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Abstract

This manuscript presents a benchmark problem for the simulation of single-phase flow, reactive transport, and solid geometry

evolution at the pore scale. The problem is organized in three parts that focus on specific aspects: flow and reactive

transport (part I), dissolution-driven geometry evolution in two dimensions (part II), and an experimental validation of three-

dimensional dissolution-driven geometry evolution (part III). Five codes are used to obtain the solution to this benchmark

problem, including Chombo-Crunch, OpenFOAM-DBS, a lattice Boltzman code, Vortex, and dissolFoam. These codes

cover a good portion of the wide range of approaches typically employed for solving pore-scale problems in the literature,

including discretization methods, characterization of the fluid-solid interfaces, and methods to move these interfaces as a

result of fluid-solid reactions. A short review of these approaches is given in relation to selected published studies. Results

from the simulations performed by the five codes show remarkable agreement both quantitatively—based on upscaled

parameters such as surface area, solid volume, and effective reaction rate—and qualitatively—based on comparisons of

shape evolution. This outcome is especially notable given the disparity of approaches used by the codes. Therefore, these

results establish a strong benchmark for the validation and testing of pore-scale codes developed for the simulation of flow

and reactive transport with evolving geometries. They also underscore the significant advances seen in the last decade in

tools and approaches for simulating this type of problem.
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1 Introduction

Study of flow, transport, and reactions in geological

materials has historically relied on treating the porous

medium as a continuum. The underlying assumption is

that a representative volume or REV can be defined where

at each point in space all phases are assumed to exist

simultaneously [11]. Bulk parameters such as porosity,

permeability, or reactive surface area are then used to

characterize this medium in what can be referred to as the

Darcy scale.

The pore scale, on the other hand, is defined as the

scale at which each point of space is occupied by a

specific phase, whether fluid or solid. Thus, the pore-

scale approach requires knowledge and correct represen-

tation of the spatial distribution of the fluid and solid

phases and its evolution with time. At the pore scale, the
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continuum assumption applies to each phase separately.

Hence, medium properties such as viscosity, diffusivity, and

to an extent, reaction rate constants are measurable directly

and independently. In contrast, Darcy scale parameters such

permeability, effective diffusivity, dispersion, or reactive

surface area must be fitted to aggregate experimental data.

The functional form for these relations is usually based on

empirical or theoretical relationships, e.g., Kozeny-Carman

for permeability [16, 48], Archie’s law for effective dif-

fusivity [6], or the two-thirds expression for reactive

surface area [54]. As a result, the pore-scale approach

provides insights not available with the porous medium

treatment.

The last decade has seen an explosion of pore scale stu-

dies: these include imaging and characterization techniques,

laboratory experiments, numerical simulations, and combi-

nations of these approaches. Many of the applications of

these studies have focused on the relations between pore-

scale processes in fully resolved geometries and Darcy scale

parameters such as permeability, effective diffusion, disper-

sion, and reactive surface area [12, 17, 30, 33, 36, 49, 56–58,

61, 62, 70, 95, 114, 119]. Numerical modeling plays an

important role in the investigation of pore-scale processes as

it provides a mechanistic understanding of the relevant cou-

pled processes. Further, simulation results resolve variables

that are not easily available from experiments, for exam-

ple concentration gradients within the pore space. Such data

enables additional insights to be drawn, especially when

comparison to experimental data is possible [15, 66, 75, 96,

97, 99].

A central theme of pore-scale numerical investigations has

been the study of the effects of pore structure and mineral het-

erogeneity on reaction rates [30, 51, 65, 75]. A significant

number of pore-scale modeling contributions have focused

on the interactions of CO2-rich fluids with carbonate-rich

porous media in the context of CO2 sequestration, includ-

ing the development of the reactive infiltration instabilities

[35, 66, 75, 96, 99, 108, 119]. Microbially driven evolu-

tion of porous media, including biofilm formation, has also

received broad attention [14, 93, 109].

These applications involve a set of coupled processes

including multiphase fluid flow, multi-component transport,

biochemical or geochemical reactions, and evolving pore

geometries. However, the fully coupled problem in complex

image–based computational domains within a single model

has been rarely considered, in part due to the complexity

of code development and the computational costs involved

in performing the simulations. Further, this complexity has

also made it difficult to derive reference solutions that

can be used to validate newly-developed codes. While

benchmarks for different subsets of the full problem have

been or are being developed, e.g., single-phase flow in

micro-CT images [91], wettability controls on multiphase

flow [121], or flow and conservative transport [72], there

is still a lack of a benchmark problem that includes

geochemical processes along with evolving pore geometries

coupled to these reactive processes.

In this manuscript, we set out to develop and present a

benchmark problem set for the simulation of single-phase

flow and reactive transport processes at the pore scale with

evolving pore-space geometries. One benchmark includes

validation against experimental data. The manuscript is

organized as follows. We begin by reviewing the equations

that govern the processes outlined above (Section 2).

Because the equations that describe the processes pose a

coupled, multi-faceted problem, a number of numerical

approaches are available to tackle the different aspects of the

problem. Next, we review these approaches from different

perspectives: (i) the characterization of the solid/fluid

interfaces, (ii) the evolution of the interfaces, (iii) the

approaches to couple different processes, and (iv) the

discretization of the computational domain (Sections 3 and

4). This review allows us to classify pore-scale codes,

specifically the codes that participate in the benchmark

problem set (Section 5). The benchmark problem set is

then described in Section 6. Results for the benchmark

problems obtained with the participant codes are presented,

compared, and discussed in Section 7. We conclude with

a brief discussion of the value of the benchmark presented

in the manuscript and an outlook on pore-scale reactive

transport modeling (Section 8).

2 Pore-scale governing equations

The benchmark problem set, described in detail in Section 6,

entails solving the flow equation for the motion of an

aqueous solution, the advection-diffusion equation for

transport of a single dissolved component in the aqueous

solution, the reaction equation for the dissolution of a solid

phase, and the equation that describes the evolution of the

solid geometry as a result of dissolution.

Although these processes are coupled, the time scales

associated with them are very different. For example,

the velocity of the dissolving mineral surface can be

assumed to be much slower than the fluid velocity [54].

Further, at typical flow rates in subsurface environments,

inertial forces can be neglected and Stokes flow assumed.

We will make use of these assumptions to present the

governing equations strictly needed to solve the benchmark

problem set. However, this does not preclude the use

of a more general form of the equations to solve the

problem. For example, one can use transient equations

instead of steady-state equations as is the case of some

codes (see Section 5). These different equation forms will

be considered part of the individual methods and discussed
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in Sections 3, 5, and 7. Appendix A lists all the equations for

completeness.

Fluid flow at the pore scale can be described by the

Stokes equations, which express mass and momentum

conservation in the absence of inertia:

∇ · u = 0, (1)

1

ρ
∇p = ν∇2u, (2)

where ρ is the fluid density, ν is the kinematic viscosity, p

is the fluid pressure, and u is the fluid velocity.

Transport of aqueous species is described by the

advection-diffusion equation:

∂c

∂t
+ ∇ · (uc) = ∇ · (D∇c) , (3)

where c is the concentration of the dissolved component and

D is the molecular diffusion coefficient. Mineral dissolution

takes place at the fluid-solid interface (Ŵ) and can be

expressed as a Robin boundary condition on the transport

(3),

−Dn · ∇c = ξr, (4)

here n is the outward surface normal to the fluid region, r(c)

is the mineral dissolution rate, and ξ is the stoichiometric

coefficient of species in the dissolution reaction. In general,

r is a non-linear function of concentration and the specific

form used in the benchmark problems is given in Section 6.

The mineral surfaces evolve in the direction of the local

normal, with a velocity uŴ that follows from a mass balance

across the interface

uŴ = −rVmn, (5)

where Vm is the molar volume of the dissolving mineral.

Equation 5 implies that the tangential fluid velocity at the

fluid-solid interface is zero but not the normal velocity.

However, because the aqueous concentration is much

smaller than the mineral concentration V −1
m , the normal

velocity is usually negligible.

3 Computational methods

A number of methodologies have been used to solve the

equations presented in Section 2 (Table 1). They can be

divided into those that seek to solve the equations from

Section 2 directly and those that solve a different set of

equations that under certain conditions recover (1)–(5). In

this section, we will review these approaches, including

two of the commonly used methods, which belong to the

second group: the mesoscale lattice Boltzmann method

(Section 3.3) and the micro-continuum Darcy-Brinkman-

Stokes approach (Section 3.5).

We will start by reviewing the methods used to discretize

the equations (e.g., Fig. 1), either the equations presented

in Section 2 or the equations resulting from the mesoscale

Table 1 Selected pore-scale reactive transport applications with summary of approaches: S indicates a structured Cartesian mesh, U indicates an

unstructured mesh, RW indicates random walk, and PT indicates particle tracking

Code/author/group Reference Discretization Interface representation and/or motion

Kang [22, 43, 44, 46] LBM Solid balance w/ threshold

Szymczak/Ladd [107, 108] LBM Solid balance w/ threshold

Prasianakis* [84] LBM Solid balance w/ threshold

Yoon [120] LBM + FV, S LBM, Micro-continuum

Golfier [35] CFD (S) Micro-continuum DBS

OpenFOAM-DBS* [96, 98] CFD (FV, S) Micro-continuum DBS

Oltean [71] CFD (U) ALE

Xu/Li/Huang/Meakin [39, 52, 53] CFD (FD) Level set

Chombo-Crunch* [64–66] CFD (FV, S) EB, level set

dissolFoam* [100] CFD (FV, U) Simplified ALE

Xu/Li/Huang/Meakin [115–117] CFD (FD) Phase field, level set

Salles/Bekri/Thovert/Adler [13, 89] CFD (FD) + RW Solid balance w/ threshold

Pereira/Bjieljic/Blunt [75] CFD (FV, S) + PT Solid balance w/ threshold

Tartakovsky [110] SPH SPH

Xu/Li/Huang/Meakin [118] SPH Phase field

Ovaysi [73] MPS Explicit

Vortex* this ref., [20, 21, 34] Vortex (PT,FD,FFT) Micro-continuum DBS

Other acronyms are defined in the text. *Codes used in this manuscript
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Fig. 1 Examples of meshes and

methods to capture reactive

fluid-solid interfaces in

pore-scale models as employed

by the codes participating in this

benchmark . a Finite volume

mesh with contours showing a

micro-continuum volume of

solid interface representation

(OpenFOAM-DBS,

Section 5.2). b Lattice

Boltzmann mesh showing

contours with solid mass

balance in each voxel

(Section 5.3). c Finite difference

mesh with contours showing a

micro-continuum volume of

solid interface representation

(Vortex, Section 5.4). d Finite

volume mesh with an

embedded-boundary interface

representation

(Chombo-Crunch, Section 5.1).

e Unstructured finite volume

mesh with a conforming mesh

interface representation

(dissolFoam, Section 5.5). In the

contour plots, the color indicates

the volume of solid in each cell,

with red being the solid phase,

blue the pore space, and

intermediate colors represent

porosity values in between. The

panels without contours

correspond to codes whose grid

(unstructured or structured with

embedded boundaries) follows

the fluid-solid interface

and micro-continuum approaches. Broadly, discretization

methods have been classified in the literature in three

groups. The first group includes those models that discretize

the equations using finite volume (FV), finite element

(FE), or finite differences (FD) methods in what are

often regarded as traditional computational fluid dynamics

(CFD) approaches (Section 3.1). A second group comprises

particle methods that rely on a Lagrangian description of

1288 Comput Geosci (2021) 25:1285–1318



flow and transport (Section 3.2). The lattice Boltzmann

method makes up the third group and is unique in that it can

be viewed as both a solution approach and a discretization

method (Section 3.3).

3.1 Traditional computational fluid dynamics
methods

Computational fluid dynamics (CFD) methods involve the

discretization of Eqs. 1–4 or Eqs. 13–17 — using finite

volume, finite differences, or finite element methods. In

reactive transport modeling, the finite volume method and

the finite differences have been the most common choices

(Table 1, Fig. 1a, d, and e).

These discretization methods have historically been con-

sidered computationally expensive. However, increasing

computational power and, more recently, the availability

of high-level, open-source libraries such as OpenFOAM®

(http://www.openfoam.org) or Chombo [3, 25] have made

it possible to adopt these methods to the simulation of

pore-scale reactive transport processes [64–66, 96, 98–

100]. Structured Cartesian meshes are more common than

unstructured meshes, owing to their computational effi-

ciency and ease of implementation. Cut-cell methods, such

as the embedded boundary, provide a powerful approach

to capture complex geometries with structured Cartesian

grids [111, 112]. Codes using unstructured meshes are bet-

ter able to conform to the shape of the boundary, although

the mesh must be able to adapt to the changing geometry.

As points on the boundary move according to the computed

normal displacements (5), the mesh as a whole must be

smoothed to maintain mesh quality, while simultaneously

maintaining the shape of the surface [99, 100].

3.2 Lagrangian approach and particle methods

Particle methods, such as the smooth particle hydrody-

namics (SPH), particle-in-cell (PIC), and moving particle

semi-implicit (MPS) methods represent fluids by particles

with intensive properties (e.g., mass mi) that are tracked in

time as they move in the pore space. Many of these methods

have been successfully used in reactive transport at the pore

scale (Table 1).

Continuous variables (e.g., density) are represented as

a superposition of kernel functions centered on a set

of discrete particle points ri . In continuous form, this

superposition for variable A(r) at point r can be expressed

in integral form as the following convolution:

A∗(r) =

∫

A(r′)Wh(r − r′)dr′ = A ∗ Wh(r), (6)

where W is an interpolation kernel, h is the kernel size

that defines the domain of influence for each particle, and

Wh(r) = h−dW(r/h) is the rescaled kernel for the domain

of influence (d = 2 or 3 is the dimension of the space). To

reduce the computational costs in numerical calculations, h

is chosen to be finite such that Wh(r) �= 0 only near the

particle.

In particle methods, the kernel function satisfies

∫

W(r)dr = 1 and

∫

W(r)r
q
kdr = 0 ∀k = 1..d, (7)

for all q strictly smaller than the order of the kernel.

This polynomial reproducibility defines the order of the

interpolation and thus is the key parameter for the accuracy

of the method, together with the regularity of the function

W [26].

A particle description means that A is a set of Dirac

masses of weight Ai at location ri and representing a volume

vi . Thus, Eq. 6 may be written as

A∗(r) = A ∗ Wh(r) =
∑

i∈Nh

AiW
h(r − ri)vi, (8)

where A =
∑

i Aiδri
vi . Nh is the set of index of particles

neighbors to the location r, and Wh = h−dW(·/h) is the

rescaled kernel (d = 2 or 3 is the dimension of space).

This feature is especially interesting for problems where

transport is significant for two reasons.

First, the solution of ∂A
∂t

+ ∇ · (uA) = f (A) satisfies

A′
i(t) = f (Ai(t)), ri

′(t) = u(ri(t)) (vi remains constant in

divergence-free fields) and can be solved by conventional

methods for ordinary differential equations (ODEs). This

removes the difficulty of solving a partial differential

equation as it eliminates ∇ · (uA) and the associated

CFL condition. Many applications take advantage of this

fact [19–21, 76, 80, 90]. An alternative solution to move

particles is the semi-analytical Pollock method [75].

Second, the formulation in Eq. 8 has given birth to several

spatial discretizations. For the linear differential operators

—e.g., the Laplace operator ∇2— the convolution yields

∇2A∗ = A ∗ ∇2Wh. In smoothed particle hydrodynamics

(SPH), ∇2Wh becomes a set of weights that has to satisfy

the moment (7). Further, direct computation of ∇2A∗ =

∇2A ∗ Wh entails computing diffusion between the point-

wise sources of A by means of particle strength exchange

schemes (e.g., [77]) or by random walk particle tracking

[13, 89]). The convolution is used in this case only as

an interpolation to extend the particles over the whole

space. The diffusion of particles ∇2A can be computed

by finite differences on a grid with values obtained from

the convolution A∗ = A ∗ Wh, and interpolated back on

particles via the convolution by Wh [28] in what is referred

to as hybrid grid-particle methods (e.g., Fig. 1c).

In the special case that a distribution A is a collection

of point-wise vorticity, the so-called method of singularities

can be used. The related velocity is then computed via

1289Comput Geosci (2021) 25:1285–1318



the convolution with a Green kernel. This makes up the

original vortex method [4, 9, 10], which has the advantage

of eliminating the pressure computation. Vortex methods

can be purely Lagrangian by using Biot-Savart laws [4, 24]

or grid-particles hybrid methods [32]. Moreover, fluid-solid

interaction can also be managed, beside by penalization, by

immersed boundaries [79] in order to enforce continuity of

the normal velocity field, and by vortical flux [78] in order

to enforce continuity of its tangential components.

3.3 Themesoscale lattice Boltzmannmethod

The lattice Boltzmann method (LB) is a special discretiza-

tion of the Boltzmann equation, with applications that range

from microflows to turbulent flows, and from colloid trans-

port to multiphase flows [104]. Originating from gas kinetic

theory, the elementary variables are statistical functions

(populations fi), which describe the probability of finding

a particle with a given velocity in a particular location in

space. Every grid point of the discretized domain, a lattice

(e.g., Fig. 1b), is populated by a set of discrete veloc-

ity vectors [86, 105]. The Bhatnagar-Gross-Krook (BGK)

relaxation to equilibrium is the simplest and most com-

monly used collision model, resulting in the Boltzmann

BGK equation:

∂fi

∂t
+ ci · ∇fi = −

1

τ

(

fi − f
eq
i

)

, (9)

where τ is the relaxation parameter and is correlated to

the macroscopic dynamic viscosity of the fluid, ci are

the discrete velocities of the populations, and f
eq
i are

the populations at thermodynamic equilibrium. After time

and space discretization, the lattice BGK equation can be

formulated as

fi(x+ci	t, t+	t) = fi(x, t)+
2	t

2τ + 	t
(f

eq
i (x, t)−fi(x, t)), (10)

where δt is the respective time step. Such a model,

in the macroscopic limit, can be shown to recover the

compressible Navier-Stokes equations.

∂ρ

∂t
+ ∇ · (ρu) = 0, (11)

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p + μ∇2u + 1
3
μ∇(∇ · u). (12)

The lattice Boltzmann equations recover the incompress-

ible Navier-Stokes, when the fluid velocity is small com-

pared to speed of sound cs , in the same medium u/cs << 1,

i.e., when the Mach number is small (Ma << 1). Local

mass and momentum conservation, along with only nearest-

neighbor communication, allows for efficient parallelization

of the method.

For chemically reacting flows, several approaches have

been developed, based fully or partially on the lattice Boltz-

mann framework (Table 1). Some models have made use of

LB for the flow solution only ([107, 108, 120], Section 3.4).

The most common approach however relies solely on the

LB framework, solving a standard LB fluid flow equa-

tion coupled with an LB solver for the advection-diffusion

Eq. 3 of the chemical species [45, 47]. Such models have

been used to study simultaneous dissolution and precip-

itation processes for applications that range from CO2

sequestration [44], to nuclear waste repositories [29, 84],

and multiphase reacting flow in magma chambers [40, 74].

3.4 Combining discretizations

Combination of discretization methods within a single

model, e.g., using a different method for each component of

the problem, has been a common approach to take advantage

of existing, time-tested software packages, or because

specific methods are seen as computationally advantageous.

Different combinations of methods have been reported in a

number of studies, for example, LB for flow and a stochastic

solver for transport [107, 108], LB for flow and a FV multi-

component solver for reactive transport [120], a FD solver

for flow and a random walk method for reactive transport

[88], or a FV solver for flow and a semi-analytical particle

method for reactive transport [75]. However, it appears that

as methods have become more mature in the field, and the

use of high-level libraries has increased, reliance on a single

discretization method is a common approach (Table 1).

3.5 Themicro-continuumDarcy-Brinkman-Stokes
approach

While the equations in Section 2 imply that the location

of interfaces between the phases that make up the porous

medium is known explicitly, approaches are also available

that do not require an explicit description of the interface.

Rather than treating the mineral phase as 100% solid and the

pore space as 100% fluid, the medium is characterized as a

porous continuum with a given porosity and permeability. In

the pore-scale limit (i.e., when the porosity and permeability

are very small), such a treatment recovers the description

in Section 2 [35, 96]. The equation that describes flow

in a such a medium is termed the Darcy-Brinkman-Stokes

(DBS) equation. Soulaine and co-workers referred to it

as micro-continuum approach [96], an extension to the

definition given by Steefel and co-workers [102, 103] that

also includes open pore space.

The volume fraction of fluid, ε, is used to map the solid

geometry spatially with ε = 1 indicating fluid only and ε =

0 solid only (e.g., Fig. 1a and c). Then, the mathematical

problem posed by Eqs. 1–5 can be reformulated in terms
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of locally averaged equations and immersed boundary

conditions at the solid surface. A single equation is solved

for to obtain the fluid flow in the entire computational

domain (written here to recover the transient incompressible

Navier-Stokes equations in the fluid domains, i.e., Eq. 12 in

lieu of Eq. 2):

1

ε

(

∂ρu

∂t
+ ∇ ·

(ρ

ε
uu

)

)

= −∇p +
μ

ε
∇2u − μk−1u, (13)

where k is the permeability and μ = νρ is the viscosity.

In the pore spaces, ε = 1 and Eq. 13 asymptotically

tends towards Navier-Stokes, while in the porous domain it

asymptotically tends to Darcy’s law. When coupled with a

low-porosity / low-permeability matrix, this has the effect

of making a nearly no-slip boundary condition on the

fluid-rock interface [5, 98].

During the dissolution process, the solid morphology

evolves with the reaction at the solid surface. The boundary

condition for the receding velocity of the fluid/solid

interface (Eq. 5) is replaced by the mass balance for the solid

phase,

−ρs

∂ε

∂t
= ṁ, (14)

where ρs is the solid density (Vm = ρ−1
s ) and ṁ is the

rate of dissolution per bulk volume. The dissolution rate

(ṁ) is related to the reaction rate by ṁ = avr , where av

is the mineral surface per bulk volume. The surface area

is evaluated from the porosity gradient (av = |∇ε|) (see

discussion in [96]).

As the solid mass dissolves into the fluid phase, the

divergence-free velocity (Eq. 1) is replaced by

∇ · u = ṁ

(

1

ρ
−

1

ρs

)

. (15)

With dissolution, the volume fraction of fluid (ε) evolves

from the intial value of zero in the solid —effectively

simulating the motion of the fluid/solid interface —and the

local permeability field is updated according to the new

value of ε. This requires a constitutive relation linking

permeability to porosity, for example, the Kozeny-Carman

equation,

k−1 = k−1
0

(1 − ε)2

ε3
. (16)

The transport of the aqueous species is described by a

locally averaged equation,

∂(εc)

∂t
+ ∇ · (uc) − ∇ · (εD∇c) − ξavr, (17)

where the dissolution is here described as a source-sink

term.

The vorticity formulation of the DBS equation can be

obtained by taking the curl of Eq. 13 and assuming a

constant density of the solvent:

∂ω

∂t
+ (ε−1u · ∇)ω = ρ−1div(μ∇ω) − ρ−1curl

(

εμk−1u
)

+ ω · ∇(ε−1u),

(18)

where ω = curl u is the vorticity. The term curl(ε∇p) can

be neglected compared to curl(εk−1u), while the viscosity

μ is allowed to depend on ε by means of Archie’s law.

4 Geometry generation and interface
evolution

The pore-scale approach requires incorporating directly the

spatial distribution of the fluid and solid phases and then

simulate their evolution with time. For model validation and

testing of fundamental concepts, computational domains

have been synthetically generated using simple geomet-

ric shapes that sometimes may reproduce those etched in

micromodels (e.g., [120]). In actual rock or sediment sam-

ples, the initial phase distributions are available from exper-

imental characterization techniques. Significant advance-

ments in imaging techniques and processing capabilities

have made it possible to resolve the porous media from the

nanometer to the micrometer scale and beyond. These tech-

niques include X-ray computed microtomography (XCMT,

e.g., [15, 66]), scanning electron microscopy (SEM), and

back-scattered SEM (e.g., [33, 69]), SEM Quantitative

Evaluation of Minerals by Scanning Electron Microscopy

(QEMSCAN®, e.g., [12, 55]), focused ion beam SEM

(FIB-SEM, e.g., [50, 114]), and optical microscopy (e.g.,

[96]).

Generally, experimental images are two- or three-

dimensional gray scale representations of the medium, with

each pixel providing a measure of the phase or phases

that occupy that point in space (e.g., x-ray attenuation in

XCMT). To convert this image to a numerical domain, an

assumption needs to be made regarding the phase distri-

bution, i.e., how the gray scale values translate to values

of the volume occupied by each solid and fluid phases.

Approaches that use an explicit representation of the

interface (Section 2) require binarization of the gray

scale image (or ternary and higher-order segmentations

for multiple phases, e.g., [55]), although this can also

be automated in the code. An advantage of the Darcy-

Brinkman-Stokes approach (Section 3.5) is that the voxel-

based image data can be correlated to porosity fields and

readily incorporated into the model [95, 98]. Different

methods may be used for determining where the interfaces

are in the computational domain and how they evolve with

1291Comput Geosci (2021) 25:1285–1318



dissolution: level sets, phase fields, the volume of solid

method, and conforming meshes.

The level set method describes fluid-solid interfaces,

Ŵ(x) with a contour of a function φ(x, t) such that

Ŵ = {x|φ(x, t) = φo}, (19)

where φo is a constant. The level set function φ is greater

than φo for one phase, and less than φo for the other

phase. The evolution of the level set is governed by the

following advection equation, which describes the motion

of the fluid-solid interface [53]:

∂φ

∂t
+ uŴ

n n · ∇φ = 0, (20)

where n is the normal vector of the level set function (n =

∇φ/|∇φ|) at φ = φo).

The phase field method is based on the idea that the free

energy depends on an order parameter (φ, the phase field

variable) that acts as a function indicating what phase a

point in space is in. The concentration field (diffusion-only

version of Eq. 3 as in [116]) as a function of the phase field

evolution may be captured with

∂c

∂t
= D∇2c + α

∂φ

∂t

(

1 +
D∇2φ −

∂φ
∂t

km|∇φ|

)

, (21)

where α is proportional to the molar volume of the

mineral. The method replaces the boundary conditions at the

interface (e.g., Eq. 4) with a partial differential equation for

the evolution of the phase field [116]:

τ
∂φ

∂t
= ǫ2∇2φ + (1 − φ2)(φ − λc) − ǫ2κ|∇φ|, (22)

where τ is the phase field characteristic time parameter, ǫ

is closely related to the interface thickness, and λ controls

the strength of the coupling between the phase field and the

concentration c.

In the volume of solid approach (named by analogy with

the volume of fluid approach commonly used in two-phase

flow simulations [38]), the porosity (ε, i.e., the volume

fraction of void) field maps the distribution of the solid

phase onto the computational grid (Fig. 1a and c). The

fluid-solid interface is then located in cells containing 0 <

ε < 1. The exact location of the interface within a grid

block is not known explicitly and therefore, an accurate

description requires grid refinement in the vicinity of the

interface. The evolution of the medium is then captured by

performing a mass balance of the solid phase in each point

in space using Eq. 14. The average normal to the interface is

estimated using ∇ε/|∇ε|. This is the technique used in the

micro-continuum approach (Section 5.2).

Unstructured methods can adapt to the geometry of

the interfaces with conforming meshes (Fig. 1e). In a

conforming mesh approach, a subset of the vertices lie

on the fluid-solid boundaries, with a simple conservative

calculation of the fluxes [99, 100]. When the mineral

dissolves, the boundary points move in accordance with

Eq. 5 and the flow and transport Eqs. 2 and 3 are solved

again with the new geometry. This is a simplification of the

Arbitrary-Lagrangian-Eulerian (ALE) method [37] because

mesh motion is decoupled from the solution of the field

equations by the large time scale separation. In the ALE

method, the field equations are solved in a Lagrangian

frame, which automatically implies mesh motion. The mesh

is then relaxed to prevent entanglements and the fields

interpolated to the new mesh. Here, the field equations

can be solved in an Eulerian frame and no interpolation is

required; for each mesh, the steady-state field equations are

solved from scratch. This is very efficient computationally.

5 Participant codes

5.1 Chombo-Crunch

Chombo-Crunch is a code suite for the solution of flow,

reactive transport and geometry evolution at the pore scale

developed since 2010 by Trebotich and co-workers [64–

66]. Flow, transport, and geometry evolution processes

are implemented using the Chombo software package [3,

25], while geochemical reactions are implemented in the

CrunchFlow code [101] which is coupled to Chombo

via a custom interface. Geometric multigrid solvers from

Chombo and algebraic multigrid solver from PETSc [7] are

available at runtime.

The governing equations are discretized directly on a

Cartesian grid using an embedded-boundary (EB) finite-

volume method. Chombo-Crunch solves the transient

incompressible Navier-Stokes equations (Eqs. 33 and 34)

or the transient Stokes equations (as is the case in this

benchmark). The code solves separately flow, reactive

transport, and boundary displacement over a given same

time step, assuming that flow and reactive transport

solutions change instantaneously as the geometry evolves.

This makes it possible to update the geometry based on

a reaction rate that does not change over the duration of

the time step. The size of this time step is chosen as a

fraction of the Courant-Friedrichs-Levy (CFL)-constraint

CFL-constrained time step for boundary displacement.

The solutions of flow and reactive transport are obtained

via sub-time stepping, which may be viewed as a relaxation

method, until steady state is achieved in each sub-problem.

This is carried out sequentially: that is, flow is solved first

using the velocity of the interface in the previous time step

as boundary condition (5). This is distinct from other code

participants that assume this velocity is small enough that its

effect on the flow and transport equations can be neglected

(Section 2). Then, reactive transport (Eqs. 3 and 4) is solved
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using the fluid velocities obtained from the solution of the

flow problem. Finally, the fluid-solid interface is moved

according to the local dissolution rate via (5) via a level set

method (20) from which the implicit functions describing

the new embedded boundary are obtained. Geochemical

reactions are coupled to transport using an operator splitting

approach.

Fluid-solid interfaces are represented with embedded

boundaries that intersect the Cartesian grid cells. The

resulting cut cells account for the partial volumes occupied

by both fluid and solid, and for the interfacial area between

fluid and solid. Conservation (34), (33), and (3) are solved

using a predictor-corrector projection method. A higher-

order upwind method with a van Leer flux limiter is to

be applied to advection terms in a semi-implicit Crank-

Nicolson approach to minimize numerical dispersion. Flow

and transport time steps are constrained by the CFL

criterion. Flow time steps may also be constrained by the

viscous time scale when viscous forces dominate.

5.2 OpenFOAM® Darcy-Brinkman-Stokes

The OpenFOAM-DBS method solves the micro-continuum

model formed by Eqs. 13–17. The solver is implemented

in the open-source simulation platform OpenFOAM® 5.0

(http://www.openfoam.org). OpenFOAM® is a C++ library

which solves partial differential equations using the finite

volume method on an unstructured grid. OpenFOAM-DBS

benefits from all the features offered by the OpenFOAM®

library, including code parallelization, and an entire set

of tools including discretization schemes and geometric-

algebraic multigrid solvers.

For the benchmark problem (Section 6), the computa-

tional domain is discretized using a Cartesian grid. The

code also works on all kinds of unstructured grids. Equa-

tions 13–17 are solved using a sequential coupling strategy.

The solution algorithm is presented in detail in [98]. Within

a given time step, the geometry of the solid phase is updated

solving (17), along with the dissolution rate computed at the

previous time. Then the advection-diffusion-reaction equa-

tion (Eq. 14) transports the reactive fluid in the domain.

To maintain a sharp concentration front, the advection term

is discretized using van Leer flux limiter schemes. The

pressure-velocity coupling (13) and (15) are handled by

a predictor-corrector strategy adapted from the Pressure-

Implicit with Splitting of Operators (PISO) algorithm [41].

Finally the algorithm marches in time. The PISO algorithm

is not unconditionally stable and a time step restriction

based on a CFL number is necessary to handle numerical

instabilities.

5.3 Lattice Boltzmann code

Lattice Boltzmann algorithms are relatively simple, and

in principle they do not rely on external computational

mathematical libraries and solvers. Due to their simplicity,

they can be programmed in many different computer

languages and can be executed entirely, for example, on

general purpose graphical units (GP-GPU’s). A family of

such codes has been developed at Paul Scherrer Institut

over the past few years with applications that range from

catalytic reactive flows [43], to micro-flows [81], to three-

dimensional porous media and multiphase flows [83, 87],

and to geochemical flows [85]. The lattice Boltzmann solver

used here follows the passive scalar approach [84]. For the

underlying fluid flow, the guided equilibrium model of Ref.

[82], with enhanced Galilean invariance is implemented,

thus solving the compressible Navier-Stokes equations. The

chemical species are advected and diffused following the

motion of the fluid.

The computational domain is discretized using a regular

Cartesian grid. Each grid point represents a discretized

volume, which can be fully or partially filled with fluid.

The pore geometry is mapped as a staircase. In order to

obtain the partial surface of the fluid-solid interface during

dissolution or precipitation, an approximation is made,

based on the composition of neighboring solid and fluid

nodes, similar to the volume of fluid method for capturing

interfaces in two-phase flow solvers. When a surface crosses

a lattice cell, the wetted area and volume of solid depend

on the nearest neighbor configurations (solid or fluid). In

the assumption that a solid node shall start dissolving only

if at least 3 out of the 8 neighbor cells are in a fluid/quasi-

fluid state, seven possible types of sub-lattice configurations

exist (2D). This allows for a continuous estimate of the

position of the interface, and an estimation of the reactive

surface area and fluid-solid volumes. The time step, the

diffusion coefficients, the viscosity, and the reaction rates

are parametrized using the non-dimensional numbers that

characterize flow (Appendix E). A half-way bounce back

condition to represent the no-slip boundary condition at the

fluid-solid interface.

5.4 Hybrid grid-particle vortex code

The vortex code solves the Darcy-Brinkman-Stokes reaction

(13)–(14) and (16) using the vortex method (Section 3.2)

applied to the vorticity formulation of the DBS Eq. 18.

The splitting between Lagrangian transport and

diffusion-stretching (i.e., ∇ · (μ∇ω) + ω · ∇V) was per-

formed in [28] in three dimensions, and the Kozeny-Carman
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term has been implemented in its vorticity formulation in

[32]. The diffusion equation was solved by an improved

Particle-Strength-Exchange method [77], especially well

suited to variable diffusion, including diffusing depending

on shear-rate [94].

This equation is coupled to the displacement of reactive

fluids (acid and product) by means of the diffusion-reaction-

transport (Eqs. 17). Equations 17 and 18 are transformed

into a set of ordinary differential equations (Section 3), with

vorticity considered as a set of point-wise vortices to be

transported. The code uses Runge-Kutta methods, of order

2 or 4, for the solution of this large set of ODE’s.

The velocity u is computed from the vorticity ω by

taking the curl of the stream function ψ solution of the

Poisson equation −∇2ψ = ω. The Poisson solvers are grid-

based solvers, either the fast Fourier transform (FFT) solver

FISHPACK using cyclic reduction [2, 106] or the AMG

solver MUDPACK [1], while the curl and gradient operations

are performed by 4th order finite differences (FD) schemes

on Cartesian grids.

A time-splitting algorithm is used to split transport and

reactions on the one hand (Lagrangian feature), and the

differential operators and coupling terms on the other hand

(Eulerian feature). The communications between grids and

particles are performed by kernel interpolations defined by

Eq. 8, using the 3rd order kernel M ′
4 for hydrodynamic

quantities and M3 for chemical quantities that need to be

sign preserving (cf. [18, 68] for the kernel definitions).

Improvement of the integration over the kernel support has

been introduced in [27, 60] by performing a sequence of

directional interpolations. The choice of these two kernels is

justified in Appendix D.2. An adaptive time step is triggered

when the coupled reaction-flow reaches a quasi-stationary

state, allowing to use relatively large time steps despite

the restrictive stability condition induced by the benchmark

problems.

5.5 DissolFoam

The solver is based on the OpenFOAM® toolkit, together

with customized libraries for mesh motion and boundary

conditions that are not supported by the distributed source

code. The steady-state flow and transport (1) and (35) are

solved by a second-order finite volume discretization of the

fields using an unstructured mesh [42]. The computational

domain is decomposed into polyhedral cells, and the

governing equations are solved by operator splitting, under

the assumption [54] that the velocity of the dissolving

mineral surface is much slower than the fluid velocity.

Equations 1–3 are closed by boundary conditions on the

domain and on the exposed surfaces of the porous material.

Chemical reactions on the mineral surfaces are included by

imposing a Robin boundary condition (4) on the surface

of the solid. The rate of dissolution controls the (normal)

motion of points on the pore surfaces,

dr

dt
= uŴ, (23)

where the local velocity of the boundary is given by uŴ (5).

In order to allow for significant dissolution, a Laplacian

smoothing of the mesh was implemented in conjunction

with the mesh motion from Eq. 23. First, the displacements

of the face centers that make up the fluid-solid boundaries

are obtained from the concentration gradient via (23). Next,

the displacements of the cell centers, δC , are obtained from

a solution of the Laplace equation, using the prescribed

motion of the dissolving surfaces as a boundary condition.

The normal displacements on the faces of the surface

polygons are combined with a slip condition, which imposes

a zero gradient on the tangential displacements. The vertex

displacements, δP
k , are then obtained from the cell-center

values (δC) by interpolation. Finally, the vertex positions r

are updated, using a projection operator P = (I − nn) to

ensure that points remain on the boundary surface:

rk+1 = rk + PδP
k . (24)

Because the projection operator is non-linear, the outer

solution must be iterated to convergence for stable and

accurate mesh evolution. Once the new vertex positions are

determined, OpenFOAM functions can be used to recreate

the geometric information: cell centers and volumes, and

lists of faces, edges, and neighbors. A description of the

OpenFOAM implementation, along with source codes and

test cases, can be found in the Supplemental Information

attached to a recent publication [99].

At present, there is no means within dissolFoam to

change the topology of the mesh dynamically, although such

functionality exists within the more cutting-edge versions

of OpenFOAM [113]. However, when necessary, the pore

spaces can be re-meshed externally, after extracting the

coordinates of the surfaces.

6 Benchmark problem set

The benchmark is organized as a problem set divided in 3

separate parts: one that seeks to establish solutions for the

flow and concentration fields around a dissolving mineral
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grain, together with the associated reaction rates, but

without consideration of the evolving geometry; a second

one that adds the evolution of the grain geometry as a result

of dissolution; and a third that provides validation against

experimental data of grain evolution. Parts I and II are based

on the same synthetic geometry, which may be generated

computationally, to form a two-dimensional domain. Part III

relies on image data obtained in an experiment to produce a

three–dimensional domain that is used for the simulations.

While the governing equations and process models are the

same, the parameter values for part I/II and part III are

different because the parameters for part III were calibrated

to experimental results [96].

6.1 Part I: reactive transport and flow

This part entails the simulation of flow and transport

in a two-dimensional rectangular domain, with chemical

reactions on the surface of a circular grain placed in

the center in the rectangle (Fig. 2). A single irreversible

heterogeneous reaction is considered that simulates calcite

dissolution according to the following stoichiometric

relationship:

CaCO3(s) + H + − > Ca2+ + HCO−
3 (25)

The mineral reaction rate is expressed as a first-order

dependence on the concentration of H+, assuming that far

from equilibrium conditions are maintained:

r = kH+ γH+ cH+, (26)

where r has units of mol cm−2 s−1, and the activity (γH+)

has units of cm3 mol−1. The activity coefficient is assumed

to be one in this benchmark problem, but the activity (γH+ =

1000 cm3 mol−1) is retained to indicate that cH+ must be

in mol cm−3 for unit consistency (see Appendix C for a

discussion on rate constant units). The dissolution rate only

depends on [H+], and thus, only the transport of H+ needs

to be considered. The benchmark problem does not include

multi-component geochemistry or complexation reactions

in the aqueous phase.

The geometry of the grain does not evolve as a result of

the reaction; thus, this part entails the solution of Eqs. 2-

4 only. This part is intended to compare components of

the problem without evolving geometry, as differences in

these components may affect the moving boundary problem

solution (Section 6.2). Due to feedback processes and

potential instabilities, these differences may be amplified

when geometry evolves. In particular, part I is aimed at

validating the flow solution, and the concentration at the

fluid-solid boundary that determines the reaction rate r in

Eq. 26.

A single calcite crystal is placed in cross-flow conditions

in a two-dimensional rectangular channel (Fig. 2). A

uniform velocity boundary condition is applied across the

inlet face, which determines the volumetric flux and flow

rate throughout the domain:

u|x=0 = uin, (27)

The grain has a cylindrical shape with a radius equal to

0.01 cm, or 1/5 of the width of the flow channel (Fig. 2). A

solution, at pH 2, out of equilibrium with respect to calcite

(Table 2), flows into the domain and drives dissolution of

the grain. The mass flux at the inlet is assumed to take place

by advection (i.e., cin · uin, with cin and uin being the inlet

concentration and fluid velocity, see Eq. 27). This may be

expressed as a Dirichlet boundary condition:

c|x=0 = cin, (28)

Because of dissolution, the concentration of products,

such as calcium ions, increases around and downstream

of the mineral grain. The first-order reaction rate value

obtained in [23] at 25◦C is used (Table 2). The upper and

Fig. 2 Computational domain

and boundary conditions for

parts I and II. The specifics of

the problem set up are described

in Table 2
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Table 2 Parameters for the simulations in parts I and II

Parameter Symbol Value Units

Fluid density ρ 1 g cm−3

Kinematic viscosity ν 10−2 cm2 s−1

Diffusion coefficient D 10−5 cm2 s−1

Inlet velocity |uin| 0.12 cm s−1

Length of domain L 0.1 cm

Width of domain w 0.05 cm

Grain radius R 0.01 cm

Specific grain reactive area S = 2πR (π R2)−1 200 cm−1

Rate constant kH+ 10−4.05 mol cm−2 s−1

Activity coefficient γH+ 1000 cm3 mol−1

Calcite molar volume Vm 36.9 cm3 mol−1

Calcite molecular weight Mm 100 g mol−1

Solid density ρs = Mm · V −1
m 2.71 g cm−3

Inlet concentration (pH = 2) c 10−5 mol cm−3

Reynolds number Re = uin w ν−1 0.6

Péclet number Pe = uin w D−1 600

Damköhler number DaII = kH+γH+SR2/D 178

The rate constant (kH+ ) is from [23]

lower walls of the channel are assumed to be no-flow,

non-slip boundaries:

u|y=0,y=w = 0, (29)

where the non-slip condition does apply at the inlet face

(x = 0) for consistency with Eq. 28.

Solute mass flux across the upper and lower boundary

walls is also zero:

∂c

∂n
|y=0,y=w = 0, (30)

At the outlet boundary, a fixed pressure boundary

condition is used. The solute is allowed to flow freely out

of the domain by advection (no concentration gradients

allowed):

p|x=L = po, (31)

∂c

∂n
|x=L = 0, (32)

The simulation parameters and symbols are summarized

in Table 2.

The solution for flow, transport, and reaction is expected

to reach a steady state because the geometry is not allowed

to evolve. The focus here is to compare the steady-state

solutions. Therefore, matching the trajectory to steady state

from an initial condition is not required and is provided

in Section 7.1 for the purpose of illustration. Steady state

may be identified by a plateau in the average effluent

concentrations (38) and average reaction rates (37). The

time to reach steady state from the initial conditions noted

in Table 2 is of the order of 3 seconds; a simulation of 5

seconds is sufficient for this benchmark.

The resolution of the spatial discretization is not set as

part of the problem definition as it is specific to each code

and method. A component of part II (Section 6.2) addresses

specifically the effect of the spatial resolution on results.

6.2 Part II: moving boundary problem

This section builds on part I by including the evolution

of the grain shape resulting from the dissolution reaction.

Equations 1–5 are solved, updating the position of the

boundary at each time step. Conditions on the external

boundaries are the same as in part I (27)–(32). The results in

this section emphasize the moving boundary component of

the simulations, with both quantitative (such as the average

reaction rate) and qualitative (from the shape of the mineral

grain) comparisons of the different codes. The simulations

in part II do not reach a steady state because the grain

surface and flow field evolve with time; results are therefore

compared at specific times. The simulations are run for

45 min, period in which the size of the grain evolves

sufficiently to make comparisons between code results but

is still large enough that is captured by the grid resolution.
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Table 3 Parameters for simulations exploring a range of Péclet and

Damköhler numbers

Pe DaII D ( cm s−1) kH+ ( mol cm−2 s−1)

600 178 10−5 10−4.05

6 0.178 10−3 10−5.05

600 17800 10−5 10−2.05

6 178 10−3 10−2.05

Two additional components are considered. First, part

II is used to explore the sensitivity of the results to the

resolution of the spatial discretization, i.e., whether results

converge to a solution as the discretization is refined.

Second, part II is used to explore the sensitivity of the results

to the dimensionless parameters, Péclet (Pe = uinw/D)

and Damköhler (DaII = kH+γH+SR2/D) number (Table 3,

with each parameter defined in Table 2).

6.3 Part III: three-dimensional experimental
validation

This part is intended to provide an experimental validation

of the pore-scale simulators in three dimensions. For this

purpose, experimental and simulation data from [96] are

used. In the experiment, calcite dissolution was created

by an acidic solution flowing past an hexagonal-shaped

calcite column, which was placed within a microfluidic cell

(Fig. 3). The experiment and methods are described in detail

in [96].

The initial geometry is generated from an image of

the experimental calcite column (Fig. 3a) provided in

the Supplemental Information. This is a two-dimensional

image that needs to be extruded in the third dimension,

perpendicular to the plane, to obtain the three-dimensional

column for the simulations. The height of the resulting

column is 0.2 mm. The width of the channel is 1.496

mm and is defined as the distance between the two dark

layers on top and bottom of the mask image. The top

72 and bottom 38 rows of pixels of the 1416 pixels

are considered solid and do not need to be included in

the simulation. The long dimension of the image (i.e.,

2526 pixels) corresponds to 2.667 mm in the micromodel

experiment. There is no strict requirement in simulating

exactly the entirety of the length of the image as long as

the chosen domain length is sufficient to capture the flow

field and the diffusive boundary layer that form around the

column. In other words, the solution should be unaffected

by the boundary conditions. For example, if plug flow is

used as a boundary condition at the inlet, the distance to

the calcite column must be enough to develop a Poiseuille-

type velocity profile before reaching the grain. Because the

computational methods differ, the approach to incorporate

the image data and construct the domain is part of the

benchmark problem. As in parts I and II, the spatial

resolution is not set specifically.

Top and bottom boundaries (defined by the edge of

the black bands in the image) as well as front and back

boundaries (resulting from the extrusion of the image in

the direction perpendicular to the image) are no-flow, no -

slip boundaries (i.e., Eq. 29 is also applied at z = 0 and

z = h). The left and right boundaries (the inlet and outlet)

are the only ones open for flow. At the inlet, the flow rate

is prescribed. When plug flow is assumed, the fluid velocity

at the inlet face is 0.117 cm s−1 (27). A fixed pressure is

used as boundary condition at the outlet (31). The external

boundary conditions for the transport problem are the same

as for parts I and II, with consideration of the front and back

boundaries via (30) applied at z = 0 and z = h.

The parameters used for the simulations are those

employed by [96] to obtain a match to experimental

observations (Table 4). It is worth noting that the rate

constant is an order of magnitude faster than that for

parts I/II as it was obtained by fitting the evolution of

the grain observed in the experiment to results from

OpenFOAM-DBS. The simulation is run for 12000 s, as in

the experiment.

7 Results and discussion

Results from the simulations are analyzed and compared in

this section in two ways: (i) spatially, in terms of the grain

shape at specified times and in terms of concentrations,

and (ii) by means of aggregate measures of the simulated

processes for the whole domain, namely, the fluid-solid

interfacial area, volume of the solid grain and average

reaction rate (Appendix B.1).

7.1 Part I

Results from part I show that concentrations of H+

decreases towards the surface of the mineral as the reaction

consumes it Eq. 25. The rate of dissolution at the surface

is controlled by both the reaction kinetics (26) and the

diffusion of reactant towards the surface. As a result, a

diffusive boundary layer is established around the mineral

grain as shown in Fig. 4. The boundary layer is wider on the

downstream side of the grain than on the upstream side, and

[H+] values are slightly lower at the surface. This difference
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Fig. 3 a Masking image that

defines the domain for part III

(grain in black) and b

3-dimensional rendering of the

grain as used in the Vortex

simulations obtained by

extruding the masking image in

the z direction. An exactly

octagonal perimeter was used to

initialize the dissolFoam

simulations rather than the

bitmap mask

is better observed when plotting pH values (Fig. 6), with

pH = −log10(γH+cH+). These differences give rise to the

evolution in shape investigated in part II.

The resolution of the mesh used for part I is 256 × 128

for all codes (Fig. 1), except for dissolFoam that used an

unstructured mesh with an underlying structured resolution

200 × 100 and additional refinement as in Fig. 1e).

Average reaction rates calculated from the different codes

agree quite well, with a steady-state value around 4.3 ×

10−8 mol cm−2 s−1 (Table 5). The effective rate is much

slower than under well-mixed conditions (i.e., under strict

surface control), kH+γH+cin = 8.9 × 10−7 mol cm−2 s−1;

this implies that the dissolution is strongly transport limited

and insensitive to the actual reaction rate. Overall the

reaction rates are consistent between all the codes (Table 5)

While codes using an explicit representation of the

interface produce an accurate surface area and grain volume,

the Darcy-Brinkman-Stokes results are slightly different

from the theoretical values for a circle (Table 5). This

is due to the inherent uncertainty in the calculation of

the surface area from the porosity gradient (Section 3.5).

Although the lattice Boltzmann code represents the solid

volume using a stepwise (or staircase) description of the

boundary on a Cartesian grid (similar to the output of an

X-ray tomogram), the solid mass balance is performed at

each flow and transport time step. The dissolving voxels

are then in a partially solid state (diffusion is allowed,

fluid is stagnant) and the sub-lattice surfaces may be

approximated (Section 5.3). The trade-off for robustness is

the introduction of slight uncertainties in the flux calculation

(dissolution rate is about 5% larger than the other methods).

The steady-state flux-averaged effluent concentration

also shows a good agreement among the codes (Fig. 5b).

This is also true for the Vortex code, which used a different

Table 4 Parameters for simulation in part III

Parameter Symbol Value Units

Fluid density ρ 0.92 g cm−3

Kinematic viscosity μ 0.0261 cm2 s−1

Diffusion coefficient D 5 · 10−5 cm2 s−1

Inlet velocity |uin| 0.117 cm s−1

Length of domain L 0.267 cm

Width of domain w 0.150 cm

Height of domain h 0.02 cm

Grain radius From image file

Specific grain reactive area S 78.5 cm−1

Rate constant kH+ 10−3 mol cm−2 s−1

Activity coefficient γH+ 1000 cm3 mol−1

Calcite molar volume Vm 36.9 cm3 mol−1

Calcite molecular weight Mm 100 g mol−1

Solid density ρs = Mm · V −1
m 2.71 g cm−3

Inlet concentration c 1.26 × 10−5 mol−1 cm3

Reynolds number Re = |uin| w ν−1 0.671

Péclet number Pe = |uin| w D−1 350

Damköhler number DaII = (kH+γH+S) R2 D−1 3930

The source for all parameter values is [96]. Conversion of the reaction rate constant from the units reported in [96] to the units used here is detailed

in Appendix C
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Fig. 4 Steady-state concentration contours for the two-dimensional

dissolution of a cylindrical calcite grain obtained from a OpenFOAM-

DBS, b lattice Boltzmann, c vortex, d Chombo-Crunch, and e dissol-

Foam simulations with concentrations in units of mol/L. In a, b, and

c, the concentration field is defined everywhere including in the solid

grain where it is zero, while in d and e there is no internal region and

the field is not defined there, see also Fig. 1

initial condition (pH = 7 in lieu of pH = 2). As

noted earlier, the time scale associated with transport is

faster than that of the evolution of the fluid-solid interface.

Consistently, this result shows that the same dissolution

rates are obtained in about 1 s (Fig. 5a) even with initial

conditions that vary 5 orders of magnitude, while the time

scales of geometry evolution obtained in part II are in the

order of several minutes (Section 7.2).

For convenience, the rate R is defined from the mass

balance between outlet and inlet concentrations (Appendix

B.1), and therefore, only at steady-state R matches the

instantaneous average reactive flux dissolving the grain.

Thus, after a short delay (while calcium ions are convected

towards the outlet), the average reaction rate increases

sharply with time (Fig. 5a). Nevertheless, the relaxation

times for all simulations to achieve a steady state are similar.

Table 5 Initial surface area, mineral grain volume, and average steady-state dissolution rate (37) calculated from the different codes, using the

geometry and conditions described in Section 6.1

Code Surface area ( cm2) Grain volume ( cm3) Average rate ( mol cm−2 s−1)

Theoretical 0.0628 3.14 · 10−4

OpenFOAM-DBS 0.0643 3.13 · 10−4 4.18 · 10−8

Lattice-Boltzmann 0.0628 3.14 · 10−4 4.57 · 10−8

Vortex 0.0628 3.11 · 10−4 4.27 · 10−8

Chombo-Crunch 0.0628 3.14 · 10−4 4.32 · 10−8

dissolFoam 0.0628 3.14 · 10−4 4.33 · 10−8

In calculating the grain surface area and volume, the height of the cylinder is taken as 1 cm
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Fig. 5 Evolution of the a average reaction rate and b effluent concentration from OpenFOAM-DBS, Lattice-Boltzmann, Vortex, Chombo-Crunch,

and dissolFoam simulations. The geometry and parameters are described in Section 6.1

In most simulations, the reaction rate approaches its steady-

state value monotonically, but the lattice Boltzmann results

show a small overshoot as well as a larger asymptotic

value. The reason for the overshoot might be attributable

to the initialization of the flow field and its subsequent

relaxation to steady state, or to the sudden change of state of

the dissolving voxels from solid to quasi-solid. Moreover,

the LB code is not implementing a time scale separation

between fluid motion and the transport of ions, but is

solving a fully coupled problem. However, the steady-state

flux-averaged effluent concentration shows good agreement

among the codes (Fig. 5b), although the initial condition for

the vortex method was different from the other methods.

Figure 6 shows the concentration (in the form of pH)

along different axes: horizontal, vertical, and at 45◦. The

agreement between the codes is good, in particular in regard

to the thickness of the diffusive layer and the gradient of pH

values. As will be discussed in Section 7.2, in relation to the

sensitivity of results to Pe and Da, rates in the simulation

in part I are to a large extent controlled by transport

and therefore capturing the concentration gradients is

critical to obtaining an accurate solution. Differences exist

between results from the different codes, especially for

the concentration values in cells at or near the surface of

the solid, which is represented differently in the different

codes (Section 4, Fig. 1). Relatively high pH values are

observed for the lattice Boltzmann code, which represents

the interface as a staircase (Fig. 1). Artifacts related to

extracting the values and plotting them on a line that does

not align with the meshes employed also contribute to

differences, especially for the Vortex code that also stores

concentration values in the solid.

7.2 Part II

In contrast to part I, here the geometry is allowed to

evolve from the local surface reaction. Initially, the results

correspond to the long-time limit of Fig. 5. The time

scales in Fig. 7 are about 1000 times longer, reflecting

the difference in molar volume between the solution

(105 cm3 mol−1) and mineral (36.9 cm3 mol−1). As a result

of dissolution, the surface area exposed to the fluid and

the size of the grain decrease with time (Fig. 7b and c).

Although the shrinking of the grain reduces the effluent

concentration, the effective reaction rate increases because

of the area of the grain decreases more rapidly than the

effluent concentration (Fig. 7). This is because, as the

grain becomes smaller, the diffusive control on the overall

reaction rate decreases. However, the average rate in Fig. 7

is still significantly smaller than the reaction limit 8.9 ×

10−7 mol cm−2 s−1. Results from the different codes agree

quite well with one another, with differences of up to

10% in the average dissolution rate and somewhat smaller

deviations in the grain area and volume.

The lack of fore-aft symmetry in the concentration field

(Fig. 4) leads to non-uniform shrinking of the disk, with

most of the dissolution occurring on its leading (upstream)

edge while the most downstream point moves much less.

Figure 8 shows the evolving grain shape as calculated by the

different codes. The overall grain shape is quite similar in all
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Fig. 6 Steady-state pH values along a horizontal, b vertical, and c 45◦ lines that cross the center of the disk, obtained in part I (Section 6.1).

Results from OpenFOAM-DBS, lattice Boltzmann, vortex, Chombo-Crunch, and dissolFoam simulations are compared. Here x represents the

distance along the line

the codes, but some noticeable differences develop at longer

times. The dissolution in the vortex method is more uniform

over the surface of the disk than in the other codes. The

dissolution on the trailing (downstream) edge of the disk

predicted by Chombo-Crunch and dissolFoam are similar

and slower than results from the other codes.

As noted in Section 2, the time scales associated

with different simulated processes are very different. In

particular, the displacement of the fluid-solid interface

in response to dissolution is much slower than all other

processes such that flow and transport may be solved at

steady state with Eqs. 1, 2, and 35. Depending on the

specific approach and particular development history, each

of the participant codes use different strategies to step

through time in each component in order to solve each the

overall problem and capture the coupling between processes

(Section 5). The good agreement between code results

thus also serves as validation that the different approaches

can simulate the benchmark problem accurately with their

specific strategy for time stepping and process coupling.

The steady-state assumption for flow and transport is taken

advantage directly by dissolFoam (Section 5.5), which

solves the equations in the steady-state form. The methods

to update the position of the interface discretely, whether

based on a threshold, as in the LB code (Section 3.3) or

limited by the boundary CFL (Section 5.1), yield similar

results. Although the grain geometry is updated at non-

uniform intervals, average interval times are of the same
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Fig. 7 Evolution of a the average dissolution rate, b the surface area

(perimeter in two dimensions), and c the volume (area in two dimen-

sions) as a function of time during the dissolution of a two-dimensional

disk in part II. Panel d shows the discrete times used to draw for the

solid lines shown in a–c, which correspond to the discrete times the

geometry was updated for dissolFoam and Chombo-Crunch

order of magnitude for Chombo-Crunch (13.3 s) and

dissolFoam (30.4 s) (Fig. 7d). While the LB code updates

the geometry at discrete times, the mass balance of the solid

is performed at each time step (Section 5.3). Therefore,

the flow and transport solutions are obtained every 2.54 ·

10−6 s, and no assumption is made regarding the time

scales of the processes. The Darcy-Brinkman-Stokes codes

(OpenFOAM-DBS and Vortex) update the geometry every

time step and solve for flow and transport at each step.

OpenFOAM-DBS used a constant step of 10−3s.

Figure 9 illustrates the convergence of the various codes

for different resolutions. The average reaction rate is plotted

as a function of time for a number of different mesh

resolutions. All the codes are showing convergent solutions

with each doubling of the resolution making a smaller

difference in the predicted reaction rate. This behavior can

be partially attributed to the extent of the convection and

concentration boundary layers that are formed around the

disk. A larger number of grid points (grid refinement) allow

for a more accurate resolution of the physics in the vicinity

of the disk. In the case of dissolFoam, the results are

essentially independent of mesh resolution, since the use of

unstructured mesh with local refinement on the disk surface

allows for a smoother and more accurate representation of

the processes occurring near the surface. The converged

solutions from each code are similar.

Figure 10 reports results at varying Pe and DaII but

at the same resolution as reported earlier. In all these

simulations, the Reynolds number is kept constant Re =

0.6, with a fixed inlet velocity uin = 0.12 cm s−1. The codes
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Fig. 8 Grain shape at a 15, b 30, and c 45 minutes from OpenFOAM-DBS (red), lattice Boltzmann (green), vortex (blue), Chombo-Crunch (cyan),

and dissolFoam (orange) simulations for part II

predict similar dissolution rates and grain surface areas as

a function of time, with results typically within 10% of

each other. The first simulation (Pe = 600, DaII = 178)

repeats the data from Fig. 7, while the second (Pe = 6,

DaII = 0.178) is at much smaller Péclet and Damköhler

numbers. Here, dissolution is almost entirely limited by

the reaction rate at the surface of the disk (R = 8.9 ×

10−4 mol cm−3 s−1), which dissolves almost uniformly. The

dissolution rate predicted by Chombo-Crunch is noticeably

smaller for this case, but still within 10% of the other codes.

OpenFOAM-DBS and vortex were not able to complete this

test because the reactant penetrated in excess the fictitious

porous solid and the fluid/solid interface likely spread over

too many cells.

In the third case (Pe = 600, DaII = 17800), the

reaction rate has been increased by a factor of 100, so the

solution is essentially in chemical equilibrium all the time

(transport limit). The dissolution is only slightly enhanced

over the base state, which suggests the base state itself is

deep in the transport-limited regime. The dissolution rate

predicted by Chombo-Crunch is very similar to the lattice

Boltzmann and dissolFoam results but the predicted surface

area is significantly smaller. Chombo-Crunch simulation

was affected by instabilities and the area could not be

captured accurately but the rate was due to being fully

transport limited. Results from the codes using the DBS

approach (Vortex and OpenFOAM-DBS) are similar to

those of the base case.

Finally we examine a reduced Péclet number (Pe =

6), while keeping the Damköhler number (DaII = 178)

constant. Here the dissolution time scale is reduced by about

an order of magnitude, due to the much higher reaction

rate (R = 8.9 10−1 mol cm−3 s−1). Result from all codes

compare well but the Chombo-Crunch simulation could not

be run to completion.

7.3 Part III

The agreement between code results for the two-dimen-

sional simulations on the synthetic geometry in Section 7.2

is remarkably good. Part III challenges the participant

codes in two additional aspects of pore-scale reactive

transport simulations, namely in the consideration of three

dimensions and in incorporating image data to construct the

numerical domain. Experimental data of the evolution of the

solid geometry are also available for comparison.
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Fig. 9 Grid convergence test results for the evolution with time of the

effective reaction rate from a OpenFOAM-DBS, b lattice Boltzmann,

c vortex, d Chombo-Crunch, and e dissolFoam simulations. For e, only

the resolution of the underlying structured mesh is noted but unstruc-

tured mesh refinement leads to a grid with about twice as many cells

as the structured mesh
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Fig. 10 Dissolution of a two-dimensional disk at various Péclet and

Damköhler numbers from lattice Boltzmann and dissolFoam simula-

tions: Pe = 600, DaII = 178 (c.f. Fig. 7), Pe = 6, DaII = 0.178,

Pe = 600, DaII = 17800, Pe = 6, DaII = 178. The average disso-

lution rate of the disk (a, c) and its surface area (b, d) are plotted as a

function of time

7.3.1 Considerations onmeshing and domain generation

The domain size and mesh resolutions differ between

participant codes. OpenFOAM-DBS simulated a domain

with dimensions 2.667×1.496×0.2 mm using 125×75×5

cells. Vortex simulated a domain with dimensions 1.627 ×

1.627 × 0.267 mm using 128 × 128 × 32 cells; ten cells in

Y and eight cells in Z were occupied with a non-reactive

solid. Chombo-Crunch simulated a domain with dimensions

3.2×1.6×0.2 mm using 256×128×16 cells, where a non-

reactive embedded boundary intersected the domain at y =

1.496 mm to trim the domain to size. DissolFoam simulated

a domain with dimensions 2.667 × 1.496 × 0.2 mm at 3

different resolutions, 34×19×5 (42k), 67×38×5 (124k),

133 × 75 × 10 (585k), where the quantity in parentheses

indicates the number of cells after refinement; results are

presented for the convergent solution.

As noted in Section 4, different approaches are used

to incorporate image data into pore-scale models. These

approaches are often tightly connected to the solution

approach. In this manuscript, the two codes based on the

Darcy-Brinkman-Stokes formulation incorporate the solid

phase by assigning an initial value of zero to volume fraction

of fluid (ε = 0) at the solid cells, and 1 otherwise (ε =

1). In contrast, Chombo-Crunch and dissolFoam must have

an explicit description of the grain surface. For Chombo-

Crunch, the mask image was saved as a binary file (0

for pore and 255 for solid) and processed with a dilate
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Fig. 11 Evolution of the a grain volume and b surface area obtained

from part III. Experimental results (dots) can be compared with sim-

ulations from OpenFOAM-DBS (red), vortex (blue), Chombo-Crunch

(cyan), and dissolFoam (orange) codes. Panel (d) shows the discrete

times used for the solid lines shown in (a–c), which correspond to

the discrete times the geometry was updated for dissolFoam and

Chombo-Crunch

filter followed by an erode cycle from the imageJ software

[92]. The resulting grayscale image—with a smoother grain

surface—was read by the code, which then used a level set

algorithm (19) with a threshold value of 128 to generate

the implicit functions that define the embedded boundary.

The lattice Boltzmann code did not participate in part

III. DissolFoam took advantage of the octagonal shape of

the grain to initialize the domain with an exact octagonal

perimeter rather than using the image directly. Further,

dissolFoam also took advantage of the ability to remesh

pore spaces externally (Section 5.5), as the octagonal shape

of the object caused more skewness in the mesh than the

circular shape in part II. The results were insensitive to

the frequency of re-meshing. Overall, the solution approach

is very efficient computationally. The simulations required

about 100 time steps to determine the boundary motion,

with less than 100 iterations of the linear solvers per time

step; a typical mesh contains of the order of 105 cells.

7.3.2 Evolution results

The evolution of the grain in terms of both volume and

surface area is qualitatively very similar to that of the disk

in part II (Section 7.2, Fig. 11). The grain volume initially
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Fig. 12 Grain shape on a cross-section at half height (0.01 cm) at a 0, b 30, c 60, d 90, and e 120 min for part III simulations from

OpenFOAM-DBS (red), vortex (blue), Chombo-Crunch (cyan), and dissolFoam (orange) simulations

decreases in size rapidly, but progressively slows down as it

dissolves. The rate of surface area decrease increases with

time, and if the simulation is run for long enough (see results

for OpenFOAM-DBS and Vortex), it disappears completely.

This evolution is also qualitatively similar to that observed

in the experiments (symbols in Fig. 11, [96]). There is

qualitative agreement between codes with OpenFOAM-

DBS results being the closest to the experimental data.

However, the results from the other codes are similar to

one another and indicate a more rapid dissolution than
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Fig. 13 Grain shape on a cross-section at half width (approximately 0.75 cm) at a 0, b 30, c 60, d 90, and e 120 min from three-dimensional

simulations (part III): OpenFOAM-DBS (red), vortex (blue), Chombo-Crunch (cyan), and dissolFoam (orange)

OpenFOAM-DBS. The discrepancy in time scale between

vortex, Chombo-Crunch, and dissolFoam simulations, and

the experiment is approximately 20%.

As in part II, although the grain geometry is updated at

non-uniform intervals, average interval times for all codes

can be calculated. A wider range of interval values are

observed, however: 7.3 seconds for Chombo-Crunch and

86 s for dissolFoam. For Chombo-Crunch, geometry update

steps are limited by the cell with the fastest rate. In this

rough grain geometry where embedded-boundary cells have

relatively large variations in volume fractions, this led to

very strict limitations on the update intervals. The mesh

relaxation employed by dissolFoam allowed for larger time

steps (Fig. 11c).

Differences in the initial shape and size of the grain

are evident as the different codes used different ways

to incorporate the geometry information from the image

(Figs. 12, 13). For this reason, initial grain volume and

surface area were slightly different and results in Fig. 11

were presented normalized to initial values of grain volume

and grain surface area for each code. However, the

staircase outline for OpenFOAM-DBS is an artifact of the

visualization software after a threshold is applied to the

output porosity (ε) field. These initial differences likely

have an effect on the different evolution of the grain for

the different codes. In spite of this, however, the agreement

is in general very good and the simulated evolution of

the shape is qualitatively similar between codes (Figs. 12).

As in part II, the dissolution of the trailing edge of the

grain predicted by Chombo-Crunch is slower than for

other codes. In this case, it also it dissolves faster in the

leading edge. There is however good agreement among all

codes in capturing the width of the evolving grain. The

vortex code predicts a slightly wider grain than the other

codes.

In the direction perpendicular to the plane shown in

Fig. 12), the top and bottom boundaries were considered

non-slip boundaries. Because flow is faster in this mid-

plane and slower towards the boundaries, dissolution is

slightly faster here. As a result, the grain surface recedes

faster in this area, especially in the leading edge of the

grain (Fig. 13). The predictions for the trailing edge by

the different codes diverge more significantly. While the

vortex code predicts a similar pattern as in the leading

edge, dissolFoam and OpenFOAM-DBS predict instead that

trailing edge remains a vertical wall (only slightly concave

for OpenFOAM-DBS), and Chombo-Crunch predicts a

convex evolution. Although there is no experimental data

to ascertain the evolution, additional simulations with

Chombo-Crunch did not change this prediction. This result

however explains the longer trailing edge for this code

discussed earlier as Fig. 12 was obtained for the mid-plane,
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i.e., the section where the trailing edge extends the farthest

for this code.

8 Conclusion and outlook

The overall good agreement between codes in the results

of Section 7 establishes a strong benchmark that can be

used for testing and validation of new and existing codes for

the simulation of reactive transport at the pore scale with

consideration of fluid-solid geometry evolution, in a variety

of transport and reactive conditions.

The problem set was organized with increasing levels of

complexity. Part I addresses only pore-scale reactive trans-

port without geometry evolution and can be solved as a

first step to part II. Part II includes geometry evolution

for the same domain geometry and conditions. Additional

components within part II such as analysis of grid conver-

gence and sensitivity to Pe–Da conditions are helpful in

validating and testing new codes. By varying the parame-

ters (Fig. 10), they also investigate regimes where rates are

closer to surface control, although carbonate dissolution is

often closer to the transport limit. Part III can be addressed

separately from parts I and II but new layers of difficulty

are added; namely, the need to read a relatively rough

fluid-solid interface from image data to generate the initial

domain geometry and consideration of the third dimension.

The five codes that participated in this manuscript

use different approaches including in the form of the

equations they solve to recover the governing equations,

the discretizations they employ, the characterization of the

fluid-solid interfaces, and how they simulate the motion of

these interfaces. These approaches and methods cover many

of the approaches reported in the literature to solve reactive

transport at the pore scale. This gives added confidence in

that the results establish a well founded benchmark.

The benchmark problem presented focused exclusively

on single-phase processes. Simulation of reactive processes

in multiphase systems at the pore scale is a relatively

new development, e.g., [59, 97], but one that will likely

receive increasing attention due to its relevance, e.g., in

carbon sequestration or gas release from shales in hydraulic

fracturing problems.

As a first effort, the benchmark considered a relatively

simple geochemical problem: a single component reacts

with a single mineral in a dissolution reaction, which

is simulated with a first-order rate. Natural subsurface

environments are however characterized by heterogeneous

multi-mineral media involving multi-component aqueous

solutions (e.g., [31]). Future benchmark efforts can build

on this manuscript to consider more complex geochemical

problem where multiple minerals are present, and may

dissolve and precipitate in different areas of the domain.

The domain considered here is also relatively simple with

single grain geometries, which included an experimental

validation. Well-characterized natural media with relatively

large porosity and relatively homogeneous mineralogy (e.g.,

[75]) offer a good opportunity for follow-up benchmarking

efforts.

Simulation of multi-mineral systems at the pore scale has

been performed but focused on media such as sandstones

where uniform resolution was sufficient to represent [55,

56]. It is often however the multiscale nature of mineral

heterogeneity that challenges the pore-scale approach,

where geochemical evolution leads to altered porous layers

adjacent to open pore space [31, 63]. Specifically, extreme

resolution may be needed to capture the different mineral

phases at multiple spatial resolutions.

Multiscale models are emerging as a powerful to tool to

simulate systems that are heterogeneous at multiple scales

as they offer a reasonable compromise between the fidelity

of medium and process representation and feasibility

of numerical simulation. In this sense, micro-continuum

approaches (e.g., Section 5.2) or hybrid multiscale methods

(e.g., [8, 63]) offer appealing options to expand the range of

applications of pore-scale modeling.

The focus on dissolution in the benchmark reflects

the topic of relevance in most applications. Precipitation

processes however have also been investigated in pore-scale

models, e.g., [22, 29, 40, 45, 84, 120], particularly as they

can have a strong feedback on flow and transport properties

by blocking pore spaces. Treatment of nucleation however

varies significantly in these applications and warrants a

dedicated benchmarking effort.
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Appendix A: Additional/alternative
equations

Flow at the pore scale may be described by the incompress-

ible Navier-Stokes (33) and (34):

∇ · u = 0, (33)

∂u

∂t
+ (u · ∇) u +

1

ρ
∇p = ν∇2u, (34)

as well as the Stokes (1) and (2). In these benchmarks, the

Reynolds number is sufficiently small that fluid inertia can

be neglected; thus, these two approaches are equivalent.

In the dissolution benchmarks (parts II and III), codes

may take advantage of the large time scale separation

between boundary motion and transport processes to solve

the steady-state transport equation directly,

∇ · (uc) = D∇2c. (35)

Time-dependent solutions of transport and reaction (part

I) are more tightly coupled than dissolution (parts II and III),

because tA and tR are often of the same order, especially

for relatively fast reacting minerals such as carbonates. Both

global implicit and operator splitting approaches have been

used for time-dependent transport, with the time stepping in

the operator splitting constrained by the Courant-Friedrichs-

Levy (CFL) criterion

	t <
	x

max (u)
. (36)

Appendix B: Analysis and comparison
of results

B.1. Upscaled parameters

Simulation results are compared in terms of the evolution

with time of upscaled parameters. These upscaled parame-

ters include the volume (V ) and surface area of all reacting

reacting mineral surfaces (A) and the average reaction rate

(R). The average rate is calculated as follows:

R =
Q(cout − cin)

ξA
, (37)

where ξ is the stoichiometric coefficient, cin is the (uniform)

concentration at the inlet, given by the boundary conditions,

and cout is the flux-weighted-average outlet concentration,

cout =

∫

δS
cu · ds

Q
. (38)

The volumetric flux at the outlet Q is found by integrating

over the outlet area

Q =

∫

δS

u · ds. (39)

In addition to these upscaled parameters, simulation results

are compared on the basis of the geometry of the grain

at different time points and the concentration contours are

prescribed times.

B.2. Grid convergence

As methods for simulating of moving boundary problems

vary greatly, we want to investigate the impact of grid

resolution on results for each method separately. For this

purpose, the simulations were run at different resolutions

(Figs. 14, 15, and 9) in the main text. Results for the

grain volume and surface area were analyzed to ensure grid

convergence of the methods, and choose a resolution for

which results will be assumed to have converged within a

reasonable accuracy.

Appendix C: Notes on unit conversion
for concentrations and rates

The conversions from the parameters reported by [96] to

the units used in Part III are presented. Mass fraction is

converted to molar concentration using

c =
ρf

M
, (40)

where c is the molar concentration of protons ( mol cm−3),

M is the molar weight of acid ( g mol−1), ρ is the fluid

density ( g cm−3), and f is the mass fraction of acid. The

inlet concentration (0.05%) is converted to mol cm−3 as

follows:

cin =
0.92 g cm−3 × 0.0005

36.5 g mol−1
= 1.26 · 10−5 mol cm−3. (41)

In the formulation used in this manuscript (Section 2),

the first-order reaction is expressed as a function of the

activity coefficient and the molar concentration of H+

(26). Assuming that γH+ = 1000cm3mol−1, the proton
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Fig. 14 Grid convergence tests results for the time evolution of the grain volume (part II) from a OpenFOAM-DBS, b lattice Boltzmann, c vortex,

d Chombo-Crunch, and e dissolFoam simulations
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Fig. 15 Grid convergence tests results for the time evolution of the grain surface area (Part II) from a OpenFOAM-DBS, b lattice Boltzmann, c

vortex, d Chombo-Crunch, and e dissolFoam simulations
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concentration cH+ must be in mol cm−3 so that the product

kH+γH+ has units of cm s−1. The conversion from the rate

constant used in [96] (kH+γH+ = 0.5cm s−1) is

kH+ =
0.5 cm s−1

1000 cm3 mol−1
= 5 × 10−4 mol cm−2 s−1. (42)

However, in [96], this rate is applicable to the rate of

HCl consumption when reacting with calcite according to

the following stoichiometry

CaCO3(s) + 2HCl− > CaCl2 + H2CO3. (43)

To maintain consistency with the rate expressed for calcite,

one must multiply by the stoichiometric coefficient of HCl

in Eq. 43,

kH+ = 10−3 mol cm−2 s−1. (44)

Appendix D: Additional information
on numerical choices and parameters

D.1. Lattice Boltzmann dimensionalization

Dimensionalization of the LB computations is a process

that needs special care. Lattice Boltzmann unit conversion

to physical units can be done after matching the charac-

teristic non-dimensional Reynolds, Péclet, and Damköhler

numbers. For a 256 × 128 discretization grid Ly = 128 (in

lattice units), each lattice space unit in parts I and II corre-

sponds to w/128 = 3.91 × 10−4cm. For the current setup,

viscosity is defined as ν = τf ρT . The relaxation parameter

for the fluid phase, τf , is set to τf = 0.5 in lattice units. By

equating Re=ReLB=0.6, using the aforementioned viscosity,

the inlet velocity can be calculated as uinLB = 0.00078125

(in lattice units), which corresponds to uin = 0.12cm s−1.

Once the lattice velocity is set, the duration of the time

step δt can be calculated by equating the inlet velocities:

δt = 2.54 × 10−6 s. Note that the time step is dictated

by the slow advective flow, and by choosing to keep the

same time step for all processes. This leads to a fully cou-

pled advection-diffusion-reaction scheme applicable to all

flow and chemical conditions. Separation of time scales is

possible by solving for steady-state flow, then steady-state

reactive transport, and finally the solid geometry update.

Such an approach would be sufficient for these benchmarks

and would greatly reduce the number of time steps to reach

the solution.

Diffusivity is defined as D = τgT . By equating the

Péclet numbers Pe=PeLB=600, the relaxation parameter τg ,

which corresponds to the diffusive time scale, is set to

τD = 0.0005, for the species that follow the advection-

diffusion equation. Finally, by equating the Damköler

numbers DaII=DaII-LB=178.15, the rate constant kH+LB =

10−3.2364. For this dimensionalization Ma<Kn<<1, thus

recovering the incompresible Navier-Stokes equations.

D.2. Discussion on interpolation kernel
for Lagrangianmethods

The choice of the kernel � used for re-meshing the particle

is crucial for the accuracy of vortex and particle methods.

Indeed, in order to avoid holes and accumulation of particles

that would ruin the convergence, particle information

Fp (including vorticity, concentration, ...) in volumes vp

located at positions ξp is remeshed on to a new structured

mesh (with cell volumes ṽq ). This mesh defines a new set

of particles F̃q at locations ξ̃q by means of the following

convolution:

F̃q = F ∗ �(x̃q) =

∫

F(y)�(x̃q − y)dy

=
∑

p

Fp�(x̃q − xp)vp, (45)

since the set of particles is mathematically defined by the

generalized function F =
∑

p

Fpδxpvp, based of Dirac

functions at xp. In practice, when � is the “hat” (or “tent”)

function, the reaction stays confined on the fluid/solid

interface, but exhibits a pH over-estimation close to the

stagnation points, thus over-estimating the reaction rate.

When this kernel is smoother but positive in order to be

sign preserving, such as the first-order cubic spline M4,

the fluid/solid boundary becomes fuzzy and requires us

to force the reaction on the interface by means of the

function ‖∇ǫ‖, as in [96]. When using the second-order

kernel M ′
4 from [67], which is non sign preserving since

the integral of x2M ′
4(x) is zero, no negative concentration

appears despite the jump of acid concentration at the body

but it leads underestimation of reaction rate. However, the

hydrodynamic flow is computed with better accuracy using

M ′
4, as expected [28]. Consequently, the short-supported

function M3, smoother than the hat function with a support

smaller than M4, has been chosen for interpolating and

remeshing the chemical concentrations, while M ′
4 has been

chosen for the interpolation hydrodynamic values (velocity

and vorticity).

In practice for the present benchmark, for which the

reaction properties (bounds and positivity) have to be

strictly satisfied, the choice of the remeshing kernel is

mainly driven by the following arguments:

– The hat function, is good for the estimation of reaction

rate but does respect the pH bounds (pH overshoots

below 2 can occur),

• The kernel M4 is smooth but M4(0) = 2/3 �= 1; thus,

it is diffusive: pH bounds are good but reaction rate is

under-estimated (see formula A.4 of [18] for definition),
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Table 6 Parameters for Darcy-Brinkman-Stokes equations

Parameter Symbol Value Units Code

Solid porosity (initial) ǫ 10−2 [−] OpenFOAM-DBS

Solid porosity (initial) ǫ 10−2 - Vortex

Reference permeability k0 10−11 m2 OpenFOAM-DBS

Reference permeability k0 10−11 m2 Vortex

– M ′
4 (formula 4.5 of [20]) is algebraically mass-

conservative, smooth, and second order, but its negative

values induce oscillations at concentration jumps and

over-estimate the reaction rate. Furthermore, it is

not mathematically sign preserving, although negative

concentrations were never been observed in this

benchmark,

– M3 (formula A.3 of [18]) is smoother than hat, first

order and sign preserving, with short support. It is the

best choice for reactive flows like the one considered

in the present study; the reaction rate is well estimated

(a bit higher than the hat function and closer to other

curves) and does not go lower than the initial pH=2

bound, consistent with this purely dissolution process,

– M6 and M ′
6 supports are too large for this geometry,

and cannot handle correctly the final state of the

dissolution.

Consequently, the kernel M ′
4 is the best choice for

hydrodynamic computations (for particle remeshing and

interpolation of velocity and vorticity from and to grids),

while M3 is the best choice for interpolation and transfer of

concentrations.

D.3. Darcy-Brinkman-Stokes parameter values

Parameters specific to Darcy-Brinkman-Stokes code simu-

lations are presented in Table 6.
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