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Abstract

In this work, we compare finite element and fast Fourier transform approaches

for the prediction of the micromechanical behavior of polycrystals. Both

approaches are full-field approaches and use the same visco-plastic single

crystal constitutive law. We investigate the texture and the heterogeneity of the

inter- and intragranular stress and strain fields obtained from the two models.

Additionally, we also look into their computational performance. Two cases—

rolling of aluminum and wire drawing of tungsten—are used to evaluate the

predictions of the two models. Results from both the models are similar, when

large grain distortions do not occur in the polycrystal. The finite element

simulations were found to be highly computationally intensive, in comparison

with the fast Fourier transform simulations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Most materials, manmade or natural, are polycrystals and often exhibit significant

elastic/plastic anisotropy that can be ascribed to the behavior of the constituent single crystals.

Modeling the micromechanical behavior of these materials, with emphasis on the evolving

texture and microstructure, is an active field of research in computational materials science.

Optimization of material properties and processes, vis-à-vis development of new materials

and products, depends largely on the ability to control and manipulate the evolving anisotropy.

Early industrial practice deemed texture to be an inevitable side effect of the manufacturing

process. Modern processes, by contrast, aim at optimizing the material properties by exploiting
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several microstructural mechanisms, such as slip activity, twinning, recrystallization and phase

transformation. Such optimization necessitates robust modeling and simulation tools. Recent

advances in theories that link microstructure with macroscopic properties, and development

of multi-scale methods have been quite helpful in this regard. The onus is now on efficient

algorithmic implementations to complement the developments on the theoretical front, thereby

enabling faster, and yet, reliable simulation techniques.

The existing simulation techniques for the prediction of micromechanical behavior

of polycrystals can be broadly classified into two categories—mean-field and full-field

simulations. The mean-field simulations typically employ homogenization schemes such

as Taylor (1938), Sachs (1928) and self-consistent models (e.g. Molinari et al (1987),

Lebensohn and Tomé (1993)). Variants of these models—for instance, Taylor-type schemes

(e.g. Van Houtte et al (2004)) and intermediate models (Ahzi and M’guil 2008)—primarily

aimed at improving texture prediction, have also been proposed. Most of these models,

however, overestimate the texture (Kocks et al 1998, Schmidt et al 2007), and hence, the

evolving anisotropy. Furthermore, they require significant enhancements, such as the n-site

implementation (Ahzi 1987, Canova et al 1992, Solas and Tomé 2001), or a second-order

extension (Ponte Castañeda 2002, Liu and Ponte Castañeda 2004, Lebensohn et al 2007) for

a realistic prediction of the intragranular heterogeneity of the stress and strain fields.

Increased computing power in recent years has made full-field simulations a reality,

thus providing a more accurate description of the micromechanical fields that develop in

the polycrystal. Crystal plasticity FEM with intra-crystalline resolution has been extensively

used for this purpose, both with regular (e.g. Becker (1991), Mika and Dawson (1999)) and

Voronoi tessellated microstructures (Barbe et al 2001, Diard et al 2005), as also with EBSD

based experimental data as input for simulations (e.g. Raabe et al (2001), Bhattacharyya

et al (2001)). The realistic description of the micromechanical stress and strain fields helps

understand the deformation behavior of complex and low symmetry polycrystalline materials

such as magnesium (Prakash et al 2009). However, the difficulty in meshing, coupled with

the large number of degrees of freedom required by such calculations, limits the complexity

of the problem investigated to representative volume element (RVE) simulations with a few

hundred grains.

Recently, a full-field method based on fast Fourier transforms has been proposed as an

alternative to small-scale FEM. Originally developed as a fast algorithm to compute the elastic

and inelastic, effective and local responses of composites (Moulinec and Suquet 1998, Michel

et al 1999), the FFT algorithm has recently been adapted for polycrystals (Lebensohn 2001) and

successfully used for the prediction of micromechanical behavior of copper (Lebensohn et al

2008) and ice (Lebensohn et al 2009). As a mesh-free method, the FFT algorithm circumvents

the problems that arise due to meshing in FEM simulations.

In this work, we compare the predictive capabilities of both FFT and meso-scale FE

solution techniques. The aim is to verify not only the macroscopic response but also the

micromechanical fields and texture predicted by the two models. Additionally, we also look

into the computation times of the two solution schemes. The plan of the paper is as follows. In

section 2 we first present the constitutive model used. Subsequently, in section 3, we discuss

the two solution techniques under consideration. The details of the simulations are described

in section 4. Results are presented in section 5 and a final discussion is presented in section 6.

2. Constitutive model

The overall behavior of the polycrystal is governed by the individual behavior of its constituents.

The polycrystal is assumed to be a periodic structure containing a sufficient number of
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individual crystals to be representative of the macroscopic behavior of the material under

consideration. Each crystal, characterized by a unique initial orientation in the polycrystal, is

discretized fine enough to capture the local field behavior.

Imposing an average velocity gradient ∇V on the periodic microstructure leads to an

average strain rate

Ė = 1
2
(∇V + ∇V T), (1)

and an average rotation rate

Ω̇ = 1
2
(∇V − ∇V T). (2)

We now consider the polycrystal at the local level, where all heterogeneities can be

distinguished. The local stress and strain-rate fields conform themselves to the periodic

arrangement of the polycrystal. Let x denote the position of a point in the unit cell and

v(x), the local velocity field associated with point x; then the local strain-rate field, which is

a function of the local velocity field, can be split into the overall strain rate Ė, which would

be the actual strain-rate field in the unit cell if it were homogeneous, and a fluctuation term
˜̇ǫ(x). The fluctuation term follows from a velocity fluctuation field ṽ(x) which accounts for

the presence of heterogeneities. The velocity and strain-rate fields in the unit cell admit the

following decomposition:

v(x) = Ė · x + ṽ(x),

ǫ̇(v(x)) = Ė + ˜̇ǫ(ṽ(x)) with ṽ(x) periodic.
(3)

Note that the periodicity of ṽ implies that the average of ˜̇ǫ in the unit cell vanishes leading to

〈˜̇ǫ〉 = 0 ⇒ 〈ǫ̇〉 = Ė, (4)

where 〈·〉 denotes the volumetric average of a quantity over the unit cell of volume V ,

〈f 〉 =
1

|V |

∫

V

f (x) dx. (5)

It simply follows that to satisfy equilibrium in the unit cell and between contiguous unit cells,

the traction vector has to be anti-periodic. The equilibrium conditions for the local stress σ

thus read

div(σ) = 0; σ · n antiperiodic; (6)

where n is normal to the unit cell boundary. The overall stress tensor, which in effect is the

macroscopic response of the microstructure, is the volume average of the local stresses

Σ = 〈σ〉. (7)

The local plastic strain rate is given by the sum of the contributions of the crystallographic

shear rates (Asaro 1983a, 1983b)

ǫ̇p(x) =

Ns
∑

α=1

mα(x)γ̇ α(x), (8)

where Ns is the number of active slip systems. The tensor mα denotes the symmetric Schmid

tensor of the system α under consideration, and is defined as

mα = 1
2
(sα ⊗ nα + nα ⊗ sα), (9)

where sα and nα are the slip direction and slip plane normal, respectively. The crystalline slip

is assumed to obey the rate-sensitivity approximation of the Schmid law, i.e. the slipping rate

γ̇ α on any particular system α is assumed to depend on the so-called Schmid stress,

γ̇ α = γ̇0

(

τ α

gα

)n

= γ̇0

(

mα : σ′

gα

)n

, (10)
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where γ̇0 is a reference shear rate, σ′ is the deviatoric stress tensor and τ α is the resolved shear

stress on the system α. The current strength of the slip system gα is determined by an extended

Voce type hardening rule

ġα =
dḡα

dŴ

∑

β

hαβ γ̇ β, (11)

with the hardening function

ḡα = τ0 + (τ1 + θ1Ŵ)

[

1 − exp

(

−
θ0Ŵ

τ1

)]

, (12)

where hαβ is a hardening matrix whose diagonal elements denote self-hardening and off-

diagonal elements denote latent hardening. The cumulative shear Ŵ in the grain is defined as

Ŵ =

∫ t

0

∑

α

γ̇ α dt. (13)

Using equation (10) in equation (8), we obtain

ǫ̇p(x) = γ̇0

Ns
∑

α=1

mα(x)

(

|mα(x) : σ′(x)|

gα(x)

)n

sign (mα(x) : σ′(x)). (14)

It is convenient to define here the local rotation rate for later use;

− ω̇p(x) = −

Ns
∑

α=1

βα(x) γ̇ (x), (15)

where βα = 1
2
(sα ⊗ nα − nα ⊗ sα) is the antisymmetric Schmid tensor.

3. Solution schemes

3.1. FFT solution scheme

The local stress tensor may be written as

σ(x) = L
0 : ǫ̇p(x) + φ(x) − p(x)1, (16)

with the polarization field φ given by

φ(x) = σ′(x) − L
0 : ǫ̇p(x), (17)

where L
0 is the stiffness of the medium if it were homogeneous. The choice of L

0 is rather

arbitrary, but the convergence of the method depends on this choice. In this work, we formulate

L
0 as

L
0 = 〈M−1〉, (18)

where M is a fourth order tensor obtained by rewriting equation (14) as

ǫ̇p(x) = M(σ′) : σ′(x). (19)

Equation (16) can now be used to build the equilibrium condition σij,j = 0. Assuming a rigid

visco-plastic problem, we have ǫ̇p = 1
2
(v + vT), leading to (in component notation)

L
0
ijklvk,lj + φij,j − p,i = 0, (20)

along with the assumed incompressibility condition

vk,k = 0. (21)
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Equations (20) and (21) constitute a system of differential equations that can be solved by

means of the Green’s functions method. Replacing the polarization term by a unitary body

force acting at a given point and along a given direction, we obtain

L
0
ijklGkm,lj (x − x′) + δimδ(x − x′) − Hm,i(x − x′) = 0

Gkm,k(x − x′) = 0,
(22)

where Gkm and Hm are the periodic Green’s functions associated with the velocity and

hydrostatic pressure fields respectively. Assuming that the Green’s functions are known, we

obtain the velocity fluctuations as a convolution integral:

ṽk(x) =

∫

R3

Gki,j (x − x′) φij (x
′) dx′; (23)

its gradient is given by

ṽk,l(x) =

∫

R3

Gki,lj (x − x′) φij (x
′) dx′. (24)

Using the property of convolution integrals in direct space being simply products in Fourier

space, we can write

ˆ̃vk(ξ) = iξj Ĝki(ξ)φ̂ij (ξ)

ˆ̃vk,l(ξ) = −ξlξj Ĝki(ξ)φ̂ij (ξ),
(25)

where ξ is a point of the Fourier space. The ‘ˆ’ indicates a variable in Fourier space.

The evaluation of the Green’s functions can be accomplished by transforming the system

of equations (22) to Fourier space.

ξlξjL
0
ijklĜkm − iξlĤm(ξ) = δim,

ξkĜkm(ξ) = 0.
(26)

Defining a 3 × 3 matrix A′ in Fourier space as A′
ik = ξlξjL

0
ijkl and the 4 × 4 matrix A′′ as

A′′ =













A′
11 A′

12 A′
13 ξ1

A′
21 A′

22 A′
23 ξ2

A′
31 A′

32 A′
33 ξ3

ξ1 ξ2 ξ3 0













(27)

we obtain (Lebensohn 2001)

Ĝij (ξ) = (A′′−1)ij (i, j = 1..3),

−iĤj (ξ) = (A′′−1)4j (j = 1..3),
(28)

with

Ŵ̂ijkl(ξ) = ξjξlĜik(ξ). (29)

The strain-rate deviation field in the Fourier space is then given by

ˆ̃
d ij (ξ) = −Ŵ̂

sym
ijkl (ξ)φ̂kl(ξ) ∀ξ �= 0 and d̃ij (0) = 0, (30)

where Ŵ̂
sym
ijkl is the periodic Green’s operator in Fourier space, appropriately symmetrized.
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Algorithm. The algorithm can be summarized as follows:

(a) Assign initial guess values to the strain-rate field (e.g. ˜̇ǫij (x) = 0 ⇒ ǫ̇ij (x) = Ėij )

in the regular grid (direct space) and compute the corresponding stress field 0σij from

the local constitutive relation equation (14); wherein the initial values for the Schmid

tensor are obtained from the initial orientation of the grain and the initial values for the

critical resolved shear stresses gα are obtained from the extended Voce hardening law

equation (11).

(b) Compute an initial guess for the polarization field in the direct space using equation (17).

(c) Transform the polarization field to the Fourier space

φ̂ij (ξ) = F(φij (x)). (31)

(d) Based on the iterative procedure of augmented Lagrangeans proposed by Michel et al

(2000), and assuming the initial guess for the Lagrange multipliers as

0λij (x) = 0σ ′
ij (x), (32)

the new guess (n + 1 iteration) for the strain rate is given by equation (30).

(e) The strain-rate deviation in direct space can be obtained by applying the inverse Fourier

transform

n+1d̃ij (x) = F
−1{n+1 ˆ̃

d ij (ξ)}. (33)

(f) The new guess for the deviatoric stress field can be computed by the following equation:

n+1σ′(x) + L
0 : γ0

N
∑

α=1

mα(x)

(

mα : n+1σ′

gα

)n

= nλ(x) + L
0 : (Ė + n+1d̃(x)). (34)

The above 5×5 system of non-linear equations is solved by the Newton–Raphson method.

(g) The iteration is complete with the calculation of the new guess of the Lagrange multiplier

field.

n+1λ(x) = nλ(x) + L
0 : (n+1 ˜̇ǫ − n+1d̃). (35)

Equations (34) and (35) guarantee the convergence of (i) the strain rate field ǫ̇(x) associated

with the constitutive equation with the kinematically admissible strain-rate field d(x) to fulfill

compatibility and (ii) the Lagrange multiplier field λ(x) towards the deviatoric stress field

σ′(x), to fulfill equilibrium.

Texture and morphology update. Upon convergence, the local crystallographic lattice

rotations are updated with the following relation:

ω(x) = [Ω̇(x) + ˜̇ω(x) − ω̇p(x)]t, (36)

where −ωp(x) is given by equation (15) and ˜̇ω(x) is obtained by using the converged

antisymmetric field:

ˆ̃ω(ξ) = −Γ̂
antisym(ξ) : φ̂(ξ). (37)

After each time increment, the new position of the Fourier points can be determined by

the following equation

x̄ = x + (Ėx + ṽ)t, (38)

where ṽ is obtained from equation (23). It is evident that the above equation for the morphology

update would entail the usage of two grids—a regular Fourier grid and a material-point grid

that would allow following the morphology of individual grains. In this work, however, a
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simplified morphology update neglecting the velocity fluctuation term is used. Equation (38)

thus reduces to

x̄ = x + Ėx t, (39)

resulting in a regular Fourier grid after each increment. The distances between adjacent

points, however, do change. Thus the morphology update of individual grains is determined

by an average stretching prescribed by the macroscopic deformation. The implications of

the approximation involved in this simplified morphology update algorithm are discussed in

section 6.

It must be noted that the FFT solution scheme, presented thus far, is completely visco-

plastic and ignores elastic stretching.

3.2. FE solution scheme

The basic premise of the finite element method is quite well known and has been extensively

used for various purposes. For detailed information on FEM, the reader is referred to standard

textbooks on the subject. In this section, we only discuss the implementation of the constitutive

model.

The constitutive model described in section 2 has been programmed as a user material

(UMAT) subroutine for the finite element package ABAQUS Standard® (Huang 1991, Prakash

et al 2009). Although the constitutive model is entirely as described before, the implementation

is slightly different. In contrast to the current implementation of the FFT algorithm where

elastic stretching is ignored, the FE solution scheme treats elastic response as a part of the total

material response.

The elastic response F ∗ of the material is obtained as a result of the multiplicative split

of the deformation gradient F :

F ∗ = FF p−1, (40)

where F p denotes the plastic shear. The rate of change in F p is related to the slipping rate γ̇ α

of the slip system by

Ḟ pF p−1 =
∑

α

γ̇ (α)s(α) ⊗ n(α), (41)

which is equivalent to equation (8). The orientation update at a Gauss point is given by the

update of slip direction s(α) and slip plane normal n(α)

s∗(α) = F ∗s(α)

n∗(α) = n(α)F ∗−1.
(42)

In addition to the elastic response, morphology update of grains is realized through an updated

Lagrangean formulation. This allows for complex grain shapes to be predicted.

4. Simulation aspects

In order to ascertain the capabilities of the FFT algorithm, a numerical experiment comparing

FFT with FE simulations was performed. For this purpose, the results from FE simulation are

assumed to be the standard. Since the FFT solution scheme is restricted to periodic media, a

unit cell consisting of 100 grains with periodic grain structure is used (figure 1). Additionally,

periodic boundary conditions are imposed on the RVE, thereby coupling two points on opposite

7
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Figure 1. A 100 grain RVE used in the simulations.

Table 1. Voce hardening parameters.

Hardening parameters

Case Slip system τ0 τ1 θ0 θ1

Rolling {1 1 1} 〈1 1 0〉 47.0 86.0 550.0 16.0

Wire drawing {1 1 0} 〈1 1 1〉 175.33 80.0 40.0 0.0

faces of the RVE with the macroscopic deformation gradient. The unit cell is discretized with

a regular grid of 32 × 32 × 32 elements (voxels in the case of FFT). Linear brick elements are

used in the case of FE, giving an average of 2600 Gauss points per grain.

Two different cases were chosen for the study—(a) rolling of aluminum and (b) drawing

of tungsten wires. A single slip mode was assumed to be active in both cases, i.e. {1 1 1} 〈1 1 0〉

in aluminum and {1 1 0} 〈1 1 1〉 in tungsten. The Voce hardening parameters used in this study

are presented in table 1. The hardening matrix of the Voce hardening law equation (11) is set

to 1.0 for both self- and latent hardening. The same set of parameters is used for both FE and

FFT simulations. An initial random texture was assumed in the case of rolling of aluminum,

while a sharp 〈1 1 0〉 texture in the drawing direction was used in the case of tungsten. All

the simulations employ a constant strain rate of 1.0. Rolling is idealized as plane strain

compression, while wire drawing is idealized as biaxial compression. Post processing of the

results is done in Abaqus Viewer® with user scripts written in Python, ensuring consistency in

the contour plots obtained.

The exponent in the constitutive relation (14), n, is assumed to be 10.0. Note that the

corresponding rate-sensitivity (m = 1/n = 0.1) is larger than the typical values for cubic

metals at room temperature (m ≈ 0.001, i.e. n ≈ 1000). However, the use of exponents

of that order would result in numerical instabilities in both methods (maximum values of n

for well-behaved simulations are of the order of 50). Therefore, (14) should be regarded

as an approximation for better numerical tractability of the rate-insensitive crystal plasticity

approach based on the Schmid law, rather than a tool to quantitatively study rate-sensitivity

effects.

8
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(a) (b)

Figure 2. Macroscopic response from the rolling simulations; (a) Rolling of aluminum, (b) wire

drawing of tungsten.

(a) (b)

Figure 3. Deformed configuration of the RVE from rolling simulations after 40% thickness

reduction; (a) FE and (b) FFT.

5. Results

5.1. Macroscopic response

Figure 2 shows the stress vs. strain curves obtained from the simulations. In the case of

the rolling simulations, the response from FFT is almost identical to that of FE. The curves

obtained from the wire drawing simulations also follow similar trends up to a strain of around

0.4. With increasing strain, however, the curves diverge. The primary reason for this deviation

is the severe distortion of grains in the polycrystal, leading to the well-known grain curling

phenomenon. Further discussion is presented in section 6.

5.2. Local response

5.2.1. Rolling of aluminum. The deformed configuration of the polycrystal after 40%

thickness reduction is shown in figure 3. The loading directions are marked as RD—rolling

9
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(a) (b)

(c) (d)

Figure 4. Results from rolling simulations; top row—distribution of accumulated plastic strain,

bottom row—stress distribution; left—FE, right—FFT. Note that the scales used for comparison

are the same; only the maximum and minimum values differ.

direction, TD—transverse direction and ND—normal direction. In comparison with FE, where

one observes a slightly distorted shape of the polycrystal and individual grains, FFT yields a

homogeneous shape, which is clearly a result of the approximate shape update algorithm used.

The effect of these slight distortions on the local field response is minimal. The distribution

of the accumulated plastic strain and stresses in the RVE can be seen in figure 4. To ensure

shape conformity, the results are plotted on the undeformed configuration of the RVE. Localized

plastic zones forming regions of high and low plastic strain can be seen in the polycrystal. In the

transverse direction, shear bands at approximately 45◦ to the rolling direction can be observed

in both simulations. The stress distribution pattern in the RVE predicted by both models is also

similar. It is interesting to note that the location of these localized zones (both stress and strain)

is predicted at the same places by both models. The absolute amount of localization does vary,

albeit only slightly. Even with a relatively primitive shape update scheme, the results from the

FFT algorithm are encouraging and comparable to FE.

5.2.2. Drawing of tungsten wires. Tungsten exhibits extreme grain distortions during the

wire drawing process leading to the well-known grain curling phenomenon (Hosford 1964,

Očenášek et al 2007). Figure 5(a) shows the deformed configuration of the RVE from FE

simulations, where WA denotes the wire axis. After a diameter reduction of 50%, large

distortions in individual grains are observed. Curled grains can be clearly seen when viewed

in the cross-section (see inset). Due to the absence of a sophisticated shape update algorithm,

10
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(a)
(b)

Figure 5. Deformed configuration of the RVE calculated with FE in the wire drawing case—(a)

after 50% diameter reduction, (b) after 10% equivalent strain (Inset—cross sectional views).

the phenomenon of grain curling cannot be described by FFT (the deformed configuration is

similar to that seen during rolling and hence is not shown pictorially). This leads to a deviation

in the local field distribution in the RVE. At a moderate strain of 10%, however, the distortion

of grains in the FE simulation is minimal (figure 5(b)). Grains experience a stretching in the

longitudinal direction, whilst undergoing little change in shape in the cross-section. The field

distribution at this moderate strain is quite comparable (figure 6). As in the case of the rolling

simulations, the pattern of stress and strain distribution is similar; the absolute values of the

field quantity, especially at grain boundaries, differ slightly.

5.3. Texture results

The texture results from the simulations are presented in figures 7 and 8. Almost identical

results are obtained in both the rolling and wire drawing simulations. We recall that an initial

random texture was used for the rolling simulations, while a 〈1 1 0〉 texture in the drawing

direction was used for the wire drawing simulation. As evident from the figures, the texture

predicted by both models is almost identical and conforms to the ideal rolling texture of fcc

materials (Kocks et al 1998). In the case of the wire drawing simulations, a sharp 〈1 1 0〉

texture is obtained in the wire axis, which is also along expected lines.

It is worth noting that these textures obtained with models such as FE and FFT, that

consider the heterogeneity of the mechanical fields inside the grains (in particular the lattice

rotation field), are in general of lesser intensity than similar simulations involving a lower

level of fidelity (i.e. based on the sole determination of the average values of the mechanical

fields in the grains), such as the Taylor or the 1-site visco-plastic self-consistent (VPSC)

model (Lebensohn and Tomé 1993), and in better agreement with experimental textures. Such

improved agreement has been already reported by, e.g. Dawson and Beaudoin (1998) in the

case of FE and by and Lebensohn (2001) in the case of FFT.

5.4. Computation times

All computations presented in this work were run on an Intel® Xeon® 2.6 GHz machine with

8 cpus and 16 GB shared memory. While the FE computations were multiple cpu runs with 4

cpus, all FFT computations were single cpu runs. The computation times are shown in figure 9,

along with the actual values also tabulated. No correction has been made for FE simulations
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(a) (b)

(c) (d)

Figure 6. Results from wire drawing simulations at 10% equivalent strain; top row—distribution

of accumulated plastic strain, bottom row—stress distribution; left—FE, right—FFT. Note that the

scales used for comparison are the same; only the maximum and minimum values differ.

with multiple cpus. For the same discretization of 323 elements, the FFT computation times

were in the order of hours, while the FE computations took over 5 days. With an increased

resolution of 643 voxels, the computation times with FFT also increase, but they are still lower

than those corresponding to the multiple cpu FE simulations with 323 elements.

6. Discussion

A numerical experiment comparing two full-field simulations (for the prediction of

micromechanical behavior of polycrystals) has been performed in this work. In particular,

a new method based on fast Fourier transforms is compared with the conventional FE method;

not only for the predictive capability but also for computational efficiency. Both computation

schemes use the same constitutive model, the details of which have been presented in section 2.

In the case of the finite element method, the equilibrium equations are solved piecewise by

discretizing the structure with finite elements to obtain a equation of the form K · U = P ,

where K is the stiffness matrix, U is the displacement vector and P is the load vector. By

contrast, the FFT method uses Green’s functions to reformulate the equilibrium conditions, with

the solution of the unknown variables described as convolution integrals. These convolution

integrals are then transformed to the Fourier space and the values of the actual unknowns in

direct space are obtained by transforming the solutions back from the Fourier space.

In this work, both methods were used to simulate two test cases—(a) rolling of FCC

and (b) drawing of BCC wires. The results from the simulations are very encouraging. The
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Figure 7. Texture results from rolling simulations after 40% thickness reduction; Top row—FE,

Bottom row—FFT.

Figure 8. Inverse pole figures of the wire axis obtained from wire drawing simulations; left—FE,

right—FFT.

deformation characteristics predicted by both models are qualitatively similar, with both models

predicting large plastic deformation in almost the same regions of the RVE. Additionally,

localized shear zones at approximately 45◦ could be observed in the rolling simulations when

viewed in the transverse direction. The same trends could also be observed in the wire drawing

simulations at 10% strain.

Due to lack of a sophisticated computation scheme for the shape update of grains, a

quantitative comparison of the stress and strain fields was not possible. In the case of the

rolling simulations, the simple shape update algorithm in FFT does not act as a major drawback

for the prediction of the local fields in the polycrystal, as the grains more or less follow an
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Figure 9. Comparison of computation times from FE (323 elements), FFT (323 voxels) and FFT64

(643 voxels) simulations.

average stretching prescribed by the macroscopic deformation. However, in the case of the wire

drawing simulations, a more complex morphology update algorithm is necessary. After 50%

diameter reduction, large distortions of grains are observed. This not only leads to a deviation

in the macroscopic stress versus strain response, but also gives rise to huge variations in the

local field response. At a much lower strain of 10%, where the distortion of grains is not

too high, the local fields predicted by FFT are consistent with the results from FE. A more

sophisticated shape update of grains based on, for instance, the particle-in-cell (PIC) method

(Sulsky et al 1995, Lahellec et al 2001) is necessary for simulations where grain distortions

play a major role.

An additional point of comparison was the computational efficiency of both models.

For a complete one-on-one comparison, an improved shape update algorithm is necessary.

Nevertheless, for the rolling simulations for fcc materials, where the current implementation

suffices, the computation times with FFT are much lower than FE. A major part of the

computation time in FE is invested in the time-consuming inversion of the stiffness matrix of the

global solution equation. By contrast, the FFT-based approach requires the repetitive inversion

of a 4 × 4 matrix (see equation (27)) and application of the very efficient FFT algorithm. This

clearly indicates that FFT is a computationally efficient alternative to the conventional FE-based

approach to simulate the micromechanical behavior of periodic microstructures.

7. Conclusions

Crystal plasticity FEM is a well-established numerical tool to predict texture and microstructure

evolution of polycrystals with intra-crystalline resolution and general boundary conditions.

Alternative FFT-based methods have been proposed in recent years for the same purpose,

albeit restricted to periodic boundary conditions. The FFT-based framework shows a great

potential, especially because of its high numerical efficiency. The original contribution of this

work is to have demonstrated a fairly good agreement between the predictions of the novel

FFT and the standard FEM. In particular, we have shown that:

(a) The FFT algorithm is an efficient alternative solution scheme to the more commonly used

small-scale FEM for the prediction of micromechanical behavior of polycrystals. For

the same geometry and resolution, computation times of FE simulations far exceed those

of FFT.

(b) Stress and strain distribution patterns predicted by FFT are similar and comparable to

those of FE.
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(c) The macroscopic response from rolling simulations is almost identical. In the wire drawing

simulations, the FFT response deviates slightly from the FE response at large strains, the

main reason being the approximation in the shape update algorithm used in FFT.

(d) Texture results from both solution schemes are also almost identical. Starting from

an initial random texture, a typical rolling texture is obtained in the case of rolling

simulations, while the initial 〈1 1 0〉 texture in the wire axis is maintained in the wire

drawing simulations.

(e) A more sophisticated shape update algorithm is required in FFT for the prediction of

realistic morphology evolution such as the grain curling phenomenon in bcc wires. The

present shape update suffices for cases where grains do not deviate significantly from the

average stretching prescribed by the macroscopic deformation gradient.

(f) Evidently, the simplifications used in the FFT formulation have a significant contribution

in speeding up the calculation; whilst the considerations, in FEM, of elasticity, geometric

nonlinearity, more accurate grain morphology update, etc appear to be not relevant to the

output of interest in the present simulations—i.e. texture evolution, local mechanical fields

and effective behavior, except when the grain morphology becomes extremely distorted,

as in the case of wire drawing of bcc materials.
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