
Simulation of modern Traffic Lights Control Systems using the open
source Traffic Simulation SUMO

Daniel Krajzewicz, Elmar Brockfeld, Jürgen Mikat, Julia Ringel, Christian Rössel, Wolfram Tuchscheerer,

Peter Wagner, Richard Wösler
German Aerospace Centre, Institute for Transportation Research

Rutherfordstr. 2
12489 Berlin

Germany
E-mail: Daniel.Krajzewicz@dlr.de, Elmar.Brockfeld@dlr.de, Jurgen.Mikat@dlr.de, Julia.Ringel@dlr.de,

christian.roessel@gmx.de, Wolfram.Tuchscheerer@dlr.de, Peter.Wagner@dlr.de, Richard.Woesler@dlr.de

KEYWORDS

Microscopic traffic simulation, open source, traffic lights,
traffic research

ABSTRACT

Within the project “OIS” (optical information systems)
new traffic control mechanisms had to be invented and
tested. One of the most important topics was to optimize
the flow over a junction using information from the OIS
sensors which can not be measured using normal sensors
such as induct loops. For this purpose, an “agentbased”
traffic lights logic algorithm was used, which uses the
length of a jam in front of a traffic light as input. As we
had no possibility to test the traffic lights control within
the reality, the improvement of the flow throughput of
such junctions was shown using the open source traffic
Simulation “SUMO” (Simulation of Urban MObility) [1,
2].
This publication describes the algorithm itself and how it
was embedded within the simulation. Furthermore, the
simulation results are given.

INTRODUCTION

Simulations are often used to test new systems before
implementing them into the real world. This also counts
for traffic simulations. Within a project which has been
done in a co-operation with universities and a number of
companies from Berlin and Brandenburg, new optical
sensors have been developed (see [3, 4]). Using digital
cameras, we are able to observe traffic and gain areal
information, including the length of jams on a street or
trajectories of vehicles. Besides developing these systems
themselves, another goal of the project was to invent
mechanisms which use such information for traffic
optimization.
To show the capability to improve traffic flow, we decided
to implement our agentbased algorithm (see [5] for a
description) for traffic lights controls within the
microscopic road traffic simulation “SUMO” ([1, 2]).
SUMO is an open source traffic simulation developed at
our institute. As the OIS-system has been tested within a
certain area around our institute’s place, we have used a
digital network representing it as our simulation scenario.

The OIS sensors themselves will be not discussed, herein,
but only their simulation and the simulation of the traffic
lights control algorithm. At first, this algorithm will be
presented, followed by a description of how the simulation
was prepared. We will then give the simulation results,
followed by some conclusions and a discussion of open
questions.

THE TRAFFIC LIGHTS CONTROL ALGORITHM

The agentbased traffic lights control algorithm was firstly
presented in [5]. The main idea is that each traffic light is
trying to solve the jams in his front by itself. To achieve
this, he looks into the incoming lanes and measures the
jam lengths on these lanes. If at one of these lanes the jam
gets longer, this lane gets green for a longer time. Beside
these assumptions, several parameters prevent the system
from oscillating and from adapting too fast or too strong.
This is done by increasing a green phase’s duration only if
a jam is longer than a threshold. Furthermore, the jam has
to occur for a certain amount of time. There are further
boundaries for the duration of a phase – beside the
standard value given at the begin, a phase must not be
longer or shorter than predefined thresholds. The whole
algorithm is shown within picture 1.
Beside the advantage to be very simple, the agentbased
traffic lights logic can be set on top of existing traffic
lights and tries to adapt them to the current traffic amount.

tr , tg : red, green phase
 proportion
rph = tr / tg
tcycle = tr + tg : cycle time
dlook : looking distance
tdecide : decision time interval
nratio =
 (waiting n - waiting e)
 / waiting n
 n : northbound
 e : eastbound
nlimit : decision threshold

Picture 1: The traffic lights control algorithm

Check for the time tdecide.
Count all vehicles waiting
within the looking distance
dlook for each direction

|nratio| > nlimit
?

Initialise
phase ratio:

Increase red
phase

Inc green
phase

waitingn > waitinge
?

no

no

yes

yes

SIMULATION PREPARATION

Setting Up The Scenario
The description we used was a database containing the
road network of Berlin, converted from a digital map
supplied by NavTech. To extract the area we wanted to
use, we had to extract all nodes (junctions) and edges
(streets) within a certain rectangle. This was done
straightforward using simple SQL-queries.
For the final presentation, two situations had to be shown
simultaneously, one showing the scenario running with
normal traffic lights as they are implemented in reality,
and one using the OIS-detectors. To achieve this, we have
duplicated the lists of edges and nodes, shifted them by
several hundred meters – the width of the scenario plus an
offset – and included this second list within the first one.
These lists were then converted into XML files which the
SUMO network converter is capable to read. Doing this,
we gained two networks combined into a single which
could be used for simulating the scenario.
Furthermore, traffic lights definitions computed by the
“NETCONVERTER” had been replaced by definitions
that exactly match the real world traffic light logics. This
has been done for both parts of the network – the one using
normal traffic lights logics and the one using agentbased
traffic lights logics.
The routes were retrieved from measures of the real world
scenario area. Picture 2 shows the junctions the traffic was
counted at. From these measures, junction turning
percentages for each of the participating, incoming edges
were computed. These were then fed, together with the
traffic amount to one of SUMO’s routing modules for
generating single vehicle trips.
Of course, the routes had to be duplicated for the second
network, too, in order to gain exactly the same flows for
both parts of the network.

Picture 2: Positions of the OIS-controlled junctions within

the simulation (marked by circles)

Implementing The OIS Sensors
The OIS sensors were simulated using areal detectors (see
[2] for a further description) which look at all lanes in
front of the junctions which are meant to be equipped with
OIS sensors. Beside the jam length in meters, other values
are collected, such as the jam length in vehicles, the
number of vehicles, the occupancy degree, the vehicles’
mean speed, the halting durations, and several more.

Implementing The Traffic Lights Control
The traffic light control was implemented by extending
SUMO’s representation of normal traffic lights logics
(done using derivation in C++). The application’s interface
was changed in a way which allows the traffic light to
extend its phases. Besides implementing the traffic lights
control themselves this way, some further changes had to
be done. Among them was the addition of the ability to
change the traffic lights parameter on application start and
to read additional information about the phases’ minimum
and maximum lengths from the network description.
Below, the algorithm that is executed every time the light
switches is given:
- find the maximum queue length for the lanes that have

green light during the current phase
- save this queue length into a list A which holds such

values for the last l_h cycles (remove past values if
needed)

- if the time after the last decision > t_decide:
- compute the mean queue length for all phases by

averaging the values within list A with the length of
list A

- compute the phase with the largest queue in front
- compute the phase with the smallest queue in front
- quit computation if either the phase with the largest

queue in front may not be lengthen or the phase
with the shortest queue in front may not be shorten

- compute n_ratio:
- n_ratio = (max queue length – min queue

length) / max queue length
- if n_ratio > n_limit:

- increment phase length of the phase with the
largest queue length by one

- decrement phase length of the phase with the
shortest queue length by one

With:
l_h: learn horizon
t_decide: decision time interval (see Pic. 1)
n_ratio: normalised queue length delta between

the longest and the shortest queue
n_limit: decision threshold (see Pic. 1)

SIMULATION RESULTS

The comparisons were created by writing detector
measures into files and evaluating them after the
simulation has ended. For this purpose, areal detectors, the
same as used by the agentbased traffic lights logics, were
laid in front of the junction. Two measures were used to
compare the traffic lights controls: a) the jam in front of
them and b) the throughput of the junctions. The second
was computed by summing up the number of vehicles that
leave the junction and subtracting the number of vehicles
that approach the junction.
While using the original traffic amount, almost no
difference between the OIS controlled and normal traffic
lights controls could be observed. For this reason a further
scenario has been implemented where the vehicle flow on
one of the incoming edges was incremented for the time
between 5am and 5.30am. After doing this, the

Agastraße

Wegedornstraße

configurations showed large differences, which prove the
improvement of the junctions’ phases when areal sensors
combined with the agentbased traffic lights control are
used.
Below, comparisons for two of the three regarded
junctions are given, using the junctions’ throughput
(picture 3) and the jam lengths in front of the junctions
(picture 4). We will now discuss it, briefly.
As the amount of approaching vehicles increases, a normal
junction (shown in light grey within pictures 4 and 5) is
not “prepared” to solve all incoming vehicles. Most of
them get stucked in front of the junction. Due to this, there
are more approaching than leaving vehicles and the
“throughput” gets negative. After the additional flow has
been inserted into the network, the number of vehicles that
try to pass the junction decreases and the vehicles that
were waiting in front of it are leaving the junction
consecutively. This is the reason for the high positive peak
in the normal junctions’ throughput. As one can see, there
are neither positive nor negative peaks within the
agentbased junctions (shown in dark grey), what shows
that such junctions are capable to solve the additional
demand.

-200

-150

-100

-50

0

50

100

150

200

4.00 - 5.00 5.00 - 6.00 6.00 - 7.00 7.00 - 8.00 8.00 - 9.00

time [hour]

ve
hi

cl
es

-150

-100

-50

0

50

100

150

4.00 - 5.00 5.00 - 6.00 6.00 - 7.00 7.00 - 8.00 8.00 - 9.00

time [hour]

ve
hi

cl
es

Picture 3: Comparison of the throughput of fixed and

agentbased traffic lights logics; light: throughput of fixed
tls, dark: throughput of agentbased tls; left: junction

Agastraße, right: junction Wegedornstraße

This ability is even more visible when the jams in front of
the traffic lights are examined (picture 4). Here, one can
see that jams are much longer in front of normal traffic
lights when compared with agentbased traffic lights. The
constant maximum in front of normal traffic lights is due
to a certain length of the detectors that were used to
compute the jam lengths.

0

4

8

12

16

1 51 101 151 201 251 301 351 401 451 501

TLS Cycle

ja
m

 le
ng

th
 [v

eh
]

0

4

8

12

16

1 51 101 151 201 251

TLS Cycle

ja
m

 le
ng

th
 [v

eh
]

Picture 4: Comparison of the jam lengths in front of fixed

and agentbased traffic lights logics for a certain lane; light:
throughput of fixed tls, dark: throughput of agentbased tls;
left: junction Agastraße, right: junction Wegedornstraße

Picture 5 shows the difference in the traffic lights logic
located at the bottom of the rightmost junction from
picture 2. One can see here how agentbased traffic light
logics adapt to an increased flow and how they readapt to a

normal situation as soon as the queues in front of it get
similar long.

Picture 5: Comparison of the traffic lights logic before

(top) and after the optimization (middle); the display at the
bottom shows the phases after the increased flow has

passed

Besides collecting the values as shown above, a
visualisation component was developed which allows
viewing the aggregated values over all lanes. Picture 6
shows the situation at about 6am comparing a normal
adaptive traffic lights logic and the agentbased logic
equipped with OIS sensors. One can see that the jam,
displayed by the luminance is much longer when the
normal traffic lights logic is used.

Picture 6: Comparison of the density on the streets when
using normal (left) and agentbased traffic lights logics

(right); the lighter the street, the higher the density

This increased throughput is what is wanted, but it also
contains traps. The simulation shows that the succeeding
traffic lights may not be able to solve the greater incoming
amount of vehicles. If this happens, the system’s jam
length may even increase, although locally the throughput
of a junction is improved.

CONCLUSIONS

Although the agentbased traffic lights logics show clearly
their benefits at certain circumstances, no improvement
could be achieved as long as the flows were small and
balanced between the different directions of a traffic light.

This means that the best place for such controls in real life
would be junctions where the flow is changing
tremendously from time to time, for example in places
near to venues.
A second result is that we have to investigate the
interrelationship between consecutive traffic lights to
avoid generation of larger jams in front of succeeding
traffic lights. Without such coordination mechanisms,
agentbased traffic lights are most effective when used
solely, in a larger distance to other traffic lights.
At last, we want to point out that this research would cost a
much greater effort when a commercial simulation
application had to be used. Especially the implementation
of new on-road systems would not be possible or at least
very time consuming as long as the simulation’s source
code is not open. That’s why we want to encourage you to
take a look at SUMO’s project pages located at
http://sumo.sourceforge.net/ and try out the software.
Unfortunately, we are not able to make the scenario
downloadable, because it is based on commercial NavTech
data.

FUTURE WORK

We have seen that some further research has to be done on
coordinating the lights. A mechanism for this is not yet
designed and should be done as next.
There are also further systems to be evaluated. Currently,
we develop a system which reidentifies vehicles that pass a
set of camera-equipped junctions (see [6] for a
description). Among other things, travel times are
computed from these reidentified cars. These travel times
are valuable data, e.g. for further optimization of traffic
light control. Such traffic improvement methods, could be
simulated, too, and may also be one of the further steps.

REFERENCES

[1] D. Krajzewicz, G. Hertkorn, C. Rössel, P. Wagner.
2002. "SUMO (Simulation of Urban MObility); An
open-Source Traffic Simulation" Proceedings of the 4th
Middle East Symposium on Simulation and Modelling
(MESM2002), Edited by: A.~Al-Akaidi, pp. 183 - 187,
SCS European Publishing House, ISBN 90-77039-09-0

[2] D. Krajzewicz, G. Hertkorn, C. Rössel, P. Wagner. 2002-
2005. SUMO Homepage. http://sumo.sourceforge.net

[3] http://www.dlr.de/vf/forschung/projekte/ois
[4] http://www.fav.de
[5] J. Mikat, E. Brockfeld, P. Wagner. 2003. “Agent Based

Traffic Signals on a basic grid“. Proceedings of the 4th
Workshop on Agent-Based Simulation. Edited by: Jean-Pierre
Müller, Martina-Maria Seidel. SCS European Publishing
House.

[6] R. Woesler. 2004. Real-time recognition and reidentification
of vehicles from video data with high reidentification rate,
Proceedings of the 8th World Multiconference on Systemics,
Cybernetics and Informatics (SCI 2004), Orlando, Florida,
USA. Edited by: Nagib Callaos, William Lesso, Ashraf
Ahmad, Vol. VI, pp. 347-352, International Institute of
Informatics and Systemics, ISBN 980-6560-13-2

BIOGRAPHY

Born in Bydgoszcz, Poland, 1972, Daniel Krajzewicz has
finished his study of computer science at the Technical
University in Berlin by the middle of the year 2000 with
artificial intelligence and computer graphics as main
topics. After work on text classification he changed to the
Institute for Transportation Research of the German
Aerospace Centre in 2001 where he now works on a
cognitive driver model and the open-source urban traffic
simulation "SUMO".

