermal interface conductance was
reported to be ten times larger than the largest thermal interface
conductance ever measured. Direct measurements of thermal re-
sistance for other heterogeneous materials have been conducted
by several groups. Stoner and Maris �39� used a picosecond opti-
cal technique to measure the thermal boundary resistances be-
tween metals and dielectrics. Costescu et al. �40� measured the
TBR between epitaxial TiN and single crystal oxide with the time-
domain thermoreflectance �TDTR� method.

The acoustic mismatch model �AMM� has been used to esti-
mate the thermal conductance of a single interface. This model
assumes that phonon interfacial transport is governed by con-
tinuum acoustics, and the interface is treated as an ideal plane.
Therefore, it produces similar results at low temperatures to the
atomistic Green’s function method. We use the AMM thermal
boundary resistance equation and associated tables published by
Cheeke et al. �41� to estimate TBR at low temperatures �T
�30 K�. Harrison’s potential is used again to calculate bulk dis-
persion curves and group velocities in the �100� direction. The
calculated zero-frequency group velocities, the zero-frequency
group velocities estimated from elastic constants by Holland �42�,
and densities used in the AMM are listed in Table 2. Harrison’s
potential is known to predict lower group velocities �27�.

A comparison between the atomistic Green’s function results
and the TBR predicted by the AMM is shown in Fig. 7. The AMM
and the atomistic Green’s function method both predict an ex-
pected cubic temperature dependence of TBR at low temperatures
and agree very well at temperatures less than 20 K. This result is
expected because the dominant phonons at low temperatures ex-
hibit linear dispersion and the AMM works reasonably well. The
Si/Ge interface produces a thermal boundary resistance of 6.2
�10−9 m2 K/W at room temperature according to the present re-
sults. The calculated interface thermal resistances can be used as
boundary conditions in large-scale BTE simulations. In a rigorous
BTE simulation that distinguishes phonon branch, phonon wave
vector, and phonon frequency, the AGF method also must be �and
can be� decomposed in terms of these variables.

Thermal Resistance Across Multiple Si/Ge Interfaces.
Multiple-interface structures are of great importance in engineer-

ing applications. The overall thermal resistance of a multiple-
interface structure is generally considered to increase with addi-
tional interfaces, because more phonons are reflected or scattered
at interfaces. To evaluate the dependence of thermal resistance on
the number of interfaces, the device region shown in Fig. 1 was
made to include a multiple-interface structure. As an example, a
six-interface structure is shown in Fig. 8�a�. Mathematically, the

matrix H̃tf in Eq. �6� now is more complicated and contains con-
tributions from each layer. Every layer in the multiple-interface
structure is one-unit-cell thick. The effects of strain are excluded
from the calculation because they were shown to be negligible in
the foregoing analysis. Resistances at different temperatures as
functions of the number of interfaces are shown in Fig. 8�b�. The
trend in the figure confirms that as the number of interfaces in-
creases, thermal resistance increases. However, the change from
two interfaces to four interfaces is much larger than changes
caused by additional interfaces. The thermal resistance curve
eventually levels out and approaches an asymptotic value. This
observation agrees with a previous study �12�, with the conclusion
that the effect of the first few interfaces is much more significant
than subsequently added interfaces.

To make a quantitative comparison between the AGF method
and prior experimental data, we have simulated the superlattice
sample with the shortest period �3 nm� considered in the experi-
mental study of Lee et al. �38�, and the results are shown in Fig. 9.
The thermal conductance is plotted as a function of the total su-
perlattice sample thickness for a temperature of 200 K. Because
of the higher computational expense in simulating the full thick-
ness �900 nm� due to the fine k� � discretization, we have calculated
several cases of shorter samples. A clear conductance asymptote
of 9.5�107 W/m2 K is reached beyond 20 nm and agrees with
the trend shown in Fig. 8�b�. The extrapolated thermal conduc-
tance at 900 nm is approximately one order of magnitude larger
than the experimental thermal conductance. The difference can be
ascribed to anharmonic effects in the experiment and to possible
imperfections in the superlattice sample.

Fig. 7 Comparison of the thermal boundary resistance across
a Si/Ge interface calculated by atomistic Green’s function
method to that by the acoustic mismatch model †41‡

Fig. 8 The effect of multiple interfaces on thermal resistance
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Conclusions
We have developed and described an atomistic Green’s function

method to study phonon transmission and thermal conductance
�resistance� of atomistically defined Ge/Si/Ge and Si/Ge/Si
strained thin films. The straining effect on thermal transport is
found to be negligible as compared to the heterogeneous-material
effect. At low frequencies, the transmission functions of the het-
erogeneous cases converge to those of the homogeneous cases
because long phonon wavelengths result in rigid-body-like atomic
motions. Room-temperature thermal conductances are reduced
significantly by heterogeneous interfaces. The ballistic thermal
conductance decreases as the thickness of the thin-film increases
and reaches an asymptotic value, corresponding to the value of an
infinitely thick film. We have also computed the thermal boundary
resistance of a single Si/Ge interface and verified that it agrees
with AMM results at low temperatures. A multiple interface case
was also investigated, showing that the first few heterogeneous
interfaces affect the thermal resistance to a much larger extent
than subsequent interfaces.

Nomenclature
J  heat flux, W/m2

M  atomic mass, kg

Ñ  phonon occupation number
N  mesh size, see Eq. �20�
R  thermal resistance, m2 K/W
T  temperature, K
U  interatomic potential, J
k�  wave vector, 1/m
a  lattice constant, m
i  unit of imaginary number

kB  Boltzmann constant, m2 kg/s2 K
s  cross-sectional area, m2

u  displacement degree of freedom, m
d  bond length, m

Greek Symbols
�  A small number corresponding to phonon

energy dissipation in contacts

  Planck constant, m2 kg/s
�  angular frequency, rad/s
�  thermal conductance, W/m2 K
�  Transmission function

Vector and Matrix
�  matrix defined in Eqs. �16� and �17�
�  self-energy matrix defined in Eqs. �12� and

�13�
�  matrix defined in Eqs. �14� and �15�

G  Green’s function matrix defined in Eq. �11�
g  uncoupled Green’s function matrix defined

in Eqs. �9� and �10�
H  harmonic matrix, defined in Eq. �1�
I  unity matrix

H̃  matrix representing intralayer interaction,
defined in Eq. �4�

T̃  matrix representing interlayer interaction,
defined in Eq. �5�

ũ  column vector consisting of vibrational de-
grees of freedom

R�  lattice vector

Subscripts and Superscripts
D  device region

LC  left contact region
LCB  left contact bulk region

LD  left device region
RC  right contact region

RCB  right contact bulk region
RD  right device region

tf  thin film
i  matrix row index, also the index of degree

of freedom
j  matrix column index, also the index of de-

gree of freedom
m  unit cell running index
n  unit cell running index
p  layer index
q  layer index
r  degree of freedom running index
t  unit cell index
†  conjugate transpose of a matrix
�  parallel direction to the thin film
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